Philippe Flajolet \& Analytic Combinatorics: Inherent Ambiguity of Context-Free Languages

Frédérique Bassino and Cyril Nicaud

LIGM, Université Paris-Est \& CNRS

December 16, 2011

I first met Philippe in 1996 (teaching an AofA course).

I first met Philippe in 1996 (teaching an AofA course).

I started my PhD in automata theory and read INRIA research reports for a year.

I first met Philippe in 1996 (teaching an AofA course).

I started my PhD in automata theory and read INRIA research reports for a year.

I attended the same course in 1998 !

I first met Philippe in 1996 (teaching an AofA course).

I started my PhD in automata theory and read INRIA research reports for a year.

I attended the same course in 1998 !

$$
\frac{1}{2 \pi i} \int \frac{f(z)}{z^{n+1}} d z
$$

Philippe Flajolet \& Analytic Combinatorics: Inherent Ambiguity of Context-Free Languages

Frédérique Bassino and Cyril Nicaud

LIGM, Université Paris-Est \& CNRS

December 16, 2011

I. Context-free languages

- A word on a (finite) alphabet $A=\{a, b, \ldots\}$ is a (finite) sequence of letters : $u=a a b a, v=b c b a a, w=a a a a a b=a^{5} b$.
- A word on a (finite) alphabet $A=\{a, b, \ldots\}$ is a (finite) sequence of letters : $u=a a b a, v=b c b a a, w=a a a a a b=a^{5} b$.
- The empty word ε is the word with no letter.
- A word on a (finite) alphabet $A=\{a, b, \ldots\}$ is a (finite) sequence of letters : $u=a a b a, v=b c b a a, w=a a a a a b=a^{5} b$.
- The empty word ε is the word with no letter.
- A language is a set of words. It can be finite or infinite.
- A word on a (finite) alphabet $A=\{a, b, \ldots\}$ is a (finite) sequence of letters : $u=a a b a, v=b c b a a, w=a a a a a b=a^{5} b$.
- The empty word ε is the word with no letter.
- A language is a set of words. It can be finite or infinite.

- A word on a (finite) alphabet $A=\{a, b, \ldots\}$ is a (finite) sequence of letters : $u=a a b a, v=b c b a a, w=a a a a a b=a^{5} b$.
- The empty word ε is the word with no letter.
- A language is a set of words. It can be finite or infinite.

- A context-free grammar is a formal description of a context-free language. It is made of :
- A finite set $V=\{S, X, Y, \ldots\}$ of variables.
- A finite set $A=\{a, b, c, \ldots\}$ of terminals.
- A starting axiom $S \in V$.
- Rules of the form $X \rightarrow w$, where $X \in V$ and w is a sequence of symbols of $V \cup A$.
- A context-free grammar is a formal description of a context-free language. It is made of :
- A finite set $V=\{S, X, Y, \ldots\}$ of variables.
- A finite set $A=\{a, b, c, \ldots\}$ of terminals.
- A starting axiom $S \in V$.
- Rules of the form $X \rightarrow w$, where $X \in V$ and w is a sequence of symbols of $V \cup A$.
- The idea is to produce sequences of terminals only, by starting with S and by repeatedly applying the rules to the variables.
- A context-free grammar is a formal description of a context-free language. It is made of :
- A finite set $V=\{S, X, Y, \ldots\}$ of variables.
- A finite set $A=\{a, b, c, \ldots\}$ of terminals.
- A starting axiom $S \in V$.
- Rules of the form $X \rightarrow w$, where $X \in V$ and w is a sequence of symbols of $V \cup A$.
- The idea is to produce sequences of terminals only, by starting with S and by repeatedly applying the rules to the variables.
- Notation : $X \rightarrow a X|X Y| Y b b Y$ instead of

$$
\begin{cases}X & \rightarrow a X \\ X & \rightarrow X Y \\ X & \rightarrow Y b b Y\end{cases}
$$

Example 1

$$
S \quad \rightarrow \quad a S b S
$$

- $V=\{S\}$
- $A=\{a, b\}$
- $S \rightarrow a S b S \mid \varepsilon$

Example 1

- $V=\{S\}$

$$
\begin{array}{ccc}
S & \rightarrow & a S b S \\
a S b S & \rightarrow & a S b
\end{array}
$$

