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I. Context-free languages



I A word on a (finite) alphabet A = {a, b, . . .} is a (finite)
sequence of letters : u = aaba, v = bcbaa, w = aaaaab = a5b.

I The empty word ε is the word with no letter.
I A language is a set of words. It can be finite or infinite.

Program for L

u

true false

Interested in languages L such that
a machine can decide if u ∈ L :

I Turing machine
I Context-free languages
I Regular languages
I . . .



I A word on a (finite) alphabet A = {a, b, . . .} is a (finite)
sequence of letters : u = aaba, v = bcbaa, w = aaaaab = a5b.

I The empty word ε is the word with no letter.

I A language is a set of words. It can be finite or infinite.

Program for L

u

true false

Interested in languages L such that
a machine can decide if u ∈ L :

I Turing machine
I Context-free languages
I Regular languages
I . . .



I A word on a (finite) alphabet A = {a, b, . . .} is a (finite)
sequence of letters : u = aaba, v = bcbaa, w = aaaaab = a5b.

I The empty word ε is the word with no letter.
I A language is a set of words. It can be finite or infinite.

Program for L

u

true false

Interested in languages L such that
a machine can decide if u ∈ L :

I Turing machine
I Context-free languages
I Regular languages
I . . .



I A word on a (finite) alphabet A = {a, b, . . .} is a (finite)
sequence of letters : u = aaba, v = bcbaa, w = aaaaab = a5b.

I The empty word ε is the word with no letter.
I A language is a set of words. It can be finite or infinite.

Program for L

u

true false

Interested in languages L such that
a machine can decide if u ∈ L :

I Turing machine
I Context-free languages
I Regular languages
I . . .



I A word on a (finite) alphabet A = {a, b, . . .} is a (finite)
sequence of letters : u = aaba, v = bcbaa, w = aaaaab = a5b.

I The empty word ε is the word with no letter.
I A language is a set of words. It can be finite or infinite.

Program for L

u

true false

Interested in languages L such that
a machine can decide if u ∈ L :

I Turing machine
I Context-free languages
I Regular languages
I . . .



I A context-free grammar is a formal description of a context-free
language. It is made of :

I A finite set V = {S,X,Y, . . .} of variables.
I A finite set A = {a, b, c, . . .} of terminals.
I A starting axiom S ∈ V .
I Rules of the form X → w, where X ∈ V and w is a sequence of

symbols of V ∪ A.

I The idea is to produce sequences of terminals only, by starting
with S and by repeatedly applying the rules to the variables.

I Notation : X → aX | XY | YbbY instead of
X → aX
X → XY
X → YbbY
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Example 1

I V = {S}
I A = {a, b}
I S→ aSbS | ε

S → aSbS

aSbS → aSb
aSb → aaSbSb

aaSbSb → aabSb
aabSb → aabaSbSb

aabaSbSb → aababSb
aababSb → aababb

I aababb is in the language generated by the grammar.
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I A context-free language is a language generated by a
context-free grammar.

I Examples of context-free languages with A = {a, b, c} :

L1 = {anbmck | n,m, k ≥ 0}
L2 = {anbncm | n,m ≥ 0}

I Example of a language that is not context-free :

L3 = {anbncn | n ≥ 0}

I The set of context-free languages is closed under union,
concatenation and Kleene star.

I It is not closed under complementation and intersection.
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I The word aaa has two derivation trees.
I Every binary tree with 2n + 1 nodes produces an+1.



Example 2

I V = {S}
I A = {a}
I S→ SS | a

S

S S

S S a

a a

S

S S

SSa

aa

I The word aaa has two derivation trees.
I Every binary tree with 2n + 1 nodes produces an+1.



Example 2

I V = {S}
I A = {a}
I S→ SS | a

S

S S

S S a

a a

S

S S

SSa

aa

I The word aaa has two derivation trees.
I Every binary tree with 2n + 1 nodes produces an+1.



Example 2

I V = {S}
I A = {a}
I S→ SS | a

S

S S

S S a

a a

S

S S

SSa

aa

I The word aaa has two derivation trees.
I Every binary tree with 2n + 1 nodes produces an+1.



I A grammar is ambiguous if there exists a word with at least two
derivation trees in its generated language.

I A context-free language L is ambiguous (inherently ambiguous)
if every grammar that generates L is ambiguous.

I {an | n ≥ 1} is generated by S→ SS | a, which is an ambiguous
grammar . . .

I but {an | n ≥ 1} is also generated by the non-ambiguous
S→ Sa | a, and is therefore a non-ambiguous language.

I Main focus : sufficient conditions that ensure the ambiguity of a
context-free language.
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I Do ambiguous context-free languages exist ?

I Yes !
{anbmck | n = m or m = k}

I The original proof is combinatorial, using classical techniques of
language theory (pumping lemmas, . . . )

I Is the problem difficult ?
I Yes !
I Some languages seem to resist (discrete) combinatorial

approaches
I The problem is undecidable : there is no algorithm to check

whether a given context-free language is ambiguous.
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II. From languages to functions



I The counting generating function of a language L, is the formal
power series (seen as a function) :

L(z) =
∑
n≥0

`nzn,

where `n is the number of words of length n in L.
I The function is analytic in a neighborhood of the origin : since
`n ≤ |A|n, we have

1
|A|
≤ ρ ≤ 1

I A function is algebraic (over Q) when there exists a polynomial
P with coefficients in Q such that P(z,L(z)) = 0. It is
transcendental otherwise.



