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ABSTRACT

This booklet develops in about 180 pages the basics of asymptotic enumeration through
an approach that revolves around generating functions and complex analysis. Major prop-
erties of generating functions that are of interest here are singularities. The text presents
the core of the theory with two chapters on complex analytic methods focusing on rational
and meromorphic functions as well as a chapter on fundamentals of singularity analysis.
It is largely oriented towards applications of complex analysis to asymptotic enumeration
and asymptotic properties of random discrete structures. Many examples are given that
relate to words, integer compositions, paths and walks in graphs, lattice paths, trees, and
constrained permutations.
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This is a set of lecture notes that are a component of a wider book project titled Analytic Combi-
natorics, which will provide a unified treatment of analytic methods in combinatorics. This text
contains Chapters IV, V, and VI; it is a continuation of “Analytic Combinatorics—Symbolic Meth-
ods” (by Flajolet & Sedgewick, 2002). Readers are encouraged to check Philippe Flajolet’s web
pages for regular updates and new developments.
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PREFACE

Analytic Combinatorics aims at predicting precisely the asymptotic properties of struc-
tured combinatorial configurations, through an approach that bases itself extensively on
analytic methods. Generating functions are the central objects of the theory.

Analytic combinatorics starts from an exact enumerative description of combinatorial
structures by means of generating functions, which make their first appearance as purely
formal algebraic objects. Next, generating functions are interpreted as analytic objects, that
is, as mappings of the complex plane into itself. In this context, singularities play a key rôle
in extracting a function’s coefficients in asymptotic form and extremely precise estimates
result for counting sequences. This chain is applicable to a large number of problems of
discrete mathematics relative to words, trees, permutations, graphs, and so on. A suitable
adaptation of the theory finally opens the way to the analysis of parameters of large random
structures.

Analytic combinatorics can accordingly be organized based on three components:

— Symbolic Methods develops systematic “symbolic” relations between some of
the major constructions of discrete mathematics and operations on generating
functions which exactly encode counting sequences.

— Complex Asymptotics elaborates a collection of methods by which one can ex-
tract asymptotic counting informations from generating functions, once these are
viewed as analytic transformations of the complex domain (as “analytic” also
known as“holomorphic” functions). Singularities then appear to be a key deter-
minant of asymptotic behaviour.

— Random Structures concerns itself with probabilistic properties of large random
structures—which properties hold with “high” probability, which laws govern
randomness in large objects? In the context of analytic combinatorics, this cor-
responds to a deformation (adding auxiliary variables) and a perturbation (exam-
ining the effect of small variations of such auxiliary variables) of the standard
enumerative theory.

The approach to quantitative problems of discrete mathematics provided by analytic
combinatorics can be viewed as an operational calculus for combinatorics. The booklets,
of which this is the second installment, expose this view by means of a very large num-
ber of examples concerning classical combinatorial structures (like words, trees, permuta-
tions, and graphs). What is aimed at eventually is an effective way of quantifying “metric”
properties of large random structures. Accordingly, the theory is susceptible to many ap-
plications, within combinatorics itself, but, perhaps more importantly, within other areas
of science where discrete probabilistic models recurrently surface, like statistical physics,
computational biology, or electrical engineering. Last but not least, the analysis of algo-
rithms and data structures in computer science has served and still serves as an important
motivation in the development of the theory.
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The present booklet specifically exposes Singular Combinatorics, which is a unified
analytic theory dedicated to the process of extractic asymptotic information from count-
ing generating functions. As it turns out, a collection of general (and simple) theorems
provide a systematic translation mechanism between generating functions and asymptotic
forms of coefficients. Three chapters compose this booklet. Chapter IV serves as an in-
troduction to complex-analytic methods and proceeds with the treatment of meromorphic
functions, that is, functions whose only singularities are poles, rational functions being the
simplest case. Chapter V develops applications of rational and meromorphic asymptotics,
with numerous applications related to words and languages, walks and graphs, as well as
permutations. Chapter VI develops a general theory of singularity analysis that applies to
a wide variety of singularity types like square-root or logarithmic and has applications to
trees and other recursively defined combinatorial classes. [A future chapter, Chapter VII,
will treat applications of singularity analysis.]
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CHAPTER IV

Complex Analysis, Rational and
Meromorphic Asymptotics

The shortest path between two truths in the real domain
passes through the complex domain.

— JACQUES HADAMARD 1

Generating functions are a central concept of combinatorial theory. So far, they have
been treated as formal objects, that is, as formal power series. The major theme of Chapters
I–III has indeed been to demonstrate how the algebraic structure of generating functions
directly reflects the structure of combinatorial classes. From now on, we examine gener-
ating functions in the light of analysis. This means assigning values to the variables that
appear in generating functions.

Comparatively little benefit results from assigning only real values to the variable z
that figures in a univariate generating function. In contrast assigning complex values turns
out to have serendipitous consequences. In so doing, a generating function becomes a
geometric transformation of the complex plane. This transformation is very regular near
the origin—one says that it is analytic or holomorphic. In other words, it only effects
initially a smooth distortion of the complex plane.

Farther away from the origin, some “cracks” start appearing in the picture. These
cracks—the dignified name is “singularities”—correspond to the disapperance of smooth-
ness. What happens is that knowledge of a function’s singularities provide a wealth of
information regarding the function’s coefficients, and especially their asymptotic rate of
growth. Adopting a geometric point of view has a large pay-off.

By focussing on singularities, analytic combinatorics treads in the steps of many re-
spectable older areas of mathematics. For instance, Euler recognized that the fact for the
Riemann zeta function ζ(s) to become infinite at 1 implies the existence of infinitely
many prime numbers, while Riemann, Hadamard, and de la Vallée-Poussin uncovered
much deeper connections between quantitative properties of the primes and singularities
of 1/ζ(s).

In this chapter, we start by recalling the elementary theory of analytic functions and
their singularities in a style tuned to the needs of combinatorial theory. Cauchy’s integral
formula expresses coefficients of analytic functions as contour integrals. Suitable uses of
Cauchy’s integral formula then make it possible to estimate such coefficients by suitably
selecting the contour of integration. For the fairly common case of functions that have
singularities at a finite distance, the exponential growth formula relates the location of the
singularities closest to the origin (these are also known as “dominant” singularities) to the
exponential order of growth of coefficients. The nature of these singularities then dictates

1Quoted in The Mathematical Intelligencer, v. 13, no. 1, Winter 1991.

1



2 IV. COMPLEX ANALYSIS, RATIONAL AND MEROMORPHIC ASYMPTOTICS

the fine structure of the asymptotic of the function’s coefficients, especially the subexpo-
nential factors involved. In this chapter we carry out this programme for rational functions
and meromorphic functions, where the latter are defined by the fact their singularities are
of the polar type.

Elementary techniques permit us to estimate asymptotically counting sequences, when
these are already presented to us in closed form or as simple combinatorial sums. The
methods to be exposed require no such explicit forms of counting coefficients to be avail-
able. They apply to almost any conceivable combinatorial generating function that has a
decent mathematical expression—we already know from Chapters I–III that this covers a
very large fragment of elementary combinatorics. In a large number of cases, complex-
analytic methods can even be applied to generating functions only accessible implicitly
from functional equations. This paradigm will be extensively explored in this chapter
with applications found in denumerants, derangements, surjections, alignments, and sev-
eral other structures introduced in Chapters I–III.

IV. 1. Generating functions as analytic objects

Generating functions, considered previously as purely formal objects subject to alge-
braic operations, are now going to be interpreted as analytic objects. In so doing one gains
an easy access to the asymptotic form of their coefficients. This informal section offer a
glimpse of themes that form the basis of this chapter and the next one.

In order to introduce the subject softly, let us start with two simple generating func-
tions, one, f(z), being the OGF of the Catalan numbers (starting at index 1), the other,
g(z), being the EGF of derangements:

(1) f(z) =
1

2

(
1 −

√
1 − 4z

)
, g(z) =

exp(−z)
1 − z

.

At this stage, the forms above are merely compact descriptions of formal power series built
from the elementary series

(1 − u)−1 = 1 + u+ u2 + · · · , (1 − u)1/2 = 1 − 1

2
u− 1

8
u2 − · · · ,

exp(u) = 1 +
1

1!
u+

1

2!
u2 + · · · ,

by standard composition rules. Accordingly, the coefficients of both GFs are known in
explicit form

fn := [zn]f(z) =
1

n

(
2n− 2

n− 1

)
, gn := [zn]g(z) =

(
1

0!
− 1

1!
+

1

2!
− · · · + (−1)n

n!

)
.

Next, Stirling’s formula and comparison with the alternating series giving exp(−1)
provide respectively

(2) fn ∼
n→∞

4n

√
πn3

, gn = ∼
n→∞

e−1 .
= 0.36787.

Our purpose is to examine, heuristically for the moment, the relationship between the
asymptotic forms (2) and the structure of the corresponding generating functions in (1).

Granted the growth estimates available for fn and gn, it is legitimate to substitute
in the power series expansions of the GFs f(z) and g(z) any real or complex value of a
small enough modulus, the upper bounds on modulus being ρf = 1

4 (for f ) and ρg = 1
(for g). Figure 1 represents the graph of the resulting functions when such real values are
assigned to z. The graphs are smooth, representing functions that are differentiable any
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FIGURE 1. Left: the graph of the Catalan OGF, f(z), for z ∈
(− 1

4 ,+
1
4 ); right: the graph of the derangement EGF, g(z), for z ∈

(−1,+1).

number of times for z interior to the interval (−ρ,+ρ). However, at the right boundary
point, smoothness stops: g(z) become infinite at z = 1, and so it even ceases to be finitely
defined; f(z) does tend to the limit 1

2 as z → ( 1
4 )−, but its derivative becomes infinite

there. Such special points at which smoothness stops are called singularities, a term that
will acquire a precise meaning in the next sections.

Observe also that, by the usual process of analysis, f(z) and g(z) can be continued
in certain regions, when use is made of the global expressions (1) while exp and √ are
assigned their usual real-analytic interpretation; for instance:

f(−1) =
1

2

(
1 −

√
5
)
, g(−2) =

e2

3
.

Such “continuation” properties (to the complex realm) will prove essential in developing
efficient methods for coefficient asymptotics.

One may proceed similarly with complex numbers, starting with numbers whose mod-
ulus is less than the radius of convergence of the series defining the GF. Figure 2 displays
the images of regular grids by f and g. This illustrates the fact that a regular grid transforms
into an orthogonal network of curves and more precisely that f and g preserve angles—
this property corresponds to complex differentiability and is equivalent to analyticity to be
introduced shortly. The singularity of f is clearly perceptible on the right of its diagram,
since, at z = 1

4 corresponding to f(z) = 1
2 , the function f folds lines and divides angles

by a factor of 2.

Let us now turn to coefficient asymptotics. As is expressed by (2), the coefficients fn

and gn each belong to a general asymptotic type,

Anθ(n),

corresponding to an exponential growth factorAn modulated by a tame factor θ(n), which
is subexponential; compare with (2). Here, one has A = 4 for fn and A = 1 for gn;
also, θ(n) = 1

4 (
√
πn3)−1 for fn and θ(n) = e−1 for gn. Clearly, A should be related

to the radius of convergence of the series. We shall see that, on very general grounds, the
exponential rate of growth is given byA = 1/ρ, where ρ is the first singularity encountered
along the positive real axis. In addition, under general complex-analytic conditions, it
will be established that θ(n) = O(1) is systematically associated to a simple pole of the
generating function, while θ(n) = O(n−3/2) systematically arises from a singularity that
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FIGURE 2. The images of regular grids by f(z) (left) and g(z) (right).

is of the square-root type. In summary, as this chapter and the next ones will copiously
illustrate, one has:

Fundamental principle of complex coefficient asymptotics. The lo-
cation of a function’s singularities dictates the exponential growth of
the function’s coefficient, An, while the nature of the function at its
singularities determines the subexponential factor, θ(n).

Observe that the rescaling rule,

[zn]f(z) = ρ−n[zn]f(ρz),

enables one to normalize functions so that they are singular at 1, and so “explains” the fact
that the location of a function’s singularities should influence the coefficients’ approxima-
tion by exponential factors. Then various theorems, starting with Theorems IV.6 and IV.7,
provide sufficient conditions under which the following central implication is valid,

(3) h(z) ∼ σ(z) =⇒ [zn]h(z) ∼ [zn]σ(z),

where h(z) is a function singular at 1 whose Taylor coefficients are to be estimated and
σ(z) is an approximation near a singularity—usually σ is a much simpler function, typi-
cally like (1− z)α logβ(1− z) whose coefficients are easy to find. Under such conditions,
it suffices to estimate a function locally in order to derive its coefficients asymptotically.
In other words, the relation (3) provides a mapping between asymptotic scales of functions
near singularities and asymptotics scales of coefficients.

� 1. Euler, the discrete, and the continuous. Eulers’s proof the existence of infinitely many prime
numbers illustrates in a striking manner the way analysis of generating functions can inform us on
the discrete realm. Define, for real s > 1 the function

ζ(s) :=
∞X

n=1

1

ns
,
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now known as the Riemann zeta function. The decomposition (p ranges over the prime numbers
2, 3, 5, . . .)

(4)

ζ(s) =

„
1 +

1

2s
+

1

22s
+ · · ·

«„
1 +

1

3s
+

1

32s
+ · · ·

«„
1 +

1

5s
+

1

52s
+ · · ·

«
· · ·

=
Y

p

„
1 − 1

ps

«−1

expresses precisely the fact that each integer has a unique decomposition as a product of primes.
Analytically, the identity (4) is easily checked to be valid for all s > 1. Now suppose that there were
only finitely many primes. Let s tend to 1 in (4). Then, the left hand side becomes infinite, while the
right hand side tends to the finite limit

Q
p(1 − 1/p)−1. A contradiction has been reached. �

� 2. Elementary transfers. Elementary series manipulation yield the following general result: Let
h(z) be a power series with radius of convergence > 1 and assume that h(1) 6= 0; then one has

[zn]
h(z)

1 − z
∼h(1), [zn]h(z)

√
1 − z∼− h(1)

2
√
πn3

, [zn]h(z) log
1

1 − z
∼ h(1)

n
.

See Bender’s survey [10] for many similar statements. �

� 3. Asymptotics of generalized derangements. The EGF of permutations without cycles of length 1
and 2 satisfies

j(z) =
e−z−z2/2

1 − z
with j(z) ∼

z→1

e−3/2

1 − z
.

Analogy with derangements suggests (Note 2 can justify it) that [zn]j(z) ∼
n→∞

e−3/2. Here is a table

of exact values of [zn]j(z) (with relative error of the approximation by e−3/2 in parentheses):

n = 5 n = 10 n = 20 n = 50

jn : 0.2 0.22317 0.2231301600 0.2231301601484298289332804707640122
error : (10−1) (2 · 10−4) (3 · 10−10) (10−33)

The quality of the asymptotic approximation is extremely good. (Such a property is invariably at-
tached to polar singularities.) �

IV. 2. Analytic functions and meromorphic functions

Analytic functions are the primary mathematical concept for complex asymptotics.
They can be characterized in two essentially equivalent ways (Subsection IV. 2.1): by
means of convergent series expansions (à la Cauchy and Weierstraß) and by differentia-
bility properties (à la Riemann). The first aspect is directly related to the use of generating
functions for enumeration; the second one allows for a powerful abstract discussion of clo-
sure properties that usually requires little computation. Meromorphic functions are nothing
but quotients of analytic functions.

Integral calculus with analytic or meromorphic functions (developed in Subsection
IV. 2.2) assumes a shape radically different from what it is in the real domain: integrals be-
come quintessentially independent of details of the integration contour, the residue theorem
being a prime illustration of this fact. Conceptually, this makes it possible to relate prop-
erties of a function at a point (e.g., the coefficients of its expansion at 0) to its properties at
another far-away point (e.g., its residue at a pole).

The presentation in this section and the next one is an informal review of basic proper-
ties of analytic functions tuned to the needs of asymptotic analysis of counting sequences.
For a detailed treatment, we refer the reader to one of the many excellent treatises on the
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subject, like the books by Dieudonné [30], Henrici [75], Hille [76], Knopp [82], Titch-
marsh [126], or Whittaker and Watson [131]. The entry in APPENDIX: Equivalent defini-
tions of analyticity, p. 161 provides further information, in particular, a proof of the two
fundamental principles stated below.

IV. 2.1. Basics. We shall consider functions defined in certain regions of the complex
domain C. By a region is meant an open subset Ω of the complex plane that is connected.
Here are some examples:

simply connected domain slit complex plane indented disc annulus

Classical treatises teach us how to extend to the complex domain the standard functions
of real analysis: polynomials are immediately extended as soon as complex addition and
multiplication have been defined, while the exponential is definable by means of Euler’s
formula, and one has for instance

z2 = (x2 − y2) + 2ixy, ez = ex cos y + iex sin y,

if z = x+ iy. Both functions are consequently defined over the whole complex plane C.
The square-root and the logarithm are conveniently described in polar coordinates by

(5)
√
z =

√
ρeiθ/2, log z = log ρ+ iθ,

if z = ρeiθ. One can take the domain of validity of (5) to be the complex plane slit along
the axis from 0 to −∞, that is, restrict θ to the open interval (−π,+π), in which case the
definitions above specify what is known as the principal determination. There is no way
for instance to extend by continuity the definition of

√
z in any domain containing 0 in its

interior since, for a > 0 and z → −a, one has
√
z → i

√
a as z → −a from above, while√

z → −i√a as z → −a from below. This situation is depicted here:

+i
√
a

−i√a
0

√
a The values of

√
z

as z varies along |z| = a.

The point z = 0 where two determinations “meet” is accordingly known as a branch point.
First comes the main notion of an analytic function that arises from convergent se-

ries expansions and is closely related to the notion of generating function encountered in
previous chapters.

DEFINITION IV.1. A function f(z) defined over a region Ω is analytic at a point
z0 ∈ Ω if, for z in some open disc centred at z0 and contained in Ω, it is representable by
a convergent power series expansion

(6) f(z) =
∑

n≥0

cn(z − z0)
n.

A function is analytic in a region Ω iff it is analytic at every point of Ω.
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As derives from an elementary property of power series, given a function f that is
analytic at a point z0, there exists a disc (of possibly infinite radius) with the property
that the series representing f(z) is convergent for z inside the disc and divergent for z
outside the disc. The disc is called the disc of convergence and its radius is the radius of
convergence of f(z) at z = z0, which will be denoted by Rconv(f ; z0). Quite elementarily,
the radius of convergence of a power series conveys information regarding the rate at which
its coefficients grow; see Subsection IV. 3.2 below for developments. It is also easy to prove
(see APPENDIX: Equivalent definitions of analyticity, p. 161)) that if a function is analytic
at z0, it is thenanalytic at all points interior to its disc of convergence.

Consider for instance the function f(z) = 1/(1 − z) defined in the usual way (via
complex division) in C \ {1}. It is analytic at 0 by virtue of the geometric series sum,

1

1 − z
=
∑

n≥0

1 · zn,

which converges in the disc |z| < 1. At a point z0 6= 1, we may write

1

1 − z
=

1

1 − z0 − (z − z0)
=

1

1 − z0

1

1− z−z0

1−z0

=
∑

n≥0

(
1

1 − z0

)n+1

(z − z0)
n.

The last equation shows that f(z) is analytic in the disc centred at 0 with radius |1 − z0|,
that is, the interior of the circle centred at z0 and passing through the point 1. In particular
Rconv(f, z0) = |1 − z0| and f(z) is globally analytic in the punctured plane C \ {1}.

The last example illustrates the definition of analyticity. At the same time, it sug-
gests that, for more complicated functions, the series rearrangement approach to analytic-
ity might be difficult to carry out. In other words, a higher level approach to analyticity is
called for—this is provided by differentiability and integrability properties developed next.

The next important notion is a geometric one based on differentiability.

DEFINITION IV.2. A function f(z) defined over a region Ω is called complex-diffe-
rentiable (also holomorphic) at z0 if the limit, for complex δ,

lim
δ→0

f(z0 + δ) − f(z0)

δ

exists. (In particular, the limit is independent of the way δ tends to 0 in C.) This limit is
denoted as usual by f ′(z0) or d

dzf(z)
∣∣
z0

A function is complex-differentiable in Ω iff it is
differentiable at every z0 ∈ Ω.

Clearly, if f(z) is complex differentiable at z0, it acts locally as a linear transformation,

f(z) − f(z0) ∼ f ′(z0)(z − z0),

whenever f ′(z0) 6= 0. Then f(z) behaves in smal regions almost like a similarity trans-
formation (composed of a translation, a rotation, and a scaling). In particular, it preserves
angles2 and infinitesimal squares get transformed into infinitesimal squares; see Figure 3
for a rendering

2A mapping that preserves angles is also called a conformal map.
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For instance the function
√
z, defined by (5) in the complex plane slit along the ray

(−∞, 0), is complex-differentiable at any z of the slit plane since

lim
δ→0

√
z + δ −√

z

δ
= lim

δ→0

√
z

√
1 + δ/z − 1

δ
=

1

2
√
z
,

which extends the customary rule from real analysis. Similarly,
√

1 − z is analytic in the
complex plane slit along the ray (1,+∞). More generally, the usual real analysis proofs
carry over almost verbatim to the complex realm, to the effect that

(f + g)′ = f ′ + g′, (fg)′ = f ′g + fg′,

(
1

f

)′
= − f ′

f2
, (f ◦ g)′ = (f ′ ◦ g)g′.

The notion of complex differentiability is thus much more manageable than the notion of
analyticity.

It follows from a well known theorem of Riemann (see for instance [75, vol. 1, p 143]
and APPENDIX: Equivalent definitions of analyticity, p. 161) that analyticity and complex
differentiability are equivalent notions.

First fundamental property of analytic function theory. A function
is analytic in a region Ω if and only if it is complex-differentiable in Ω.

The following are known facts (see again the appendix): if a function is analytic (equiv-
alently complex-differentiable) in Ω, it admits (complex) derivatives of any order there.
This property markedly differs from real analysis: complex differentiable (equivalently,
analytic) functions are “smooth”. Also derivatives of a function are obtained through term-
by-term differentiation of the series representation of the function.

We finally introduce meromorphic3 functions that are mild extensions of the concept
of analyticity (or holomorphy) and are essential to the theory.

The quotient of two analytic functions f(z)/g(z) ceases to be analytic at a point a
where g(a) = 0. However, a simple structure for quotients of analytic functions prevails.

DEFINITION IV.3. A function h(z) is meromorphic at z = z0 iff in a neighbourhood
of z = z0 with z 6= z0 it is representable by an expansion of the form

(7) h(z) =
∑

n≥−M

hn(z − z0)
n.

If h−M 6= 0, then h(z) is said to have a pole of order M at z = a. The coefficient h−1 is
called the residue of h(z) at z = a and is written as

Res[h(z); z = a].

A function is meromorphic in a region iff it is meromorphic at any point of the region.

Equivalently, h(z) is meromorphic at z = z0 iff, in a neighbourhood of z0, it can be
represented as f(z)/g(z), with f(z) and g(z) being analytic at z = z0.

IV. 2.2. Integrals and residues. Integrals along curves in the complex plane are de-
fined in the usual way from curvilinear integrals applied to the real and imaginary parts
of the integrand. However integral calculus in the complex plane is of a radically differ-
ent nature from what it is on the real line—in a way it is much simpler and much more
powerful.

A path in a region Ω is described by its parameterization, which is a continuous func-
tion γ mapping [0, 1] into Ω. Two paths γ, γ ′ in Ω having the same end points are said

3“Holomorphic” and “meromorphic” are words coming from Greek, meaning respectively “of complete
form” and “of partial form”.
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FIGURE 3. Multiple views of an analytic function. The image of
the domain Ω = {z

∣∣ |<(z)| < 2, |=(z)| < 2} by the function
f(z) = exp(z) + z + 2: (top) transformation of a square grid in Ω
by f ; (middle) the modulus and argument of f(z); (bottom) the real and
imaginary parts of f(z).

to be homotopic (in Ω) if one can be continuously deformed into the other while staying
within Ω as in the following examples:
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homotopic paths:

A closed path is defined by the fact that its end points coincide: γ(0) = γ(1), and a path is
simple if the mapping γ is one-to-one. A closed path is said to be a loop of Ω if it can be
continuously deformed within Ω to a single point; in this case one also says that the path is
homotopic to 0. In what follows we implicitly restrict attention to paths that are assumed to
be rectifiable. Unless otherwise stated, all integration paths will be assumed to be oriented
positively.

One has:

Second fundamental property of analytic function theory. Let f be
analytic in Ω and let λ be a loop of Ω. Then

∫
λ f = 0.

Equivalently, for f analytic in Ω, one has

(8)
∫

γ

f =

∫

γ′

f,

provided γ and γ ′ are homotopic in Ω.

The important Residue Theorem due to Cauchy relates global properties of a meromor-
phic function, its integral along closed curves, to purely local characteristics at designated
points, the residues at poles.

THEOREM IV.1 (Cauchy’s residue theorem). Let h(z) be meromorphic in the region Ω
and let λ be a simple loop in Ω along which the function is analytic. Then

1

2iπ

∫

λ

h(z) dz =
∑

s

Res[h(z); z = s],

where the sum is extended to all poles s of h(z) enclosed by λ.

PROOF. (Sketch) To see it in the representative case where h(z) has only a pole at
z = 0, observe by appealing to primitive functions that

∫

λ

h(z) dz =
∑

n≥−M
n6=−1

hn

[
zn+1

n+ 1

]

λ

+ h−1

∫

λ

dz

z
,

where the bracket notation
[
u(z)

]
λ

designates the variation of the function u(z) along the
contour λ. This expression reduces to its last term, itself equal to 2iπh−1, as is checked by
using integration along a circle (set z = reiθ). The computation extends by translation to
the case of a unique pole at z = a.

In the case of multiple poles, we observe that the simple loop can only enclose finitely
many poles (by compactness). The proof then follows from a simple decomposition of the
interior domain of λ into cells each containing only one pole. Here is an illustration
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in the case of three poles. (Contributions from internal edges cancel.) �

Here is a textbook example of such a reduction from global to local properties. Define
the integrals

Im :=

∫ ∞

−∞

dx

1 + x2m
,

and consider specifically I1. Elementary calculus teaches us that I1 = π since the anti-
derivative of the integrand is an arc tangent:

I1 =

∫ ∞

−∞

dx

1 + x2
= [arctanx]

+∞
−∞ = π.

In the light of the residue theorem, we first consider the integral over the whole line as the
limit of integrals over large intervals of the form [−R,+R], then complete the contour of
integration by means of a large semi-circle in the upper half-plane, as shown below:

0

i

−R +R
Let γ be the contour comprised of the interval and the semi-circle. Inside γ, the

integrand has a pole at x = i (i =
√
−1), where

1

1 + x2
≡ 1

(x+ i)(x− i)
= − i

2

1

x− i
+

1

4
+
i

8
(x− i) + · · · ,

so that its residue there is −i/2. Thus, by the residue theorem, the integral taken over γ
is equal to 2πi times the residue of the integrand at i. As R → ∞, the integral along the
semi-circle vanishes (it is O(R−1)) while the integral along the real segment gives I1 in
the limit. There results the relation giving I1:

I1 = 2iπRes

(
1

1 + x2
, x = i

)
= π.

Remarkably, the evaluation of the integral in this perspective rests entirely upon the local
expansion of the integrand at a special point (the point i).

� 4. The general integral Im. Let α = exp( iπ
2m

) so that α2m = −1. Contour integration of the
type used for I1 yields

Im = 2iπ
mX

j=1

Res

„
1

1 + x2m
;x = α2j−1

«
,

while, for any β = α2j−1 with 1 ≤ j ≤ m, one has

1

1 + x2m
∼

x→β

1

2mβ2m−1

1

x− β
≡ − β

2m

1

x− β
.
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As a consequence,

I2m = − iπ
m

`
α+ α3 + · · · + α2m−1´ =

π

m sin π
2m

.

In particular, I2 = π/
√

2, I3 = 2π/3, I4 = π
4

√
2
p

2 +
√

2 as well as 1
π
I5, 1

π
I6 are expressible by

radicals, but 1
π
I7,

1
π
I9 are not. The special cases 1

π
I17,

1
π
I257 are expressible by radicals. �

� 5. Integrals of rational fractions. Generally, all integrals of rational functions taken over the whole
real line are computable by residues. In particular,

Jm =

Z +∞

−∞

dx

(1 + x2)m
, Km =

Z +∞

−∞

dx

(12 + x2)(22 + x2) · · · (m2 + x2)

can be explicitly evaluated. �

Many function-theoretic consequences derive from the residue theorem. For instance,
if f is analytic in Ω, z0 ∈ Ω and λ is a simple loop of Ω encircling z0, one has

(9) f(z0) =
1

2iπ

∫

λ

f(ζ)
dζ

ζ − z0
.

This follows directly since

Res
[
f(ζ)(ζ − z0)

−1; ζ = z0
]

= f(z0).

Then, by differentiation with respect to z under the integral sign, one gets similarly

(10)
1

k!
f (k)(z0) =

1

2iπ

∫

λ

f(ζ)
dζ

(ζ − z0)k
.

The values of a function and its derivatives at a point can thus be obtained as values of
integrals of the function away from that point.

A very important application of the residue theorem concerns coefficients of analytic
functions.

THEOREM IV.2 (Cauchy’s Coefficient Formula). Let f(z) be analytic in a region
containing 0 and let λ be a simple loop around 0 that is oriented positively. Then the
coefficient [zn]f(z) admits the integral representation

fn ≡ [zn]f(z) =
1

2iπ

∫

λ

f(z)
dz

zn+1
.

PROOF. This formula follows directly from the equalities

1

2iπ

∫

λ

f(z)
dz

zn+1
= Res

[
f(z)z−n−1; z = 0

]
= [zn]f(z),

of which the first follows from the residue theorem, and the second from the identification
of the residue at 0 as a coefficient. �

Analytically, the coefficient formula allows one to deduce information about the coef-
ficients from the values of the function itself, using adequately chosen contours of integra-
tion. It thus opens the possibility of estimating the coefficients [zn]f(z) in the expansion
of f(z) near 0 by using information on f(z) away from 0. The rest of this chapter will
precisely illustrate this process in the case of functions whose singularities are poles, that
is, rational and meromorphic functions. Note also that the residue theorem provides the
simplest known proof of the Lagrange inversion theorem (see the appendices) whose rôle is
inter alia central to tree enumerations. The supplements below explore some independent
consequences of the residue theorem and the coefficient formula.
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� 6. Liouville’s Theorem. If a function f(z) is analytic in the whole of C and is of modulus bounded
by an absolute constant, |f(z)| ≤ B, then it must be a constant. (By trivial bounds, upon integrating
on a large circle, it is found that the Taylor coefficients at the origin of index ≥ 1 are all equal to 0.)
Similarly, if f(z) is of at most polynomial growth, |f(z)| ≤ B (|z| + 1)r over the whole of C, then
it must be a polynomial. �

� 7. Lindelöf integrals. Let a(s) be analytic in <(s) > 1
4

where it is assumed to satisfy a(s) =
O(exp((π − ε)|s|)) for some ε > 0. Then, one has for <(z) > 0,

∞X

k=1

a(k)(−z)k = − 1

2iπ

Z 1/2+i∞

1/2−i∞

a(s)zs π

sinπs
ds.

(Close the integration contour by a large semi-circle on the right.) Such integrals, sometimes called
Lindelöf integrals, provide representations for functions determined by an explicit “law” of their
Taylor coefficients [92].