- $A=\{a, b\}$
- $S \rightarrow a S b S \mid \varepsilon$

Example 1

- $V=\{S\}$
- $A=\{a, b\}$
- $S \rightarrow a S b S \mid \varepsilon$

S	\rightarrow	$a S b S$
$a S b S$	\rightarrow	$a S b$
$a S b$	\rightarrow	$a a S b S b$

Example 1

- $V=\{S\}$
- $A=\{a, b\}$
- $S \rightarrow a S b S \mid \varepsilon$

$$
\begin{array}{clc}
S & \rightarrow & a S b S \\
a S b S & \rightarrow & a S b \\
a S b & \rightarrow & a a S b S b \\
a a S b S b & \rightarrow & a a b S b \\
a a b S b & \rightarrow & a a b a S b S b \\
a a b a S b S b & \rightarrow & a a b a b S b \\
a a b a b S b & \rightarrow & a a b a b b
\end{array}
$$

Example 1

- $V=\{S\}$
- $A=\{a, b\}$
- $S \rightarrow a S b S \mid \varepsilon$

$$
\begin{array}{clc}
S & \rightarrow & a S b S \\
a S b S & \rightarrow & a S b \\
a S b & \rightarrow & a a S b S b \\
a a S b S b & \rightarrow & a a b S b \\
a a b S b & \rightarrow & a a b a S b S b \\
a a b a S b S b & \rightarrow & a a b a b S b \\
a a b a b S b & \rightarrow & a a b a b b
\end{array}
$$

- $a a b a b b$ is in the language generated by the grammar.
- A context-free language is a language generated by a context-free grammar.
- Examples of context-free languages with $A=\{a, b, c\}$:

$$
\begin{aligned}
& L_{1}=\left\{a^{n} b^{m} c^{k} \mid n, m, k \geq 0\right\} \\
& L_{2}=\left\{a^{n} b^{n} c^{m} \mid n, m \geq 0\right\}
\end{aligned}
$$

- Example of a language that is not context-free :

$$
L_{3}=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}
$$

- A context-free language is a language generated by a context-free grammar.
- Examples of context-free languages with $A=\{a, b, c\}$:

$$
\begin{aligned}
& L_{1}=\left\{a^{n} b^{m} c^{k} \mid n, m, k \geq 0\right\} \\
& L_{2}=\left\{a^{n} b^{n} c^{m} \mid n, m \geq 0\right\}
\end{aligned}
$$

- Example of a language that is not context-free :

$$
L_{3}=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}
$$

- The set of context-free languages is closed under union, concatenation and Kleene star.
- It is not closed under complementation and intersection.

Example 1

- $V=\{S\}$
- $A=\{a, b\}$
- $S \rightarrow a S b S \mid \varepsilon$

Example 1

- $V=\{S\}$
- $A=\{a, b\}$

- $S \rightarrow a S b S \mid \varepsilon$

Example 1

- $V=\{S\}$
- $A=\{a, b\}$

- $S \rightarrow a S b S \mid \varepsilon$

Example 1

- $V=\{S\}$
- $A=\{a, b\}$
- $S \rightarrow a S b S \mid \varepsilon$

Example 1

- $V=\{S\}$
- $A=\{a, b\}$
- $S \rightarrow a S b S \mid \varepsilon$

Example 1

- $V=\{S\}$
- $A=\{a, b\}$
- $S \rightarrow a S b S \mid \varepsilon$

- The derivation tree of $a a b a b b$.
- It is the unique derivation tree for $a a b a b b$.

Example 2

- $V=\{S\}$
- $A=\{a\}$
- $S \rightarrow S S \mid a$

Example 2

- $V=\{S\}$
- $A=\{a\}$
- $S \rightarrow S S \mid a$

Example 2

$$
\begin{aligned}
& V=\{S\} \\
& -A=\{a\} \\
& S \rightarrow S S \mid a
\end{aligned}
$$

