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General: BALLS and one or more U[RNS,

Two kinds of models

e Balls-and-bins”: Throw balls af random into a
number of urns.

= Random allocations. Basic in the analysis of
hashing algorithms; also SAT problem, cf
V. Puyhaubert,

= Techniques: Exponential generating functions
and saddle point. Poissonization &c.
Kolchin et al., Random Allocations, 1978.

e "Urn models”: One urn contains balls whose
nature may randomly change according to all
drawn and finite set of rules.
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Here: URNS with BALLS of TWO COLOURS

Typel Typell
Black  White

RULES are given by a 2 x 2 Mafrix

The composition of the urn at time O is fixed. At time n, a ball in
the urn is randomly chosen and its colour is inspected (thus the
all is drawn, looked at and then placed back in the urn); if it is
black, then a black and g white badlls are subsequently
inserted; if it is white, then, v black balls and § white balls are
inserted.

drawn || added
1 B W
B a f
%4 oY)




0 0
e Drawing with replacement = ( ) .
0 0

-1 0
e Drawing without replacement = ( ) .
0 -1

e Laplace’s "melancholic” model (1811): if a ball is
drawn, it is repainted black no matter what its

colour is.
0 O
1 -1

e Enrenfest & Ehrenfest = Uber zwei bekannte
Einwande gegen das Bolizmannsche H-Theorem,
1923. Irreversibility contradicts Ergodicity.

Exchanges of basic balls ("atoms of heat”)
pbetween two urns, one cold and one hot~

)

Bernoulli (1768), Laplace (1812).



e POlya Eggenberger model. A ball is drawn at
random and then replaced, together with s balls
of the same colour.

s 0
0 s

A model of positive influence. Closed form.

e Adverse influence” model

0 s
s 0

Used in epidemiology., etc.

e The special search tree model

Yao (1978); Bagchi and Pal (1985); Aldous et al (1988);
Prodinger & Panholzer (1998)



Here case of a 2 x 2-matrix

a f
v 0
with constant row-sum QOO0
s:=a+pB=v+09.
At time n size t,, saftisfies ¢,, = tg + sn.

Constant increment s

A problem with + two inifial
condifions.

& Kotz, Mahmoud, Robert (2000) show
“pathologies’ in some of the other cases.

Huge literature: Math. Reviews
TITLE=urn : Number of Matches=186""'



Lead to amazingly wide variety of behaviours,
special functions, and limit disfributions.

Methods

e Difference equations and explicit solufions.

e SaMe but with probability generating functions.
e Connection with branching processes.

e Stochasstic differential equations (KMR)

e Martingales (Gouet)

Here: A frontal attack:

— PDE of snapshots af fime n

— Usual solution for quasilinear PDE

— Bivariate GF and singularity perturbbation
Conformal mapping argument, Abelian integrals
over Fermat curves z* + y* =1



Part |
The 7,3 model—basic equations

e INsertions in a 2-3 tree: 2-node — 3—-node;
3-node — (2-node + 2-node).

© 0@ @@@

in=ert 287

e Fringe-balanced 2-3 tree analogous to
median-of-three quicksort.

=
i
qu /ﬁqm [
A1

FiGure 1. The [ringe heuristic

Mahmoud (1998); Panholzer-Prodinger (1998)
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Evolution is:
)

—2  with probability Kn—1
X1 =2; Xn—Xn-1 = 4 n
+4 with probability 1 —

n—1

F(z,u):= an(u)un = an,kukzn,

n>1 n,k
whose elicitation is our main target.
Lemma: PDE satisfied by BGF of probabilities is

5 OF 1 _u89F s s —
(u”z u)az—l—(l u)au—l—uF—l—u = 0.

PROOF. Each p, is determined from previous one by 9,
= a differential recurrence. Gives PDE for bivariate
generating function F'.

Take po(u) that satisfies PDE and write
G :=po(u) + F(z,u). Then, we get a homogeneous PDE.