As a consequence, the generalized polylogarithm functions

Liα,k(z) =
X

n≥1

n−α(log n)kzn

are analytic in the complex plane C slit along (1 + ∞). (More properties can be found in [43, 60].)
For instance, one finds in this way

“
∞X

n=1

(−1)n log n ” = − 1

8π

Z +∞

−∞

log( 1
4

+ t2)

cosh(πt)
dt = 0.22579 · · · = log

r
π

2
,

when the divergent series on the left is interpreted as Li0,1(−1) = limz→−1+ Li0,1(z). �

� 8. Magic duality. Let φ be a function initially defined over the nonnegative integers but admitting
a meromorphic extension over the whole of C. Under conditions analogous to those of Note 7, the
function

F (z) :=
X

n≥1

φ(n)(−z)n,

which is analytic at the origin, is such that, near positive infinity,

F (z) ∼
z→+∞

E(z) −
X

n≥1

φ(−n)(−z)−n,

for some “elementary” function E(z). (Starting from the representation of Note 7, close the contour
of integration by a large semicircle to the left.) In such cases, the function is said to satisfy the
principle of magic duality—its expansion at 0 and ∞ are given by one and the same “law”. Functions

1

1 + z
, log(1 + z), exp(−x), Li2(−z), Li3(−z)

satisfy magic duality. Ramanujan [12] made a great use of this principle, which applies to a wide
class of functions including hypergeometric ones; see [73, Ch XI] for an insightful discussion. �

� 9. Euler–Maclaurin and Abel–Plana summations. Under simple conditions on the analytic func-
tion f , one has Plana’s (also known as Abel’s) complex variables version of the Euler–Maclaurin
summation formula:

∞X

n=0

f(n) =
1

2
f(0) +

Z ∞

0

f(x) dx+

Z ∞

0

f(iy) − f(−iy)
e2iπy − 1

dy.

(See [75, Vol. 1, p. 274] for a proof and validity conditions.) �

� 10. Nörlund-Rice integrals. Let a(z) be analytic for <(z) > k0 − 1
2

and of at most polynomial
growth in this right half plane. Then, with γ a loop around the interval [k0, n], one has

nX

k=k0

 
n

k

!
(−1)n−ka(k) =

1

2iπ

Z

γ

a(s)
n! ds

s(s− 1)(s− 2) · · · (s− n)
.
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If a(z) is meromorphic in a larger region, then the integral can be estimated by residues. For instance,
with

Sn =

nX

k=1

 
n

k

!
(−1)k

k
, Tn =

nX

k=1

 
n

k

!
(−1)k

k2 + 1
,

it is found that Sn = −Hn (a harmonic number), while Tn oscillates boundedly as n → +∞. (This
technique is a classical one in the calculus of finite differences, going back to Nörlund [100]. In
computer science it is known as the method of “Rice’s integrals” [55] and is used in the analysis of
many algorithms and data structures including digital trees and radix sort [85, 125].) �

IV. 3. Singularities and exponential growth of coefficients

For a given function, a singularity can be informally defined as a point where the
function “ceases” to be analytic. Singularities are, as we have stressed repeatedly, essen-
tial to coefficient asymptotics. This section presents the bases of a discussion within the
framework of analytic function theory.

IV. 3.1. Singularities. Let f(z) be an analytic function defined over the interior re-
gion determined by a simple closed curve γ, and let z0 be a point of the bounding curve γ.
If there exists an analytic function f ∗(z) defined over some open set Ω∗ containing z0 and
such that f∗(z) = f(z) in Ω∗ ∩ Ω, one says that f is analytically continuable at z0 and
that f? is an immediate analytic continuation of f .

Analytic continuation:

( f )

Ω

( f* )

z0

Ωγ *

f∗(z) = f(z) on Ω∗ ∩ Ω.

Consider for instance the function f(z) defined by the power series f(z) =
∑

n≥0 z
n and

take z0 = eiθ with θ 6= 0. Simple series rearrangements yield

f(z) =
1

1 − z0 − (z − z0)
=
∑

n≥0

(1 − z0)
−n−1(z − z0)

n.

This shows that f(z) is analytically continuable in |z − z0| < |1 − z0|, that is, inside the
circle of center z0 passing through 1. Using the notion of differentiability, we also verify
that the function f(z) =

√
1 − z is analytic at all points of |z| = 1, z 6= 1.

In sharp contrast to real analysis where a function admits of many smooth extensions,
analytic continuation is essentially unique: for instance, if f ∗ and f∗∗ continue f at z0,
then one must have f∗(z) = f∗∗(z) in the vicinity of z0. Thus, the notion of immediate
analytic continuation is intrinsic. Also the process can be iterated and we say that g is an
analytic continuation4 of f , even if their domains of definition do not overlap, provided a
finite chain of intermediate function elements connects f and g. This notion is once more
intrinsic—this is known as the principle of unicity of analytic continuation (along paths).
An analytic function is then much like a hologram: as soon as it is specified in any tiny
region, it is rigidly determined in any wider region where it can be continued.

4The collection of all function elements continuing a given function gives rise to the notion of Riemann
surface, for which manty good books exist, e.g., [36, 121]. We shall normally avoid appealing to this theory.
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DEFINITION IV.4. Given an f defined in the region interior to γ, a point z0 on the
boundary of the region is a singular point or a singularity5 of f if f is not analytically
continuable at z0.

Granted the intrinsic character of analytic continuation, we can usually dispense with a
detailed description of the original domain Ω and the curve γ. In simple terms, a function
is singular at z0 if it cannot be continued as an analytic function beyond z0. A point at
which a function is analytic is also called by contrast a regular point.

The two functions f(z) = 1/(1 − z) and g(z) =
√

1 − z may be taken as initially
defined over the open unit disk by their power series representation. Then, as we already
know, they can be analytically continued to larger regions, the punctured plane Ω = C\{1}
for f and the complex plane slit along (1,+∞) for g. (This is achieved by the usual
operations of analysis, upon taking inverses and square roots.) But both are singular at 1:
for f , this results from the fact that (say) f(z) → ∞ as z → 1; for g this is due to the
branching character of the square-root.

It is easy to check from the definitions that a converging Taylor series is analytic inside
its disc of convergence. In other words, it can have no singularity inside this disc. However,
it must have one on the boundary of the disc, as asserted by the theorem below. In addition,
a classical theorem, called Pringsheim’s theorem [126, Sec. 7.21], provides a refinement
of this property in the case of functions with nonnegative coefficients.

THEOREM IV.3 (Boundary singularities). (i) A function analytic f at the origin whose
Taylor expansion at 0 has a finite radius of convergenceR necessarily has a singularity on
the boundary of its disc of convergence, |z| = R.

(ii) [Pringsheim’s Theorem] If in addition f has nonnegative Taylor coefficients, then
the point z = R is a singularity of f .

Define the radius of singularity of f(z), written Rsing(f ; z0) as the supremum,

Rsing(f ; z0) := sup {r > 0 | f has no singularity in the disc D(z0, r)} .
In other word “radius of singularity” means the first radius at which a singularity appears.
A figurative way of expressing Theorem IV.4, (i) is as follows:

The radius of convergence is identical to the radius of singularity:

(11) Rconv(f ; z0) ≡ Rsing(f ; z0).

This fact together with Pringsheim’s Theorem is central to asymptotic enumeration as the
remainder of this section will demonstrate.

PROOF. (i) Let f(z) be the function and R the radius of convergence of its Taylor
series at 0, taken under the form

(12) f(z) =
∑

n≥0

fnz
n.

We now that there can be no singularity of f within the disc |z| < R. Suppose a contrario
that f(z) is analytic in the whole of |z| < ρ for some ρ satisfying ρ > R. By Cauchy’s
coefficient formula (theorem IV.2), upon integrating along the circle λ of radius r = (R+
ρ)/2, it is seen that the coefficient [zn]f(z) is O(r−n). But then, the series expansion of f
would have to converge in the disc of radius r > R, a contradiction. (More on this theme
below.)

5For a detailed discussion, see [30, p. 229], [82, vol. 1, p. 82], or [126].
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(ii) Suppose a contrario that f(z) is analytic at R, implying that it is analytic in a disc
of radius r centred at R. We choose a number h such that 0 < h < 1

3r and consider the
expansion of f(z) around z0 = R− h:

(13) f(z) =
∑

m≥0

gm(z − z0)
m.

By Taylor’s formula and the representability of f(z) together with its derivatives at z0 by
means of (12), we have

gm =
∑

n≥0

(
n

m

)
fnz

m
0 ,

and in particular, gm ≥ 0. By the way h was chosen, the series (13) converges at z− z0 =
2h, as illustrated by the following diagram:

z0 = R− h
R
R+ h

Consequently, one has

f(R+ h) =
∑

m≥0


∑

n≥0

(
n

m

)
fnz

m−n
0


 (2h)m.

This is a converging double sum of positive terms, so that the sum can be reorganized in
any way we like. In particular, one has convergence of all the series involved in

f(R+ h) =
∑

m,n≥0

(
n

m

)
fn(R− h)m−n(2h)m

=
∑

n≥0

fn [(R− h) + (2h)]
n

=
∑

n≥0

fn(R+ h)n.

This establishes the fact that fn = o((R + h)n), thereby reaching a contradiction. Pring-
sheim’s theorem is proved. �

Singularities of a function analytic at 0 which are on the boundary of the disc of con-
vergence are called dominant singularities. The second part of this theorem appreciably
simplifies the search for dominant singularities of combinatorial generating functions since
these have nonnegative coefficients.

For instance, the derangement OGF and the surjection EGF,

D(z) =
e−z

1 − z
, S(z) = (2 − ez)−1
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FIGURE 4. The images of a grid on the unit square (with corners±1±i)
by various functions singular at z = 1 reflect the nature of the sin-
gularities involved. Here (from top to bottom) f0(z) = 1/(1 − z),
f1(z) = exp(z/(1 − z)), f2(z) = −(1 − z)1/2, f3(z) = −(1 − z)3/2,
f4(z) = log(1/(1 − z)). The functions have been normalized to be in-
creasing over the real interval [−1, 1]. Singularities are apparent near the
right of each diagram where small grid squares get folded or unfolded in
various ways. (In the case of functions f0, f1, f4 that become infinite at
z = 1, the grid has been slightly truncated to the right.)
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are analytic except for a simple pole at z = 1 in the case of D(z), and except for points
zk = log 2+2ikπ that are simple poles in the case of S(z). Thus the dominant singularities
for derangements and surjections are at 1 and log 2 respectively.

It is known that
√
Z cannot be unambiguously defined as an analytic function in a

neighbourhood of Z = 0. As a consequence, the function

C(z) = (1 −
√

1 − 4z)/2,

which is the generating function of the Catalan numbers, is an analytic function in certain
regions that should exclude 1/4; for instance, one may opt to take the complex plane slit
along the ray (1/4,+∞). Similarly, the function

L(z) = log
1

1 − z

which is the EGF of cyclic permutations is analytic in the complex plane slit along (1,+∞).
(An alternative way of seeing that C(z) and L(z) are singular at 1

4 and 1 is to observe that

their derivatives become infinite along rays z → 1
4

−
and z → 1−.)

A function having no singularity at a finite distance is called entire; its Taylor series
then converges everywhere in the complex plane. The EGFs,

ez+z2/2, eez−1,

associated to involutions and set partitions are entire.

IV. 3.2. The Exponential Growth Formula. We say that a number sequence {an}
is of exponential order Kn which we abbreviate as (the symbol ./ is a “bowtie”)

an ./ K
n iff lim sup |an|1/n = K.

The relation X ./ Y reads as “X is of exponential order Y ”. In other words, for any
ε > 0:

|an| >i.o (K − ε)n, that is to say, |an| exceeds (K − ε)n infinitely often (for
infinitely many values of n);
|an| <a.e. (K + ε)n, that is to say, |an| is dominated by (K + ε)n almost every-
where (except for possibly finitely many values of n).

This relation can be rephrased as an = ϑ(n)Kn, where ϑ is a subexponential factor satis-
fying

lim sup |θ(n)|1/n = 1;

such a factor is thus bounded from above almost everywhere by any increasing exponential
(of the form (1+ε)n) and bounded from below infinitely often by any decaying exponential
(of the form (1 − ε)n). Typical subexponential factors are

1, n3, (logn)2,
√
n,

1
3
√

logn
, n−3/2, log logn.

Note that functions like e
√

n and exp(log2 n) must be treated as subexponential factors for
the purpose of this discussion. Also the lim sup definition allows in principle for factors
that are infinitely often very small or 0, like n2 sinnπ

2 , logn cos
√
nπ

2 , and so on. In
this and the next chapters, we shall see general methods that enable one to extract such
subexponential factors from generating functions.
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It is an elementary observation that the radius of convergence of the series representa-
tion of f(z) at 0 is related to the exponential growth rate of the coefficients fn = [zn]f(z).
To wit, if Rconv(f ; 0) = R0, then we claim that

(14) fn ./

(
1

R0

)n

.

This only requires the basic definition of a power series, the proof involving two simple
steps.

— By definition of the radius of convergence, we have for any small ε > 0, fn(R0−
ε)n → 0. In particular, |fn|(R0 − ε)n < 1 for all sufficiently large n, so that
|fn| < (R0 − ε)−1 “almost verywhere”.

— In the other direction, for any ε > 0, |fn|(R0+ε)
n cannot be a bounded sequence,

since otherwise, |fn|(R0 + ε/2)n would be a convergent series. Thus, |fn| >
(R0 + ε)−1 “infinitely often”.

For reasons already discussed, a more global approach to the determination of growth
rates is desirable. This is precisely provided by the equivalence between radius of conver-
gence and radius of singularity, as asserted in (11). As an immediate consequencne of (11)
and (14), we get:

THEOREM IV.4 (Exponential Growth Formula). If f(z) is analytic at 0 and R :=
Rsing(f ; z0) is the modulus of a singularity of f(z) nearest to the origin, then the coefficient
fn = [zn]f(z) satisfies

fn ./

(
1

R

)n

, equivalently fn =

(
1

R

)n

θ(n) with lim sup |θ(n)|1/n = 1.

The exponential growth formula thus directly relates the exponential order of growth
of coefficients of a function to the location of its singularities nearest to the origin. Several
direct applications to combinatorial enumeration are given below.

EXAMPLE 1. Exponential growth and combinatorial enumeration. Here are a few imme-
diate applications of of exponential bounds to surjections, derangements, integer partitions,
and unary binary trees.

Surjections. The function
R(z) = (2 − ez)−1

is the EGF of surjections. The denominator is an entire function, so that singularities may
only arise from its zeros, to be found at the points

χk = log 2 + 2ikπ, k ∈ Z.

The dominant singularity of R is then at ρ = χ0 = log 2. Thus, with rn = [zn]R(z),

rn ./ (
1

log 2
)n.

Similarly, if “double” surjections are considered (each value in the range of the sur-
jection is taken at least twice), the corresponding EGF is

R∗(z) =
1

2 − z − ez
;

the dominant singularity is at ρ∗ defined as the positive root of equation eρ∗ − ρ∗ = 2, and
the coefficient r∗n satisfies: r∗n ./ ( 1

ρ∗ )n Numerically, this gives

rn ./ 1.44269n and r∗n ./ 0.87245n,
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with the actual figures for the corresponding logarithms being

n 1
n

log rn
1
n

log r∗n
10 0.33385 0.80208
20 0.35018 0.80830
50 0.35998 0.81202
100 0.36325 0.81327
∞ 0.36651 0.81451

(log 1/ρ) (log(1/ρ∗)

These estimates constitutes a weak form of a more precise result to be established later
in this chapter: If random surjections of size n are taken equally likely, the probability of a
surjection being a double surjection is exponentially small.

Derangements. There, for d1,n = [zn]e−z(1 − z)−1 and d2,n = [zn]e−z−z2/2(1 −
z)−1 we have, from the poles at z = 1,

d1,n ./ 1n and d2,n ./ 1n.

The upper bound is combinatorially trivial. The lower bound expresses that the probability
for a random permutation to be a derangement is not exponentially small. For d1,n, we
have already proved by an elementary argument the stronger result d1,n → e−1; in the
case of d2,n, we shall establish later the precise asymptotic equivalent d2,n → e−3/2, in
accordance with what was announced in the introduction.

Unary-Binary trees. The expression

U(z) =
1 − z −

√
1 − 2z − 3z2

2z
= z + z2 + 2 z3 + 4 z4 + 9 z5 + · · · ,

represents the OGF of (plane unlabelled) unary-binary trees. From the equivalent form,

U(z) =
1 − z −

√
(1 − 3z)(1 + z)

2z
,

it follows that U(z) is analytic in the complex plane slit along ( 1
3 ,+∞) and (−∞,−1)

and is singular at z = −1 and z = 1/3 where it has branch points. The closest singularity
to the origin being at 1

3 , one has

Un ./ 3n.

In this case, the stronger upper bound Un ≤ 3n results directly from the possibility of
encoding such trees by words over a ternary alphabet using Łukasiewicz codes (Chapter I).
A complete asymptotic expansion will be obtained in the next chapter. �

� 11. Coding theory bounds. Let C be a combinatorial class. We say that it can be encoded with
f(n) bits if, for all sufficiently large values of n, elements of Cn can be encoded as words of f(n)
bits. Assume that C has ogf C(z) with radius of singularity R satisfying 0 < R <∞. Then, for any
ε, C can be encoded with (1+ε)κn bits where κ = − logR, but C cannot be encoded with (1−ε)κn
bits.

Similarly, if C has egf bC(z) with radius of singularity R satisfying 0 < R < ∞, C can be
encoded with n log(n/e) + (1 + ε)κn bits where κ = − logR, but C cannot be encoded with
n log(n/e) + (1 − ε)κn bits. �

The exponential growth formula expressed by Theorem IV.4 can be supplemented by
effective upper bounds which are very easy to derive and often turn out to be surprisingly
accurate. We state:
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PROPOSITION IV.1 (Saddle-Point bounds). Let f(z) be analytic in the disc |z| < R
with 0 < R ≤ ∞. Define M(f ; r) for r ∈ (0, R) by M(f ; r) := sup|z|=r |f(z)|. Then,
one has, for any r in (0, R), the family of saddle point upper bounds

(15) [zn]f(z) ≤ M(f ; r)

rn
(any r), and [zn]f(z) ≤ inf

s∈(0,R)

M(f ; s)

sn
.

If in addition f(z) has nonnegative coefficients at 0, then

(16) [zn]f(z) ≤ f(r)

rn
(any r), and [zn]f(z) ≤ inf

s∈(0,R)

f(s)

sn
.

PROOF. The first bound in (15) results from trivial bounds applied to the Cauchy
coefficient formula, when integration is performed along a circle:

[zn] :=
1

2iπ

∫

|z|=r

f(z)
dz

zn+1
.

It is consequently valid for any r smaller than the radius of convergence of f at 0. The
second inequality represents the best possible bound of this type, but the optimization
problem is in general hard to solve.

The bounds (16) can be viewed as a dirceted specialization of (15). Alternatively, they
can be obtained elementarily since, in the case of positive coefficients,

fn ≤ f0
rn

+ · · · + fn−1

rn−1
+ fn +

fn+1

rn+1
+ · · · ,

whenever the fk are nonnegative. The best possible bound of thuis type is then given by
the second inequality. It can be determined by cancelling a derivative,

s : s
f ′(s)

f(s)
= n.

Note that because of the first inequality, any approximate solution of this last equation will
in fact provide a valid upper bound. �

For reasons well explained by the saddle point method (Chapter VI), these bounds
usually capture the actual asymptotic behaviour up to a polynomial factor only. A typical
instance is the weak form of Stirling’s formula,

1

n!
≡ [zn]ez ≤ en

nn
,

which only overestimates the true asymptotic value by a factor of
√

2πn.

� 12. A suboptimal but easy saddle-point bound. Let f(z) be analytic in |z| < 1 with nonnegative
coefficients. Assume that f(x) ≤ (1 − x)−β for some β ≥ 0 and all x ∈ (0, 1). Then

[zn]f(z) = O(nβ).

(In fact, better bounds of the form O(nβ−1) are usually obtained by the method of singularity anal-
ysis exposed in Chapter VI.) �

EXAMPLE 2. Combinatorial examples of saddle point bounds. Here are applications to
fragmented permutations, set partitions (Bell numbers), involutions, and integer partitions.

Fragmented permutations. Consider first the EGF of “fragmented permutations” (Chap-
ter II) defined by F = P(S≥1(Z)) in the labelled universe. We claim that

(17)
1

n!
Fn ≡ [zn]ez/(1−z) ≤ e2

√
n− 1

2+O(n−1/2).
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n eIn In

100 0.106579 · 1085 0.240533 · 1083

200 0.231809 · 10195 0.367247 · 10193

300 0.383502 · 10316 0.494575 · 10314

400 0.869362 · 10444 0.968454 · 10442

500 0.425391 · 10578 0.423108 · 10576

–2

–1

0 1 2 3

FIGURE 5. The comparison between the exact number of involu-
tions In and its approximation Ĩn = n!e

√
n+n/2n−n/2: (left) a table;

(right) a plot of log10(In/Ĩn) against log10 n suggesting that the ratio is
∼ K · n−1/2.

Indeed, the minimizing value of r in (16) is r0 such that

0 =
d

dr

(
r

1 − r
− n log r

)

r=r0

=
1

(1 − r0)2
− n

r0
.

The equation is solved by r0 = (2n+ 1 −
√

4n+ 1)/(2n). One can either use this exact
value and perform asymptotic approximation of f(r0)/z

n
0 , or adopt the approximate value

r1 = 1 − 1/
√
n, which leads to simpler calculations. The estimate (17) results.

Bell numbers and set partitions. Another immediate applications is an upper bound
on Bell numbers enumerating set partitions with EGF eez−1. The best saddle point bound
is

(18)
1

n!
Bn ≤ eer−1−n log r, r : rer = n,

with r ∼ logn− log logn.

Involutions. Regarding involutions, their EGF is I(z) = exp(z + 1
2z

2), and one
determines (see Figure 5 for numerical data)

(19)
1

n!
In ≤ e

√
n+n/2

nn/2
.

Similar bounds hold for permutations with all cycle lengths ≤ k and permutations σ such
that σk = Id.

Integer partitions. The function

(20) P (z) =

∞∏

k=1

1

1 − zk
= exp

( ∞∑

`=1

1

`

z`

1 − z`

)

is the OGF of integer partitions, the unlabelled analogue of set partitions. Its radius of
convergence is a priori bounded from above by 1, since the set P is infinite and the second
form of P (z) shows that it is exactly equal to 1. Therefore Pn ./ 1n. A finer upper bound
results from the estimate

(21) Λ(t) := logP (e−t) ∼ π2

6t
+ log

√
t

2π
− 1

24
t+O(t2),

which obtains from Euler–Maclaurin summation or, better, from a Mellin analysis follow-
ing APPENDIX: Mellin transform, p. 167. Indeed, the Mellin transform of Λ is, by the
harmonic sum rule,

Λ?(s) = ζ(s)ζ(s + 1)Γ(s), s ∈ 〈1,+∞〉,
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and the successive leftmost poles at s = 1 (simple pole), s = 0 (double pole), and s = −1
(simple pole) translate into the asymptotic expansion (21). When z → 1−, this means that

(22) P (z) ∼ e−π2/12

√
2π

√
1 − z exp

(
π2

6(1 − z)

)
,

from which we derive the upper bound,

Pn ≤ Cn1/4eπ
√

2n/3

(for some C > 0) in a way analogous to fragmented permutations above. This last bound
loses only a polynomial factor, as we shall prove when studying the saddle point method
in Chapter VIII. �

� 13. A natural boundary. One has P (reiθ) → ∞ as r → 1−, for any angle θ that is a rational
multiple of 2π. Such points being dense on the unit circle, the function P (z) admits the unit circle
as a natural boundary, i.e., it cannot be analytically continued beyond this circle. �

� 14. Partitions into pwers and Meinardus’ method. The combination of Mellin transforms and
saddle point analysis in the theory of partitions is known as Meinardus’ method [4, Ch. 6]. Consider
the set R of partition into rth powers (r ≥ 2). The OGF satisfies

Λ(t) := logR(e−t) =
X

`≥1

1

`

e−`rt

1 − e−`rt
,

with Mellin transform Λ?(s) = ζ(rs)ζ(s+ 1)Γ(s) defined for <(s) > r−1. From the pole of Λ?

at s = 1/r, one gets

R(z) = exp

„
ξ

(1 − z)1/r

«
(1 + o(1)) , ξ :=

1

r
ζ(1 +

1

r
)Γ(

1

r
).

The minimizing value s0 for saddle point bounds satisfies 1 − s0 (rn/ξ)−r/(r+1), and

logRn ≤ Cn
1

r+1 (1 + o(1))

(for some C > 0). See Andrews’ book [4, Ch. 6] for precise asymptotics and a general setting. �

IV. 3.3. Closure properties and computable bounds. The functions analytic at a
point z = a are closed under sum and product, and hence form a ring. If f(z) and g(z) are
analytic at z = a, then so is their quotient f(z)/g(z) provided g(a) 6= 0. Meromorphic
functions are furthermore closed under quotient and hence form a field. Such properties
are proved most easily using complex-differentiability and extending the usual relations
from real analysis, for instance, (f + g)′ = f ′ + g′, (fg)′ = fg′ = f ′g.

Analytic functions are also closed under composition: if f(z) is analytic at z = a and
g(w) is analytic at b = f(a), then g ◦ f(z) is analytic at z = a. Graphically:

a
f g

b=f(a) c=g(b)

The proof based on complex-differentiability closely mimicks the real case. Inverse func-
tions exist conditionally: if f ′(a) 6= 0, then f(z) is locally linear near a, hence invertible,
so that there exists a g satisfying f ◦ g = g ◦ f = Id, where Id is the identity func-
tion, Id(z) ≡ z. The inverse function is itself locally linear, hence complex differentiable,
hence analytic. In short, the inverse of an analytic function f at a place where its derivative
does not vanish is an analytic function.

One way to establish closure properties, as suggested above, is to deduce analyticity
criteria from complex differentiability by way of the “First Fundamental Property”. An
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alternative approach, closer to the original notion of analyticity, can be based on a two-step
process: (i) closure properties are shown to hold true for formal power series; (ii) the
resulting formal power series are proved to be locally convergent by means of suitable
majorizations on their coefficients. This is the basis of the classical method of majorant
series originating with Cauchy.

� 15. The majorant series technique. Given two power series, define f(z) � g(z) if |[zn]f(z)| ≤
[zn]g(z) for all n ≥ 0. The following two conditions are equivalent: (i) f(z) is analytic in the disc
|z| < ρ; (ii) for any r < ρ there exists a c such that

f(z) � c

1 − rz
.

If f, g are majorized by c/(1 − rz), d/(1 − rz) respectively, then f + g and f · g are majorized,

f(z) + g(z) � c+ d

1 − rz
, f(z) · g(z) � e

1 − sz
,

for any s < r and some e dependent on s. If f, g are majorized by c/(1 − rz), dz/(1 − rz)
respectively, then f ◦ g is majorized:

f ◦ g(z) � cz

1 − r(1 + d)z
.

Constructions for 1/f and for the functional inverse of f can be similarly developed. See Cartan’s
book [19] and van der Hoeven’s study [127] for a systematic treatment. �

For functions defined by analytic expressions, singularities can be determined induc-
tively in an intuitively transparent manner. If Sing(f) and Zero(f) are the set of singu-
larities and zeros of function f , then, due to closure properties of analytic functions, the
following informally stated guidelines apply.





Sing(f ± g) ⊆ Sing(f) ∪ Sing(g)
Sing(f × g) ⊆ Sing(f) ∪ Sing(g)
Sing(f/g) ⊆ Sing(f) ∪ Sing(g) ∪ Zero(g)

Sing(f ◦ g) ⊆ Sing(g) ∪ g(−1)(Sing(f))
Sing(

√
f) ⊆ Sing(f) ∪ Zero(f)

Sing(log(f)) ⊆ Sing(f) ∪ Zero(f)

Sing(f (−1)) ⊆ f(Sing(f)) ∪ f(Zero(f ′)).

A mathematically rigorous treatment would require considering multivalued functions
and Riemann surfaces, so that we do not state detailed validity conditions and, at this stage,
keep for these formulæ the status of useful heuristics. In fact, because of Pringsheim’s
theorem, the search of dominant singularities of combinatorial generating function can
normally avoid considering the multivalued structure of functions, since only some initial
segment of the positive real half–line needs to be considered. This in turn implies a power-
ful and easy way of determining the exponential order of coefficients of a wide variety of
generating functions, as we now explain.

As defined in Chapters I and II, a combinatorial class is constructible if it can be
specified by a finite set of equations involving only basic constructors. A specification
is iterative if the dependency graph of the specification is acyclic, that is, no recursion is
involved and a single functional term (written with sums, products, as well as sequence,
set, and cycle constructions) describes the specification. We state:

THEOREM IV.5 (Computability of growth). Let C be a constructible unlabelled class
that admits of an iterative specification in terms of (1,Z ; S,P,M,C; +,×). Then the
radius of convergence ρC of the OGF C(z) of C is a nonzero computable real number.
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Let D be a constructible labelled class that admits of an iterative specification in terms
of (1,Z ; S,P,C; +, ?). Then the radius of convergence ρD of the EGF D(z) of D is a
nonzero computable real number.

Accordingly, the exponential rate of growth of the coefficients [zn]C(z) and [zn]D(z)
are computable real numbers.

A real numberα is computable iff there exists a program Πα which on inputm outputs
a rational number αm that is within ±10−m of α. The theorem immediately implies that
the exponential growth estimates,

[zn]C(z) ≡ Cn ./

(
1

ρC

)n

, [zn]D(z) ≡ 1

n!
Dn ./

(
1

ρD

)n

,

for coefficients are automatically computable from the specification itself.

PROOF. In both cases, the proof proceeds by induction on the structural specification
of the class. For each class F , with generating function F (z), we associate a signature,
which is an ordered pair 〈ρF , τF 〉, where ρF is the radius of convergence of F and τF is
the value of F at ρF , precisely,

τF := lim
x→ρ−

F

F (x).

(The value τF is well defined as an element of R ∪ {+∞} since F , being a counting
generating function, is necessarily increasing on (0, ρF ).) We prove the assertion of the
theorem together with the additional property that τF = ∞ and as soon as one of the unary
constructors (S,M,P,C) intervenes in the specification, that is, as soon as the class is
infinite. In that case, since the OGF includes infinitely many terms of the form zn, it must
be divergent at 1, so that ρF ≤ 1 holds a priori for all infinite classes under consideration.

Consider the unlabelled case first. The signatures of the neutral class 1 and the atomic
class Z , with OGF 1 and z, are 〈+∞, 1〉 and 〈+∞,+∞〉. Any nonconstant polynomial
which is the OGF of a finite set has the signature 〈+∞,+∞〉. The assertion is thus easily
verified in these cases.

Next, let F = S(G). The OGFG(z) must be nonconstant and in fact satisfyG(0) = 0
in order for the sequence construction to be properly defined. Thus, by the induction
hypothesis, one has 0 < ρG ≤ +∞ and τG = +∞. Now, the function G being increasing
and continuous along the positive axis, there must exist a value β such that 0 < β < ρG

withG(β) = 1. For z ∈ (0, β), the quasi-inverseF (z) = (1−G(z))−1 is well defined and
analytic; as z approaches β from the left, F (z) increases unboundedly. Thus, the smallest
singularity of F along the positive axis is at β, and by Pringsheim’s theorem, one has
ρF = β. The argument also shows that τF = +∞. There only remains to check that β is
computable. The coefficients of G form a computable sequence of integers, so that G(x),
which can be well approximated via truncated Taylor series, is an effectively computable
number6 if x is itself a positive computable number less than ρG. Then dichotomic search
constitutes effectively an algorithm for determining β.