Example 2

- $V=\{S\}$
- $A=\{a\}$
- $S \rightarrow S S \mid a$

- The word aaa has two derivation trees.
- Every binary tree with $2 n+1$ nodes produces a^{n+1}.
- A grammar is ambiguous if there exists a word with at least two derivation trees in its generated language.
- A context-free language \mathcal{L} is ambiguous (inherently ambiguous) if every grammar that generates \mathcal{L} is ambiguous.
- A grammar is ambiguous if there exists a word with at least two derivation trees in its generated language.
- A context-free language \mathcal{L} is ambiguous (inherently ambiguous) if every grammar that generates \mathcal{L} is ambiguous.
- $\left\{a^{n} \mid n \geq 1\right\}$ is generated by $S \rightarrow S S \mid a$, which is an ambiguous grammar...
- but $\left\{a^{n} \mid n \geq 1\right\}$ is also generated by the non-ambiguous $S \rightarrow S a \mid a$, and is therefore a non-ambiguous language.
- A grammar is ambiguous if there exists a word with at least two derivation trees in its generated language.
- A context-free language \mathcal{L} is ambiguous (inherently ambiguous) if every grammar that generates \mathcal{L} is ambiguous.
- $\left\{a^{n} \mid n \geq 1\right\}$ is generated by $S \rightarrow S S \mid a$, which is an ambiguous grammar...
- but $\left\{a^{n} \mid n \geq 1\right\}$ is also generated by the non-ambiguous $S \rightarrow S a \mid a$, and is therefore a non-ambiguous language.
- Main focus : sufficient conditions that ensure the ambiguity of a context-free language.
- Do ambiguous context-free languages exist?
- Do ambiguous context-free languages exist ?
- Yes!

$$
\left\{a^{n} b^{m} c^{k} \mid n=m \text { or } m=k\right\}
$$

- The original proof is combinatorial, using classical techniques of language theory (pumping lemmas, ...)
- Do ambiguous context-free languages exist ?
- Yes!

$$
\left\{a^{n} b^{m} c^{k} \mid n=m \text { or } m=k\right\}
$$

- The original proof is combinatorial, using classical techniques of language theory (pumping lemmas, ...)
- Is the problem difficult?
- Do ambiguous context-free languages exist ?
- Yes!

$$
\left\{a^{n} b^{m} c^{k} \mid n=m \text { or } m=k\right\}
$$

- The original proof is combinatorial, using classical techniques of language theory (pumping lemmas, ...)
- Is the problem difficult?
- Yes!
- Some languages seem to resist (discrete) combinatorial approaches
- The problem is undecidable : there is no algorithm to check whether a given context-free language is ambiguous.

II. From languages to functions

- The counting generating function of a language \mathcal{L}, is the formal power series (seen as a function) :

$$
L(z)=\sum_{n \geq 0} \ell_{n} z^{n}
$$

where ℓ_{n} is the number of words of length n in \mathcal{L}.

- The function is analytic in a neighborhood of the origin : since $\ell_{n} \leq|A|^{n}$, we have

$$
\frac{1}{|A|} \leq \rho \leq 1
$$

- A function is algebraic (over \mathbb{Q}) when there exists a polynomial P with coefficients in \mathbb{Q} such that $P(z, L(z))=0$. It is transcendental otherwise.

Theorem (Chomsky-Schützenberger)

The counting generating function of a non-ambiguous context-free language is algebraic over \mathbb{Q}.

Theorem (Chomsky-Schützenberger)

The counting generating function of a non-ambiguous context-free language is algebraic over \mathbb{Q}.

Proof :

$$
\left\{\begin{array}{l}
S \rightarrow X Y \\
T \rightarrow a T|T b T| Y c Y \\
Y \rightarrow Y a Y|c Y| a b T a Y Y a \mid X \\
X \rightarrow a|b| c
\end{array}\right.
$$

Theorem (Chomsky-Schützenberger)

The counting generating function of a non-ambiguous context-free language is algebraic over \mathbb{Q}.

Proof :

$$
\left\{\begin{array} { l }
{ S \rightarrow X Y } \\
{ T \rightarrow a T | T b T | Y c Y } \\
{ Y \rightarrow Y a Y | c Y | a b T a Y Y a | X } \\
{ X \rightarrow a | b | c }
\end{array} \Rightarrow \left\{\begin{array}{l}
s(z)=x(z) y(z) \\
t(z)=z t(z)+z t(z)^{2}+z y(z)^{2} \\
y(z)=z y(z)^{2}+z y(z)+z^{4} t(z) y(z)^{2}+x(z) \\
x(z)=3 z
\end{array}\right.\right.
$$

Algebraic elimination gives

$$
s(z)^{8}-27\left(z^{3}-z^{2}\right) s(z)^{5}+\ldots+59049 z^{10}=0
$$

Theorem (Chomsky-Schützenberger)

The counting generating function of a non-ambiguous context-free language is algebraic over \mathbb{Q}.