(u%—u)%—f + (1 — UG)Z—SZ +u°G = 0.

with )
po(u) = (1 — u®)/* / B2 — 87/ at.
0




Quasilinear first-order PDE’s are reducible to ODEs.

0G(z,u) 0G(z,u)
0z ou

A(z,u, G) +B(z,u, Q) +C(z,u,G) =0

1. Look for a solufion in implicit form X (z,u, G) = 0.

A(z,u,w)%—)z( + B(z,u,w)%—f — C(z,u,w)g—i = 0.

2. Consider the ordinary differential system
dz _du __dw
A B  C°
The solution of two “independent” ordinary differential
equations, e.qg.,
@ du

du _ _dw and = —
B C A B’

leads to two families of integral curves,

U(u,z,w) =C1 and V(u,z,w) = Cs.
3. The generic solution of the PDE is provided by
X(z,u,w) = ®(U(u, z,w), V(u, z,w)),

for arbitrary bivariate ®. Solving for w in X (z,u,w) =0
provides a relation w = Rs(z,u). General solufion is

G(z,u) := Ra(z,u).
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0G 0G
5, . \9Y .6\ 9U 5 _
(uz u)3z+(1 u)au+uG 0.
Consider
du B dz __d_w
1—ub wdz—u  wiw’

e du + dw first integral by separation:
w(l —ub)~Y¢ = (.
e du + dz variation of constant:
Z(l—u6)1/6+/u ! dt:CQ
o (L—t6)5/°

Bind the two integrals by arbitrary @ & w = G

G 61\1/6 ¢ t _
@((1_u6)1/6, 2(1 — u®) +/0 (1_t6>5/6dt> =0,

Solve for G, infroducing arbitrary :

Gleru) = S+, 1= [ oo de
with §(u) := (1 — u®)Y/S,
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Initial conditions identify 1.

Theorem 1. Define the quantities

Sw) = (1-u)e,

o - T = ey
(1)

~
~—~
&

|

Then, the bivariate generating function of the
probabilities is

G(z,u) = o(u)y (26(u) + I(u)), (2)

where 9 is the function defined parametrically for
lu| < 1 by
p(I(u) = J(u). (3)

12

dt



Dominant singularities of ?

The diagram that summarizes v is

u

e N\
z=1I(u) — P(z) = J(u).

The radius of analyticity of v is

p=1(1), I(u) := /Ou i 1;6)5/6 dt,

Proof: There is local (analyfic) inverfibility of I(u) along
(0, p). Thus % is analyfic along (0, p).

We have iy (z) = G(z,0) which has nonnegative coeffs
and is Pringsheim.

We have I(1) < oo while J(1) = co. Thus p is a singularity.
By Eulerian Beta integrails:

1.1 1. 10(1/3)r(1/6)
6 I'(1/2)

= 1.40218 21053 25454
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Local expansions near v = 1 plus symmmetries of the
problem are compatible with:

Proposition 1. There are no singularities of 1(z)
on |z| = p other than p, pw, pw? that are simple
poles. Precisely, let
1 1 1 327
S(z) = + -+ —

p—2z pw—2z pwi-—z p3—23

The function
h(z) = 5(2)
is analytic in a disc |z| < R _for some R satisfying
R > p. (One can take R = 2p.)
Why singularities of v, BTW?

G(z,u) = 0(uw)p(20(u) +1(u),  P(I(u) = J(u).

Set v = 0 and estimate [2"]y(z): Get exiremely
large deviations, all balls of one colour.

Know approximately [2"|G(z, u) = PGF of
distribution ~» LIMIT LAW.

Set u to value # 1 and get LARGE DEVIATIONS.

And a good deal more. ..
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Part |l
The 7, 3 model—elliptic structure

Recall: an elliptic function is a doubly periodic
meromorphic function in C,

Integration over a conic [ Q(z,y) where
y = /P(z) and deg P = 1,2, yields functions like arctan,
arcsin and hyperbolic counterparts. Such functions
satisfy arctan(z) & arctan(z) 4+ kn SO that inverses are
simply periodic. This is a way to (re)build frigonomeftry
from integrals over conics.