Theorem (Chomsky-Schützenberger)

The counting generating function of a non-ambiguous context-free
language is algebraic over Q.

Proof :
S → XY
T → aT | TbT | YcY
Y → YaY | cY | abTaYYa | X
X → a | b | c

⇒


s(z) = x(z)y(z)
t(z) = zt(z) + zt(z)2 + zy(z)2

y(z) = zy(z)2 + zy(z) + z4t(z)y(z)2 + x(z)
x(z) = 3z

Algebraic elimination gives

s(z)8 − 27(z3 − z2) s(z)5 + . . .+ 59049z10 = 0
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III. Transcendence



Transcendental numbers

I A number α is algebraic when there exists a polynomial P of
Q[X] such that P(α) = 0.

I
√

2 is algebraic, since it is a root of X2 − 2.
I A number is transcendental when it is not algebraic.

I e is transcendental [Hermite 1873]
I π is transcendental [von Lindemann 1882]
I ab is always transcendental for algebraic a /∈ {0, 1} and

irrational algebraic b [Gelfond 1934] [Schneider 1935] (Hilbert’s
seventh problem).

I not known : e + π, ee, eπ, γ, . . .



Transcendental functions

I It is usually easier to establish the transcendence of a function.

I Algebraic functions have some typical properties.

I Philippe gave several criteria to establish transcendence, using
this properties.

I We shall see two of them in this talk.



Theorem
An algebraic function L(z) over Q as finitely many singularities,
which are algebraic numbers.

Criterion 1
A function having infinitely many singularities is transcendental.



Theorem (Puiseux+Transfert)

If L(z) is an algebraic function over Q then

`n ∼
βnns

Γ(s + 1)

m∑
i=0

Ciω
n
i ,

where s ∈ Q \ {−1,−2, . . .}, β > 0 is algebraic, the Ci and ωi are
algebraic, with |ωi| = 1.

Criterion 2
If the asymptotic of `n is of the form

`n ∼ αβn ns,

with s /∈ Q \ {−1,−2, . . .}, then the language is ambiguous.



IV. Ambiguous languages



Goldstine language

I Initial motivation for Philippe’s paper.
I G = {an1ban2b . . . anpb | p ≥ 1, ∃i, ni 6= i}
I abaabaaab /∈ G but abaabaabb ∈ G

I A∗ \ G = I ∪ J, with

I = {ua | u ∈ A∗}
J = {ε} ∪ {a1ba2b . . . apb | p ≥ 1}

I We obtain, using |a1ba2b . . . apb| = n(n+1)
2 − 1, that

g(z) =
1− z
1− 2z

−
∑
n≥1

zn(n+1)/2−1
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Lacunary functions

I A lacunary function is an analytic function that cannot be
analytically continued anywhere outside its circle of
convergence.

I f (z) =
∑

n≥0 fλnzλn , with fλn 6= 0
I Sufficient conditions :

I
λn+1−λn

λn
→∞ [Hadamard 1892]

I
λn+1−λn√

λn
→∞ [Borel 1896]

I λn+1 − λn →∞ [Fabry 1896]
I λn/n→∞ [Faber 1904]

I A lacunary function is transcendental (Criterion 1)



Goldstine language

I G = {an1ban2b . . . anpb | p ≥ 1, ∃i, ni 6= i}
I We obtained that

g(z) =
1− z
1− 2z

−
∑
n≥1

zn(n+1)/2−1

I
∑

n≥1 zn(n+1)/2−1 is a lacunary function, hence g(z) is
transcendental.

Theorem (Flajolet)

The Goldstine language is ambiguous.



Another example

I Let Ω3 be the context free language defined by

Ω3 = {u ∈ {a, b, c}∗ | |u|a 6= |u|b or |u|a 6= |u|c}

I Its complementary is

I = A∗ \ Ω3 = {u ∈ {a, b, c}∗ | |u|a = |u|b = |u|c}

I Its counting generating function O(z) satisfies

O3(z) +
∑
n≥0

(
3n

n, n, n

)
z3n =

1
1− 3z
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I But using Stirling formula(
3n

n, n, n

)
∼
√

3
2π
· 27n · n−1

Criterion 2
If the asymptotic of `n is of the form

`n ∼ αβn ns,

with s /∈ Q \ {−1,−2, . . .}, then the language is ambiguous.

Theorem
The language Ω3 is ambiguous.



Conclusion

I Need the counting generating function in some way
I Need to fulfill a criterion

I Solving computer science problems using analysis
I Solving discrete problems using continuous mathematics

I Beautiful ideas
I Exciting mathematics
I Simple proofs (relying on complicated earlier results)

I Analytic combinatorics for something else than asymptotic
results.
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Why ?

Because π is a transcendental
number.

That’s why we are doing research !
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