Next, we consider the multiset construction, F = M(G), whose translation into OGFs
necessitates the “Pólya exponential”:

F (z) = Exp(G(z)) where Exp(h(z)) := exp

(
h(z) +

1

2
h(z2) +

1

3
h(z3) + · · ·

)
.

Once more, the induction hypothesis is assumed for G. If G is polynomial, then F is a
variant of the OGF of integer partitions, and in fact is expressible as a finite product of

6The present argument only establishes non-constructively the existence of a program, based on the fact
that truncated Taylor series converge geometrically fast at an interior point of their disc of convergence. Making
explict this program and the involved parameters however represents a harder problem that is not touched upon
here.
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terms of the form P (z), P (z2), P (z3), . . . Thus, ρF = 1 and τF = ∞ in that particular
case. In the general case of F = M(G) with G infinite, we start by fixing arbitrarily a
number r such that 0 < r < ρG ≤ 1 and examine F (z) for z ∈ (0, r). The expression for
F rewrites as

Exp(G(z)) = eG(z) · exp

(
1

2
G(z2) +

1

3
G(z3) + · · ·

)
.

The first factor is analytic for z on (0, ρG) since, the exponential function being entire, eG

has the singularities of G. As to the second factor, one has G(0) = 0 (in order for the
set construction to be well-defined), while G(x) is convex for x ∈ [0, r] (since its second
derivative is positive). Thus, there exists a positive constantK such thatG(x) ≤ Kx when
x ∈ [0, r]. Then, the series 1

2G(z2) + 1
3G(z3) + · · · has its terms dominated by those of

the convergent series

K

2
r2 +

K

3
r3 + · · · = K log(1 − r)−1 −Kr.

By a well known theorem of analytic function theory, a uniformly convergent sum of ana-
lytic functions is itself analytic; consequently, 1

2G(z2) + 1
3G(z3) + · · · is analytic at all z

of (0, r). Analyticity is then preserved by the exponential, so that F (z), being analytic at
z ∈ (0, r) for any r < ρG has a radius of convergence that satisfies ρF ≥ ρG. On the
other hand, since F (z) dominates termwise G(z), one has ρF ≤ ρG. Thus finally one has
ρF = ρG. Also, τG = +∞ implies τF = +∞.

A completely parallel discussion covers the case of the powerset construction (P)
whose associated functional Exp is a minor modification of the Pólya exponential Exp.
The cycle construction can be treated by similar arguments based on consideration of
“Pólya’s logarithm” as F = C(G) corresponds to

F (z) = Log
1

1 −G(z)
, where Logh(z) = logh(z) +

1

2
logh(z2) + · · · .

In order to conclude with the unlabelled case, there only remains to discuss the binary
constructors +, ×, which give rise to F = G +H , F = G · H . It is easily verified that
ρF = min(ρG, ρH) and τF = τG ◦ τH with ◦ being + or ×. Computability is granted
since the minimum of two computable numbers is computable.

The labelled case is covered by the same type of argument as above. The discussion is
even simpler, since the ordinary exponential and logarithm replace the Pólya operators Exp
and Log. It is still a fact that all the EGFs of infinite families are infinite at their dominant
positive singularity, though the radii of convergence can now be of any magnitude (w.r.t. 1).

�

� 16. Syntactically decidable properties. In the unlabelled case, ρF = 1 iff the specification of F
only involves (1,Z; P,M; +,×) and at least one of P,M. �

� 17. Nonconstructibility of permutations and graphs. The class P of all permutations cannot be
specified as a constructible unlabeled class since the OGF P (z) =

P
n n!zn has radius of conver-

gence 0. (It is of course constructible as a labelled class.) Graphs, whether labelled or unlabelled,
are too numerous to form a constructible class. �

Theorem IV.5 establishes a link between analytic combinatorics, computability the-
ory, and symbolic manipulation systems. It is based on an article of Flajolet, Salvy, and
Zimmermann [54] devoted to such computability issues in exact and asymptotic enumera-
tion. Recursive specifications are not discussed now since they tend to give rise to branch
points, themselves amenable to singularity analysis techniques to be developed in the next
chapter.
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FIGURE 6. A random train.

EXAMPLE 3. Combinatorial trains. This somewhat artificial example from [42] serves to
illustrate the scope of Theorem IV.5 and demonstrate its inner mechanisms at work. Define
the class of all labelled trains by the following specification,

(23)





T r = Wa ?S(Wa ?P(Pa)),
Wa = S≥1(P`),
P` = Z ? Z ? (1 + C(Z)),

Pa = C(Z) ? C(Z).

In figurative terms, a train (T ) is composed of a first wagon (Wa) to which is appended a
sequence of passenger wagons, each of the latter capable of containing a set of passengers
(Pa). A wagon is itself composed of “planks” (P`) determined by their end points (Z ?Z)
and to which a circular wheel (C(Z)) may be attached. A passenger is composed of a head
and a belly that are each circular arrangements of atoms (see Figure 6).

The translation into a set of EGF equations is immediate and a symbolic manipulation
system readily provides the form of the EGF of trains, T (z), as

Tr(z) =
z2

“

1 + log((1 − z)−1)
”

“

1 − z2
“

1 + log((1 − z)−1)
””

0

B

@
1 −

z2
“

1 + log((1 − z)−1)
”

e(log((1−z)−1))2

1 − z2
“

1 + log((1 − z)−1)
”

1

C

A

−1

,

together with the expansion

Tr(z) = 2
z2

2!
+ 6

z3

3!
+ 60

z4

4!
+ 520

z5

5!
+ 6660

z6

6!
+ 93408

z7

7!
+ · · · .

The specification (23) has a hierarchical structure, as suggested by the top representa-
tion of Figure 7, and this structure is itself directly reflected by the form of the expression
tree of the GF T (z). Then each node in the expression tree of T (z) can be tagged with the
corresponding value of the radius of convergence. This is done according to the principles
of Theorem IV.5; see the bottom-right part of Figure 7. For instance, the quantity 0.68245
associated to Wa(z) is given by the sequence rule and is determined as smallest positive
solution to the equation

z2
(
1 − log(1 − z)−1

)
= 1.

The tagging process works upwards till the root of the tree is reached; here the radius of
convergence of T is determined to be ρ

.
= 0.48512 · · · , a quantity that happens to coincide

with the ratio [z49]T (z)/[z50]T (z) to more than 15 decimal places. �
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FIGURE 7. The inductive determination of the radius of convergence
of the EGF of trains, T (z): (top) a hierarchical view of the specification
of T ; (bottom left) the corresponding expression tree of the EGF T (z);
(bottom right) the value of the radii for each subexpression of T (z). (No-
tations: L(y) = log(1 − y)−1, S(y) = (1 − y)−1, S1(y) = yS(y).)

IV. 4. Rational and meromorphic functions

The first principle that we have just discussed in great detail is:
The location of singularities of an analytic function determines the ex-
ponential order of growth of its Taylor coefficients.

The second principle which refines the first one is:
The nature of the singularities determines the way the dominant expo-
nential term in coefficients is modulated by a subexponential factor.

We are now going to develop the correspondence between singular expansions and asymp-
totic behaviours of coefficients in the case of rational and meromorphic functions. Rational
functions (fractions) are the simpler ones, and from their basic partial fraction expansion
closed forms are derived for their coefficients. Next in order of difficulty comes the class of
meromorphic functions; their Taylor coefficients appear to admit very accurate asymptotic
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expansions with error terms that are exponentially small, as results from an adequate use
of the residue theore.

In the case of rational and, more generally, meromorphic functions, the net effect is
summarized by the correspondence:

Polar singularities ; Subexponential factors θ(n) are polynomials.

A distinguishing feature is the extremely good quality of the asymptotic approximations
obtained; for instance 15 digits of accuracy is not uncommon in coefficients of index as
low as 50.

IV. 4.1. Rational functions. A function f(z) is a rational function iff it is of the form
f(z) = N(z)

D(z) , withN(z) andD(z) being polynomials, which me may always assume to be
relatively prime. For rational functions that are generating functions, we have D(0) 6= 0.

Sequences {fn}n≥0 that are coefficients of rational functions coincide with sequences
that satisfy linear recurrence relations with constant coefficients. To see it, compute [zn]f(z)·
D(z), with n > deg (N(z)). IfD(z) = d0 + d1z+ · · ·+ dmz

m, then for n > m, one has:
m∑

j=0

djfn−j = 0.

The main theorem we prove here provides an exact finite expression for coefficients
of f(z) in terms of the poles of f(z). Individual terms in corresponding expressions are
sometimes called exponential polynomials.

THEOREM IV.6 (Expansion of rational functions). If f(z) is a rational function that
is analytic at zero and has poles at points α1, α2, . . . , αm, then there exist m polynomials
{Πj(x)}m

j=1 such that:

(24) fn ≡ [zn]f(z) =

m∑

j=1

Πj(n)α−n
j .

Furthermore the degree of Πj is equal to the order of the pole of f at αj minus one.

An expression of the form (24) is sometimes called an exponential polynomial.

PROOF. Since f(z) is rational it admits a partial fraction expansion. Thus, assuming
without loss of generality that deg (D) > deg (N), we can decompose f into a finite sum

f(z) =
∑

(α,r)

cα,r

(z − α)r
,

where α ranges over the poles of f(z) and r is bounded from above by the multiplicity of α
as a pole of f . Coefficient extraction in this expression results from Newton’s expansion,

[zn]
1

(z − α)r
=

(−1)r

αr
[zn]

1

(1 − z
α )r

=
(−1)r

αr

(
n+ r − 1

r − 1

)
α−n.

The binomial coefficient is a polynomial of degree r− 1 in n, and collecting terms associ-
ated with a given α yields the statement of the theorem. �

Notice that the expansion (24) is also an asymptotic expansion in disguise: when
grouping terms according to the α’s of increasing modulus, each group appears to be ex-
ponentially smaller than the previous one. A classical instance is the OGF of Fibonacci
numbers,

f(z) =
z

1 − z − z2
=

z

1 − z − z2
,
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with poles at
−1 +

√
5

2

.
= 0.61803,

−1−
√

5

2

.
= −1.61803,

so that

Fn =
1√
5
ϕn − 1√

5
ϕ̄n =

ϕn

√
5

+O(
1

ϕn
),

with ϕ = (1 +
√

5)/2 the golden ratio, and ϕ̄ its conjugate.

The next example is certainly an artificial one. It is simply designed to demonstrate
that all the details of the full decomposition are usually not required. The rational function

f(z) =
1

(1 − z3)2(1 − z2)3(1 − z2

2 )

has a pole of order 5 at z = 1, poles of order 2 at z = ω, ω2 (ω = e2iπ/3 a cubic root of
unity), a pole of order 3 at z = −1, and simple poles at z = ±

√
2. Therefore,

fn = P1(n) + P2(n)ω−n + P3(n)ω−2n + P4(n)(−1)n+

+P5(n)2−n/2 + P6(n)(−1)n2−n/2

where the degrees of P1, . . . , P6 are respectively 4, 1, 1, 2, 0, 0. For an asymptotic equiva-
lent of fn, only the pole at z = 1 needs to be considered since it corresponds to the fastest
exponential growth; in addition, at z = 1, only the term of fastest growth needs to be taken
into account since it gives the dominant contribution to coefficients. Thus, we have the
correspondence

f(z) ∼ 1

32 · 23 · ( 1
2 )

1

(1 − z)5
=⇒ fn ∼ 1

32 · 23 · ( 1
2 )

(
n+ 4

4

)
∼ n4

864
.

EXAMPLE 4. Asymptotics of denumerants. Denumerants are synonymous to integer parti-
tions with summands restricted to be from a fixed finite set (Chapter I). We let PT be the
class relative to set T , with the known OGF,

P T (z) =
∏

ω∈T

1

1 − zω
.

A particular case is the one of integer partitions whose summands are in {1, 2, . . . , r},

P {1,...,r}(z) =
r∏

m=1

1

1 − zm
.

The GF has all its poles that are roots of unity. At z = 1, the order of the pole is r, and one
has

P {1,...,r}(z) ∼ 1

r!

1

(1 − z)r
,

as z → 1. Other poles have smaller multiplicity: for instance the multiplicity of z = −1 is
equal to the number of factors (1−z2j)−1 in P {1,...,r}, that is br/2c; in general a primitive
qth root of unity is found to have multiplicity br/qc. There results that z = 1 contributes a
term of the form nr−1 to the coefficient of order n, while each of the other poles contributes
a term of order at most nbr/2c. We thus find

P {1,...,r}
n ∼ crn

r−1 with cr =
1

r!(r − 1)!
.

The same argument provides the asymptotic form of P T
n , since, to first order asymp-

totics, only the pole at z = 1 counts. One then has:
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PROPOSITION IV.2. Let T be a finite set of integers without a common divisor (gcd(T ) =
1). The number of partitions with summands restricted to T satisfies

P T
n ∼ 1

τ

nr−1

(r − 1)!
, with τ :=

∏

n∈T
n, r := card(T ).

For instance, in a country that would have pennies (1 cent), nickels (5 cents), dimes
(10 cents) and quarters (25 cents), the number of ways to make change for a total of n cents
is

[zn]
1

(1 − z)(1− z5)(1 − z10)(1 − z25)
∼ 1

1 · 5 · 10 · 25

n3

3!
≡ n3

7500
,

asymptotically. �

IV. 4.2. Meromorphic Functions. An expansion very similar to that of Theorem IV.6
given for rational functions holds true for the larger class of coefficients of meromorphic
functions.

THEOREM IV.7 (Expansion of meromorphic functions). Let f(z) be a function mero-
morphic for |z| ≤ R with poles at points α1, α2, . . . , αm, and analytic at all points of
|z| = R and at z = 0. Then there exist m polynomials {Πj(x)}m

j=1 such that:

(25) fn ≡ [zn]f(z) =
m∑

j=1

Πj(n)α−n
j + O(R−n).

Furthermore the degree of Πj is equal to the order of the pole of f at αj minus one.

PROOF. We offer two different proofs, one based on subtracted singularities, the other
one based on contour integration.

(i) Subtracted singularities. Around any pole α, f(z) can be expanded locally:

f(z) =
∑

k≥−M

cα,k(z − α)k(26)

= Sα(z) +Hα(z)(27)

where the “singular part” Sα(z) is obtained by collecting all the terms with index in
[−M . . −1] (Sα(z) = Nα(z)/(z−α)M withNα(z) a polynomial of degree less thanM )
andHα(z) is analytic at α. Thus setting R(z) =

∑
j Sαj (z), we observe that f(z)−S(z)

is analytic for |z| ≤ R. In other words, by collecting the singular parts of the expansions
and subtracting them, we have “removed” the singularities of f(z), whence the name of
“method of subtracted singularities” sometimes given to the method [75, vol. 2, p. 448].

Taking coefficients, we get:

[zn]f(z) = [zn]S(z) + [zn](f(z) − S(z)).

The coefficient of [zn] in the rational function S(z) is obtained from Theorem 1. It suffices
to prove that the coefficient of zn in f(z) − S(z), a function analytic for |z| ≤ R, is
O(R−n). This fact follows from trivial bounds applied to Cauchy’s integral formula with
the contour of integration being λ = {z / |z| = R}, as in the proof of Theorem IV.4:

|[zn](f(z) − S(z))| =
1

2π

∣∣∣∣
∫

|z|=R

(f(z) − S(z))
dz

zn+1

∣∣∣∣ ≤
1

2π

O(1)

Rn+1
2πR.

(ii) Contour integration. There is another line of proof for Theorem IV.7 which we
briefly sketch as it provides an insight which is useful for applications to other types of
singularities treated in Chapter V. It consists in using directly Cauchy’s coefficient formula
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2677687796244384203115 2677687796244384203 088

2574844419803190384544203 2574844419803190384544 450
2958279121074145472650648875 295827912107414547265064 6597

4002225759844168492486127539083 40022257598441684924861275 55859
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FIGURE 8. The surjection numbers pyramid: for n = 2, 4, . . . , 32, the
exact values of the numbers Rn (left) compared to the approximation
dξ(n)c with discrepant digits in boldface (right).

and “pushing” the contour of integration past singularities. In other words, one computes
directly the integral

In =
1

2iπ

∫

|z|=R

f(z)
dz

zn+1

by residues. There is a pole at z = 0 with residue fn and poles at the αj with residues
corresponding to the terms in the expansion stated in Theorem IV.7; for instance, if f(z) ∼
c/(z − a) as z → a, then

Res(f(z)z−n−1, z = a) = Res(
c

(z − a)
z−n−1, z = a) =

c

an+1
.

Finally, by the same trivial bounds as before, In is O(R−n). �

EXAMPLE 5. Surjections and alignments. The surjection EGF is R(z) = (2− ez)−1, and
we have already determined its poles: the one of smallest modulus is at log 2

.
= 0.69314.

At the dominant pole, as z tends to log 2, one has R(z) ∼ − 1
2 (z − log 2)−1. This implies

an approximation for the number of surjections:

Rn ≡ n![zn]R(z) ∼ ξ(n), with ξ(n) :=
n!

2
·
( 1

log 2

)n+1
.

Here is, for n = 2, 4, . . . , 32, a table of the values of the surjection numbers (left) compared
with the asymptotic approximation rounded7 to the nearest integer, dξ(n)c: It is piquant
to see that dξ(n)c provides the exact value of Rn for all values of n = 1, . . . , 15, and it
starts losing one digit for n = 17, after which point a few “wrong” digits gradually appear,
but in very limited number; see Figure 8 The explanation of such a faithful asymptotic
representation owes to the fact that the error terms provided by meromorphic asymptotics
are exponentially small. In effect, there is no other pole in |z| ≤ 6, the next ones being at
log 2 ± 2iπ with modulus of about 6.32. Thus, for rn = [zn]R(z), there holds

(28)
Rn

n!
∼ 1

2
·
( 1

log 2

)n+1
+ O(6−n).

7The notation dxc represnets x rounded to the nearest integer: dxc := bx+ 1
2
c.
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For the double surjection problem,R∗(z) = (2 + z − ez), we get similarly

[zn]R∗(z) ∼ 1

eρ∗ − 1
(ρ∗)−n−1,

with ρ∗ = 1.14619 the smallest positive root of eρ∗ − ρ∗ = 2.
Alignments are sequences of cycles, with EGF

f(z) =
1

1 − log(1 − z)−1
.

There is a singularity when log(1 − z)−1 = 1, which is at z = 1 − e−1 and arises before
z = 1 where the logarithm becomes singular. Thus the computation of the asymptotic
form of fn only needs a local expansion near (1 − e−1):

f(z) ∼ −e−1

z − 1 + e−1
=⇒ [zn]f(z) ∼ e−1

(1 − e−1)n+1
.

�

� 18. Some “supernecklaces”. One estimates

[zn] log

 
1

1 − log 1
1−z

!
∼ 1

n
(1 − e−1)−n,

where the EGF enumerates (labelled) cycles of cycles. [Hint: Take derivatives.] �

EXAMPLE 6. Generalized derangements. The probability that the shortest cycle in a
random permutation of size n has length larger than k is

[zn]
e−

z
1− z2

2 −···− zk

k

1 − z
.

For any fixed k, the generating function, call it f(z), is equivalent to e−Hk/(1 − z) as
z → 1. Accordingly the coefficients [zn]f(z) tend to e−Hk as n → ∞. Thus, due to
meromorphy, we have the characteristic implication

f(z) ∼ e−Hk

1 − z
=⇒ [zn]f(z) ∼ e−Hk .

Since the difference between f(z) and the approximation at 1 is an entire function, the
error is exponentially small:

(29) [zn]
e−

z
1− z2

2 −···− zk

k

1 − z
= e−Hk +O(R−n),

for fixed k and anyR > 1. The cases k = 1, 2 in particular justify the estimates mentioned
in the introduction on p. 5.

As a side remark, the classical approximation of the harmonic numbers,Hk ≈ log k+
γ suggests e−γ/k as a further approximation to (29) that might be valid for both large n
and large k in suitable regions. This can be made precise; in accordance with this heuristic
argument, the expected length of the shortest cycle in a random permutation of size n is
symptotic to

n∑

k=1

e−γ

k
∼ e−γ logn,

as first proved by Shepp and Lloyd in [117]. �
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� 19. Shortest cycles of permutations are not too long. Let Sn be the random variable denoting the
length of the shortest cycle in a random permutation of size n. Using the circle |z| = 2 to estimate
the error in the approximation e−Hk above, one finds that, for k ≤ log n,

˛̨
˛P(Sn > k) − e−Hk

˛̨
˛ ≤ 1

2n
e2

k

,

which is exponentially small in this range of k-values. Thus, the approximation e−Hk remains good
when k is allowed to tend sufficiently slowly to ∞ with n. One can also explore the possibility of
better bounds and larger regions of validity of the main approximation. (See Panario and Richmond’s
study [107] for a general theory of smallest components in sets.) �

EXAMPLE 7. Smirnov words and Carlitz compositions. This examples illustrates the
analysis of a group of rational generating functions (Smirnov words) paralleling nicely the
enumeration of a special type of integer composition (Carlitz compositions) resorting to
meromorphic asymptotics.

Bernoulli trials have been discussed in Chapter III, in relation to weighted word mod-
els. Take the class W of all words over an r-ary alphabet, where letter j is assigned
probability pj and letters of words are drawn independently. With this weighting, the GF
of all words is

W (z) =
1

1 −∑ pjz
=

1

1 − z
.

Consider the problem of determining the probability that has a random word of length n
is of Smirnov type, i.e., all blocks of length 2 are formed with two distinct letters (see
also [67, p. 69]).

By our discussion of Section III.6, the GF of Smirnov words (again with the proba-
bilistic weighting) is

S(z) =
1

1 −∑ pjz
1+pjz

.

This is a rational function with a unique dominant singularity at ρ such that

(30)
r∑

j=1

pjρ

1 + pjρ
= 1.

(It is easy to verify by monotonicity that this equation has a unique positive solution.)
Thus, ρ is a well characterized algebraic number defined implicitly by an equation of de-
gree r. There results that the probability for a word to be Smirnov is (not too surprisingly)
exponentially small, with the precise formula being

[zn]S(z) ∼ C · ρ−n, C =

(
ρ
∑ piρ

1 + piρ

)−1

.

A similar analysis, but with bivariate generating functions shows that in a random word of
length n conditioned to be Smirnov, the letter j appears with frequency asymptotic to

(31) qj =
pjρ

1 + pjρ
,

in the sense that mean number of occurrences of letter j is asymptotic to qjn. All these
results are seen to be consistent with the equiprobable letter case pj = 1/r, for which
ρ = r/(r − 1).

Carlitz compositions illustrate a similar situation, in which the alphabet is in a sense
infinite, while letters have different sizes. Recall that a Carlitz composition of the integer
n is a composition of n such that no two adjacent summands have equal values. Consider
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first compositions with a bound m on the largest allowable summand. The OGF of such
Carlitz compositions is

C [m](z) =


1 −

m∑

j=1

zj

1 + zj




−1

,

and the OGF of all Carlitz compositions is obtained by letting m tend to infinity:

(32) C [∞](z) =


1 −

∞∑

j=1

zj

1 + zj




−1

.

In particular, we get EIS A0032428:

C [∞](z) = 1 + z + z2 + 3z3 + 4z4 + 7z5 + 14z6 + 23z7 + 39z8 + 71z9 + · · · .
The asymptotic form of the number of Carlitz compositions is then easily found by

singularity analysis of meromorphic functions. The OGF has a simple pole at ρ which is
the smallest positive root of the equation

(33)
∞∑

j=1

ρj

1 + ρj
= 1.

(Note the analogy with (30) due to commonality of the combinatorial argument.) Thus:

C [∞]
n ∼ C · αn, C

.
= 0.45638, α

.
= 1.75024 .

There, α = ρ with ρ as in (33). In a way analogous to Smirnov words, the asymptotic
frequency of summand k appears to be ρk/(1 + ρk); see [81, 96] for further properties. �

IV. 5. Localization of singularities

There are situations where a function possesses several dominant singularities, that is,
several singularities are present on the boundary of its disk of convergence. We examine
here the induced effect on the coefficient’s coefficients and discuss ways to localize such
dominant singularities.

IV. 5.1. Multiple singularities. In the presence of multiple singularities on the cir-
cle of convergence of a series, several geometric terms of the form αn sharing the same
modulus must be combined. In simpler cases, such terms induce a periodic behaviour for
coefficients that is easy to describe; in the more general case, fluctuations of a somewhat
“arithmetic nature” result. Finally, consideration of all singularities (whether dominant or
not) of a meromorphic functions may lead to explicit summations expressing their coeffi-
cients.

Periodicities. When several singularities of f(z) have the same modulus, they may
induce complete cancellations, so that different regimes will be present in the coefficients
of f . For instance

1

1 + z2
= 1 − z2 + z4 − z6 + z8 − · · · , 1

1 − z3
= 1 + z3 + z6 + z9 + · · · ,

8The EIS designates Sloane’s On-Line Encyclopedia of Integer Sequences [118]; see [119] for an earlier
printed version.
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FIGURE 9. The coefficients [zn]f(z), where f(z) =(
1 + 1.02z4

)−3 (
1 − 1.05z5

)−1
illustrate a periodic superposition

of smooth behaviours that depend on the residue class of n modulo 20.

exhibit patterns of periods 4 and 3 respectively, this corresponding to roots of unity or order
4 (±i), and 3. Accordingly,

φ(z) =
1

1 + z2
+

1

1 − z3
=

2 − z2 + z3 + z4 + z8 + z9 − z10

1 − z12

has a pattern of period 12, and the coefficients φn such that n ≡ 1, 5, 6, 7, 11 modulo 12
are zero. Consequently, if we analyze

[zn]ψ(z) where ψ(z) = φ(z) +
1

1 − z/2
,

we see that a different exponential growth manifests itself when n is taken congruent to
1, 5, 6, 7, 11 mod 12. In many combinatorial applications, generating functions involving
periodicities can be decomposed “at sight”, and the corresponding asymptotic subproblems
generated are then solved separately.

� 20. Decidability of polynomial properties. Given a polynomial p(z) ∈ Q[z], the following prop-
erties are decidable: (i) whether one of the zeros of p is a root of unity; (ii) whether one of the
zeros of p has an argument that is commensurate with π. [One can use resultants. An algorithmic
discussion of this and related issues is given in [69].] �

Nonperiodic fluctuations. Take the polynomialD(z) = 1 − 6
5z + z2, whose roots are

α =
3

5
+ i

4

5
, ᾱ =

3

5
− i

4

5
,

both of modulus 1 (the numbers 3, 4, 5 form a Pythagorean triple), with argument±θ where
θ = arctan( 4

3 ) = 0.9279. The expansion of the function f(z) = 1/D(z) starts as

1

1 − 6
5z + z2

= 1 +
6

5
z +

11

25
z2 − 84

125
z3 − 779

625
z4 − 2574

3125
z5 + · · ·

the sign sequence being
+ + + −−− + + + + −−− + + + −−−− + + + −−−− + + + −−− ,

which indicates a mildly irregular oscillating behaviour, where blocks of 3 or 4 pluses
follow blocks of 3 or 4 minuses.
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FIGURE 10. The coefficients of f = 1/(1 − 6
5z + z2) exhibit an ap-

parently chaotic behaviour (left) which in fact corresponds to a discrete
sampling of a sine function (right), reflecting the presence of two conju-
gate complex poles.

The exact form of the coefficients of f results from a partial fraction expansion:

f(z) =
a

1 − z/α
+

b

1− z/ᾱ
with a =

1

2
+

3

8
i, b =

1

2
− 3

8
i.

Accordingly,

fn = ae−inθ0 + beinθ0

=
sin((n+ 1)θ0)

sin(θ0)
.

This explains the sign changes observed. Since the angle θ0 is not commensurate with π,
the coefficients fluctuate but, unlike in our earlier examples, no exact periodicity is present
in the sign patterns. See Figure 10 for a rendering and Figure 10 below for a meromorphic
case linked to compositions into prime summands.

Complicated problems of an arithmetical nature may occur if several such singulari-
ties with non–commensurable arguments combine, and some open problem remain in the
analysis of linear recurring sequences. (For instance no decision procedure is known to
determine whether such a sequence ever vanishes.) Fortunately, such problems occur in-
frequently in combinatorial enumerations where zeros of rational functions tend to have a
simple geometry.

Exact formulæ. The error terms appearing in the asymptotic expansion of coefficients
of meromorphic functions are already exponentially small. By “pealing off” the singular-
ities of a meromorphic function layer by layer, in order of increasing modulus, one is led
to extremely precise expansions for the coefficients. Sometimes even, “exact” expressions
may result. The latter is the case for the Bernoulli numbers Bn, the surjection numbers
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Rn, the Secant numbers E2n and the Tangent numbers E2n+1 defined by

∞∑

n=0

Bn
zn

n!
=

z

ez − 1
(Bernoulli numbers)

∞∑

n=0

Rn
zn

n!
=

1

2 − ez
(Surjection numbers)

∞∑

n=0

E2n
z2n

(2n)!
=

1

cos(z)
(Secant numbers)

∞∑

n=0

E2n+1
z2n+1

(2n+ 1)!
= tan(z) (Tangent numbers).

Bernoulli numbers have an EGF z/(ez − 1) that has poles at the points χk = 2ikπ,
with k ∈ Z \ {0}. The residue at χk is equal to χk,

z

ez − 1
∼ χk

z − χk
(z → χk).

The expansion theorem for meromorphic functions is applicable here. To see it use the
Cauchy integral formula, and proceed as in the proof of Theorem IV.7, using as external
contours large circles that pass half way between poles. Along these contours, the in-
tegrand tends to 0 because the Cauchy “kernel” z−n−1 decreases with the radius of the
integration contour while the EGF stays bounded. In the limit, corresponding to an infin-
itely large contour, the coefficient integral becomes equal to the sum of all residues of the
meromorphic function over the whole of the complex plane.

From this argument, we thus get: Bn

n! = −∑k∈Z\{0} χ
−n
k . This proves that Bn = 0

if n is odd. If n is even, then grouping terms two by two, we get the exact representation
(which also serves as an asymptotic expansion):

(34)
B2n

(2n)!
= (−1)n−121−2nπ−2n

∞∑

k=0

1

k2n
.

Reverting the equality, we have also established that

ζ(2n) = (−1)n−122n−1π2n B2n

(2n)!
with ζ(s) =

∞∑

k=1

1

ks
, Bn = n![zn]

z

ez − 1
,

a well-known identity that provides values of the Riemann zeta function (ζ(s)) at even
integers as rational multiples of powers of π.

In the same vein, the surjection numbers have as EGF R(z) = (2− ez)−1 with simple
poles at

χk = log 2 + 2ikπ where R(z) ∼ 1

2

1

χk − z
.