Integration over a cubic or a quartic y = /P(x) with
deg P = 3,4, which are topologically “"doughuts” leads
to double periodicity. Such things occur when rectifying
the ellipse hence the name ellipfic integrals and elliptic
functions for inverses.

< © © © @ ° L]

© © ¢ © e e e

> 1/(z — w)? v bt kB 3

e e e e e e o
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For a parameterized curve, ¥(I(u)) = J(u),
examine all possible paths in the u-plane, and the
corresponding determinations of I(u). Reflect on

o)
which defines ¢ (logu) = u, that is, ¥ (z) =
Here:
b(I(u) = J(u)
= J @, 1) = [y s
The curve is t° + y® = 1 and has genus 10.

Go step by step.
e The elementary triangle
e The fundamental triangle
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The region Ry (left) and a rendering of the six-sheeted
Riemann surface 9% of §(u) = (1 — u)1/6 for w near 1 (right).

Because of double parameterization, taking « in a
half-plane suffices.
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Lemma 1. The function ¢ maps the interior of
(Rg N H) in a one-to-one manner on the interior of
the equilateral triangle T' with vertices p, pw, pw?,

where w = e2i7/3,

Proof. Folds angles in an appropriate way. ..
Start with Elementary friangle.

I(e2i7r/6) = pw

1(00621377/12)

"0 I(1)=0p

The “elementary friangle” Ty (right) is the image of the basic

sector Sy (left) via the mappina u — I(w).

w=1(()
p=1I(1)

=1

D

The “fundamental triangle” T (right) is the image of the slit

upperhalf plane (Rg N H) (left) via the mapping u +— I(u).

18



Three elementary triangles assemble to form a
fundamental triangle

Y .

Based on I(¢u) = wl(u), where (® =1, w® = 1.

pw? = I1(¢?)

Another view of the image of (Ry N H) by I(u) giving the
fundamental triangle T': a representation of the images of rays
emenating from 0 and of circles centred at O
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Lemma 2. The function ¢ is analytic (holomorphic)
in the disk |z| < 2p stripped of the points p, pw, pw?.
(The function admits these three points as simple
poles, as asserted in Prop. 1.)

Rotated copies of the fundamental triangle around p, pw, pw?

shown against the circle of convergence of ¢ (z).

Proof. Laces around v = 1 and changes of
variables: (1) — I(u) ~ 6Y/6(1 —u)/S,
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The full story and the elliptic connection
A laffice A with generators ¢,n € C.
A(&,n) = {mé+nan | ni,ne € Z}.

The WeierstraB zeta function relative to A is classically
defined as

1 1
En =t 3 (Aorie ).
z zZ—w w w
weA\{0}

Theorem 2. The v -function of the T2 3 model intialized
with 2 balls of the first type (ao = to = 2) is exactly

=2 (<520 () o

where ((z) := ((z; Anex) is the Weierstraf3 zeta function of
the hexagonal lattice:

AheX::{ne ™6 4 e /6 ‘ ni, nQEZ}
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Proof.

e Follow all paths and examine I(y(u)): any point
z € Cisreachable.

e There is a pole of ¢ at lattice points and residue
is —1 since determinatfions of é(u) in I, J are the
same.

e By Liouville, ¢(z) and ¢ coincide (up to
normalization).
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Part |lI
Probbabllistic consequences

Extract coeffs in simple fractions:

Corollary 1. For the T, 3 model, the probability
generating function p, (u) = E(u*») admits an
exact formula valid for all n > 2,

+ o0 —n—1
) — pV'3 &6 4 im0
pn( ) — nl,nQZ:_oo (K( ) + (S(U)( + N2 )) ’

where

Lu)/ 5(z)5dt’ 6(u) = (1= u®)/°,

Note: when u ~ 1, this is like K (u)™""1.
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The Quasi-powers framework.
Classics are:

(Laplace) Given a random variable X, define its
characteristic function aka Fourier transform Qs

¢x(t) :=E(e™) =Y P(Y = k)" =p(e”).
k

If S, = X1+ ---+ X, with i.i.d. X, then:

s, (t) = (6x(1))" .

