The problem addressed here is the covering time of random walks on a graph satisfying ``self-avoiding'' properties. Appealing to the combinatorics of heaps of cycles, the author derives explicit expressions of the laws for several algorithms related to loop-erased random walks (and thus to spanning trees and Hamiltonian cycles samplings), Lukasiewicz walks, and taboo random walks.
| 
 | (g)= | 
 | Pxi-1xitxi-1xi. | 
| 
 | 
 | (H)= | æ ç ç è | 
 | 
 | (-1)k | 
 | (C1)... | 
 | (Ck) | ö ÷ ÷ ø | -1 = | 
 | 
| 
 | 
 | (H)= | 
 | . | 
| 
 | 
 | (H)= | 
 | . | 
| E | æ ç ç è | 
 | tijNij, g | ö ÷ ÷ ø | = | 
 | . | 
| D0(t)=D-1(t)=1, Dk(t)=Dk-1(t)- | 
 | pnt (p-1t)n Dk-n-1(t). | 
| 
 | = constant . | 
| E | æ ç ç è | 
 | tijNij, T | ö ÷ ÷ ø | = | 
 | 
| E | æ ç ç è | 
 | tijNij, C | ö ÷ ÷ ø | = | 
 | . | 
| E | æ ç ç è | 
 | tijNij, H | ö ÷ ÷ ø | =det(Id- | 
 | ) | 
 | 
 | . | 
| 
 | £ E | (W)£ | 
 | 
 | . | 
| 
 | (P)q|P|-1dq. | 
http://dimacs.rutgers.edu/~dbwilson/exact/.This document was translated from LATEX by HEVEA.