Since R(z) stays bounded on circles passing half way in between poles, we find the exact
formula, Rn

n! = 1
2

∑
k∈Z

χ−n−1
k . An equivalent real formulation is

(35)
Rn

n!
=

1

2

(
1

log 2

)n+1

+

∞∑

k=1

cos((n+ 1)θk)

(log2 2 + 4k2π2)(n+1)/2
with θk = arctan(

2kπ

log 2
),

which shows the hidden occurrence of infinitely many “harmonics” of fast decaying am-
plitude.
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� 21. Alternating permutations, tangent and secant numbers. The relation (34) also provides a
representation of the tangent numbers since E2n−1 = (−1)n−1B2n4n(4n − 1)/(2n). The secant
numbers E2n satisfy

∞X

k=1

(−1)k

(2k + 1)2n+1
=

(π/2)2n+1

2 (2n)!
E2n,

which can be read either as providing an asymptotic expansion ofE2n or as an evaluation of the sums
on the left (the values of a Dirichlet L-function) in terms of π. The asymptotic number of alternating
permutations (Chapter II) is consequently known to great accuracy. �

� 22. Solutions to the equation tan(x) = x. Let xn be the nth positive root of the equation
tan(x) = x. For any integer r ≥ 1, the sum

P
n x

−2r
n is a computable rational number. [From

folklore and The American Mathematical Monthly.] �

IV. 5.2. Localization of zeros and poles. We gather here a few results that often
prove useful in determining the location of zeros of analytic functions, and hence of poles
of meromorphic functions. A detailed treatment of this topic may be found in Henrici’s
book [75].

Let f(z) be an analytic function in a region Ω and let γ be a simple closed curve
interior to Ω, and on which f is assumed to have no zeros. We claim that the quantity

N(f ; γ) =
1

2iπ

∫

γ

f ′(z)

f(z)
dz

exactly equals the number of zeros of f inside γ counted with multiplicity. The reason is
that the function f ′/f has its poles exactly at the zeros of f , and its residue at each pole
is 1, so that the assertion directly results from the residue theorem

Since a primitive function of f ′/f is log f , the integral also represents the variation
of log f along γ, which is written [log f ]γ . The variation [log f ]γ reduces to i times the
variation of the argument of f along γ as log(reiθ) = log r + iθ and the modulus r has
variation equal to 0 along a closed contour, [log ρ]γ = 0. The quantity [θ]γ is, by its
definition, the number of times the transformed contour f(γ) winds about the origin. This
observation is known as the Argument Principle:

Argument Principle. The number of zeros of f(z) (counted with mul-
tiplicities) inside γ equals the winding number of the transformed con-
tour f(γ) around the origin.

By the same argument, if f is meromorphic in Ω 3 γ, then N(f ; γ) equals the difference
between the number of zeros and the number of poles of f inside γ, multiplicities being
taken into account. Figure 11 exemplifies the use of the argument principle in localizing
zeros of a polynomial.

By similar devices, we get Rouché’s theorem:
Rouché’s theorem. Let the functions f(z) and g(z) be analytic in a
region containing in its interior the closed simple curve γ. Assume
that f and g satisfy |g(z)| < |f(z)| on the curve γ. Then f(z) and
f(z) + g(z) have the same number of zeros inside the interior domain
delimited by γ.

The intuition behind Rouché’s theorem is that, since |g| < |f |, then f(γ) and (f + g)(γ)
must have the same winding number.

� 23. Proof of Rouché’s theorem. Under the hypothesis of Rouch é’s theorem, for 0 ≤ t ≤ 1
h(z) = (f(z) + tg(z)) is such that N(h; γ) is both an integer and a continuous function of t in the
given range. The conclusion of the theorem follows. �
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FIGURE 11. The transforms of γj = {|z| = 4j
10} by P4(z) = 1 −

2z + z4, for j = 1, 2, 3, 4, demonstrate that P4(z) has no zero inside
|z| < 0.4, one zero inside |z| < 0.8, two zeros inside |z| < 1.2 and
four zeros inside |z| < 1.6. The actual zeros are at ρ4 = 0.54368, 1 and
1.11514± 0.77184i.

� 24. The fundamental theorem of algebra. Every complex polynomial p(z) of degree n has ex-
actly n roots. A proof follows by Rouch é’s theorem from the fact that, for large enough |z| = R, the
polynomial assumed to be monic is a “perturbation” of its leading term, zn. �

These principles form the basis of numerical algorithms for locating zeros of analytic
functions. For instance, one can start from an initial domain and recursively subdivide it
until roots have been isolated with enough precision—the number of roots in a subdomain
being at each stage determined by numerical integration; see Figure 11 and refer for in-
stance to [29] for a discussion. Such algorithms can even acquire the status of full proofs
if one operates with guaranteed precision routines (using, e.g., careful implementations of
interval arithmetics). Examples of use of the method will appear in the next sections.

� 25. The analytic Implicit Function Theorem from residues. The sum of the roots of the equation
g(y) = 0 interior to γ equals

1

2iπ

Z

γ

g′(y)

g(y)
y dy.
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Let F (z, y) be an analytic function in both z and y (i.e., it admits a convergent series expansion).
IfF ′

y(z0, y0) 6= 0, then the function y(z) implicitly defined by F (z, y) = 0 and such that y(z0) = y0
is given by

y(z) =
1

2iπ

Z

γ

F ′
y(z, y)

F (z, y)
y dy,

where γ is a small loop around y0. Deduce that y(z) is analytic at z0. (Note: this requires a modicum
of analytic functions of two complex variables as is to be found, e.g., in [19].) �

IV. 5.3. The example of patterns in words. All patterns are not born equal. Sur-
prisingly, in a random sequence of coin tossings, the pattern HTT is likely to occur much
sooner (after 8 tosses on average) than the pattern HHH (needing 14 tosses on average);
see the preliminary discussion in Chapter I. Questions of this sort are of obvious inter-
est in the statistical analysis of genetic sequences. Say you discover that a sequence of
length 100,000 on the four letters A,G,C, T contains the pattern TACTAC twice. Can this
be assigned to chance or is this is likely to be a meaningful signal of some yet unknown
structure? The difficulty here lies in quantifying precisely where the asymptotic regime
starts, since, by Borges’s Theorem (see the Note in Chapter I), sufficiently long texts will
almost certainly contain any fixed pattern. The analysis of rational generating functions
supplemented by Rouché’s theorem provides definite answers to such questions.

We consider here the class W of words over an alphabet A of cardinality m ≥ 2.
A pattern p of some length k is given. As seen in Chapters I and III, its autocorrelation
polynomial is central to enumeration. This polynomial is defined as c(z) =

∑k−1
j=0 cjz

j ,
where cj is 1 if p coincides with its kth shifted version and 0 otherwise. We consider
here the enumeration of words containing the pattern p at least once, and dually of words
excluding the pattern p. In other words, we look at problems like: What is the probability
that a random of words of length n does (or does not) contain your name as a block of
consecutive letters?

The OGF of the class of words excluding p is, we recall,

(36) S(z) =
c(z)

zk + (1 −mz)c(z)
.

and we shall start with the case m = 2 of a binary alphabet. The function S(z) is simply
a rational function, but the location and nature of its poles is yet unknown. We only know
a priori that it should have a pole in the positive interval somewhere between 1

2 and 1
(by Pringsheim’s Theorem and since its coefficients are in the interval [1, 2n], for n large
enough). Here is a small list for patterns of length k = 3, 4 of the pole ρ nearest to the
origin:

Length (k) Types c(z) ρ

k = 3 aab, abb, . . . 1 0.61803

aba, bab 1 + z2 0.56984

aaa, bbb 1 + z + z2 0.54368

k = 4 aaab, aabb, abbb, . . . 1 0.54368

aaba, abba, abaa, . . . 1 + z3 0.53568

abab, baba 1 + z2 0.53101

aaaa, bbbb 1 + z + z2 + z3 0.51879

We thus expect ρ to be close to 1
2 as soon as the pattern is long enough. In order to prove

this, we are going to apply Rouché’s Theorem to the denominator of (36).
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FIGURE 12. Complex zeros of z31+(1−2z)c(z) represented as joined
by a polygonal line: (left) correlated pattern a(ba)15; (right) uncorrelated
pattern a(ab)15.

As regards termwise domination of coefficients, the autocorrelation polynomials lies
between 1 (for less correlated patterns like aaa. . . b) and 1 + z + · · · + zk−1 (for the
special case aaa. . . a). We set aside the special case of p having only equal letters, i.e., a
“maximal” autocorrelation polynomial—this case is discussed at length in the next chapter.
Thus, in this scenario, the autocorrelation polynomial starts as 1+z` + · · · for some ` ≥ 2.
Fix the numberA = 0.6. On |z| = A, we have

(37) |c(z)| ≥
∣∣1 − (A2 +A3 + · · · )

∣∣ =
∣∣∣∣1 − A2

1 −A

∣∣∣∣ =
1

10
.

In addition, the quantity (1 − 2z) ranges over the circle of diameter [−0.2, 1.2] as z varies
along |z| = A, so that |1 − 2z| ≥ 0.2. All in all, we have found that, for |z| = A,

|(1 − 2z)c(z)| ≥ 0.02.

On the other hand, for k > 7, we have |zk| < 0.017 on the circle |z| = A. Then,
amongst the two terms composing the denominator of (36), the first is strictly dominated
by the second along |z| = A. By virtue of Rouché’s Theorem, the number of roots of the
denominator inside |z| ≤ A is then same as the number of roots of (1−2z)c(z). The latter
number is 1 (due to the root 1

2 ) since c(z) cannot be 0 by the argument of (37). Figure 12
exemplifies the extremely well-behaved characters of the complex zeros.

In summary, we have found that for all patterns with at least two different letters
(` ≥ 2) and length k ≥ 8, the denominator has a unique root in |z| ≤ A = 0.6. The
property for lengths k satisfying 4 ≤ k ≤ 7 is then easily verified directly. The case ` = 1
can be subjected to an entirely similar argument (see Chapter V for details). Therefore,
unicity of a simple pole ρ of S(z) in the interval (0.5, 0.6) is granted.

It is then a simple matter to determine the local expansion of s(z) near z = ρ,

S(z) ∼
z→ρ

Λ̃

ρ− z
, Λ̃ :=

c(ρ)

2c(ρ) − kρk−1
,

from which a precise estimate for coefficients derives by Theorems IV.6 and IV.7.
The computation finally extends almost verbatim to nonbinary alphabets, with ρ being

now close to 1
m . It suffices to use the disc of radius A = 1.2/m. The Rouché part of

the argument grants us unicity of the dominant pole in the interval (1/m,A) for k ≥ 5
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when m = 3, and for k ≥ 4 and any m ≥ 4. (The remaining cases are easily checked
individually.)

PROPOSITION IV.3. Consider an m-ary alphabet. Let p be a pattern of length k ≥ 4
with autocorrelation polynomial c(z). Then the probability that a random word of length n
does not contain p as a pattern (a block of consecutive leters) satisfies

(38) PWn(p does not occur) = Λp(mρ)
−n−1 +O

((5
6

)n
)
,

where ρ ≡ ρp is the unique root in ( 1
m ,

6
5m ) of the equation zk + (1 −mz)c(z) = 0 and

Λp =
mc(ρ)

mc(ρ) − kρk−1
.

Despite their austere appearance, these formulæ have indeed an a fairly intuitive con-
tent. First, the equation satisfied by ρ can be put under the formmz = 1+m−k/c(z), and,
since ρ is close to 1

m , we may expect the approximation

mρ ≈ 1 +
1

γmk
,

where γ := c(m−1) satisfies 1 ≤ γ < m/(m− 1). By similar principles, the probabilities
in (38) should be approximately

PWn(p does not occur) ≈
(

1 +
1

γmk

)−n

≈ e−n/(γmk).

For a binary alphabet, this tells us that the occurrence of a pattern of length k starts becom-
ing likely when n is of the order of 2k, that is, when k is of the order of log2 n. The more
precise moment when this happens must depend (via γ) on the autocorrelation of the pat-
tern, with strongly correlated patterns having a tendency to occur a little late. (This vastly
generalizes our empirical observations of Chapter I.) However, observe that the mean num-
ber of occurrences of a pattern in a text of length n does not depend on the shape of the
pattern. This apparent paradox is easily resolved: correlated patterns tend to occur late, but
they lend themselves to appearing in clusters. Thus, the late pattern aaa when it occurs
still has probability 1

2 to occur at the next position as well, and cash in another occurrence,
whereas no such possibility is available to the early pattern aab whose occurrences must
be somewhat spread out.

Such analyses are important as they can be used to develop a precise understanding
of the behaviour of data compression algorithms (the Lempel–Ziv scheme); see Julien
Fayolle’s memoir (Master Thesis, Paris, 2002) for details.

� 26. Multiple pattern occurrences. A similar analysis applies to the generating function S〈s〉(z) of
words containing a fixed number s of occurrences of a pattern p. The OGF is obtained by expanding
(with respect to u) the BGF W (z, u) obtained in Chapter III by means of an inclusion-exclusion
argument. For s ≥ 1, one finds

S〈s〉(z) = zkN(z)s−1

D(z)s+1
, D(z) = zk + (1 −mz)c(z), N(z) = zk + (1 −mz)(c(z) − 1)),

which now has a pole of multiplicity s+ 1 at z = ρ. �

� 27. Patterns in Bernoulli sequences. Similar results hold when letters are assigned nonuniform
probabilities, pj = P(aj), for aj ∈ A. One only needs to define the weighted autocorrelation
polynomial by its coefficient cj being cj = P(p1 · · · pj), when p coincides with its jth shifted
version. Multiple pattern occurrences can be also analysed. �
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IV. 6. Singularities and functional equations

In the various combinatorial examples discussed so far in this chapter, we have been
dealing with functions that are given by explicit expressions. Such situations essentially
cover nonrecursive structures as well as the simplest recursive structures, like Catalan or
Motzkin trees, whose generating functions are expressible in terms of radicals. In fact,
as will shall see extensively in this book, complex analytic methods are instrumental in
analysing coefficients of functions implicitly specified by functional equations. In other
words: the very nature of a functional equation can often provide clues regarding the
singularities of its solution. Chapter V will illustrate this philosophy in the case of rational
functions defined by systems of positive equations; a very large number of examples will
then be given in Chapters VI and VII, where singularities much more general than mere
poles are treated. The purpose of this subsection is simply to offer a preliminary discussion
of the way dominant singularities can be located in many cases by means means of simple
iteration or inversion properties of analytic functions. Three typical functional equations
are to be discussed here:

f(z) = zef(z), f(z) = z + f(z2 + z3), f(z) =
1

1 − zf(z2)
.

Inverse functions. We start with a generic problem: given a function ψ analytic at a
point y0 with z0 = ψ(y0) what can be said about its inverse, namely the solution(s) to the
equation ψ(y) = z when z is near z0 and y near y0? Two cases occur depending on the
value of ψ′(y0).

Regular case. If ψ′(y0) 6= 0, then ψ admits an analytic expansion near y0:

ψ(y) = ψ(y0) + (y − y0)ψ
′(y0) +

1

2
(y − y0)

2ψ′′(y0) + · · · .
Solving formally for y indicates a locally linear dependency,

(39) y − y0 ∼ 1

ψ′(y0)
(z − z0).

A full formal expansion of y− y0 in powers of z− z0 is obtained by repeated substitution,

(40) y − y0 = c1(z − z0) + c2(z − z0)
2 + · · ·

and the method of majorizing series shows that the series so obtained converges locally
in a sufficiently small neighbourhood of z0. Rouché’s theorem (equivalently, the analytic
version of the Implicit Function Theorem, see Note 25), implies that the equationψ(y) = z
admits there a unique analytic solution. In summary, an analytic function locally admits
an analytic inverse near any point where its first derivative is nonzero.

Singular case. If to the contrary one has ψ′(y0) = 0 and ψ′′(y0) 6= 0, then the
expansion of ψ is of the form

(41) ψ(y) = ψ(y0) +
1

2
(y − y0)

2ψ′′(y0) + · · · .
Solving formally for y now indicates a locally quadratic dependency

(y − y0)
2 ∼ 2

ψ′′(y0)
(z − z0),

and the inversion problem admits two solutions satisfying

y − y0 ∼ ±
√

2

ψ′′(y0)
(z − z0)

1/2.
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The point z0 is thus a branch point.
A similar reasoning applies whenever the first nonzero derivative of ψ at y0 is of order

r ≥ 2 (with a local behaviour for y then of the form (z − z0)
1/r). Thus, the dependency

between y and z cannot be analytic around (y0, z0). In other words, an analytic function
is not locally invertible in an analytic manner in the vicinity of any point where its first
derivative is zero.

We can now consider the problem of obtaining information on the coefficients of a
function y(z) defined by an implicit equation

(42) y(z) = zφ(y(z)).

For simplicity, we shall momentarily assume φ(u) to be a nonlinear entire function (possi-
bly a polynomial of degree ≥ 2) with nonnegative coefficients. In order for the problem to
be (formally) well-posed we assume that φ(0) 6= 0.

The equation (42) occurs in the counting of various types of trees. For instance,
φ(u) = eu corresponds to labelled Cayley trees, φ(u) = (1 + u)2 to binary trees, and
φ(u) = 1 + u + u2 to plane unary–binary trees (Motzkin trees). A full analysis of the
problem was developed by Meir and Moon [98], themselves elaborating on earlier ideas of
Pólya [111, 112] and Otter [106].

Equation (42) may be rephrased as

(43) ψ(y(z)) = z where ψ(u) =
u

φ(u)
,

so that it is a generic instance of the inversion problem for analytic functions: y = ψ(−1).
We first observe that (42) and (43) admit unique formal power series solutions by the
method of indeterminate coefficients. An application of the technique of majorizing series
shows that this formal solution also represents an analytic function near the origin, with
y(0) = 0. In addition, the coefficients of y(z) are all nonnegative.

Now comes the hunt for singularities. The function y(z) increases along the positive
real axis. The equation ψ′(τ) = 0 which is expected to create singularities for y(z) is in
terms of φ:

(44) φ(τ) − τφ′(τ) = 0.

The function φ(u) =
∑∞

k=0 φku
k being by assumption entire, the equation (44) is equiva-

lent to
φ0 = φ2τ

2 + 2φ3τ
3 + · · · ,

which admits a unique positive solution.
As z increases, starting from 0 along the positive real axis, y(z) increases. Let ρ ≤

∞ be the dominant positive singularity of y(z). We are going to prove a contrario that
y(ρ) = τ (technically, we should define y(ρ) as the limit of y(x) as x → ρ−). Assume
that y(ρ) < τ ; then y(z) could be analytically continued at z = ρ, by the discussion above
of inverse functions in the regular case, since φ′(y(ρ)) > 0. If on the other hand, we had
y(ρ) > τ , then, there would be a value ρ∗ < ρ such that y(ρ∗) = τ ; but there, we would
have ψ′(y(ρ∗)) = 0, so that y(z) would be singular at z = ρ∗ by the discussion on inverse
functions in the singular case. Thus, in both cases, the assumption y(ρ) 6= τ leads to a
contradiction. We thus obtain that y(ρ) = τ , and, since y and ψ are inverse functions, this
corresponds to

ρ = ψ(τ) = τ/φ(τ).

Equipped with this discussion, we state a result which covers situations more general
than the case of φ being entire.
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FIGURE 13. Singularities of inverse functions: φ(u) = eu (left);
ψ(u) = u/φ(u) (middle); y = Inv(ψ) (right).

PROPOSITION IV.4. Let φ be a nonlinear function that is analytic at 0, with nonneg-
ative Taylor coefficients and radius of convergence R ≤ +∞. Assume that there exists
τ ∈ (0, R) such that

(45)
τφ′(τ)

φ(τ)
= 1.

Let y(z) be the solution analytic at the origin of the equation y(z) = φ(y(z)). Then, one
has the exponential growth formula:

[zn] y(z) ./

(
1

ρ

)n

where ρ =
τ

φ(τ)
=

1

φ′(τ)
.

Note that, by Supplement 28 below, there can be at most one solution of the characteristic
equation (45) in (0, R), a necessary and sufficient condition for the existence of a solution

in the open interval (0, R) being limx→R−
xφ′(x)
φ(x) > 1. This last condition is automatically

granted as soon as φ(R) = +∞.

PROOF. The discussion above applies verbatim. The function y(z) is analytic around 0
(by majorizing series techniques). By the already seen argument, its value y(ρ) cannot be
different from τ , so that its radius of convergence must equal ρ. The form of yn then results
from general exponential bounds. �

� 28. Convexity of GFs and the Variance Lemma. Let φ(z) be a nonlinear GF with nonnegative co-
efficients and a nonzero radius of convergence R. For x ∈ (0, R) a parameter, define the Boltzmann
random variable Ξ (of parameter x) by the property

(46) P(Ξ = n) =
φnx

n

φ(x)
, with E(sΞ) =

φ(sx)

φ(x)

the probability generating function of Ξ. By differentiation, the first two moments of Ξ are

E(Ξ) =
xφ′(x)

φ(x)
, E(Ξ2) =

x2φ′′(x)

φ(x)
+
xφ′(x)

φ(x)
.

There results, for any nonlinear GF φ(x), the general convexity inequality

d

dx

„
xφ′(x)

φ(x)

«
> 0,

since the variance of a nondegenerate random variable is always positive. Equivalently, the function
log(φ(et)) is convex for t ∈ (−∞, logR). [In statistical phsyics, a Boltzmann model (of param-
eter x) corresponds to a class Φ (with ogf φ) from which elements are drawn according to the size
distribution (46).] �
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Take for instance general Catalan trees corresponding to

y =
z

1 − y(z)
, so that φ(u) =

1

1 − u
.

We have R = 1 and the characteristic equation reads
τ

1 − τ
= 1,

implying τ = 1
2 , so that ρ = 1

4 . We obtain as anticipated yn ./ 4n, a weak asymptotic
formula for the Catalan numbers. Similarly, for Cayley trees, we have φ(u) = eu, the
characteristic equation reduces to (τ − 1)eτ = 0, so that τ = 1 and ρ = e−1, giving a
weak form of Stirling’s formula:

[zn]y(z) =
nn−1

n!
./ en.

Here is a table of a few cases of application of the method to structures already encountered
in previous chapters.

Type φ(u) (R) τ, ρ yn ./ ρ
−n

binary tree (1 + u)2 (∞) 1, 1
4 yn ./ 4n

Motzkin tree 1 + u+ u2 (∞) 1, 1
3 yn ./ 3n

gen. Catalan tree
1

1 − u
(1) 1

2 ,
1
4 yn ./ 4n

Cayley tree eu (∞) 1, e−1 yn ./ e
n

In fact, for all such problems, the dominant singularity is always of the square-root
type as our previous discussion suggests. Accordingly, the asymptotic form of coefficients
is invariably of the type

[zn] y(z) ∼ C · ρ−nn−3/2,

as we shall prove in Chapter VI by means of the singularity analysis method.

� 29. A variant form of the inversion problem. Consider the equation y = z + φ(y), where φ is
assumed to be entire (say) and φ(u) = O(u2) at u = 0. This corresponds to a simple variety of
trees in which trees are counted by the number of their leaves only. For instance, we have already
encountered labelled hierarchies (phylogenetic trees) in Section II.6 corresponding to φ(u) = eu −
1−u, which is one of “Schröder’s problems”. Let eτ be the root of φ′(eτ) = 1 and set eρ = eτ −φ(eτ).
Then [zn]y(z) ./ eρ−n. For the EGF L of labelled hierarchies (L = z + eL − 1 − L), this gives
Ln/n! ./ (2 log 2−1)−n . (Observe that Lagrange inversion also provides [zn]y(z) = 1

n
[wn−1](1−

y−1φ(y))−n.) �

Iteration. Consider the class E of balanced 2–3 trees defined as trees whose node degrees
are restricted to the set {0, 2, 3}, with the additional property that all leaves are at the same
distance from the root. Such tree trees, which are particular cases of B-trees, are a useful
data structure for implementing dynamic dictionaries [85]. We adopt as notion of size
the number of leaves (also called external nodes). The OGF of E satisfies the functional
equation

(47) E(z) = z +E(z2 + z3),

which reflects an inductive definition involving a substitution: given an existing tree, a new
tree is obtained by substituting in all possible ways to each external node (2) either a pair
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FIGURE 14. The iterates of a point x0 ∈ [0, 1
ϕ [ (here x0 = 0.6) by

σ(z) = z2 + z3 converge fast to 0.

(2,2) or a triple (2,2,2). On other words, we have

E [2] = 2 + E
[
2 → (22 + 222)

]
.

Equation (47) implies the seemingly innocuous recurrence

En =
n∑

k=0

(
k

n− 2k

)
Ek with E0 = 0, E1 = 1,

but no closed-form solution is known (nor likely to exist) for En or E(z). The expansion
starts as (the coefficients are EIS A014535)

E(z) = z + z2 + z3 + z4 + 2 z5 + 2 z6 + 3 z7 + 4 z8 + 5 z9 + 8 z10 + · · · .
We present here the first stage of an analysis due to Odlyzko [101] and corresponding

to exponential bounds. Let σ(z) = z2 + z3. Equation (47) can be expanded by iteration in
the ring of formal power series,

(48) E(z) = z + σ(z) + σ[2](z) + σ[3](z) + · · · ,
where σ[j](z) denotes the jth iterate of the polynomial σ:

σ[0](z) = z, σ[h+1](z) = σ[h](σ(z)) = σ(σ[h](z)).

Thus, E(z) is nothing but the sum of all iterates of σ. The problem is to determine the
radius of convergence of E(z), and by Pringsheim’s theorem, the quest for dominant sin-
gularities can be limited to the positive real line.

For z > 0, the polynomial σ(z) has a unique fixed point, ρ = σ(ρ), at

ρ =
1

ϕ
where ϕ =

1 +
√

5

2
,

the golden ratio. Also, for any positive x satisfying x < ρ, the iterates σ[j](x) must
converge to 0; see Fig. 14. Furthermore, since σ(z) ∼ z2 near 0, these iterates converge
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FIGURE 15. Left: the fractal domain of analyticity ofE(z) in gray with
darker areas representing faster convergence of the sum of iterates of σ.
Right: the ratio En/(ϕ

nn−1) plotted against logn for n = 1 . . 500 con-
firms that En ./ ϕn and illustrates the periodic fluctuations expressed
by Equation (51).

to 0 doubly exponentially fast. First, for x ∈ [0, 1
2 ], one has σ(x) ≤ 3

2x
2 for x ∈ [0, 1

2 ], so
that there

(49) σ[j](x) ≤
(

3

2

)2j−1

x2j

.

Second, for x ∈ [0, A], where A is any number < ρ, there is a number kA such that
σ[kA](x) < 1

2 , so that, by (49), there holds:

σ[k](x) ≤ 3

2

(
3

4

)2k−kA

.

Thus, the series of iterates of σ is quadratically convergent for z ∈ [0, A], any A < ρ.
By the triangular inequality, |σ(z)| ≤ (σ(|z|), the sum in (48) is a normally converging

sum of analytic functions, and is thus itself analytic. Consequently E(z) is analytic in the
whole of the open disk |z| < ρ.

It remains to prove that the radius of convergence of E(z) is exactly equal to ρ. To
that purpose it suffices to observe that E(z), as given by (48), satisfies

E(x) → +∞ as x→ ρ−.

Let N be an arbitrarily large but fixed integer. It is possible to select a positive xN suffi-
ciently close to ρ with xN < ρ, such that the N th iterate σ[N ](xN ) is larger than 1

2 (the
function σ[N ](x) admits ρ as a fixed point and it is continuous and increasing at ρ). Given
the sum expression (48), this entails the lower bound E(xN ) > N

2 for such an xN < ρ so
that E(x) is unbounded as x→ ρ−.

The dominant positive real singularity of E(z) is thus ρ = 1
ϕ , and application of

Cauchy bounds shows that

(50) [zn]E(z) ./
(1 +

√
5

2

)n
.

It is notable that this estimate could be established so simply by a purely qualitative ex-
amination of the basic functional equation and of a fixed point of the associated iteration
scheme.
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The complete asymptotic analysis of the En was given by Odlyzko [101] in a classic
paper. It requires the full power of singularity analysis methods to be developed in Chap-
ter VI. Equation (51) below states the end result, which involves periodic fluctuations; see
Figure 15 (right). There is overconvergence of the representation (48), that is, convergence
in certain directions beyond the disc of convergence of E(z), as illustrated by Figure 15
(left). The proof techniques involve an investigation of the behaviour of iterates of σ in the
complex plane, an area launched by Fatou and Julia in the first half of the past century and
nowadays well-studied under the name of “complex dynamics”.

� 30. The asymptotic number of 2–3 trees. This analysis is from [101, 102]. The number of 2–tree
trees satisfies asymptotically

(51) En =
ϕn

n
Ω(log n) +O

„
ϕn

n2

«
,

where Ω is a periodic function with mean value ϕ(log(4 −ϕ)
.
= 0.71208 and period log(4− φ)

.
=.

Thus oscillations are inherent in En. A plot of the ratio En/(φ
n/n) is offered in Figure 15. �

Complete asymptotics of a functional equation. This is Pólya’s counting of certain
molecules, a case where only a functional equation is known for a generating function,
M(z) =

∑
nMnz

n:

(52) M(z) =
1

1 − zM(z2)
.

The Mn represent the number of chemical isomeres of alcohols CnH2n+1OH without
asymmetric carbon atoms, and the series starts as (EIS A000621)

(53) M(z) = 1 + z + z2 + 2z3 + 3z4 + 5z5 + 8z6 + 14z7 + 23z8 + 39z9 + · · · .

By iteration of the functional equation, one finds a continued fraction representation:

M(z) =
1

1 − z

1 − z2

1 − z4

. . .

.

Pólya [112] who established this functional equation in the historical paper that introduced
“Pólya Theory” developed at the same time a precise asymptotic estimate for Mn.

PROPOSITION IV.5. Let M(z) be the solution analytic around 0 of the functional
equation

M(z) =
1

1 − zM(z2)
.

Then, there exist constants K and α such that

Mn ∼ K · αn, α
.
= 1.68136 75244, K

.
= 0.36071 40971.

PROOF. We offer two proofs. The first one is based on direct consideration of the
functional equation and is of a high degree of applicability. The second one, following
Pólya, makes explicit a linear structure present in the problem and leads to more explicit
results.
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First proof. The first few coefficients of M are determined by the functional equation
and known (53). Then, by positivity of the functional equation, M(z) dominates coeffi-
cientwise any GF (1 − zM<m(z2)−1, where M<m(z) is the mth truncation of M(z). In
particular, one has the domination relation (use M<2(z) = 1 + z)

M(z) � 1

1 − z − z3
.

Since the rational fraction has a dominant poles at z
.
= 0.68232, this implies that the

radius ρ of convergence of M(z) satisfies ρ < 0.69 < 1. In the other direction, since
M(z2) < M(z) for z ∈ (0, ρ), then, one has the numerical inequality

M(z) ≤ 1

1 − zM(z)
, 0 ≤ z < ρ.

This can be used to show that the Catalan generating functionC(z) = (1−
√

1 − 4z)/(2z)
is a majorant of M(z) on the interval (0, 1

4 ) and that M(z) exists for z ∈ (0, 1
4 ). In other

words, one has 1
4 ≤ ρ < 0.69. Altogether, the radius of convergence of M is strictly

between 0 and 1.
� 31. Alcohols and trees. SinceM(z) starts as 1+z+z2+· · · whileC(z) starts as 1+z+2z2+· · · ,
there is a small interval (0, ε) such that M(z) ≤ C(z). By the functional equation of M(z), one has
M(z) ≤ C(z) for z in the larger interval (0,

√
ε). One can then bootstrap and show that M(z) ≤

C(z) for z ∈ (0, 1
4
). �

Next, as z → ρ−, one must have zM(z2) → 1. Indeed, if this was not the case,
we would have zM(z2) < A < 1 for some A. But then, since ρ2 < ρ, the quantity
(1 − zM(z2))−1 would be analytic at z = ρ, a clear contradiction. Thus, ρ is determined
implicitly by the equation

ρM(ρ2) = 1,

and by monotonicity, there can be only one such solution. Numerically, one can estimate
ρ as the limit of quantities ρm satisfying

m∑

n=0

Mnρ
2n+1
m = 1,

together with ρ ∈ [ 14 , 0.069]. In each case, only a few of the Mn are needed. One obtains
in this way:

ρ10
.
= 0.595, ρ20

.
= 0.594756, ρ30

.
= 0.59475397, ρ40

.
= 0.594753964,

and it is not hard to verify that this provides a geometrically convergent scheme to the limit
ρ
.
= 0.59475 39639. (Note: Pólya determined ρ to five decimals by hand!)