(Lévy et al.) Fourier inversion is continuous:
convergence of F1.'s

lim ¢y, (t) = ¢z(t) poinfwise

n—oo
implies Y,, = Z in distribution.

(Berry-Esseen) Uniform distance on ET. furthermore
gives bounds on uniform distance on distribution
functions.
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A Sedgewick plot of {P(z,, = k)}7_, forn = 24..96 (the

horizontal axis is normalized to n + 1).
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Gaussian laws in analytic combinatorics

Classically S,, = X1 +--- + X,,, where X, have mean
and variance. Calculation shows that

exp (z’t n,u)] — ——.
o\/N n—oo 2

Hence Central Limit Theorem.

loglK

A "good” uniform approximation p,, (u) ~ a(u) - B(u)™ for
u ~ 1 (complex neighbournood) is called QuasiPowers
approximation.

From Bender, FE-Soria, Hwang (1995), one has:

— Moments result from differentiation (complex an.)

— Convergence to Gaussian distribution (erf)

— Speed of convergence is %

— Some large deviation estimates: probability of being
far from mean at en for ¢ # u is exponentially small.
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Corollary 2 (Gaussian limit). For the 72 3 model,
the random variable X,, representing the number
of balls of the first type at time n is asymptotically

Gaussian with speed of convergence to the
limit O(n=1/?),

Proof. From laffice sum, in complex
neighbourhood

pn(u) = K(w) "1 +002™™).

Note that K(u)~! plays the réle of a probability characteristic
function but it isn’!

K(u)™! =0.713 4+ 0.254u? 4 0.090u* — 0.086u® + 0.022u® + - - - .
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The shape of moments.

In The literature, only a few moments are
computed via (unpleasant?) recurrence
manipulations from probabilities and original rec.

Here: everything is almost as though
pn(u) = K(u)~" L,

Pi(v) = 4—, Py(v) = (52 v+ 17),

P3(v) = gok= (19761/ + 1938 v — 11063) .

Corollary 3 (Moments). For the T, 3 model, exact
polynomial forms for moments of any order are
available: the factorial moments satisfy

E(X,)") = P.(n+ 1), n > 6r,

where the P, are polynomials generated by

0 hr
""" =3 " —P.(v) and L(h)=—logK(1+h).
T.
r=0
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Large deviations.

Fromn dominant poles of v, corresponding 1o « = 0;

Corollary 4 (Extreme large deviations). The
probability that, in the T2 3 model, all balls are of
the first colour satisfies

27" (2) ~ 377" (14 0(AT))

Jorany A < 8.

Moreover:

Corollary 5 (Large deviations). Let a be a
number of the open interval (0, 5). One has

lim logP(X, < a-n)=—p(a), (5)

n—o00 N,

where the rate function p is determined by

pla) =log (AgK (o)), (6)

and \g depending on « is the implicitly defined
rootu € (0,1) of

uK'(u)

+a = 0. (7)
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Proof is standard for probabilists. Assume

pn(u) = B(u)™, where B(u) increases from ¢y fo 1 as
u € (0,1).

One has Cauchy aka saddle-point bounds:

[uF]pn(u) < pni’go) - B(S,S())n,

Adopt the best ug (which must exist by some
convexity prop.) and get an exponentially small
upperbound. Cramér aka “shiffing the mean”:
apply a form of CLT near uy to conclude that the
upperbound is also a lowerbound.
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Related work

Gaussian law by moments: (Bagchi & Pal 1985). Here
global expression for moment polynomials +speed of
convergence

Elliptic connection related to (Panholzer & Prodinger
1998) via specific approach y’”’ = -y'? + -. Here: much
more general, for whole class.

Large deviations seem to be new.

Probably true. Want to apply saddle
point, need bounding fechnique.