Theorem (Chomsky-Schützenberger)

The counting generating function of a non-ambiguous context-free language is algebraic over \mathbb{Q}.

Corollary

If the counting generating function is transcendental over \mathbb{Q}, then the language is ambiguous.

III. Transcendence

Transcendental numbers

- A number α is algebraic when there exists a polynomial P of $\mathbb{Q}[X]$ such that $P(\alpha)=0$.
- $\sqrt{2}$ is algebraic, since it is a root of $X^{2}-2$.
- A number is transcendental when it is not algebraic.
- e is transcendental [Hermite 1873]
- π is transcendental [von Lindemann 1882]
- a^{b} is always transcendental for algebraic $a \notin\{0,1\}$ and irrational algebraic b [Gelfond 1934] [Schneider 1935] (Hilbert's seventh problem).
- not known : $e+\pi, e^{e}, e \pi, \gamma, \ldots$

Transcendental functions

- It is usually easier to establish the transcendence of a function.
- Algebraic functions have some typical properties.
- Philippe gave several criteria to establish transcendence, using this properties.
- We shall see two of them in this talk.

Theorem

An algebraic function $L(z)$ over \mathbb{Q} as finitely many singularities, which are algebraic numbers.

Criterion 1

A function having infinitely many singularities is transcendental.

Theorem (Puiseux+Transfert)

If $L(z)$ is an algebraic function over \mathbb{Q} then

$$
\ell_{n} \sim \frac{\beta^{n} n^{s}}{\Gamma(s+1)} \sum_{i=0}^{m} C_{i} \omega_{i}^{n}
$$

where $s \in \mathbb{Q} \backslash\{-1,-2, \ldots\}, \beta>0$ is algebraic, the C_{i} and ω_{i} are algebraic, with $\left|\omega_{i}\right|=1$.

Criterion 2

If the asymptotic of ℓ_{n} is of the form

$$
\ell_{n} \sim \alpha \beta^{n} n^{s},
$$

with $s \notin \mathbb{Q} \backslash\{-1,-2, \ldots\}$, then the language is ambiguous.

IV. Ambiguous languages

Goldstine language

- Initial motivation for Philippe's paper.
- $G=\left\{a^{n_{1}} b a^{n_{2}} b \ldots a^{n_{p}} b \mid p \geq 1, \exists i, n_{i} \neq i\right\}$
- abaabaaab $\notin G$ but abaabaabb $\in G$

Goldstine language

- Initial motivation for Philippe's paper.
- $G=\left\{a^{n_{1}} b a^{n_{2}} b \ldots a^{n_{p}} b \mid p \geq 1, \exists i, n_{i} \neq i\right\}$
- abaabaaab $\notin G$ but abaabaabb $\in G$
- $A^{*} \backslash G=I \cup J$, with

$$
\begin{aligned}
I & =\left\{u a \mid u \in A^{*}\right\} \\
J & =\{\varepsilon\} \cup\left\{a^{1} b a^{2} b \ldots a^{p} b \mid p \geq 1\right\}
\end{aligned}
$$

- We obtain, using $\left|a^{1} b a^{2} b \ldots a^{p} b\right|=\frac{n(n+1)}{2}-1$, that

$$
g(z)=\frac{1-z}{1-2 z}-\sum_{n \geq 1} z^{n(n+1) / 2-1}
$$

Lacunary functions

- A lacunary function is an analytic function that cannot be analytically continued anywhere outside its circle of convergence.
- $f(z)=\sum_{n \geq 0} f_{\lambda_{n}} z^{\lambda_{n}}$, with $f_{\lambda_{n}} \neq 0$
- Sufficient conditions :
- $\frac{\lambda_{n+1}-\lambda_{n}}{\lambda_{n}} \rightarrow \infty$ [Hadamard 1892]
- $\frac{\lambda_{n+1}-\lambda_{n}}{\sqrt{\lambda_{n}}} \rightarrow \infty$ [Borel 1896]
- $\lambda_{n+1}-\lambda_{n} \rightarrow \infty$ [Fabry 1896]
- $\lambda_{n} / n \rightarrow \infty$ [Faber 1904]
- A lacunary function is transcendental (Criterion 1)