The previous discussion also implies that ρ is a pole, which must be simple. Thus

(54) M(z)∼ z → ρK
1

1 − z/ρ
, K :=

1

ρM(ρ2) + 2ρ3M ′(ρ2)
.

The argument shows at the same time thatM(z) is meromorphic in |z| < √
ρ
.
= 0.77. That

M(z) is a the only pole on |z| = ρ can be seen from the fact that zM(z2) = z + z3 + · · ·
is unperiodic in the sense of Chapter V. (We don’t detail the argument here as the property
is also implied by the developments of the second proof.) The translation of the singular
expansion (54) yields the statement.

Second proof. First, a sequence of formal approximants follows from (52) starting
with

1,
1

1 − z
,

1

1 − z

1 − z2

=
1 − z2

1 − z − z2
,

1

1 − z

1 − z2

1 − z4

=
1 − z2 − z4

1 − z − z2 − z4 + z5
.
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which permits to compute any number of terms of the series M(z). Closer examination
of (52) suggests to set

M(z) =
ψ(z2)

ψ(z)
,

where

ψ(z) = 1 − z − z2 − z4 + z5 − z8 + z9 + z10 + z17 + z18 + z20 − z21 − z37 − · · ·
Back substitution into (52) yields

ψ(z2)

ψ(z)
=

1

1 − z
ψ(z4)
ψ(z2)

or
ψ(z2)

ψ(z)
=

ψ(z2)

ψ(z2) − zψ(z4)
,

which shows ψ(z) to be a solution of the functional equation

ψ(z) = ψ(z2) − zψ(z4).

The coefficients of ψ are all in the set {0,−1,+1}, as they satisfy the recurrence

ψ4n = ψ2n, ψ4n+1 = −ψn, ψ4n+2 = ψ2n+1, ψ4n+3 = 0.

Thus, M(z) appears as the quotient of two function, ψ(z2)/ψ(z); since ψ(z) whose
coefficients are bounded by 1 in absolute value, it is analytic in the unit disk, M(z) is
itself meromorphic in the unit disc. A numerical plot shows that that ψ(z) has its smallest
positive real zero at ρ

.
= 0.59475, which is a simple zero of ψ(z) and thus a pole of M(z)

as ψ(ρ2) 6= 0. Thus

M(z) ∼ ψ(ρ2)

(z − ρ)ψ′(ρ)
=⇒ Mn ∼ − ψ(ρ2)

ρψ′(ρ)

(
1

ρ

)n

.

Numerical computations then yield Pólya’s estimate. Et voilà! �

The example of Pólya’s alcohols is exemplary, both from a historical point of view
and from a methodological perspective. It demonstrates that quite a lot of information can
be pulled out of a functional equation without solving it. (A very similar situation will
be discussed in Chapter V, see the enumeration of coin fountains.) In passing, we have
made great use of the fact that if f(z) is analytic in |z| < r and some bounds imply the
strict inequalities 0 < r < 1, then one can regard functions like f(z2), f(z3), and so
on, as “known” since they are analytic in the disc of convergence of f and even beyond,
a situation evocative of our earlier discussion of Pólya operators in Subsection IV. 3.3.
Globally, the lesson is that functional equation, even very complicated ones, can often be
used to bootstrap the local singular behaviour of solutions and one can do so despite the
absence of any explicit generating function solution. Then, the transition from singularities
to coefficient asymptotics is a simple jump.

� 32. An arithmetic exercise Find a characterization of ψn = [zn]ψ(z) based on the binary repre-
sentation of n. Tabulate ψn for all n ∈ (101000, 101000 + 10500), possibly using some compressed
format. Find the asymptotic proportion of the ψn for n ∈ [1 . . N ] that are nonzero. �

IV. 7. Notes

This chapter has been designed to serve as a refresher of basic complex analysis,
with special emphasis on methods relevant for analytic combinatorics. References most
useful for the discussion given in this chapter include the books of Titchmarsh [126] (ori-
ented towards classical analysis), Whittaker and Watson [131] (stressing special functions),
Dieudonné [30], Hille [76], and Knopp [82]. Henrici [75] presents complex analysis under
the perspective of constructive and numerical methods, a highly valuable point of view for
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this book. References dealing specifically with asymptotic analysis are discussed at the
end of the next chapter.

As demonstrated by the first batch of examples sprinkled over this chapter, singulari-
ties provide a royal road to coefficient asymptotics. In this regard, the two main statements
of this chapter are are the theorems relative to the expansion of rational and meromor-
phic functions, Theorems IV.6 and IV.7. They are of course extremely classical (and easy)
results. Issai Schur (1875–1941) is to be counted amongst the very first mathematicians
who recognized the rôle of analytic methods in combinatorial enumerations (Example 4).
This thread was developed by George Pólya in his famous paper of 1937 (see [111, 112]),
which Read in [112, p. 96] describes as a “landmark in the history of combinatorial analy-
sis”. There, Pólya founded at the same time combinatorial chemistry, the enumeration of
objects under group actions, and the complex-asymptotic theory of graphs and trees.

De Bruijn’s classic booklet [27] is a wonderfully concrete introduction to effective
asymptotic theory, and it contains many examples from discrete mathematics thoroughly
worked out. The state of affairs in 1995 regarding analytic methods in combinatorial enu-
meration is superbly summarized in Odlyzko’s scholarly chapter [102]. Wilf devotes his
Chapter 5 of Generatingfunctionoloy [133] to this question. The books by Hofri [77] and
Szpankowski [125] contain useful accounts in the perspective of analysis of algorithms.
See also our book [116] for a light introduction and the chapter by Vitter and Flajolet [129]
for more on this topic.

Paraphrasing the number theorist Hecke, we may feel confident in stating: A func-
tion’s singularities contain a wealth of asymptotic information regarding the function’s
coefficients; a generating function’s singularities contain a wealth of information regard-
ing quantitative properties of the corresponding combinatorial structures. This philosophy
furthermore unites analytic combinatorics and analytic number theory. It is the purpose of
the next four chapters to illustrate it thoroughly by means of a great variety of combinato-
rial examples.





CHAPTER V

Applications of Rational and
Meromorphic Asymptotics

Analytic methods are extremely powerful and when they apply,
they often yield estimates of unparalleled precision.

— ANDREW ODLYZKO [102]

The primary goal of this chapter is to provide combinatorial illustrations of the power of
complex analytic methods, and specifically of the rational–meromorphic framework. At
the same time, we shift gears and envisage counting problems at a new level of generality.
Precisely, we consider combinatorial-analytic schemas, which, broadly speaking, are wide
families of combinatorial types amenable to a common analytic framework and associated
with a common collection of asymptotic properties.

The first schema comprises regular specifications and languages, which a priori leads
to rational generating functions and thus systematically resort to Theorem IV.6. This is not
the end of the story, however, since in general one is interested not just in a single set of
combinatorial objects, but rather in a whole family of classes. The case of patterns in words
at the end of the previous chapter has already exemplified this situation. Here, we extend
the analysis to the determination of longest runs, corresponding to maximal sequences of
good (or bad) luck in games of chance. In so doing, we develop analytical methods that
apply in many cases to largest components. We then consider an important class of regular
specifications, the ones that are built on nested sequences and combinatorially correspond
to lattice paths. Besides providing a precise quantification of height in Dyck paths, this
also leads to the determination of height in random (general) Catalan trees. The treatment
is to a large extent made possible because nested sequence constructions lead naturally to
nested quasi-inverses, that is, continued fractions. And continued fractions enjoy a wealth
of algebraic and analytic properties.

Next, we discuss a general schema of analytic combinatorics known as the supercrit-
ical sequence schema, which provides a prime illustration of the power of meromorphic
asymptotics while being of a very wide applicability. For instance, one can predict very
precisely (and easily) the number of ways that an integer can be decomposed additively
as a sum of primes (or twin primes), this even though many details of the distribution of
primes are still surrounded in mystery.

Last we discuss positive linear systems of generating functions: although the resulting
generating functions are once more bound to be rational, there is benefit in examining them

55



56 V. APPLICATIONS OF RATIONAL AND MEROMORPHIC ASYMPTOTICS

as defined implicitly (rather than solving explicitly) and work out singularities directly. The
crucial technical tool there is the Perron-Frobenus theory of nonnegative matrices, whose
importance has been long recognized in the theory of finite Markov chains. A general
discussion of singularities can then be conducted, leading to valuable consequences on a
variety of models—paths in graphs, finite automata, and transfer matrices.

All these cases illustrate the power of rational and meromorphic asymptotics. The last
example discussed treats locally constrained permutations, where rational functions even
provide an entry to the world of permutations.

Universality is a term originating with statistical physics that is also nowadays increas-
ingly used in probability theory. By universality is meant a collection of key properties that
are shared by a wide family of models and are largely independent of particulars of each
models. For instance, in statistical physics, random placements of pieces or random walks
on a regular lattice share common properties that do not depend on the particular geometry
of the lattice, whether square, triangular, or honeycomb. In probability theory, it is estab-
lished that sums of random variable converge to a Gaussian limit, so that the Gaussian law
is universal for sums of random variables (under suitably mild moment conditions). In
this spirit, we can describe the supercritical sequence as universal accross combinatorics
as it covers a large family of models simply characterized by the presence of an external
sequence construction (F = S(G)) accompanied with a natural analytic assumption (“su-
percriticality”). Alignments, compositions, and surjections for instance find themselves
sheltered under a common umbrella and analytic theory tells us that they must share many
features, like having a linear number of components in the mean and with high probabil-
ity, an asymptotically predetermined proportion of components of each possible type, and
so on. In a similar spirit, one can regard exponential-polynomial behaviour as universal
across all problems described by regular expressions (Sections V. 1 and V. 2) or by finite
state models (Section V. 4 and V. 5).

V. 1. Regular specification and languages

A combinatorial specification is said to be regular if it is nonrecursive (“iterative”) and
it involves only the constructions of Atom, Union, Product, and Sequence; see Chapter I.
For convenience and without loss of analytic generality, we consider here unlabelled struc-
tures. Since the operators translating these constructions into generating functions are all
of a rational nature, it follows that the corresponding OGFs are invariably rational. Then
Theorem IV.6 applies directly:

THEOREM V.1 (Regular specification asymptotics). Let C be an unlabelled class that
is described by a regular specification. Then the coefficients of the OGF C(z) satisfy an
exponential-polynomial formula,

(1) Cn ≡ [zn]C(z) =

m∑

j=1

Πj(n)α−n
j ,

for a family of algebraic numbers αj and a family of polynomials Πj .

General trees of bounded height, denumerants, as well as partitions and compositions
into summands at most r constitute prime examples of structures admitting regular speci-
fications.

The name “regular specification” has been chosen so as to be in agreement with the
notions of regular expression and regular language from formal language theory introduced
in Chapter I. We saw there that a language is called S–regular (“specification regular”)
if it is combinatorially isomorphic with a class R which admits a regular specification.
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The most frequent case is that of a language specified by a regular expression, involving
letters of the alphabet, union, catenation, and Kleene star. If the regular expression is
unambiguous, i.e., every word is uniquely parsable (see APPENDIX: Regular expressions,
p. 172), it is combinatorially isomorphic to a regular specification. In the general case, one
may encounter regular expressions that are ambiguous; then, the systematic application
of the translation rules amounts to counting every word with its multiplicity, that is, the
number of ways in which it can be parsed.

PROPOSITION V.1 (Regular expression counting). Given a regular expression R (as-
sumed to be of finite ambiguity), the ordinary generating function LR(z) of the language
L(R), counting with multiplicity, is given by the inductive rules:

ε 7→ 1, a 7→ z, ∪ 7→ +, · 7→ ×, ? 7→ (1 − (.))−1.

In particular, ifR is unambiguous, then the ordinary generating function satisfiesLR(z) =
L(z) and is given directly by the rules above. In both cases, the coefficients [zn]LR(z)
admit of an exponential-polynomial form.

Note. If R is ambiguous, it is known that one can build an unambigous R′ such that
L(R) = L(R′). Consequently, the conclusions of Proposition V.1 extend in principle
to counting without multiplicities words in any regular language. One then has however
to rely on an indirect automaton construction (see the appendices) which computational
complexity is in general exponential.

PROOF. Formal rules associate to any proper regular expressionR a specification R:

ε 7→ 1 (the empty object), a 7→ Za (Za an atom),

∪ 7→ +, · 7→ ×, ? 7→ S{.}
It is readily recognized that this mapping is such that R generates exactly the collection
of all parsings of words according to R. The translation rules of Chapter 1 then yield the
first part of the statement. The second part follows since L(z) = LR(z) whenever R is
unambiguous. �

EXAMPLE 1. A potpourri of regular specifications. We briefly recapitulate here a num-
ber of combinatorial problems already encountered in Chapters I–III that are reducible to
regular specifications.

Compositions of integers (Section I.3) are specified by C = S(S≥1(Z)), whence the
OGF (1 − z)/(1 − 2z) and the closed form Cn = 2n−1, an especially trivial exponential-
polynomial form. Polar singularities are also present for compositions into k summands
(Sk(S≥1(Z)) and for compositions whose summands are restricted to the interval [1, r]
(S(S1 . . r(Z)), with corresponding generating functions

zk

(1 − z)k
,

1 − z

1 − 2z + zr+2
.

In the first case, one has an explicit form for the coefficients,
(
n−1
k−1

)
, which is also a par-

ticular exponential-polynomial form (with the basis of the exponential being 1). The sec-
ond case requires a dedicated analysis of the dominant polar singularity, a task that is
undertaken in Example 2 below for the closely related problem of determining longest
runs in random binary words. We shall also see later (Section V. 3 and Example 9) that a
rich class of summand-restricted compositions resorts to the framework of meromorphic
asymptotics.
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Integer partitions involve the multiset construction. However, when summands are
restricted to the interval [1 . . r], the specification satisfies the combinatorial identity (Sec-
tion I.3),

M(S1 . . r(Z)) ' S(Z) × S(Z×2) × · · ·S(Z×r),

corresponding to the OGF

r∏

j=1

1

1 − zj
.

This case has already served as a leading example in our discussion of denumerants in
Example IV.4, where the analysis of the pole at 1 furnishes the dominant asymptotic be-
haviour (nk−1/(k!(k − 1)!)) of these special partitions.

Words lead to many problems that are prototypical of the regular specification frame-
work. In Section 1.4, we saw that one could give a regular expression describing the set
of words containing the pattern abb, from which the exact and asymptotic forms of count-
ing coefficients derive. The case of long runs of a single letter is similarly amenable to to
regular specifications and is detailed below. Note however that, for a general pattern p, the
generating functions of words constrained to include (or dually exclude) p are best based
on the inclusion-exclusion argument of Section III.6.4. The corresponding asymptotic
analysis has already served as a pilot example in Section IV. 5.3 of the previous chapter.

Words can also be analysed under the Bernoulli model, where letter i is selected with
probability pi; cf Section III.5 for a general discussion. We saw there that one can put
regular specifications to good use in order to analyse the mean number of records in a
random word.

Set partitions are typically labelled objects. However, when suitably constrained, they
can sometimes be encoded by words described by regular expressions; see Section I.4.3
for partitions into k classes, where the OGF has been found to be

S(k)(z) =
zk

(1 − z)(1 − 2z) · · · (1 − kz)
implying S(k)

n ∼ kn

k!
,

where the asymptotic estimate results from the dominant pole at 1/k.
Trees have generating functions that, in all nondegenerate cases, are beyond rational

functions. However, the generating function of general (Catalan) trees of height ≤ h is
rational; see Section III.7 relative to extremal parameters. The corresponding analysis is
detailed below, Section V. 2 and Example 6, in relation to the enumeration of Dyck paths
in a strip. �

� 1. Partially commutative monoids. Let W = A? be the set of all words over a finite alphabet A
whose letters are also considered as formal indeterminates. Consider a set C of commutation rules
between pairs of elements ofA. For instance, if A = {a, b, c}, then C = {ab = ba, ac = ca} means
that a commutes with both b and c, but bc is not a commuting pair: bc 6= cb. Let M = W/[C] be the
set of equivalent classes of words (monomials) under the rules induced by C. M is called a partially
commutative monoid or a trace monoid.

If A = {a, b}, then the two possibilities for C are C = ∅ and C := {ab = ba}. Normal forms
for M are given by the regular expressions (a+ b)? and a?b? corresponding to the OGFs

1

1 − a− b
,

1

1 − a− b+ ab
.
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If A = {a, b, c}, the possibilities for C, the corresponding normal forms, and the OGFs M are as
follows. If C = ∅, then M ' (a+ b)? with OGF (1 − a− b− c)−1; the other cases are

ab = ba ab = ba, ac = ca ab = ba, ac = ca, bc = cb

(a?b?c)?a?b? a?(b+ c)? a?b?c?

1

1 − a− b− c + ab

1

1 − a− b− c + ab+ ac+ bc

1

1 − a− b− c + ab+ ac+ bc− abc
.

Cartier and Foata [20] have proved the general result (based on extended Moebius inversion),

M =

 X

F

(−1)|F |F

!−1

,

in which the sum is over all monomials F formed with distinct letters that all commute pairwise.
Goldwurm and Santini [66] have proved that [zn]M(z) ∼ K · αn for some K,α > 0. �

EXAMPLE 2. Longest runs in words The analysis of longest runs in words provides
an illustration of the technique of localizing dominant singularities in rational functions
and of the corresponding coefficient extraction process. In Chapter I, we have determined
the family of OGFs describing the length L of the longest run of consecutive a’s in a
binary word over the alphabet W = {a, b}. The counting GF associated with the property
(L < k) for a fixed k is a rational function. Determining the probability distribution of L
over the set of all words of length n is then equivalent to analysing the whole family of GFs
indexed by k. The probabilistic problem is a famous one, discussed by Feller in [37], as
it represents a basic question in the analysis of runs of good (or bad) luck in a succession
of independent events. Our presentation closely follows an insightful note of Knuth [83]
whose research was motivated by the related problem of analysing carry propagation in
certain binary adders.

PROPOSITION V.2. The longest run parameterL taken over the set of binary words of
length n (endowed with the uniform distribution) satisfies, for h in any bounded set of Z,
the uniform estimate1

(2) Pn (L < blg nc + h) = e−α(n)2−h

+O

(
logn

n

)
, α(n) := 2{lg n}.

In particular, the mean and variance satisfy En(L) = lg n + O(1) and Vn(L) = O(1),
and the distribution is concentrated around its mean.

The probability distribution in (2) is called a double exponential distribution (Fig-
ure 1). In fact, the formula is an asymptotic one. It does not represent a unique limit
distribution in the usual sense, but rather a whole family depending on the fractional part
of lgn, that is, on the way n is placed with respect to powers of 2. This phenomenon
is further reflected by the fact that the second asymptotic term in the mean is subject to
fluctuations (albeit of a tiny amplitude), see the discussion of Φ(x) below.

PROOF. The specification W〈k〉 = a<kS(ba<k) describes those words for which this
length is strictly less than k. The expression of the OGF,

(3) W 〈k〉(z) =
1 − zk

1 − z
· 1

1 − z 1−zk

1−z

=
1 − zk

1 − 2z + zk+1
,

results. Quite clearly, one should locate the dominant pole, separate it from the other
poles (as this leads to constructive error terms), as well as estimate the contribution to the
coefficients arising from this dominant pole.

1The symbol lg x denotes the binary logarithm, lg x = log2 x.
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(i) Locating the dominant pole. The OGFW 〈k〉 has, by the first form of (3) a dominant
pole ρk which is a root of the equation 1 = s(ρk), where s(z) = z(1 − zk)/(1 − z). We
consider k ≥ 2. Since s(z) is an increasing polynomial and s(0) = 0, s( 1

2 ) < 1, s(1) = 1,
the root ρk must lie in the open interval ( 1

2 , 1). In fact, as one easily verifies, the condition
k ≥ 2 guarantees that s(0.6) > 1, hence the refined estimate

(4)
1

2
< ρk <

3

5
(k ≥ 2).

It now becomes possible to derive very precise estimates by bootstrapping. (This technique
is a form of iteration for approaching a fixed point—its use in the context of asymptotic
expansions is detailed in De Bruijn’s book [27].) Writing the defining equation for ρk as a
fixed point equation,

z =
1

2
(1 + zk),

and making use of the rough estimates (4) yields next

(5)
1

2

(
1 + (

1

2
)k

)
< ρk <

1

2

(
1 + (

3

5
)k

)
.

Thus, ρk is exponentially close to 1
2 , and a further iteration from (5) shows

(6) ρk =
1

2
+

1

2k+1
+O

(
k

22k

)
,

which constitutes a very precise estimate.
(ii) Contribution from the dominant pole. A straight calculation provides the value of

the residue,

(7) Rn,k := −Res
[
W 〈k〉(z)z−n−1; z = ρk

]
=

1 − ρk
k

2 − (k + 1)ρk
ρ−n−1

k ,

which is expected to provide the main approximation to the coefficients of W 〈k〉 as n →
∞. The meaning of (7) is better grasped if one notes that the residue resembles 2ne−n/2k

.
We shall return to such approximations shortly.

(iii) Separation of the subdominant poles. Consider the circle |z| = 3
4 and take the

second form of the denominator of W 〈k〉, namely

1 − 2z + zk+1.

In view of Rouché’s theorem, we may regard this polynomial as the sum f(z) + g(z),
where f(z) = 1 − 2z and g(z) = zk+1. The term f(z) has on the circle a modulus that
varies between 1

2 and 5
2 ; the term g(z) is at most 27

64 for any k ≥ 2. Thus, on the circle
|z| = 3

4 , one has |g(z)| < |f(z)|, so that f(z) and f(z) + g(z) have the same number of
zeros inside the circle. Since f(z) admits z = 1

2 as only zero there, the denominator must
also have a unique root in |z| ≤ 3

4 , and that root must coincide with ρk.
Similar arguments also give bounds on the error term when the number of words with

longest run of length at most k is estimated by the residue (7) at the dominant pole. On the
disc |z| = 3

4 , the denominator of W 〈k〉 stays bounded away from 0 (its modulus is at least
5
64 when k ≥ 2, by previous considerations). Thus, the modulus of the remainder integral
is O((4/3)n), and in fact bounded from above by 35(4/3)n. In summary, if we let qn,k

represent the probability that the longest run in a random word of length n is less than k,
one has available the main estimate

(8) qn,k := Pn(L < k) =
1 − ρk

k

1 − (k + 1)ρk
k/2

(
1

2ρk

)n+1

+O

(
(
2

3
)n

)
,
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uniformly with respect to k. Here is table of the numerical values of the quantities appear-
ing in the approximation of qn,k when written under the form ck · (2ρk)−n:

k ck · (2ρk)−n

2 1.17082 · 0.80901n

3 1.13745 · 0.91964n

4 1.09166 · 0.96378n

5 1.05753 · 0.98297n

10 1.00394 · 0.99950n

(iv) There finally remains to transform the main estimate (8) into the limit form as-
serted in the statement. First, the “tail inequalities”

(9) Pn

(
L <

3

4
lg n

)
= O

(
e−

1
2

4
√

n
)
, Pn (L ≥ 2 lgn) = O

(
1

n

)
,

describe the tail of the probability distribution of Ln. They derive from simple bounding
techniques applied to the main approximation (8) using (6). Thus, for asymptotic purposes,
only a small region around lg n needs to be considered.

Regarding the central regime, for k = lg n + x and x in [− 1
4 lg n, lgn], the approxi-

mation (6) of ρk and related quantities applies, and one finds

(2ρk)−n = exp
(
− n

2k
+O(kn2−2k)

)
= e−n/2k

(
1 +O(

log n

n
)

)
.

(This results from standard expansions like (1 − a)n = e−na exp(O(na2)).) At the same
time, the coefficient of this quantity in (8) is

1 +O(kρk
k) = 1 +O

(
logn

n3/4

)
.

Thus a double exponential approximation holds (Figure 1) and for k = lgn+ x with x in
[− 1

4 lg n, lgn], one has (uniformly)

(10) qn,k = e−n/2k

(
1 +O

(
logn

n3/4

))
.

In particular, upon setting k = blg nc+h, the first part of the statement follows. (The floor
function takes into account the fact that k must be an integer.)

The mean and variance estimates derive from the fact that the distribution quickly
decays at values away from lgn while it satisfies (10 ) in the central region. The mean is
given by

En(L) :=
∑

h≥0

[1 − Pn(L < h)] = Φ(n) +O

(
log2 n

n

)
, Φ(x) :=

∑

h≥0

[
1 − e−x/2h

]
.

Consider the three cases h < h0, h ∈ [h0, h1], and h > h1 with h0 = lg x − log logx
and h1 = lg x + log logx, where the general term is (respectively) close to 1, between 0
and 1, and close to 0. By summing, one finds elementarily Φ(x) = lgx +O(log logx) as
x → ∞, and elementary ways of catching the next O(1) term are discussed for instance
in [116, p. 403].

The method of choice for precise asymptotics is to treat Φ(x) as a harmonic sum and
apply Mellin transform techniques (APPENDIX: Mellin Transform, p. 167). The Mellin
transform of Φ(x) is

Φ?(s) :=

∫ ∞

0

Φ(x)xs−1 dx =
Γ(s)

1− 2s
<(s) ∈ (−1, 0).
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FIGURE 1. The double exponential laws: Left, histograms for n at 2p

(black), 2p+1/3 (dark gray), and 2p+2/3 (light gray), where x = k− lgn.
Right, empirical histograms for 1000 simulations with n = 100 (top)
and n = 140 (bottom).

The double pole of Φ? at 0 and the simple poles at s = 2ikπ
log 2 are reflected by the asymptotic

expansion:

Φ(x) = lgx+
γ

log 2
+

1

2
+P (lgx)+O(x−1), where P (w) =

∑

k∈Z\{0}
Γ

(
2ikπ

log 2

)
e2ikπw.

The oscillating function P (w) has amplitude of the order of 10−6. (See [47, 83, 125] for
more on this topic.) The variance is similarly analysed. �

The analysis is closely related to the case of words excluding a patterns in Chapter IV.
There, we conducted a global analysis applicable to any pattern. Here, we have specialized
the discussion to patterns aaa· · · a and effectively extracted a whole family of limit distri-
butions. What is striking is the existence of an infinite family of limit laws, which depend
on the fractional part of lg n. �

� 2. Longest runs in Bernoulli sequences. Consider an alphabet A with letters independently chosen
according to the probability distribution {pj}. Then, the OGF of words where each letter is repeated
at most k times derives from the construction of Smirnov words and is

W [k](z) =

 
1 −

X

i

piz
1 − (piz)

k

1 − (piz)k+1

!−1

.

Let pmax be the smallest of the pj . Then the expected length of the longest run of any letter is
log n/ log pmax +O(1), and very precise quantitative information can be derived from the OGFs by
methods akin to Example 7 (Smirnov words and Carlitz compositions) in Chapter IV, p. 34. �



V. 1. REGULAR SPECIFICATION AND LANGUAGES 63

The next batch of examples in this section develops the analysis of walks in a special
type of graphs. These examples serve two purposes: they illustrate further cases of mod-
elling by means of regular specifications, and, at the same time, provide a bridge with the
analysis of lattice paths in the next section.

EXAMPLE 3. Walks of the pure-birth type. Consider a walk on the nonnegative integers
that starts at 0 and is only allowed to either stay at the same place or progress by an
increment of +1. Our goal is to enumerate the possible configurations that start from 0 and
reach point m− 1 in n steps. A step from j to j + 1 will be encoded by a letter aj ; a step
from state j to state j will be encoded by cj . A diagram representing these steps is then:

(11)

a a a0 1 2

c0 c1 c2

(Compare with (21).) The language encoding all legal walks from state 0 to state m − 1
can be described by a regular expression,

H0,m−1 = (c0)
?a0(c1)

?a1 · · · (cm−2)
?am−2(cm−1)

?,

and the representation is certainly unambiguous. Symbolicly using letters as variables, the
corresponding ordinary multivariate generating function is then

H0,m−1(~a,~c) =
a0a1 · · · am−2

(1 − c0)(1 − c1) · · · (1 − cm−1)
.

Assume that the steps are assigned weights, with αj corresponding to aj and γj to cj .
Weights of letters are extended multiplicatively to words in the usual way (cf Chapter III).
If in addition, one takes γj = 1 − αj , one obtains a probabilistic weighting: the walker
starts from position 0, and, if at j, at each clock tick, she either stays at the same place with
probability 1 − αj or moves to the right with probability αj . The OGF of such weighted
walks then becomes

(12) H0,m−1(z) =
α0α1 · · ·αm−2z

m−1

(1 − (1 − α0)z)(1 − (1 − α1)z) · · · (1 − (1 − αm−1)z)
,

and [zn]H is the probability for the walker to be found at position j at (discrete) time n.
This walk process can be alternatively interpreted as a (discrete-time) pure birth process
in the usual sense of probability theory: There is a population of individuals and, at each
discrete epoch, a new birth may take place, the probability of a birth being αj when the
population is of size j.

The form (12) readily lends itself to a partial fraction decomposition. The poles of H
are at the points (1 − αj)

−1 and one finds as z → (1 − αj)
−1:

H0,m−1(z) ∼
rj,m−1(1 − αj)

1 − z(1− αj)
where rj,m−1 :=

α0α1 · · ·αm−2∏
k∈[0,m−1], k 6={j}

(αk − αj)
.

Thus, the probability of being in state m− 1 at time n is

[zn]H0,m−1(z) =

m−1∑

j=0

rj,m−1(1 − αj)
n+1.

This has the form of an alternating sum that can be evaluated in each particular instance.



64 V. APPLICATIONS OF RATIONAL AND MEROMORPHIC ASYMPTOTICS

0

2

4

6

8

10

200 400 600 800 1000

FIGURE 2. A simulation of 10 tra-
jectories of the pure-birth process till
n = 1024, with geometric probabilities
corresponding to q = 1/2, compared to
the curve log2 x.

An especially interesting case of the pure-birth walk is when the quantities αk are
geometric: αk = qk+1 for some q with 0 < 1 < k. In that case, the probability of being in
state m− 1 after n transitions becomes

m−1∑

j=0

(−1)jq(
j
2)

(q)j(q)m−j−1
(1 − qm−j−1)n+1, (q)j := (1 − q)(1 − q2) · · · (1 − qj).

This corresponds to a stochastic progression in a medium with exponentially increasing
hardness or, equivalently, to the growth of a population where the current size of the popu-
lation adversely affects fertility in an exponential manner. On intuitive grounds, we expect
an evolution of the process to stay reasonably close to the curve y = log1/q x; see Figure 2
for a simulation confirming this fact, which can be justified by means of the analytic for-
mulæ just described. This particular analysis is borrowed from [41], where it was initially
developed in connection with the algorithm called “approximate counting” to be described
below. �

Note. The theory of pure birth processes is discussed under a calculational and non
measure-theoretic angle in the book by Bharucha-Reid [15]. See also the Course by Karlin
and Taylor [80] for a concrete presentation.

EXAMPLE 4. Approximate Counting. Assume you need to keep a counter that is able
to record the number of certain events (say impulses) and should have the capability of
keeping counts till a certain maximal value N . A standard information-theoretic argument
(with ` bits, one can only keep track of 2` possibilities) implies that one needs dlog2N+1e
bits to perform the task—a standard binary counter will indeed do the job. However, in
1977, Robert Morris has proposed a way to maintain counters that only requires of the
order of log logN bits. What’s the catch?