Counting T |

Moments =1l %
Large deviations u=[l-—mn,1+n]
Central limit u=1+0

Local limit la] =1




Part IV
General case

Matrix
drawn || added
1 B W
B a f
|44 v 0.

a+fB=v+0=s

Consider general case of urns with replacement,

L.e.,a<0,8<0.
—a a—+ s
b+s —b

A 3—parameter family
Plus inifially ag black; by white.
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ldeqs:
e LOOk at the enumerative version.

e Set up PDE for bivariate generating function via
operator e

e Get a y-function parameterized by Abelian
infegrals over Fermat curve z" + y* = 1.

e Determine singularities by looking at geomeftry
of conformal maps of basic domains.

e Generally, non-elliptic solutions, but:

— Gaussian limit with speed of convergence;
— Extreme large deviations;

— Large deviation rate

Recycles most of 73 3 case but without double
periodicity at this level of generality.
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The operator approach

Number balls in order of appearance 1,2, 3, ...

choose 2 choose 5 choose 8 choose 9
—~ = - 7 ~ /\ ~ A\
17,2r , 3rr,4r1,5r1, 61,71,81,9r, 71,917,107, 1177, 124,

s = a + b, At fime n, after action, size is t,,;
to = ag + bg IS given;

tn, = to + sn.

Thus
Hn = to(to + 8) s (to + ns)

Let H,, , be number of histories of length n leading
to k Black (Type ) balls and

ZHn ku —.
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Combinatorial marking = differentiation

Represent a particular history h with k black balls
and ¢ white balls as " v*.

Evolution chooses a black ball and acts; e.g., for
T2,3:

Y

wFrt = kuFvt = ku

U0y, u— 23

k_2’l}£+3.

Similarly for white balls. Cleverly infroduce:

0 0
I:=u ' — +utv 2=

ou ov
Then T'ukv* describes all the successors of h =2 ukv?,

All evolutions of length n are generated by
'y and a trivariate version of H is

AN

H(z,u,v) := et ouypbo,
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The basic PDE

e By general principles:

AN

0, (ezrf) =Te?t f, O,H=ToH.

e By ,any tferm m = «®v#2™ has
a+ 8 =sn+ty: where
0, = ud,.

In summary, system of PDEs:

('Lﬁ —ToH
(0u + 0, — s0,)H = toH.

Eliminate 9, and get
0. H = u= o'+, H + ul 00!~ (s0.H — 0,H ~ toH) .
One cansetv=1and get H(z,u) = H(z;u,v — 1):

[(1 — szu’™)9, + (W — w78, — toub+sl] oH(z,u) = 0.
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Apply general technology for first-order PDEs.
Theorem 3. The probability of the urn defined by
—a a—+ s
matrix: ( ) , tnitial cond : ag,to := ag + bo,
b+s —b
assuming it is tenable, is

I'(n+1)T ()
T (n %)

pn(u) = 2" H (z,u).
There H(z,u) is given by

H(z,u) = 0(u)(20(u)” + I(u)),

where h = s+ a + b,

$a— 1
(1 _ . h\1/h
S(u) 1= (1 — uM)/", / sy
and the function ¢ is defined implicitly by
U0
I —
V(Iw) = 5o

39



Analytic aspects.

Abelian integrals over Fermat curve
e 4+ oyt = 1.
In general, global structure is not “clear”, but

dominant singularities are OKay.

Consider the complex plane with h rays emanating
fromn 0 and having directions given by all the hth roofs of
unity.

- ] 2(5 4+ 1
Sj::{z, z:Re"",0<R<oo,2‘7T7r<9< ('7;: )W}.

The image of Sy by I(u) is a quadrilateral, the
with vertices at the points

0, I(1), I(+o0),I(e*™M).

The
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Definition 1. The fundamental polygon of an urn
model is the (closure of) the union of h regularly

rotated versions of the elementary kite about the
origin.

The elementary kite and the fundamental
polygon of the urn
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Theorem 4. The v _function is analytic beyond its
disc of convergence whose radius is

()
a 8)

It has an algebraic branch point at z = p, where

a s 1F(%
- h I

Y(p—x) < (p—z)""° (8)

It is continuable beyond its circle of convergenc in
a star-like domain.