Goldstine language

- $G=\left\{a^{n_{1}} b a^{n_{2}} b \ldots a^{n_{p}} b \mid p \geq 1, \exists i, n_{i} \neq i\right\}$
- We obtained that

$$
g(z)=\frac{1-z}{1-2 z}-\sum_{n \geq 1} z^{n(n+1) / 2-1}
$$

- $\sum_{n \geq 1} z^{n(n+1) / 2-1}$ is a lacunary function, hence $g(z)$ is transcendental.

Theorem (Flajolet)

The Goldstine language is ambiguous.

Another example

- Let Ω_{3} be the context free language defined by

$$
\Omega_{3}=\left\{\left.u \in\{a, b, c\}^{*}| | u\right|_{a} \neq|u|_{b} \text { or }|u|_{a} \neq|u|_{c}\right\}
$$

Another example

- Let Ω_{3} be the context free language defined by

$$
\Omega_{3}=\left\{\left.u \in\{a, b, c\}^{*}| | u\right|_{a} \neq|u|_{b} \text { or }|u|_{a} \neq|u|_{c}\right\}
$$

- Its complementary is

$$
I=A^{*} \backslash \Omega_{3}=\left\{\left.u \in\{a, b, c\}^{*}| | u\right|_{a}=|u|_{b}=|u|_{c}\right\}
$$

Another example

- Let Ω_{3} be the context free language defined by

$$
\Omega_{3}=\left\{\left.u \in\{a, b, c\}^{*}| | u\right|_{a} \neq|u|_{b} \text { or }|u|_{a} \neq|u|_{c}\right\}
$$

- Its complementary is

$$
I=A^{*} \backslash \Omega_{3}=\left\{\left.u \in\{a, b, c\}^{*}| | u\right|_{a}=|u|_{b}=|u|_{c}\right\}
$$

- Its counting generating function $O(z)$ satisfies

$$
O_{3}(z)+\sum_{n \geq 0}\binom{3 n}{n, n, n} z^{3 n}=\frac{1}{1-3 z}
$$

- But using Stirling formula

$$
\binom{3 n}{n, n, n} \sim \frac{\sqrt{3}}{2 \pi} \cdot 27^{n} \cdot n^{-1}
$$

Criterion 2

If the asymptotic of ℓ_{n} is of the form

$$
\ell_{n} \sim \alpha \beta^{n} n^{s},
$$

with $s \notin \mathbb{Q} \backslash\{-1,-2, \ldots\}$, then the language is ambiguous.

Theorem

The language Ω_{3} is ambiguous.

Conclusion

- Need the counting generating function in some way
- Need to fulfill a criterion

Conclusion

- Need the counting generating function in some way
- Need to fulfill a criterion
- Solving computer science problems using analysis
- Solving discrete problems using continuous mathematics

Conclusion

- Need the counting generating function in some way
- Need to fulfill a criterion
- Solving computer science problems using analysis
- Solving discrete problems using continuous mathematics
- Beautiful ideas
- Exciting mathematics
- Simple proofs (relying on complicated earlier results)

Conclusion

- Need the counting generating function in some way
- Need to fulfill a criterion
- Solving computer science problems using analysis
- Solving discrete problems using continuous mathematics
- Beautiful ideas
- Exciting mathematics
- Simple proofs (relying on complicated earlier results)
- Analytic combinatorics for something else than asymptotic results.

I'm trying to get a unambiguous grammar that generates this context free language.

I'm trying to get a unambiguous grammar that generates this context free language.

You can't, it's inherently ambiguous !

I'm trying to get a unambiguous grammar that generates this context free language.

You can't, it's inherently ambiguous !

Why?

I'm trying to get a unambiguous grammar that generates this context free language.

You can't, it's inherently ambiguous !

Why?

Because π is a transcendental number.

I'm trying to get a unambiguous grammar that generates this context free language.

You can't, it's inherently ambiguous !

Why?

Because π is a transcendental number.

That's why we are doing research !

I'm trying to get a unambiguous grammar that generates this context free language.

You can't, it's inherently ambiguous!

Why?

Because π is a transcendental number.

That's why we are doing research !