Morris’ elegant idea consists in relaxing the constraint of exactness in the counting
process and, by playing with probabilities, tolerate a small error on the counts obtained.
Precisely, his solution maintains a random quantity Q which is initialized by Q = 0.
Upon receiving an impulse, one updates Q according to the following simple procedure
(with q ∈ (0, 1) a design parameter):

procedure Update(Q);
with probability qQ+1 do Q := Q+ 1 (else keep Q unchanged).

When asked the number of impulses (number of times the update procedure was called) at
any moment, simply use the following procedure to return an estimate:

procedure Answer(Q);

output
q−Q − 1

1 − q
.



V. 1. REGULAR SPECIFICATION AND LANGUAGES 65

Let Qn be the value of the random quantity Q after n executions of the update proce-
dure and Xn the corresponding estimate output by the algorithm. It is easy to verify (by
recurrence or by generating functions, see Note 3 below) that

(13) E(q−Qn) = n(1 − q) + 1, so that E(Xn) = n.

Thus the answer provided at any instant is an unbiased estimator (in a mean value sense)
of the actual count n. On the other hand, the analysis of the geometric pure-birth process
in the previous example applies. In particular, the exponential approximation (1 − α)n ≈
e−nα in conjunction with the basic formulæ show that for large n and m sufficiently near
to log1/q n, one has (asymptotically) the geometric-birth distribution

(14) P

(
Qn = log1/q n+ x

)
=

∞∑

j=0

(−1)jq(
j
2)

(q)j(q)∞
exp(−qx−j−1) + o(1).

(We refer to [41] for details.) Such calculations imply that Qn is with high probability
(w.h.p.) close to log1/q n. Thus, if n ≤ N , the value of Qn will be w.h.p. bounded from
above by (1 + ε) log1/q N , with ε a small constant. But this means that the integer Q,
which can itself be represented in binary, will only require

(15) log2 logn+O(1)

bits for storage, for fixed q.
A closer examination of the formulæ reveals that the accuracy of the estimate improves

considerably when q becomes close to 1. The standard error is defined as 1
n

√
V(Xn) and

it measures (in a mean quadratic sense) the relative error to likely to be made. The variance
of Qn is, like the mean, determined by recurrence or generating functions, and one finds

(16) V(q−Qn) =

(
n

2

)
(1 − q)3

q
,

1

n

√
V(Xn) ∼

√
1 − q

q
.

This means that accuracy increases as q approaches 1 and, by suitably dimensioning q,
one can make it as small as desired. In summary, (13), (16), and (15) express the following
property: Approximate counting makes it possible to count tillN using only about log logN
bits of storage, while achieving a standard error that is almost a constant and can be set
to any prescribed value. Morris’ trick is now fully understood.

For instance, with q = 2−1/16, it proves possible to count up to 216 = 65536 using
only 8 bits (instead of 16), with an error likely not to exceed 20%. Naturally, there’s not
too much reason to appeal to the algorithm when a single counter needs to be managed.
(Everybody can afford a few bits!) Approximate Counting turns out to be useful when a
very large number of counts need to be kept simultaneously. It constitutes one of the early
examples of a probabilistic algorithm in the management of large volumes of data, also
known as data mining.

Functions akin to those of (14) also surface in other areas of probability theory. Guille-
min, Robert, and Zwart [72] have detected them in processes that combine an additive
increase and a multiplicative decrease (AIMD processes), in a context motivated by the
adaptive transmission of “windows” of varying sizes in large communication networks
(the TCP protocol of the internet). Biane, Bertoin, and Yor [13] encountered a function
identical to (14) in their study of exponential functionals of Poisson processes. �
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� 3. Moments of q−Qn . It is a perhaps surprising fact that any integral moment of q−Qn is a
polynomial in n and q, like in (13), (16). To see it, define

Φ(w) ≡ Φ(w, ξ, q) :=
X

m≥0

qm(m+1)/2 ξmwm

(1 + ξq)(1 + ξq2) · · · (1 + ξqm+1)
.

By (12), one has
X

m≥0

H0,mw
m =

1

1 − z
Φ

„
w;

z

1 − z
, q

«
.

On the other hand, Φ satisfies Φ(w) = 1 − qξ(1 − w)Φ(qw), hence the q–identity,

Φ(w) =
X

j≥0

(−qξ)j
h
(1 − w)(1 − qw) · · · (1 − qj−1w)

i
,

which resorts to q-calculus2. Thus Φ(q−r; ξ, q) is a polynomial for any r ∈ Z≥0, as the expansion
terminates. �

Our last example makes use of regular expressions in order to estimate moments. Note
that ambiguous representations are purposely used to accomplish the task.

EXAMPLE 5. Occurrences of “hidden” patterns in texts. Fix an alphabetA = {a1, . . . , ar}
of cardinality r and assume a probability distribution onA to be given, with pj the probabil-
ity of letter aj . We consider the Bernoulli model on W = S(A), where the probability of a
word is the product of the probabilities of its letters (cf Section III.5). A word p = y1 · · · yk

called the pattern is fixed. The problem is to gather information on the random variable X
representing the number of occurrences of p in the set Wn, where occurrences as a “hidden
pattern”, i.e., as a subsequence, are counted (Section I.4.1). This is a basic example where
counting with ambiguity proves useful.

The generating function associated to W endowed with its probabilistic weighting is

W (z) =
1

1 −∑ pjz
=

1

1 − z
.

The regular expression

(17) O = S(A)y1S(A) · · ·S(A)yk−1S(A)ykS(A)

describes all contexts of occurrences of p as a subsequence in all words. Graphically, this
may be rendered as follows for a pattern of length 3, p = y1y2y3:

(18) y1 y2 y3

There the boxes indicate distinguished positions where letters of the pattern appear and the
horizontal lines represent arbitrary separating words (S(A)). The corresponding OGF

(19) O(z) =
π(p)zk

(1 − z)k+1
, π(p) := py1 · · · pyk−1

pyk

counts elements of W with ambiguity, where the ambiguity coefficient of a word w ∈ W
is precisely equal to the number of occurrences of p as a subsequence in w. There results
that the expected number of hidden occurrences of p in a random word of length n is

(20) [zn]O(z) = π(p)

(
n

k

)
,

which is consistent with what a direct probabilistic reasoning would give.

2By q–calculus is roughly meant the collection of special function identities relating power series of the
form

P

an(q)zn, where an(q) is a rational fraction whose degree is quadratic in n. See [5, Ch. 10] for basics
and [63] for more advanced (q–hypergeometric) material.
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We next proceed to determine the variance of X over Wn. In order to do so, we need
contexts in which pairs of occurrences appear. Let Q denote the set of all words in W
with two occurrences (i.e., an ordered pair of occurrences) of p as a subsequence being
distinguished. Then clearly [zn]Q(z) must represent EWn [X2]. There are several cases to
be considered. Graphically, a pair of occurrences may be interleaved and share no common
position, like in what follows:

(21)





y1 y2 y3

y1 y2 y3

But they may also have one or several overlapping positions, like in

(22)





y1 y2 y3

y1 y2 y3

(23)





y1 y2 y3

y1 y2 y3

(This last situation necessitates y2 = y3, typical patterns being abb and aaa.)
In the first case corresponding to (21), where there are no overlapping positions, the

configurations of interest have OGF

(24) Q[0](z) =

(
2k

k

)
π(p)2z2k

(1 − z)2k+1
.

There, the binomial coefficient
(
2k
k

)
counts the total number of ways of freely interleaving

two copies of p; the quantity π(p)2z2k takes into account the 2k distinct positions where
the letters of the two copies appear; the factor (1− z)−2k−1 corresponds to all the possible
2k + 1 fillings of the gaps between letters.

In the second case, let us start by considering pairs where exactly one position is
overlapping, like in (22). Say this position corresponds to the rth and sth letters of p (r
and s may not be equal). Obviously, we need yr = ys for this to be possible. The OGF of
the configurations is now

(
r + s− 2

r − 1

)(
2m− r − s

m− r

)
π(p)2(pyr )

−1z2k−1

(1 − z)2k
.

There, the first binomial coefficient
(
r+s−2

r−1

)
counts the total number of ways of inter-

leaving y1 · · · yr−1 and y1 · · · ys−1; the second binomial
(
2m−r−s

m−r

)
is similarly associated

to the interleavings of yr+1 · · · yk and ys+1 · · · yk; the numerator takes into account the
fact that 2k − 1 positions are now occupied by predetermined letters; finally the factor
(1− z)−2k corresponds to all the 2k fillings of the gaps between letters. Summing over all
possibilities for r, s gives the OGF of pairs with one overlapping position as

(25) Q[1](z) =




∑

1≤r,s≤k

(
r + s− 2

r − 1

)(
2m− r − s

m− r

)
[[yr = ys]]

pyr


 π(p)2z2k−1

(1 − z)2k
.
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Similar arguments show that the OGF of pairs of occurrences with at least two shared
positions (see, e.g., 23)) is of the form, with P a polynomial,

(26) Q[≥2](z) =
P (z)

(1 − z)2k−1
,

for the essential reason that, in the finitely many remaining situations, there are at most
(2k − 1) possible gaps.

We can now examine (24), (25), (26) in the light of singularities. The coefficient
[zn]Q[0](z) is seen to cancel to first asymptotic order with the square of the mean as given
in (20). The contribution of the coefficient [zn]Q[≥2](z) appears to be negligible as it is
O(n2k−2). The coefficient [zn]Q[1](z), which is O(n2k−1), is seen to contribute to the
asymptotic growth of the variance. In summary, after a trite calculation, we obtain:

PROPOSITION V.3. The number X of occurrences of a hidden pattern p in a random
text of size n obeying a Bernoulli model satisfies

EWn [X ] = π(p)

(
n

k

)
∼ π(p)

k!
nk, VWn [X ] =

π(p)2κ(p)2

(2k − 1)!
n2k−1

(
1 +O(

1

n
)

)
,

where the “correlation coefficient” κ(p)2 is given by

κ(p)2 =
∑

1≤r,s≤k

(
r + s− 2

r − 1

)(
2m− r − s

m− r

)
[[yr = ys]]

(
1

pyr

− 1

)
.

In particular, the distribution of X is concentrated around its mean.

This example is based on an article by Flajolet, Szpankowski, and Vallée [59]. There
the authors show further that the asymptotic behaviour of moments of higher order can be
worked out. By the moment convergence theorem described in Chapter VII, this calcu-
lation entails that the distribution of X over Wn is asymptotically normal. The method
also extends to a much more general notion of “hidden” pattern, e.g., distances between
letters of p can be constrained in various ways so as to determine a valid occurrence in
the text [59]. It also extends to the very general framework of dynamical sources [17],
which include Markov models as a special case. The two references [17, 59] thus provide
a set of analyses that interpolate between the two extreme notions of pattern occurrence—
as a block of consecutive symbols or as a subsequence (“hidden pattern”). Such studies
demonstrate that hidden patterns are with high probability bound to occur an extremely
large number of times in a long enough text—this might cast some doubts on numerologi-
cal interpretations encountered in various cultures. �

� 4. Hidden patterns and shuffle relations. To each pairs u, v of words over A associate the
weighted-shuffle polynomial in the indeterminates A denoted by

`̀
u
v

´́
t

and defined by the properties
8
>>>><
>>>>:

  
xu

yv

!!

t

= x

  
u

yv

!!

t

+ y

  
xu

v

!!

t

+ t[[x = y]]x

  
u

v

!!

t  
1

u

!!

t

=

  
u

1

!!

t

= u

where t is a parameter, x, y are elements of A, and 1 is the empty word. Then the OGF of Q(z)
above is

Q(z) = σ

»  
p

p

!!

(1−z)

–
1

(1 − z)2k+1
,

where σ is the substitution aj 7→ pjz. �
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V. 2. Lattice paths and walks on the line.

In this section, we consider lattice paths that are fundamental objects of combinatorics.
Indeed, they relate to trees, permutations, and set partitions, to name a few. They also cor-
respond to walks on the integer half-line and as such they relate to classical 1-dimensional
random walks and to birth-and-death processes of probability theory. The lattice paths dis-
cussed here have steps that correspond to movements either immediately to the left or to
the right. Combinatorially, such paths are the limit of paths of bounded height, themselves
definable as nested sequences. As a consequence, the OGF’s obtained involve a cascade of
quasi-inverses, 1/(1− f), so that they are of the continued fraction type.

DEFINITION V.1 (Lattice path). A (lattice) path υ = (U0, U1, . . . , Un) is a sequence
of points in the lattice N×N such that ifUj = (xj , yj), then xj = j and |yj+1−yj | ≤ 1. An
edge 〈Uj , Uj+1〉 is called an ascent (a) if yj+1−yj = +1, a descent (b) if yj+1−yj = −1,
and a level step (c) if yj+1 − yj = 0.

The quantity n is the length of the path, o(υ) := y0 is the initial altitude, h(υ) := yn

is the final altitude. A path is called an excursion if both its initial and final altitudes are
zero. The extremal quantities sup{υ} := maxj yj and inf{υ} := minj yj are called the
height and depth of the path.

It is assumed that paths are normalized by the condition x0 = 0. With this normaliza-
tion, a path of length n is encoded by a word with a, b, c representing ascents, descents, and
level steps, respectively. What we call the standard encoding is such a word in which each
step a, b, c is (redundantly) subscripted by the value of the y-coordinate of its associated
point. For instance,

w = c0 a0 a1 a2 b3 c2 c2 a2 b3 b2 b1 a0 c1
encodes a path that connects the initial point (0, 0) to the point (13, 1). Such a path can
also be regarded as a rendering of the evolution in discrete time of a walk over the integer
line:

a0 a1 2a

c0 c1 c2

1 2b b

Equivalently, lattice paths cane be read as trajectories of birth-and-death processes. (Com-
pare with the pure-birth case in (11) above.)

Let H be the set of all lattice paths. Given a geometric condition (Q), it is then possible
to associate to it a “language” H[Q] that comprises the collection of all path encodings
satisfying the conditionQ. This language can be viewed either as a set or as a formal sum,

H [Q] =
∑

{w | Q}
w,

in which case it becomes the generating function in infinitely many indeterminates of the
corresponding condition.
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FIGURE 3. The three major decompositions of lattice paths: the arch
decomposition (top), the last passages decomposition (bottom left), and
the first passage decomposition (bottom right).

The general subclass of paths of interest in this subsection is defined by arbitrary
combinations of flooring (m), ceiling (h), as well as fixing initial (k) and final (l) altitudes:

H
[≥m,<h]
k,l = {w ∈ H : o(w) = k, h(w) = l, inf{w} ≥ m, sup{w} < h}.

We also need the specializations, H [<h]
k,l = H

[≥0,<h]
k,l , H [≥m]

k,l = H
[≥m,<∞]
k,l , Hk,l =

H
[≥0,<∞]
k,l . Three simple combinatorial decompositions of paths then suffice to derive

all the basic formulæ.
Arch decomposition: An excursion from and to level 0 consists of a sequence of

“arches”, each made of either a c0 or a a0H[≥1]
1,1 b1, so that

(27) H0,0 =
(
c0 ∪ a0H[≥1]

1,1 b1

)?

,

which relativizes to height < h.
Last passages decomposition. Recording the times at which each level 0, . . . , k is last

traversed gives

(28) H0,k = H[≥0]
0,0 a0H[≥1]

1,1 a1 · · · ak−1H[≥k]
k,k

First passage decomposition. The quantitiesHk,l with k ≤ l are implicitly determined
by the first passage through k in a path connecting level 0 to l, so that

(29) H0,l = H[<k]
0,k−1ak−1Hk,l (k ≤ l),

(A dual decomposition holds when k ≥ l.)

The basic results express the generating functions in terms of a fundamental continued
fraction and its associated convergent polynomials. They involve the “numerator” and
“denominator” polynomials, denoted by Ph and Qh that are defined as solutions to the
second order (or “three-term”) recurrence equation

(30) Yh+1 = (1 − ch)Yh − ah−1bhYh−1, h ≥ 1,

together with the initial conditions (P−1, Q−1) = (1, 0), (P0, Q0) = (0, 1), and with the
convention a−1b0 = 1. In other words, setting Cj = 1 − cj and Aj = aj−1bj , we have:

P0 = 0, P1 = 1, P2 = C2, P3 = C1C2 −A2

Q0 = 0, Q1 = C0, Q2 = C0C1 −A1, Q3 = C0C1C2 − C2A1 − C0A2

These polynomials are known as continuant polynomials [86, 130].
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THEOREM V.2 (Path continued fractions [40]). (i) The generating function H0,0 of
all excursions is represented by the fundamental continued fraction:

H0,0 =
1

1 − c0 −
a0b1

1 − c1 −
a1b2

1 − c2 −
a2b3

. . .

.(31)

(ii) The generating function of ceiled excursion H [<h]
0,0 is given by a convergent of the

fundamental fraction (with Ph, Qh given by (30):

H
[<h]
0,0 =

1

1 − c0 −
a0b1

1 − c1 −
a1b2

. . .

1 − ch−1

(32)

=
Ph

Qh
.(33)

(iii) The generating function of floored excursions is given by the truncation of the funda-
mental fraction:

H
[≥h]
h,h =

1

1 − ch − ahbh+1

1 − ch+1 −
ah+1bh+2

. . .

(34)

=
1

ah−1bh

QhH0,0 − Ph

Qh−1H0,0 − Ph−1
,(35)

PROOF. Repeated use of the arch decomposition (27) provides a form of H [<h]
0,0 with

nested quasi-inverses (1 − f)−1 that is the finite fraction representation (32), for instance,

H[<1]
00

∼= S{c0}, H[<2]
00

∼= S{c0 + a0S{c1}b1},
H[<3]

00
∼= S{c0 + a0S{c1 + a0S{c2}b2}b1}.

The continued fraction representation for basic paths (namely H0,0) is then obtained by
letting h → ∞ in (32). Finally, the continued fraction form (34) for ceiled excursions is
nothing but the fundamental form (31), when the indices are shifted. The three continued
fraction expressions (31), (32), (34) are hence established.

Finding explicit expressions for the fractionsH [<h]
0,0 andH [≥h]

h,h next requires determin-
ing the polynomials that appear in the convergents of the basic fraction (31). By definition,
the convergent polynomials Ph and Qh are the numerator and denominator of the fraction
H

[<h]
0,0 . For the computation of H [<h]

0,0 and Ph, Qh, one classically introduces the linear
fractional transformations

gj(y) =
1

1 − cj − ajbj+1y
,

so that

(36) H
[<h]
0,0 = g0 ◦ g1 ◦ g2 ◦ · · · ◦ gh−1(0) and H0,0 = g0 ◦ g1 ◦ g2 ◦ · · · , .
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FIGURE 4. Three random Dyck paths of length 2n = 500 have alti-
tudes resp. 20, 31, 24: the distribution is spread, see Proposition V.4.

Now, linear fractional transformations are representable by 2 × 2-matrices

(37)
ay + b

cy + d
7→
(

a b

c d

)
,

in such a way that composition corresponds to matrix product. By induction on the com-
positions that build up H [<h]

0,0 , there follows the equality

(38) g0 ◦ g1 ◦ g2 ◦ · · · ◦ gh−1(y) =
Ph − Ph−1ah−1bhy

Qh −Qh−1ah−1bhy
,

where Ph andQh are seen to satisfy the recurrence (30). Setting y = 0 in (38) proves (33).
Finally,H [≥h]

h,h is determined implicitly as the root y of the equation g0◦· · ·◦gh−1(y) =
H0,0, an equation that, when solved using (38), yields the form (35). �

A large number of generating functions can be derived by similar techniques. We
refer to the article [40], where this theory was first systematically developed and to the
exposition given in [67, Chapter 5]. Our presentation here draws upon [48] where the
theory was put to further use in order to develop a formal algebraic theory of the general
birth-and-death process in continuous time.

� 5. Transitions and crossings. The lattice paths H0,l corresponding to the transitions from altitude 0
to l and Hk,0 (from k to 0) have OGFs

H0,l =
1

βl
(QlH0,0 − Pl) , Hk,0 =

1

αk
(QkH0,0 − Pk).

The crossings H[<h]
0,h−1 and H[<h]

h−1,0 have OGFs,

H
[<h]
0,h−1 =

αh−1

Qh
, H

[<h]
h−1,0 =

βh−1

Qh
,

obtained from the last passages decomposition. (Abbreviations used are: αm = a0 · · · am−1, βm =
b1 · · · bm.) This gives combinatorial interpretations for fractions of the form 1/Q and results from
the basic decompositions combined with Theorem V.2; see [40, 48] for details. �

We examine next a few specializations of the general formulæ provided by Theo-
rem V.2.

EXAMPLE 6. Height of standard lattice paths. In order to count lattice paths, it suffices to
effect one of the substitutions,

σM : aj 7→ z, bj 7→ z, cj 7→ z; σD : aj 7→ z, bj 7→ z, cj 7→ 0.

In the former case, all three step types are taken into account, giving rise to so-called
“Motzkin paths”; in the latter case level steps are disallowed, and one obtains so-called
“Dyck paths”.
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We henceforth restrict attention to the case of Dyck paths. See Figure 4 for three
simulations suggesting that the distribution of height is somewhat spread. The continued
fraction expressing H0,0 is in this case purely periodic, and it represents a quadratic func-
tion:

H0,0(z) =
1

1 − z2

1 − z2

1 − . . .

=
1

2z2

(
1 −

√
1 − 4z2

)
,

since H0,0 satisfies y = (1 − z2y)−1. The families of polynomials Ph, Qh are in this case
determined by a recurrence with constant coefficients and they coincide, up to a shift of
indices. Define classically the Fibonacci polynomials by the recurrence

(39) Fh+2(z) = Fh+1(z) − zFh(z), F0(z) = 0, F1(z) = 1.

One finds Qh = Fh+1(z
2) and Ph = Fh(z2). (The Fibonacci polynomials are essentially

reciprocals of Chebyshev polynomials.) By Theorem V.2, the GF of paths of height< h is
then

H
[<h]
00 (z) =

Fh(z2)

Fh+1(z2)
.

(We get more and, for instance, the number of ways of crossing a strip of width h − 1 is
H

[<h]
0,h−1(z) = zh−1/Fh+1(z

2).) Note that the polynomials have an explicit form,

Fh(z) =

b(h−1)/2c∑

k=0

(
h− 1 − k

k

)
(−z)k,

as follows from the generating function expression:
∑

h Fh(z)yh = y/(1 − y + zy2).
The equivalence between Dyck paths and (general) plane tree traversals discussed in

Chapter I implies that trees of height at most h and size n+1 are equinumerous with Dyck
paths of length 2n and height at most h. Set for convenience

G[h](z) = zH
[<h+1]
00 (z1/2) = z

Fh+1(z)

Fh+2(z)
,

which is precisely the OGF of general plane trees having height ≤ h. (This is otherwise in
agreement with the continued fraction form obtained directly in Chapter III). It is possible
to go much further as first shown by De Bruijn, Knuth, and Rice in a beautiful paper [28],
which also constitutes the historic application of Mellin transforms in analytic combina-
torics. (We refer to this paper for and historical context and references.)

First, solving the linear recurrence (39) with z treated as a parameter yields the alter-
native closed form expression

(40) Fh(z) =
Gh −G

h

G−G
, G =

1 −
√

1 − 4z

2
, G =

1 +
√

1 − 4z

2
.

There, G(z) is the OGF of all trees, and an equivalent form of G[h] is provided by

(41) G−G[h−2] =
√

1 − 4z
uh(z)

1 − uh
, where u =

1−
√

1 − 4z

1 +
√

1 − 4z
=
G2

z
,

as is easily verified. Thus G[h] can be expressed in terms of G(z) and z:

G−G[h−2] =
√

1 − 4z
∑

j≥1

z−jhG(z)2jh.
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FIGURE 5. The limit density of the distribution of height −Θ′(x).

The Lagrange-B ürmann inversion theorem then gives after a simple calculation

(42) Gn+1 −G
[h−2]
n+1 =

∑

j≥1

∆2

(
2n

n− jh

)
,

where

∆2

(
2n

n−m

)
:=

(
2n

n+ 1 −m

)
− 2

(
2n

n−m

)
+

(
2n

n− 1 −m

)
.

Consequently, the number of trees of height ≥ h − 1 admits of closed form: it is a “sam-
pled” sum by steps of h of the 2nth line of Pascal’s triangle (upon taking second order
differences).

The relation (42) leads easily to the asymptotic distribution of height in random trees
of size n. Stirling’s formula yields the Gaussian approximation of binomial numbers: for
k = o(n3/4) and with w = k/

√
n, one finds

(43)

(
2n

n−k

)
(
2n
n

) ∼ e−w2

(
1 − w4 + 3w2

6n
+

5w8 + 6w6 − 45w4 − 60

360n2
+ · · ·

)
.

The use of the Gaussian approximation (43) inside the exact formula (42) then implies:
The probability that a tree of size n + 1 has height at least h − 1 satisfies uniformly
for h ∈ [α

√
n, β

√
n] (with 0 < α < β <∞) the estimate

(44)
Gn+1 −G

[h−2]
n+1

Gn+1
= Θ

(
h√
n

)
+O

(
1

n

)
, Θ(x) :=

∑

j≥1

e−j2x2

(4j2x2 − 2).

The function Θ(x) is a “theta function” which classically arises in the theory of ellip-
tic functions [131]. Since binomial coefficients decay fast away from the center, simple
bounds also show that the probability of height to be at least n1/2+ε decays like exp(−n2ε),
hence is exponentially small. Note also that the probability distribution of height H itself
admits of an exact expression obtained by differencing (42), which is reflected asymptoti-
cally by differentiation of the estimate of (44):
(45)

PGn+1

[
H = bx√nc

]
= − 1√

n
Θ′ (x)+O

(
1

n

)
, Θ′(x) :=

∑

j≥1

e−j2x2

(12j2x−8j4x3).
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The forms (44) and (45) also give access to moments of the distribution of height. We
find

EGn+1

[
Hr
]
∼ 1√

n
Sr

(
1√
n

)
, where Sr(y) := −

∑

h≥1

hrΘ′(hy).

The quantity yr+1Sr(y) is a Riemann sum relative to the function −xrΘ′(x), and the step
y = n−1/2 decreases to 0 as n→ ∞. Approximating the sum by the integral, one gets:

EGn+1

[
Hr
]
∼ nr/2µr where µr := −

∫ ∞

0

xrΘ′(x) dx.

The integral giving µr is a Mellin transform in disguise (set s = r + 1) to which the
treatment of harmonic sums applies. We then get upon replacing n+ 1 to n:

PROPOSITION V.4. The expected height of a random plane rooted tree comprising n
nodes is

√
πn− 1

2
+ o(1).

More generally, the moment of order r of height is asymptotic to

µrn
r/2 where µr = r(r − 1)Γ(r/2)ζ(r).

The random variableH/
√
n obeys asymptotically a Theta distribution, in the sense of both

the “central” estimate (44) and the “local” estimate (45). The same asymptotic estimates
hold for height of Dyck paths having length 2n.

The improved estimate of the mean is from [28]. The general moment forms are in
fact valid for any real r (not just integers). An alternative formula for the Theta function
appears in the Note below. Figure 5 plots the limit density −Θ′(x). �

� 6. Height, Fibonacci and Chebyshev polynomials. The reciprocal polynomials Uh(z) = zhFh(1/z)
satisfy Uh(cos(θ)) = sin((h+ 1)θ)/ sin(θ) as is readily verified from the recurrence (39) and ele-
mentary trigonometry. Thus, the roots of Fh(z) are (4 cos2 jπ/h)−1 and the partial fraction expan-
sion of G[h](z) can be worked out explicitly [28]. There results

(46) G
[h−2]
n+1 =

4n+1

h

X

1≤j≤h/2

sin2 jπ

h
cos2n jπ

h
,

which provides in particular an asymptotic form for any fixed h. (This formula can also be found
directly from the sampled sum (42) by multisection of series.) Asymptotic analysis of this last
expression when h = x

√
n yields the alternative expression

lim
n→∞

PGn+1

ˆ
H ≤ x

√
n
˜

= 4π5/2x−3
X

j≥0

j2e−j2π2/x2

( ≡ 1 − Θ(x)),

which reflects a classical transformation formula of theta functions. See the study by Biane, Pitman,
and Yor [16] for fascinating connections between this formula, Brownian motion, and the functional
equation of the Riemann zeta function. �

� 7. Motzkin paths. The OGF of Motzkin paths of height < h is

1

1 − z
· DH

[h]
0,0

„
z

1 − z

«
,

where DH
[h]
0,0 above refers to Dyck paths. Therefore, such paths of length n can be enumerated

exactly by formulæ derived from (42) and 46). In particular, the expected height is ∼
p
πn/3. �
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� 8. Height in simple varieties of trees. Consider a simple variety of trees corresponding to the GF
equation Y (z) = zφ(Y (z)) (see Chapter III) and values of n such that there exists a tree of size n.
Assume that there exists a positive τ strictly within the disc of convergence of φ such that τφ′(τ ) −
φ(τ ) = 0. Then, the rth moment of height (H) is asymptotically ξr/2r(r − 1)Γ(r/2)ζ(r)nr/2.
The normalized quantity H = H/ξ obeys asymptotically a Theta distribution in the sense of both
the central estimate (44) and the local estimate (45). [This is from [51] and [45] respectively.] For
instance, ξ = 2 for plane binary trees and ξ =

√
2 for Cayley trees. �

EXAMPLE 7. Area under Dyck path and coin fountains. Consider the case of Dyck
path and the parameter equal to the area below the path. Area under a lattice path can be
defined as the sum of the indices (i.e., the starting altitudes) of all the variables that enter
the standard encoding of the path. Thus, the BGF D(z, q) of Dyck path with z marking
half-length and q marking area is obtained by the substitution

aj 7→ qjz, bj 7→ qj , cj 7→ 0

inside the fundamental continued fraction (31). It proves convenient to operate with the
continued fraction

(47) F (z, q) =
1

1 − zq

1 − zq2

. . .

,

so that D(z, q) = F (q−1z, q2). Since F and D satisfy difference equations, for instance,

(48) F (z, q) =
1

1 − zqF (qz, q)
,

moments of area can be determined by differentiating and setting q = 1 (see Chapter III
for such a direct approach).

A general trick from q–calculus is effective to derive an alternative expression of F .
Attempt to express the continued fraction F of (47) as a quotient F (z, q) = A(z)/B(z).
Then, the relation (48) implies

A(z)

B(z)
=

1

1 − qz A(qz)
B(qz)

, hence A(z) = B(qz), B(z) = B(qz) − qzB(q2z),

where q is treated as a parameter. The difference equation satisfied by B(z) is readily
solved by indeterminate coefficients: this classical technique was introduced in the theory
of integer partitions by Euler. With B(z) =

∑
bnz

n, the coefficients satisfy the recurrence

b0 = 1, bn = qnbn − q2n−1bn−1.

This is a first order recurrence on bn that unwinds to give

bn = (−1)n qn2

(1 − q)(1 − q2) · · · (1 − qn)
.

In other words, introducing the “q-exponential function”,

(49) E(z, q) =

∞∑

n=0

(−z)nqn2

(q)n
, where (q)n = (1 − q)(1 − q2) · · · (1 − qn),



V. 2. LATTICE PATHS AND WALKS ON THE LINE. 77

one finds

(50) F (z, q) =
E(qz, q)

E(z, q)
.