Proof. Uses symmetries about origin, then
rotations around vertices.

Suffices to apply singularity analysis.

42



Probabilisitic conseqguences

Corollary 6. A quasipowers approximation holds
but with weaker error terms than 7, 3.

The limit law is Gaussian with speed of
convergence O(% ).

Corollary 7. The large deviation rate exists and is
expressible in terms of integrals over the Fermat
curve.

Corollary 8. The extreme large deviation rate is
given explicitly in terms of Gamma _function values
at rational points.
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Part V

Special cases and explicitly
solvable models

The urns

) () (0

correspond to: sampling with replacement or
without replacement, and Coupon Collector.

H(z,u) = uel@0tbo)?

H(z,u) = (z +u)®(z + 1)%.

H(z,u)= (e — 1+ u)?.
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The Ehrenfest Urn e Initially: 2 urns with balls moving
between them.

e A celebrated controversy: irreversibility versus
ergodicity.

Balanceis s = 0. One hasa =b =1, hence h = 2.
Start with ag = m.

One has §(u) = (1 — u?)'/%, hence genus 0.

“oodt 1 14+ u
(u) /0 T2 = g log— =atan (u)

The function o is defined implicitly by

(atanh(u)) = ( h)m

which is equivalent o ¢ (w) = sinh™ w.
H(z,u) = (1—u*)™/? sinh™ (z+atanh u) = (sinh z+u cosh z)™.

= Combinatorics!

45



Ellipfic cases

Corollary 9. The three urn models A, B, C of
balance 1 have solutions expressible in terms of
elliptic functions. The corresponding lattices are
the equilateral triangular lattice (cases A, () and
the square lattice tilted by 7 /4 (case B).

Like for T 3: TILINGS.

Corollary 10. The urn model D admits an elliptic
function solution of the lemniscatic type.
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Urns without replacement

O Polya-Eggenberger’s contagion urn.

a 0
0 a .
uo

(1 — az)bo/a(1 — quaz)@o/a’

With a =1 and ag = by = 1, the PGF of af fime n is

H(z,u) =

1 n

. In general:

[2"u?] (1 — z)_bO/a(l — uz)‘aO/a.

Hen = ot = ] (1~ 2)-to/a
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The altruistic model.

T =
a 0

Friedman 1947: “Every time an accident occurs, the safety
campaign is pushed harder. Whenever no accident occurs,
the safety capaign slackens and the probability of an

accident increases.”

(1 o ua)to/a

__ a0 a0z(1—u®)
H('Z? u) —u-e (1 - ueaz(l—u“))to/a’

smythe a = 1: sternma construction in philology as
well as with recursive trees.
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The KMR urn: Kotz-Mahmoud-Robert!

a+1 O
1 a 7
Bagchi and Pal (1985): “present some curious

tfechnical problems”.

Bivariate algebraic solufion, genus 0:

’u,to 1 — 1 — 'U/a
(1 — (a+ 1)uatliz)a/(atl)

(ap—to)/a i
) (1—(a+1)u*4)

Mean and variance at time n (a = 3):

Distribution: prototype is

—1/a

AN

H(z,u) = (1= u(l - (1 - 2)*/(+1))

Singular exponent is discontinuous at u = 1.
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Banderier, F, Schaeffer, Soria: within

such changes are associated to
stable laws. (Modify singularity analysis
fechniques.)

- e.g-/
Corollary 11. Model with matrix (a + 1,0, 1, a) and
to = 1,&0 = 0:

Xn o 1 F(l/(a—i—l)) 1/a—1 ) a
. (na/(a+1) _5”’) ~ e T L G\ e

G(z; \) = —% > (=)’ D(1 + k) sin(km),

'l
i>1 J:

the quantity z~*G(z~>; \) is exactly the density of a
stable law of index A when 0 < A < 1.
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Conclusions

A unified analytic framework

All 2 x 2 urns with constant balance admit of
Some interesting special function solutions:

algebraic, , etc.

Some new probability laws.
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