Given the importance of the functions under discussion in various branches of mathe-
matics, we cannot resist a quick digression. The name of the q-exponential comes form the
obvious property thatE(z(q−1), q) reduces to e−z as q → 1−. The explicit form (49) con-
stitutes in fact the “easy half” of the proof of the celebrated Rogers-Ramanujan identities,
namely,

(51)

E(−1, q) =
∞∑

n=0

qn2

(q)n
=

∞∏

n=0

(1 − q5n+1)−1(1 − q5n+4)−1

E(−q, q) =

∞∑

n=0

qn(n+1)

(q)n
=

∞∏

n=0

(1 − q5n+2)−1(1 − q5n+3)−1,

that relate the q-exponential to modular forms. See Andrews’ book [4, Ch. 7] for context.
Here is finally a cute application of these ideas to asymptotic enumeration. Odlyzko

and Wilf define in [104, 102] an (n,m) coin fountain as an arrangement of n coins in rows
in such a way that there are m coins in the bottom row, and that each coin in a higher
row touches exactly two coins in the next lower row. Let Cn,m be the number of (n,m)
fountains and C(q, z) be the corresponding BGF with q marking n and z marking m. Set
C(q) = C(q, 1). The question is to determine the total number of coin fountains of area n,
[qn]C(q). The series starts as (this is EIS A005169)

C(q) = 1 + q + q2 + 2q3 + 3q4 + 5q5 + 9q6 + 15q7 + 26q8 + · · · ,
as results from inspection of the first few cases.

The function C(q) is a priori meromorphic in |q| < 1. From the bijection with Dyck
paths and area, one finds

C(q) =
1

1 − q

1− q2

1 − q3

. . .

.

The identity (50) implies

C(q) =
E(q, q)

E(1, q)
.

An exponential lower bound of the form 1.6n holds on [qn]C(q), since (1−q)/(1−q−q2)
is dominated by C(q) for q > 0. At the same time, the number [qn]C(q) is majorized by
the number of compositions, which is 2n−1. Thus, the radius of convergence ofC(q) has to
lie somewhere between 0.5 and 0.61803 . . . . It is then easy to check by numerical analysis
the existence of a simple zero of the denominator, E(−1, q), near ρ

.
= 0.57614. Routine

computations based on Rouché’s theorem then makes it possible to verify formally that ρ
is the only simple pole in |q| < 3/5 (the process is detailed in [102]). Thus, singularity
analysis of meromorphic functions applies:
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Objects Weights (αj , βjγj) Counting Orth. pol.

Simple paths 1, 1, 0 Catalan # Chebyshev

Permutations j + 1, j, 2j + 1 Factorial # Laguerre

Alternating perm. j + 1, j, 0 Secant # Meixner

Involutions 1, j, 0 Odd factorial # Hermite

Set partition 1, j, j + 1 Bell # Poisson-Charlier

Nonoverlap. set part. 1, 1, j + 1 Bessel # Lommel

FIGURE 6. Some special families of combinatorial objects together
with corresponding weights, moments, and orthogonal polynomials.

PROPOSITION V.5. The number of coin fountains made of n coins satisfies asymptot-
ically

[qn]C(q) = cAn +O((5/3)n), c
.
= 0.31236, A = ρ−1 .

= 1.73566.

This example illustrates the power of modelling by continued fractions as well as the
smooth articulation with meromorphic function asymptotics. �

The systematic theory of lattice path enumerations and continued fractions was devel-
oped initially because of the need to count weighted lattice paths, notably in the context
of the analysis of dynamic data structures in computer science [44]. In this framework,
a system of multiplicative weights αj , βj , γj is associated with the steps aj , bj , cj , each
weight being an integer that represents a number of “possibilities” for the corresponding
step type. A system of weighted lattice paths has counting generating functions given by an
easy specialization of the corresponding multivariate expressions we have just developed,
namely,

(52) aj 7→ αjz, bj 7→ βjz, cj 7→ γjz,

where z marks the length of paths. One can then sometimes solve an enumeration problem
expressible in this way by reverse-engineering the known collection of continued fractions
as found in a reference book like Wall’s treatise [130]. Next, for general reasons, the poly-
nomials P,Q are always elementary variants of a family of orthogonal polynomials that is
determined by the weights [24, 40, 124]. When the multiplicities have enough structural
regularity, the weighted lattice paths are likely to correspond to classical combinatorial
objects and to classical families of orthogonal polynomials; see [40, 44, 65, 67] and Fig-
ure 6 for an outline. We illustrate this by a simple example due to Lagarias, Odlyzko, and
Zagier [90].

EXAMPLE 8. Interconnection networks and involutions. The problem considered here
was introduced by Lagarias, Odlyzko, and Zagier in [90]: There are 2n points on a line,
with n point-to-point connections between pairs of points. What is the probable behaviour
of the width of such an interconnection network? Imagine the points to be 1, . . . , 2n, the
connections as circular arcs between points, and let a vertical line sweep from left to right;
width is defined as the maximum number of edges encountered by such a line. One may
freely imagine a tunnel of fixed capacity (this corresponds to the width) inside which wires
can be placed to connect points pairwise. See Figure 7.
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FIGURE 7. An interconnection network on 2n = 12 points.

Let I2n be the class of all interconnection networks on 2n points, which is precisely
the collection of ways of grouping 2n elements into n pairs, or, equivalently, the class of
all involutions (i.e., permutations with cycles of length 2 only). The number I2n equals the
“odd factorial”,

I2n = 1 · 3 · 5 · · · (2n− 1),

whose EGF is ez2/2 (see Chapter 2). The problem calls for determining the quantity I [h]
2n

that is the number of networks corresponding to a width ≤ h.
The relation to lattice paths is as follows. First, when sweeping a vertical line across a

network, define an active arc at an abscissa as one that straddles that abscissa. Then build
the sequence of active arcs counts at half-integer positions 1

2 ,
3
2 , . . . , 2n− 1

2 , 2n+ 1
2 . This

constitutes a sequence of integers where each member is ±1 the previous one, that is, a
lattice path without level steps. In other words, there is an ascent in the lattice path for
each element that is smaller in its cycle and a descent otherwise. One may view ascents as
associated to situations where a node “opens” a new cycle, while descents correspond to
“closing” a cycle.

Involutions are much more numerous than lattice paths, so that the correspondence
from involutions to lattice paths is many-to-one. However, one can easily enrich lattice
paths, so that the enriched objects are in one-to-one correspondence with involutions. Con-
sider again a scanning position at a half-integer where the vertical line crosses ` (active)
arcs. If the next node is of the closing type, there are ` possibilities to choose from. If
the next node is of the opening type, then there is only one possibility, namely, to start
a new cycle. A complete encoding of a network is obtained by recording additionally
the sequence of the n possible choices corresponding to descents in the lattice path (some
canonical order is fixed, for instance, oldest first). If we write these choices as superscripts,
this means that the set of all enriched encodings of networks is obtained from the set of
standard lattice path encodings by effecting the substitutions

bj 7→
j∑

k=1

b
(k)
j .

The OGF of all involutions is obtained from the generic continued fraction of Theo-
rem V.2 by the substitution

aj 7→ z, bj 7→ j z,

where z records the number of steps in the enriched lattice path, or equivalently, the num-
ber of nodes in the network. In other words, we have obtained combinatorially a formal
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FIGURE 8. Three simulations of random networks with 2n = 1000
illustrate the tendency of the profile to conform to a parabola with height
close to n/2 = 250.

continued fraction representation,
∞∑

n=0

(1 · 3 · · · (2n− 1))z2n =
1

1 − 1 · z2

1 − 2 · z2

1 − 3 · z2

. . .

,

which was originally discovered by Gauß [130]. Theorem V.2 then gives immediately the
OGF of involutions of width at most h as a quotient of polynomials. Define

I [h](z) :=
∑

n≥0

I
[h]
2n z

2n.

One has

I [h](z) =
1

1 − 1 · z2

1 − 2 · z2

. . .

1− h · z2

=
Ph(z)

Qh(z)

where Ph and Qh satisfy the recurrence

Yh+1 = Yh − hz2Yh−1.

The polynomials are readily determined by their generating functions that satisfies a first-
order linear differential equation reflecting the recurrence. In this way, the denominator
polynomials are identified to be reciprocals of the Hermite polynomials,

Qh(z) = (z/2)hHh(
1

2z
),

themselves defined classically [1, Ch. 22] as orthogonal with respect to the measure e−x2

dx
on (−∞,∞) and expressible via

Hm(x) =

bm/2c∑

m=0

(−1)jm!

j!(m− 2j)!
(2x)m−2j ,

∑

m≥0

Hm(x)
tm

m!
= ext−t2 .

In particular, one finds

I [0] = 1, I [1] =
1

1 − z2
, I [2] =

1 − 2z2

1 − 3z2
, I [3] =

1 − 5z2

1 − 6z2 + 3z4
, &c.

The interesting analysis of the dominant poles of the rational GF’s, for any fixed h,
is discussed in the paper [90]. Furthermore, simulations strongly suggest that the width
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of a random interconnection network on 2n nodes is tightly concentrated around n/2;
see Figure 8. Louchard [94] succeeded in proving this fact and a good deal more: With
high probability, the profile (the profile is defined here as the number of active arcs as
time evolves) of a random network conforms asymptotically to a deterministic parabola
2nx(1 − x/(2 ∗ n)) to which are superimposed random fluctuations of amplitude only
O(

√
n) well-characterized by a Gaussian process. In particular, the width of a random

network of 2n nodes converges in probability to n
2 . �

V. 3. The supercritical sequence and its applications

We have seen earlier in this section that surjections and alignments with EGFs

1

2 − exp(z)
,

1

1 − log(1 − z)−1

have coefficients that satisfy simple asymptotic estimates of the form C · An. A similar
property holds for integer compositions, where there is even an exact counting formula,
namely, 2n−1. The common feature of these examples is that that they all involve a se-
quence construction in their specification and correspond to the schema F = S(G), in
either the labelled or the unlabelled case.

We thus consider a sequence construction F = S(G), with the associated GFs (either
ordinary or exponential) satisfying the usual relation

F (z) =
1

1 −G(z)
,

and G(0) = 0 for well-foundedness. We shall write fn = [zn]F (z) and gn = [zn]G(z).
We also restrict attention to the case where the radius of convergence of G is nonzero, in
which case, the radius of convergence of F is also nonzero by virtue of closure properties
of analytic functions. We set:

DEFINITION V.2. Let F,G be GFs with nonnegative coefficients that are analytic at 0,
with G(0) = 0. The schema F (z) = (1 −G(z))−1 is said to be supercritical if G(ρ) > 1,
where ρ = ρG is the radius of convergence of G.

Note that G(ρ) is well defined as the limit limx→ρ− G(x) since G(x) increases along
the positive real axis. (The value G(ρ) corresponds to what has been denoted earlier by τG

when discussing “signatures” in Section IV. 3.3.) We assume thatG(z) is unperiodic in the
sense that there does not exist an integer d ≥ 2 such thatG(z) = h(zd) for some h analytic
at 0. (This normalization is merely a convenience that entails no loss of generality.) One
has

THEOREM V.3 (Supercritical sequence asymptotics). Let the schema F = (1−G)−1

be supercritical and assume that G is unperiodic. Then, one has

[zn]F (z) =
1

σG′(σ)
· σ−n (1 +O(An)) ,

where σ is the root in (0, ρG) of G(σ) = 1, and A is a number less than 1. The number X
of G–components in a random C–structure of size n has mean and variance satisfying

En(X) =
1

ρG′(ρ)
· (n+ 1) − 1 +

G′′(ρ)

G′(ρ)2
+O(An)

Vn(X) =
ρG′′(ρ) +G′(ρ) − ρG′(ρ)2

ρ2G′(ρ)3
· n+O(1).

In particular, the distribution is concentrated.
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PROOF [58, 120]. The basic observation is thatG increases continuously fromG(0) =
0 to G(ρG) = τG (with τG > 1 by assumption) when x increases from 0 to ρG. Therefore,
the positive number σ, which satisfies G(σ) = 1 is well defined. Then, F is analytic at all
points of the interval (0, σ). The function G being analytic at σ, satisfies, in a neighbour-
hood of σ

G(z) = 1 +G′(σ)(z − σ) +
1

2!
G′′(σ)(z − σ)2 + · · · .

so that F (z) has a pole at z = σ; also, this pole is simple since G′(ρ) > 0. Pringsheim’s
theorem then implies that the radius of convergence of F must coincide with σ.

There remains to show that F (z) is meromorphic in a disc of some radius R > σ
with the point σ as the only singularity inside the disc. This results from the assumption
that G is unperiodic. In effect, one has G(σeiθ) ≤ 1 for all θ by the triangular inequality.
It suffices to verify that G(σeiθ) 6= 1 for θ ∈ [−π, π] \ {0} to ensure that F is analytic at
points of the circle |z| = σ, with the sole exception of σ. A contrario, G(σeiθ) = 1 would
imply, by the converse of the triangle inequality that

gnσ
neinθ = gnσ

n,

for all values of n such that gn 6= 0. This in turn is only possible if there is a root of unity,
ω = e2iπ/d, such that ωn = 1 whenever gn 6= 1. This last fact is itself incompatible with
the assumption that G(z) is unperiodic.

In summary, F (z) has a simple pole at z = σ and is otherwise analytic at all points of
|z| = σ. Thus, by compactness, there exists a disc of radius R > σ in which F is analytic
except for a unique pole at σ. Take r such that σ < r < R and apply the main theorem of
meromorphic function asymptotics to deduce the stated formula with A = σ/r.

Consider next the number of G-components in a random F structure of size n. Bivari-
ate generating functions give access to the expectation of this random variable:

En(X) =
1

fn
[zn]

∂

∂u

1

1 − uG(z)

∣∣∣∣
u=1

=
1

fn
[zn]

G(z)

(1 −G(z))2
.

The problem is now reduced to extracting coefficients in a univariate generating function
with a double pole at z = ρ, and it suffices to expand the GF locally at ρ. The variance
calculation is similar though it involves a triple pole. �

When a sequence construction is supercritical, the number of components is in the
mean � n while its standard deviation is � √

n. Thus, the distribution is concentrated (see
Chapter III). In fact, there results from a general theorem of Bender [9] that the distribution
of the number of components is asymptotically Gaussian; see later chapters for details.

Direct cases of application to combinatorial generating functions are

a1(z) =
z

1 − z
, a2(z) = ez − 1, a3(z) = log(1 − z)−1,

corresponding respectively to integer compositions (OGF), surjections (EGF), and align-
ments. Thus:

• The expected number of summands in a random composition of the integer n is
∼ n+1

2 , with variance ∼ n
4 .

• The expected cardinality of the range of a random surjection whose domain has
cardinality n is asymptotic to βn with β = 1/(2 log 2);

• The expected number of components in a random alignment of size n is asymp-
totic to n/(e− 1).
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10 16 1 5
20 732 73 4
30 36039 360 57
40 1772207 17722 61
50 87109263 871092 48
60 4281550047 42815 49331
70 210444532770 21044453 0095
80 10343662267187 1034366226 5182
90 508406414757253 5084064147 81706
100 24988932929490838 24988932929 612479

FIGURE 9. The pyramid relative to compositions into prime summands
for n = 10 . . 100: (left: exact values; right: asymptotic formula
rounded).

EXAMPLE 9. Compositions with restricted summands, compositions into primes. Un-
restricted integer compositions are well understood as regards enumeration: their number
is exactly Cn = 2n−1, their OGF is C(z) = (1 − z)/(1 − z), and compositions with k
summands are enumerated by binomial coefficients. Such simple exact formulæ disappear
when restricted compositions are considered, but, as we now show, asymptotics is much
more robust to changes in specifications.

Let S be a subset of the integers Z≥1 such that gcd(S) = 1, i.e., not all members of S
are multiples of a common divisor d ≥ 2. In order to avoid trivialities, we also assume
that S 6= {1}. The class CS of compositions with summands constrained to the set S then
satisfies:

Specification: CS = S(SS(Z));

OGF: D(z) =
1

1 − S(z)
, S(z) =

∑

s∈S

zs.

By assumption, S(z) is unperiodic, so that Theorem V.3 applies directly. There is a well-
defined number σ such that

S(σ) = 1, 0 < σ < 1,

and the number of S–restricted compositions satisfies

(53) CS
n := [zn]CS(z) =

1

σS′(σ)
· σ−n (1 +O(An)) .

Amongst the already discussed cases, S = {1, 2} gives rise to Fibonacci numbers and,
more generally, S = {1, . . . , r} corresponds to partitions with summands at most r. In
this case, the OGF,

C{1,...,r}(z) =
1

1 − z 1−zr

1−z

=
1 − z

1 − 2z + zr+1

is a simple variant of the OGF associated to longest runs in strings. The treatment of the
latter can be copied almost verbatim to the effect that the largest component in a random
composition of n is found to be lgn+O(1), both on average and with high probability.

Here is a surprising application of the general theory. Consider the case where S is
taken to be the set of prime numbers, Prime = {2, 3, 5, 7, 11, . . .}, thereby defining the
class of compositions into prime summands. The sequence starts as

1, 0, 1, 1, 1, 3, 2, 6, 6, 10, 16, 20, 35, 46, 72, 105,
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FIGURE 10. Errors in the approximation of the number of composi-
tions into primes for n = 70 . . 100: left, the values of CPrime

n − g(n);
right, the correction g2(n) arising from the next two poles, which are
complex conjugate and the continuous extrapolation of this approxima-
tion.

corresponding to the OGF 1+z2+ · · · , and is EIS A023360 in Sloane’s encyclopedia. The
formula (53) applies to provide the asymptotic form of the number of such compositions.
It is also well worth noting that the constants appearing in (53) are easily determined to
great numerical precision, as we now explain.

By (53) and the preceding equation, the dominant singularity of the OGF of composi-
tions into prime is the positive root σ < 1 of the characteristic equation

S(z) ≡
∑

p Prime

zp = 1.

Fix a threshold value m0 (for instance m0 = 10 or 100) and introduce the two series

S−(z) :=
∑

s∈S, s<m0

zs, S+(z) :=


 ∑

s∈S, s<m0

zs


+

zm0

1 − z
.

Clearly, for x ∈ (0, 1), one has S−(x) < S(x) < S+(x). Define two constants σ−, σ+ by
the conditions

S−(σ−) = 1, S+(σ+) = 1, 0 < σ−, σ+ < 1.

These constants are algebraic numbers that are accessible to computation. At the same
time, they satisfy σ+ < σ < σ−. As the order of truncation, m0, increases, the values
of σ+, σ− are expected to provide better and better approximations to σ together with an
interval in which σ provably lies. For instance, m0 = 10 is enough to determine that
0.66 < σ < 0.69, and the choice m0 = 100 gives σ to 15 guaranteed digits of accuracy,
namely, σ

.
= 0.67740 17761 30660.Then, the asymptotic formula (53) instantiates as

(54) CPrime
n ∼ g(n), g(n) := 0.30365 52633 · 1.47622 87836n.

The constant σ−1 .
= 1.47622 is akin to the family of Backhouse constants described

in [39].
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Once more, the asymptotic approximation is very good as shown by the pyramid of
Figure 9. The difference betweenCPrime

n and its approximation g(n) from Eq. (54) is plot-
ted on the left of Figure 10. The seemingly haphazard oscillations that manifest themselves
are well explained by the principles discussed in the previous section. It appears that the
next poles of the OGF are complex conjugate and lie near −0.76± 0.44i, having modulus
about 0.88. The corresponding residues then jointly contribute a quantity of the form

g2(n) = c ·An sin(ωn+ ω0), A
.
= 1.13290,

for some constants c, ω, ω0. Comparing the left and right parts of Figure 10 shows this next
layer of poles to explain quite well the residual error CPrime

n − g(n). (The diagram on the
right in Figure 10 also displays the values of the continuous interpolation to g2(n).)

Here is a final example that demonstrates in a striking way the scope of the method.
Define the set Prime2 of “twinned primes” as the set of primes that belong to a twin
prime pair, that is, p ∈ Prime2 if one of p − 2, p + 2 is prime. The set Prime2 starts as
3, 5, 7, 11, 13, 17, 19, 29, 31, . . . (numbers like 23 or 37 are thus excluded). The asymptotic
formula for the number of compositions of the integer n into summands that are twinned
primes, is

CPrime2
n ∼ 0.18937 · 1.29799n.

It is quite remarkable that the constants involved are still computable real numbers (and of
low complexity, even), this despite the fact that it is not known whether the set of twinned
primes is finite or infinite. Incidentally, a sequence that starts like CPrime2

n ,

1, 0, 0, 1, 0, 1, 1, 1, 2, 1, 3, 4, 3, 7, 7, 8, 14, 15, 21, 28, 33, 47, 58, . . .

and coincides till index 22 included (!), but not beyond, was encountered by P. A. MacMa-
hon3, as the authors discovered, much to their astonishment, from scanning Sloane’s En-
cyclopedia, where it appears as EIS A002124. �

Profiles of supercritical sequences. We have seen in Chapter III that integer compo-
sitions and integer partitions, when sampled at random, tend to assume rather different
aspects. Given a sequence construction, F = S(G), the profile of an element α ∈ F is
the vector (X〈1〉, X〈2〉, . . .) whereX〈1〉(α) is the number of G–components in α that have
size j. In the case of (unrestricted) integer compositions, it could be proved elementarily
that, on average and for size n, the number of 1 summands is ∼ n/2, the number of 2
summands is ∼ n/4, and so on. Now that meromorphic asymptotic is available, such a
property can be placed in a much wider perspective.

PROPOSITION V.6. Consider a supercritical sequence construction, F = S(G), with
the “unperiodic” condition. The number of G–components of any fixed size k in a random
F–object of size n satisfies

(55) En(X〈k〉) =
gkσ

k

σG′(σ)
n+O(1), Vn(X〈k〉) = O(n).

There, σ is the root in (0, ρG) of G(σ) = 1, and gk = [zk]G(z).

PROOF. The bivariate GF with u marking the number of G–components of size k is

F (z, u) =
1

1 − (G(z) + (u− 1)gkzk)
,

3See “Properties of prime numbers deduced from the calculus of symmetric functions”, Proc. London Math.
Soc., 23 (1923), 290-316). MacMahon’s sequence corresponds to the compositions into arbitrary odd primes.
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FIGURE 11. Profile of structures drawn at random represented by the
sizes of their components in sorted order: (from left to right) a random
surjection, alignment, and composition of size n = 100.

as results from the theory developed in Chapter III. The mean value is then given by a
quotient,

En(X〈k〉) =
1

fn
[zn]

∂

∂u
F (z, u)

∣∣∣∣
u=1

=
1

fn
[zn]

gkz
k

(1 −G(z))2
.

The GF of cumulated values has a double pole at z = σ, and the estimate of the mean value
follows. The variance is estimated similarly, after two successive differentiations and the
analysis of a triple polar singularity. �

The total number of components X satisfies X =
∑
X〈k〉, and, by Theorem V.3, its

mean is asymptotic to n/(σG′(σ)). Thus, Equation (55) indicates that, at least in some
average-value sense, the “proportion” of components of size k amongst all components is
given by gkσ

k. Also, since G(σ) = 1, the coefficients gkσ
k add up to 1.

EXAMPLE 10. The profiles of compositions, surjections, and alignments. Proposition V.6
immediately applies to compositions (that are sequences of sequences), surjections (se-
quences of sets), and alignments (sequences of cycles). The following table summarizes
the conclusions:

Structures Specif. Law (gkσ
k) Type σ

Compositions S(S≥1(Z))
1

2k
Geometric

1

2

Surjections S(P≥1(Z))
1

k!
(log 2)k Poisson log 2

Alignments S(C(Z))
1

k
(1 − e−1)k Logarithmic 1 − e−1

The geometric and Poisson law are classical; the logarithmic distribution (also called
“logarithmic-series distribution”) of parameter λ is by definition the law of a random vari-
able Y such that

P(Y = k) =
1

log(1 − λ)−1

λk

k
.

The way the internal construction induces the law of component sizes,

Sequence 7→Geometric; Set 7→Poisson; Cycle 7→Logarithmic,

stands out. Figure 11 exemplifies the phenomenon by displaying components sorted by
size and represented by vertical segments of corresponding lengths for three randomly
drawn objects of size n = 100. �
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� 9. Proportion of k–components and convergence in probability. For any fixed k, the random
variable X〈k〉

n /Xn converges in probability (the notion is defined in Chapter III) to the value gkσ
k,

X
〈k〉
n

Xn

P−→ gkσ
k, i.e., lim

n→∞
P

(
gkσ

k(1 − ε) ≤ X
〈k〉
n

Xn
≤ gkσ

k(1 + ε)

)
= 1,

for any ε > 0. The proof is an easy consequence of the Chebyshev inequalities (the distributions of
Xn and X〈k〉

n are both concentrated). �

� 10. Random generation of supercritical sequences. Let F = S(G) be a supercritical sequence
scheme. Consider a sequence of i.i.d. (independently identically distributed) random variables
Y1, Y2, . . . each of them obeying the discrete law

P(Y = k) = gkσ
k, k ≥ 1.

A sequence is said to be hitting n if Y1+ · · ·+Yr = n for some r ≥ 1. The vector (Y1, . . . , Yr) for a
sequence conditioned to hit n has the same distribution as the sequence of the lengths of components
in a random F–object of size n.

For probabilists, this explains the shape of the formulæ in Theorem V.3, which resemble renewal
relations [37, Sec. XIII.10]. It also implies that, given a uniform random generator for G–objects, one
can generate a random F–object of size n inO(n) steps on average [34]. This applies to surjections,
alignments, and compositions in particular. �

� 11. Largest components in supercritical sequences. Let F = S(G) be a supercritical sequence.
Assume that gk = [zk]G(z) satisfies the asymptotic “smoothness” condition

gk ∼
k→∞

cρ−kkβ , c, ρ ∈ R>0, β ∈ R.

Then the size L of the largest G component in a random F object satisfies, for size n,

EFn(X) =
1

log(ρ/σ)
(log n+ β log log n) + o(log log n).

This covers integer compositions (ρ = 1, β = 0) and alignments (ρ = 1, β = −1). [The analysis
generalizes the case of longest runs in Example 2 and is based on similar principles. The GF of

F objects with L ≤ m is F 〈m〉(z) =
“
1 −Pk≤m gkz

k
”−1

, according to Section III.7. For m

large enough, this has a dominant singularity which is a simple pole at σm such that σm − σ ∼
c1(σ/ρ)

mmβ . There follows a double-exponential approximation

PFn(L ≤ m) ≈ exp
“
−c2nmβ(σ/ρ)m

”

in the “central” region. See Gourdon’s study [68] for details.] �

V. 4. Functional equations: positive rational systems

For rational functions, positivity coupled with some simple ancillary conditions entails
a host of important properties, like unicity of the dominant singularity. Such facts result
from the classical Perron-Frobenius theory of nonnegative matrices that we summarize in
this section. They in turn imply strong properties of large random structures.

The basic case is that of a d-dimensional column vectory(z) of generating functions
satisfying a linear system of the form

y(z) = a+zT y(z),

for some (d × d) matrix T and vector a. If T satisfies suitable positivity conditions and a
is nonnegative, then any component yj(z) closely resembles the extremely simple rational
function,

1

1 − λ1z
,
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FIGURE 12. The irreducibility conditions of Perron-Frobenius theory.
Left: a strongly connected digraph. Right: a weakly connected digraph
that is not strongly connected is a collection of strongly connected com-
ponents related by a directed acyclic graph.

where λ1 is a well-characterized eigenvalue of T . Accordingly, the asymptotic phenomena
associated with such systems are highly predictable. We propose to expose here the general
theory and treat in the next section classical applications to paths in graphs and to languages
recognized by finite automata.

V. 4.1. Perron-Frobenius theory of nonnegative matrices. For an arbitrary square
matrix A ∈ Rm×m, the spectrum is the set of its eigenvalues, that is, the set of λ such
that λI − A is not invertible (i.e., not of full rank), where I is the unit matrix with the
appropriate dimension. A dominant eigenvalue is one of largest modulus. Finally, the
spectral radius of an arbitrary matrix A is defined as

(56) σ(A) = max
j

{|λj |},

where the set {λj} is the set of eigenvalues of A (also called spectrum). The spectral
radius σ(A) describes growth properties associated to the powers of A. Indeed, given the
Jordan normal form of matrices, it is easy to see that all entries of An are bounded from
above by a multiple of σ(A)n · nr−1, where r is the maximum multiplicity of any dom-
inant eigenvalue. When analysing a family of combinatorial models that admit a matrix
formulation, it is then of obvious interest to determine the value of the spectral radius and
the multiplicities attached to dominant eigenvalues.

The properties of positive and of nonnegative matrices have been superbly elicited by
Perron [110] in 1907 and by Frobenius [61] in 1908–1912. The corresponding theory has
far-reaching implications: it lies at the basis of the theory of finite Markov chains and it
extends to positive operators in infinite-dimensional spaces [88].

For A a scalar matrix of dimension m ×m with nonnegative entries, a crucial rôle is
played by the dependency graph; this is the (directed) graph with vertex set V = {1 . .m}
and edge set containing the directed edge (a → b) iff Aa,b 6= 0. The reason for this ter-

minology is the following: Let A represent the linear transformation
{
y?

i =
∑

j Ai,jyj

}
i
;

then, the fact that an entry Ai,j is nonzero means that y?
i depends effectively on yj and is

translated by the directed edge (i→ j) in the dependency graph.
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FIGURE 13. The aperiodicity conditions of Perron-Frobenius theory:
an aperiodic digraph (left) and a periodic digraph (right).

From this point on, we consider matrices with nonnegative entries. Two notions are
essential, irreducibility and aperiodicity (the terms are borrowed from Markov chain theory
and matrix theory).

DEFINITION V.3. The matrixA is called irreducible if its dependency graph is strongly
connected (i.e., any two vertices are connected by a directed path). A strongly connected
digraph G is periodic with parameter d iff all its cycles have a length that is a multiple
of d. In that case, the graph decomposes into cyclically arranged layers: the vertex set V
can be partitioned into d classes, V = V0 ∪ · · · ∪ Vd−1, in such a way that the edge set E
satisfies

(57) E ⊆
d−1⋃

i=0

(Vi × V(i+1) mod d).

The maximal possible d is called the period. If no decomposition exists with d ≥ 2, so that
the period has the trivial value 1, then the graph and all the matrices that admit it as their
dependency graph are called aperiodic.

By considering only simple paths, it is then seen that irreducibility is equivalent to the
condition that (I + A)m has all its entries that are strictly positive. See Figure 12 for a
graphical rendering of irreducibility and for the general structure of a (weakly connected)
digraph. As an illustration of periodicity, a directed 10-cycle is periodic with parameter
d = 1, 2, 5, 10 and the period is 10. See Figure 13 for representations of a periodic and an
aperiodic digraph.

Periodicity also means that the existence of paths of length n between any given pair
of nodes 〈i, j〉 is constrained by the congruence class n mod d. A contrario, aperiodicity
entails the existence, for all n sufficiently large, of paths of length n connecting 〈i, j〉.
From the definition, a matrix A with period d has, up to simultaneous permutation of its
rows and columns, a cyclic block structure




0 A0,1 0 · · · 0

0 0 A1,2 · · · 0

...
...

...
. . .

...

0 0 0 · · · Ad−2,d−1

Ad−1,0 0 0 · · · 0




where the blocks Ai,i+1 are reflexes of the connectivity between Vi and Vi+1 in (57).
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THEOREM V.4 (Perron-Frobenius theorem). Let A be a matrix that is assumed to be
irreducible in the sense that its dependency graph is strongly connected.

(i) If A has (strictly) positive elements, then its eigenvalues can be ordered in such a
way that

λ1 > |λ2| ≥ |λ3| ≥ · · · ,
i.e., A has a unique dominant eigenvalue which is positive and simple.

(ii) If A has nonnegative elements, then its eigenvalues can be ordered in such a way
that

λ1 = |λ2| = · · · = |λd| > |λd+1| ≥ |λd+2| ≥ · · · ,
and each of the dominant eigenvalues is simple, with λ1 being positive. Furthermore, the
quantity d is precisely equal to the period of the dependency graph. If d = 1, in particular,
then there is unicity of the dominant eigenvalue. If d ≥ 2, the whole spectrum is invariant
under the set of transformations

λ 7→ λe2ijπ/d, j = 0, 1, . . . , d− 1.

For proof techniques including a full proof of Part (i) of the theorem, see APPENDIX:
Perron-Frobenius theory of nonnegative matrices, p. 172.

For short, one says that a matrix is positive (resp. nonnegative) if all its elements are
positive (resp. nonnegative). Here are two useful turnkey results, Corollaries V.1 and V.2.

COROLLARY V.1. Any one of the following conditions suffices to guarantee the exis-
tence of a unique dominant eigenvalue of a nonnegative matrix T :

(i) T has (strictly) positive entries;
(ii) T is such that, some power T s is (strictly) positive;

(iii) T is irreducible and at least one diagonal element of T is nonzero;
(iv) T is irreducible and the dependency graph of T is such that there exist at least

two paths from the same source to the same destination that are of relatively
prime lengths.

PROOF. The proof makes use of the well-known correspondence between terms in
coefficients of matrix products and paths in graphs (see below Section V. 5 for more). Suf-
ficiency of condition (i) results directly from Case (i) of Theorem V.4. Condition (ii)
immediately implies irreducibility. Unicity of the dominant eigenvalue (hence aperiod-
icity) results from Perron-Frobenius properties of As, by which λs

1 > |λ2|s. (Also, by
elementary graph combinatorics, one can always take the exponent s to be at most the di-
mension m.) By basic combinatorics of paths in graphs, Conditions (iii) and (iv) each
imply Condition (ii). �

V. 4.2. Positive rational functions. The importance of Perron-Frobenius theory and
of its immediate consequence, Corollary V.1, stems from the fact that uniqueness of the
dominant eigenvalue is usually related to a host of analytic properties of generating func-
tions as well as probabilistic properties of structures. In particular, as we shall see in the
next section, several combinatorial problems (like automata or paths in graphs) can be
reduced to the following case.

COROLLARY V.2. Consider the matrix

F (z) = (I − zT )−1,

where T , called the “transition matrix”, is a scalar nonnegative matrix. It is assumed
that T is irreducible. Then each entry Fi,j(z) of F (z) has a radius of convergence ρ that
coincides with the smallest positive root of the determinantal equation

∆(z) := det(I − zT ) = 0.

Furthermore, the point ρ is a simple pole of any Fi,j(z).
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In addition, if T is aperiodic or if it satisfies any of the conditions of Corollary V.1,
then all singularities other than ρ are strictly dominated in modulus by ρ.

The statement obviously applies to any positive linear combinations of entries of F and
thus to solutions of any system of the form y(z) = a +zT y(z).

PROOF. Define first (as in the statement) ρ = 1/λ1, where λ1 is the eigenvalue of T
of largest modulus that is guaranteed to be simple by assumption of irreducibility and by
Perron-Frobenius properties. Next, the relations induced by F = I + zTF , namely,

Fi,j(z) = δi,j + z
∑

k

Ti,kFk,j(z),

together with positivity and irreducibility entail that the Fi,j(z) must all have the same
radius of convergence r. Indeed, each Fij depends positively on all the other ones (by
irreducibility) so that any infinite value of an entry in the system must propagate to all the
other ones.

The characteristic polynomial

∆(z) = det(I − zT ),

has roots that are inverses of the eigenvalues of T and ρ = 1/λ1 is smallest in modulus.
Thus, since ∆ is the common denominator to all the Fi,j(z), poles of any Fi,j(z) can only
be included in the set of zeros of this determinant, so that the inequality r ≥ ρ holds.

It remains to exclude the possibility r > ρ, which means that no “cancellations” with
the numerator can occur at z = ρ. The argument relies on finding a positive combination
of some of the Fi,j that must be singular at ρ. We offer two proofs, each of interest in its
own right: one (a) is conveniently based on the Jacobi trace formula, the other (b) is based
on supplementary Perron–Frobenius properties.

(a) Jacobi’s trace formula for matrices [67, p. 11],

(58) det ◦ exp = exp ◦Tr or log ◦ det = Tr ◦ log

generalizes the scalar identities4 eaeb = ea+b and log ab = log a + log b. Here we have
(for z small enough)

Tr log(I − zT )−1 =
∑

i

∑

n≥1

Ti,i,n
zn

n

= log det(I − zT )−1,

where the first line results from expansion of the logarithm and the second line is an in-
stance of the trace formula. Thus, by differentiation, the sum

∑
iMi,i(z) is seen to be

singular at ρ = 1/λ1 and we have established that r = ρ.
(b) Alternatively, let v1 be the eigenvector of T corresponding to λ1. Perron-Frobenius

theory also teaches us that, under the irreducibility and aperiodicity conditions, the vec-
tor v1 has all its coordinates that are nonzero. Then the quantity

(1 − zT )−1v1 =
1

1 − zλ1
v1

is certainly singular at 1/λ1. But it is also a linear combination of the Fi,j ’s. Thus at least
one of the entries of F (hence all of them by the discussion above) must be singular at
ρ = 1/λ1. Therefore, we have again r = ρ.

Finally, under the additional assumption that T is aperiodic, Perron-Frobenius theory
grants us that ρ = 1/λ1 is well-separated in modulus from all other singularities F . �

4The Jacobi trace formula is readily verified when the matrix is diagonalizable, and from there, it can be
extended to all matrices by an algebraic “density” argument.
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Several of these arguments will be recycled when we discuss the harder problem of
analysing coefficients of positive algebraic functions in Chapter V.

We next proceed to show that properties of the Perron-Frobenius type even extend to
a large class of linear systems of equations that have nonnegative polynomial coefficients.
Such a case is important because of its applicability to transfer matrices; see Section V. 5
below.

Some definitions extending the ones of scalar matrices must first be set. A polynomial

p(z) =
∑

j

cjz
ej , every cj 6= 0,

is said to be primitive if the quantity δ = gcd({ej}) is equal to 1; it is imprimitive
otherwise. Equivalently, p(z) is imprimitive iff p(z) = q(zδ) for some bona fide poly-
nomial q and some δ > 1. Thus, z, 1 + z, z2 + z3, z + z4 + 2z8 are primitive while
1, 1 + z2, z3 + z6, 1 + 2z8 + 5z12 are not.

DEFINITION V.4. A linear system with polynomial entries,

(59) f(z) = v(z) + T (z)f(z)

where T ∈ R[z]r×r, v ∈ R[z]r, and f ∈ R[z]r the vector of unknowns is said to be:

(a) rationally proper (r–proper) if T (0) is nilpotent, meaning that T (0)r is the null
matrix;

(b) rationally nonnegative (r–nonnegative) if each component vj(z) and each matrix
entry Ti,j(z) lies in R≥0[z];

(c) rationally irreducible (r–irreducible) if (I + T (z))r has all its entries that are
nonzero polynomials.

(d) rationally aperiodic (r–periodic) if at least one diagonal entry of some power
T (z)e is a primitive polynomial.

It is again possible to visualize these properties of matrices by drawing a directed graph
whose vertices are labelled 1, 2, . . . , r, with the edge connecting i to j that is weighted by
the entry Ti,j(z) of matrix T (z). Properness means that all sufficiently long paths (and all
cycles) must involve some positive power of z— it is a condition satisfied in well-founded
combinatorial problems; irreducibility means that the dependency graph is strongly con-
nected by paths whose edges are associated with nonzero polynomials; periodicity means
that all closed paths involve weights that are polynomials in some ze for some e > 1.

For instance, if W is a matrix with positive entries, then zW is r–irreducible and r–

aperiodic, while z3W is r–periodic. The matrix T =

0

B

B

@

z z3

1 0

1

C

C

A

is r–proper, r–irreducible,
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and r–aperiodic, since T 2 =

0

B

B

@

z2 + z3 z4

z z3

1

C

C

A

. The matrix T =

0

B

B

B

B

B

B

@

z3 1 0

0 0 z

z2 0 0

1

C

C

C

C

C

C

A

is r–

proper, but it fails to be r–aperiodic since all cycles only involve powers of z3, as is visible
on the associated graph:

2z

3

1 z

z

By abuse of language, we say that f(z) is a solution of a linear system if it coincides
with the first component of a solution vector, f ≡ f1. The following theorem generalizes
Corollary V.2.

THEOREM V.5 (Positive rational systems). (i) Assume that a rational function f(z)
is a solution of a system (59) that is r–positive, r–proper, r–irreducible, and r–aperiodic.
Then, f(z) has a unique dominant singularity ρ that is positive, and is a simple pole; ρ is
the smallest positive solution of

(60) det(I − T (z)) = 0.

(ii) Assume that f(z) is a solution of a system that is r–positive, r–proper, and r–
irreducible (but not necessarily r–aperiodic). Then, the set of dominant singularities of
f(z) is of the form {ρj}d−1

j=0 , where ρ0 ∈ R≥0, ρj/ρ0 = η is a root of unity, and ρjη
` is a

dominant singularity for all ` = 0, 1, 2, . . . . In addition, each ρj is a simple pole.

PROOF. Consider first Case (i). For any fixed x > 0, the matrix T (x) satisfies the
Perron Frobenius conditions, so that it has a maximal positive eigenvalue λ1(x) that is
simple. More information derives from the introduction of matrix norms5. Spectral radius
and matrix norms are intimately related since

σ(A) = lim
n→+∞

(||An||)1/n
.

In particular, this relation entails that the spectral radius is an increasing function of matrix
entries: for nonnegative matrices, if A ≤ B (in the sense that Ai,j ≤ Bi,j for all i, j),
then one has σ(A) ≤ σ(B); if A < B (in the sense that Ai,j < Bi,j for all i, j), then
one has σ(A) < σ(B). (To see the last inequality, note the existence of ε > 0 such that
A ≤ (1 − ε)B.)

Returning to the case at hand, equation (56) and the surrounding remarks imply that
the spectral radius σ(T (x)), which also equals λ1(x) for positive x, satisfies

λ1(0) = 0, λ1(x) strictly increasing, λ1(+∞) = +∞.

(The first condition reflects properness, the second one is a consequence of irreducibility,
and the last one derives from simple majorizations.) In particular, the equation λ1(x) = 1
admits a unique root ρ on (0,+∞). (Notice that λ1(x) is a real branch of the algebraic
curve det(λI − T (x)) = 0 that dominates all other branches in absolute value for x > 0.
There results from the general theory of algebraic functions that λ1(x) is analytic at every
point x > 0.)

5A matrix norm ||.|| satisfies: ||A|| = 0 implies A = 0; ||cA|| = |c| · ||A||; ||A + B|| ≤ ||A| + ||B||;
||A×B|| ≤ ||A|| · ||B||.
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There remains to prove that: (a) ρ is at most a simple pole of f(z); (b) ρ is actually a
pole; (c) there are no other singularities of modulus equal to ρ.

Fact (a) amounts to the property that ρ is a simple root of the equation λ(ρ) = 1,
that is, λ′(ρ) 6= 0. (To prove λ′(ρ) 6= 0, we can argue a contrario. First derivatives
λ′(ρ), λ′′(ρ), etc, cannot be zero till some odd order inclusively since this would contradict
the increasing character of λ(x) around ρ along the real line. Next, if derivatives till some
even order ≥ 2 inclusively were zero, then we would have by the local analytic geometry
of λ(z) near ρ some complex value z1 satisfying: |λ(z1)| = 1 and |z1| < ρ; but for such
a value z1, by irreducibility and aperiodicity, for some exponent e, the entries of T (z1)

e

would be all strictly dominated in absolute value by those of T (ρ)e, hence a contradiction.)
Then, λ′(ρ) 6= 0 holds and by virtue of

det(I − T (z)) = (1 − λ1(z))
∏

j 6=1

(1 − λj(z)) = (1 − λ1(z))
det(I − T (z))

1 − λ1(z)
,

the quantity ρ is only a simple root of det(I − T (z)).
Fact (b) means that no “cancellation” may occur at z = ρ between the numerator and

the denominator given by Cramer’s rule. It derives from an argument similar to the one
employed for Corollary V.2. Fact (c) derives from aperiodicity and the Perron-Frobenius
properties. �

V. 5. Paths in graphs, automata, and transfer matrices.

A cluster of applications of rational functions is to problems that are naturally de-
scribed as paths in digraphs, or equivalently as finite automata. In physics, the correspond-
ing treatment is also the basis of what is called the “transfer matrix method”. We start
our exposition with the enumeration of paths in graphs that constitutes the most direct
introduction to the subject.

V. 5.1. Paths in graphs. LetG be a directed graph with vertex set {1, . . . ,m}, where
self-loops are allowed and label each edge (a, b) by the formal variable ga,b. We introduce
the matrix G such that

(61) Ga,b = ga,b if the edge (a, b) ∈ G, Ga,b = 0 otherwise,

which is called the formal adjacency matrix of G. Then, from the standard definition of
matrix products, the powers G

r have elements that are path polynomials. More precisely,
one has the simple but essential relation,

(62) (G)r
i,j =

∑

w∈P(i,j;r)

w,

where P(i, j, r) is the set of paths in G that connect i to j and have length r, and a path w
is assimilated to the monomial in indeterminates {gi,j} that represents multiplicatively the
succession of its edges; for instance:

(G)3i,j =
∑

m1=i,m2,m3,m4=j

gm1,m2gm2,m3gm3,m4 ,

In other words, powers of the matrix associated to a graph “generate” all paths in a graph.
One may then treat simultaneously all lengths of paths (and all powers of matrices) by
introducing the variable z to record length.
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PROPOSITION V.7. (i) Let G be a digraph and let G be the matrix associated to G
by rules (61) The OGF F 〈i,j〉(z) of the set of all paths from i to j in a digraph G with z
marking length and ga,b marking the occurrence of edge (a, b) is the entry i, j of the matrix
(I − zG)−1, namely

F 〈i,j〉(z) = (I − zG)−1
∣∣
i,j

=
∆〈i,j〉(z)

∆(z)
,

where ∆(z) = det(I − zG) and ∆〈i,j〉(z) is the determinant of the minor of index i, j of
I − zG.

(ii) The generating function of nonempty closed paths is given by
∑

i

(F 〈i,i〉(z) − 1) = −z∆′(z)

∆(z)
.

The quantity det(I − zG) is obviously the reciprocal polynomial of the characteristic
polynomial of G.

PROOF. Part (i) results from the discussion above which implies

F 〈i,j〉(z) =

∞∑

n=0

zn (Gn)i,j =
(
(I − zG)

−1
)

i,j
,

and from the cofactor formula of matrix inversion. Part (ii) results from Jacobi’s trace
formula (58). Introduce the quantity known as the zeta function,

ζ(z) := exp

(
∑

i

∞∑

n=1

F 〈i,i〉
n

zn

n

)
= exp

( ∞∑

n=1

zn

n
TrGn

)

= exp
(
Tr log(I − zG)−1

)
= det(I − zG)−1,

where the last line results from the Jacobi trace formula. Thus, ζ(z) = ∆(z)−1. On the
other hand, differentiation combined with the definition of ζ(z) yields

z
ζ ′(z)

ζ(z)
= −z∆′(z)

∆(z)

=
∑

i

∞∑

n=1

F 〈i,i〉
n zn,

and Part (ii) follows. �

The numeric substitution σ : ga,b 7→ 1 transforms the matrix G into the usual ad-
jacency matrix. In particular, the number of paths of length n is obtained, under this
substitution, as [zn](1 − zG])−1. In a similar vein, it is possible to consider weighted
graphs, where the ga,b are assigned real-valued weights; with the weight of a path being
defined by the product of its edges weights, one finds that [zn](I − zG)−1 equals the total
weight of all paths of length n. If furthermore the assignment is made in such a way that∑

b ga,b = 1, then the matrix G, which is called a stochastic matrix, can be interpreted as
the transition matrix of a Markov chain.
� 12. Fast computation of the characteristic polynomial. Observe that

z
ζ′(z)

ζ(z)
=
X

n≥1

znTr Gn =
X

λ

λz

1 − λz
,

(the sum is over eigenvalues). From this, one deduces an algorithm that determines the characteristic
polynomial of a matrix of dimension m in O(m4) arithmetic operations. [Hint: computing the
quantities TrGj for j = 1, . . . ,m requires precisely m matrix multiplications.] �
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� 13. The matrix tree theorem. Let G be a directed graph without loops and associated matrix G,
with ga,b marking edge (a, b). The Laplacian matrix L[G] is defined by

L[G]i,j = −gi,j + [[i = j]]
X

k

gi,k.

Let L1[G] be the matrix obtained by deleting the first row and first column of L[G]. Then, the “tree
polynomial”

T1[G] := detL1[G]

enumerates all (oriented) spanning trees ofG rooted at node 1. [This classic result belongs to a circle
of ideas initiated by Kirchhoff, Sylvester, Borchardt and others in the 19th century. See, e.g., the
discussions by Knuth [84, p. 582–583] and Moon [99].] �

Let us now assume that positive weights are assigned to the edges of G. In other
words, the quantities ga,b in (61) have positive values. If the resulting matrix is irreducible
and aperiodic, then Perron-Frobenius theory applies. There exists ρ = 1/λ1, with λ1 > 0
the dominant eigenvalue of G, and the OGF of weighted paths from i to j has a simple pole
at ρ. A host of probabilistic properties of paths result from there, after a certain “residue
matrix” has been calculated:

LEMMA V.1 (Iteration of Perron-Frobenius matrices). SetM(z) = (I−zG)−1 where
G has nonnegative entries, is irreducible, and is aperiodic. Let λ1 be the dominant eigen-
value of G. Then the “residue” matrix R such that

(63) (I − zG)−1 =
R

1 − zλ1
+O(1) (z → λ−1

1 )

has entries given by (〈x, y〉 represents a scalar product)

Rij =
ri`j
〈r, `〉 ,

where r and ` are right and left eigenvectors of G corresponding to the eigenvalue λ1.

PROOF. Let E be the ambient space. There exists a direct sum decomposition E =
F1 + F2 where F1 is the 1-dimensional eigenspace generated by the eigenvector (r) cor-
responding to eigenvalue λ1 and F2 is the supplementary space which is the direct sum
of characteristic spaces corresponding to the other eigenvalues λ2, . . . . (For the purposes
of the present discussion, one may freely think of the matrix as diagonalizable, with F2

the union of eigenspaces associated to λ2, . . . .) Then G as a linear operator acting on F
admits the decomposition

G = λ1P + S,

where P is the projector on F1 and S acts on F2 with spectral radius |λ2|, as illustrated by
the diagram:

(64)

O

~v
P~v

(r)

F2S~v

By standard properties of projections, P 2 = P and PS = SP = 0 so that

G
n = λn

1P + S.
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Consequently, there holds,

(65)

(I − zG)−1 =
∑

n≥0

znλn
1P + znS

=
P

1 − λ1z
+ (I − zS)−1.

Thus, the residue matrix R coincides with the projector P .
Now, for any vector w, by general properties of projections, one has (R ≡ P ):

Rw = c(w)r,

for some coefficient c(w). Application of this to each of the base vectors ej (i.e., ej =
(δj1, . . . , δjd)

t) shows that the matrix R has each of its columns proportional to the eigen-
vector r. A similar reasoning with the transpose G

t of G and the associated residue ma-
trix Rt shows that the matrix R has each of its rows proportional to the eigenvector `. In
other words, for some constant γ, one must have

Ri,j = γ`jri.

The normalization constant γ is itself finally determined by `Rr = 〈`, r〉.
We finally observe that a full expansion can be obtained:

(66) (I − zG)−1 P

1 − λ1z
+
∑

k≥0

Rk

(
z − λ−1

1

)k
, Rk := Sk(I − λ−1

1 S)−k−1.

The proof also reveals that one needs to solve one polynomial equation for determining
λ1, and then the other quantities in (66) are all obtained by inverting matrices in the field
of constants extended by the algebraic quantity λ1. (Numerical procedures are likely to be
used instead for large matrices.) �

Equipped with this lemma, we can now state:

THEOREM V.6 (Random paths in digraphs). Let G be a nonnegative matrix associated
to a weighted digraphG, assumed to be irreducible and aperiodic. Consider the collection
Pa,b of (weighted) paths with fixed origin a and final destination b. Then, the number of
traversals of edge (s, t) in a random element of Pa,b has mean

(67) τs,tn+O(1) where τs,t :=
`sgs,trt
λ1〈`, r〉

.

In other words, a long random path tends to spend asymptotically a fixed (nonzero)
fraction of its time traversing any given edge. Accordingly, the number of visits of vertex s
is also proportional to n and obtained by summing the expression of (67) according to all
the possible values of t.

PROOF. First, the total weight (“number”) of paths in Pa,b satisfies

(68) [zn]
[
(I − zG)−1

]
a,b

∼ λ1
ra`b
〈`, r〉 ,

as follows from Lemma V.1. Next, introduce the modified matrix H = (hi,j) defined by

hi,j = gi,j u
[[i=s∧j=t]].

In other words, we mark each traversal of edge i, j by the variable u. Then, the quantity

(69) [zn]

[
∂

∂u
(I − zH)−1

∣∣∣∣
u=1

]

a,b
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represents the total number of traversals of edge (s, t), with weights taken into account.
Simple algebra6 shows that

(70)
∂

∂u
(I − zH)−1

∣∣∣∣
u=1

= (I − zG)−1 (zH ′) (I − zG),

where H ′ := (∂uH)u=1 has all its entries equal to 0, except for the s, t entry whose value
is gs,t. By the calculation of the residue matrix in Lemma V.1, the coefficient of (69) is
then asymptotic to

(71) [zn]
Ra,s

1 − λ1z
gs,tz

Rt,b

1 − λ1z
∼ υnλn−1

1 , υ :=
ra`sgs,trt`b

〈`, r〉2 .

Comparison of (71) and (68) finally yields the result since the relative error terms are
O(n−1) in each case. �

Another consequence of this last proof and Equation (68) is that the numbers of paths
starting at a and ending at either b or c satisfy

(72) lim
n→∞

Pa,b,n

Pa,c,n
=
`b
`c
.

In other words, the quantity
`b∑
j `j

is the probability that a random path with origin fixed at some point a but otherwise un-
constrained will end up at point b after n steps. Such properties are strongly evocative of
Markov chain theory discussed below in Example 12.

� 14. Concentration of distribution for the number of passages. Under the conditions of the theorem,
the standard deviation of the number of traversals of a designated node or edge is O(

√
n). Thus in

a random long path, the distribution of the number of such traversals is concentrated. [Compared
to (70), the calculation of the second moment requires taking a further derivative, which leads to a
triple pole. The second moment and the square of the mean, which are each O(n2), are then found
to cancel to main asymptotic order.] �

EXAMPLE 11. Walks on the interval revisited. As a direct illustration, consider the walks
associated to the graph G(5) with vertex set 1, . . . , 5 and edges being formed of all pairs
(i, j) such that |i− j| ≤ 1. The matrix is

G(5) =




1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1


.

The characteristic polynomial factorizes as

χG(5)(z) = z(z − 1)(z − 2)(z2 − 2z − 2),

and its dominant root is λ1 = 1 +
√

3. From there, one finds a left eigenvector (which is
also a right eigenvector since the matrix is symmetric):

r = `t = (1,
√

3, 2,
√

3, 1).

6If A depends on u, one has ∂uA−1 = A−1(∂uA)A−1, which is a noncommutative generalization of the
usual differentiation rule for inverses.
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Thus a random path (with the uniform distribution over all paths corresponding to the
weights being equal to 1) visits nodes 1, . . . , 5 with frequencies proportional to

1, 1.732, 2, 1.732, 1,

implying that the central nodes are visited more often—such nodes have higher degrees of
freedom, hence there tends to be more paths that traverse them.

In fact, this example has structure. For instance, the corresponding problem on an
interval of length 11, leads to a matrix with a highly factorable characteristic polynomial

χG(11) = z (z − 1) (z − 2)
(
z2 − 2 z − 2

) (
z2 − 2 z − 1

) (
z4 − 4 z3 + 2 z2 + 4 z − 2

)
.

The reader may have recognized a particular case of lattice paths which resort to to the
theory exposed in Section V. 2. For instance, according to Theorem V.2, the OGF of paths
from vertex 1 to vertex 1 in the graph with k vertices is given by the continued fraction

1

1 − z − z2

1 − z2

. . .

1 − z2

1 − z

.

(The number of fraction bars is k; the first and last quotients are 1 − z, the others be-
ing equal to 1.) From this it can be shown that the characteristic polynomial of G is an
elementary variant of the Fibonacci–Chebyshev polynomial of Example 6. The analysis
based on Theorem V.6 is simpler, albeit more rudimentary, as it only provides a first-order
asymptotic solution to the problem. �

EXAMPLE 12. Elementary theory of Markov chains. Consider the case where the row
sums of matrix G are all equal to 1, that is,

∑
j gi,j = 1. Such a matrix is called a stochas-

tic matrix. The quantity gi,j can then be interpreted as the probability of leaving state i
for state j, assuming one is in state i. Assume that the matrix G is irreducible and aperi-
odic. Clearly, the matrix G admits the column vector r = (1, 1, . . . , 1)t as an eigenvector
corresponding to the dominant eigenvalue λ1 = 1. The left eigenvector ` normalized so
that its elements sum to 1 is called the (row) vector of stationary probabilities. It must
be determined by linear algebra and it involves finding an element of the kernel of matrix
I −G, which can be done in a standard way.

Application of Theorem V.6 and Equation (68) shows immediately the following:

PROPOSITION V.8 (Stationary probabilities of Markov chains). Consider a weighted
graph corresponding to a stochastic matrix G which is irreducible and aperiodic. Let ` be
the normalized left eigenvector corresponding to the eigenvalue 1. A random (weighted)
path of length n with fixed origin and destination visits node s a mean number of times
asymptotic to `sn and traverses edge (s, t) a mean number of times asymptotic to `sgs,tn.
A random path of length n with fixed origin ends at vertex s with probability asymptotic
to `s.

This first-order asymptotic property certainly constitutes the most fundamental result
in the theory of finite Markov chains. �

The next example illustrates an elementary technique often employed in calculations
of eigenvalues and eigenvectors. It presupposes that the matrix to be analysed can be
reduced to a sparse form and has a regular enough structure.



100 V. APPLICATIONS OF RATIONAL AND MEROMORPHIC ASYMPTOTICS

G =




1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 0 0 0


 G̃ =




1
2

1
2 0 0 0 0

1
2 0 1

2 0 0 0
1
2 0 0 1

2 0 0
1
2 0 0 0 1

2 0
1
2 0 0 0 0 1

2
1 0 0 0 0 0




FIGURE 14. The devil’s staircase (m = 6) and the two matrices that
can model it.

EXAMPLE 13. The devil’s staircase. You live in a house that has a staircase withm steps.
You come back home a bit loaded and at each second, you can either succeed in climbing
a step or fall back all the way down. On the last step, you always stumble and fall back
down (Figure 14). Where are you likely to be found at time n?

Precisely, two slightly different models correspond to this informally stated problem.
The probabilistic model views it as a Markov chain with equally likely possibilities at each
step and is reflected my matrix G̃ in Figure 14. The combinatorial model just assumes
all possible evolutions (“histories”) of the system as equally likely and it corresponds to
matrix G. We opt here for the latter, keeping in mind that the same method basically
applies to both cases.

We first write down the constraints expressing the joint properties of an eigenvalue λ
and its right eigenvector x = (x1, . . . , xm)t. The equations corresponding to (λI−G)x =
0 are formed of a first batch of m− 1 relations,

(73) (λ − 1)x1 − x2 = 0, −x1 + λx2 − x3 = 0, · · · ,−x1 + λxm1 − xm = 0,

together with the additional relation (one cannot go higher than the last step):

(74) −x1 + λxm = 0.

The solution to (73) is readily found by pulling out successively x2, . . . , xm as functions
of x1:

(75) x2 = (λ−1)x1, x3 = (λ2−λ−1)x1, · · · , xm = (λm−λm−1−· · ·−1)x1.

Combined with the special relation (74), this last relation shows that λ must satisfy the
equation

(76) 1 − 2λm + λm+1.

Let λ1 be the largest positive root of this equation, existence and dominance beeing guar-
anteed by Perron-Frobenius properties. Note that the quantity ρ := 1/λ1 satisfies the
characteristic equation

1 − 2ρ+ ρm+1 = 0,

already encountered when discussing longest runs in words; the discussion of Example 2
then grants us the existence of an isolated ρ near 1

2 , hence the fact that λ1 is slightly less
than 2.

Similar devices yield the left eigenvector y = (y1, . . . , ym). It is found easily that yj

must be proportional to λ−j
1 . We thus obtain from Theorem V.6 and Equation (72): The
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probability of being in state j (i.e., being on step j of the stair) at time n tends to the limit

$j = γλ−j
1

where λ1 is the root near 2 of (76) and the normalization constant γ is determined by∑
j $j = 1. In other words, the distribution of the altitude at time n is a truncated geo-

metric distribution with parameter 1/λ1. For instance, m = 6 leads to λ1 = 1.98358, and
the asymptotic probabilities of being in states 1, . . . , 6 are

(77) 0.50413, 0.25415, 0.12812, 0.06459, 0.03256, 0.01641,

exhibiting clearly a geometric decay. Here is the simulation of a random history for n =
100:

5

0 20 40 60 80 100

In this case, the frequencies observed are 0.44, 0.26, 0.17, 0.08, 0.04, 0.01, pretty much
in agreement with what is expected.

Finally, the similarity with the longest run problem is easily explained. Let u and d
be letters representing steps upwards and downwards respectively. The set of paths from
state 1 to state 1 is described by the regular expression

P1,1 =
(
d+ ud+ · · · + um−1d

)?
,

corresponding to the generating function

P1,1(z) =
1

1 − z − z2 − · · · − zm
,

of variant of the OGF of words without m-runs of the letter u, which also corresponds
to the enumeration of compositions with summands ≤ m. The case of the probabilistic
transition matrix G̃ is left as an exercise to the reader. �

This last example is typical: in many cases combinatorial problems have some amount
of regularity. In such situations, all the resources of linear algebra are available, including
the vast body of knowledge gathered over years on calculations of structured determinants;
see for instance Krattenthaler’s survey [89] and the book [128].

V. 5.2. Finite automata. Word problems corresponding to regular languages can be
treated by the theory of regular specifications whenever they have enough structure and
an unambiguous regular expression description is of tractable form. This was the main
theme of Sections V. 1 and V. 2. The dual point of view of automata theory proves useful
whenever no such direct description is in sight. Finite automata resorting essentially to
the theory of paths in graphs, the results from the previous sections apply with only minor
adaptation. For convenience, we start by recalling definitions already given in Chapter I.

DEFINITION V.5. A finite automaton A over a finite alphabet A is a directed multi-
graph whose vertex set Q is called the set of states and whose edges are labelled by letters
of the alphabet. This graph is equipped with a designated initial state q0 ∈ Q and a
designated set of final states Qf ⊆ Q.

A word w is said to be accepted by the automaton if there exists a path π in the graph
connecting the initial state q0 to one of the final states q ∈ Qf , so that the succession of
labels of the path π corresponds to the sequence of letters composing w. The path π is
then called an accepting path for w. (We can regard the finitely many states as keeping a
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patial memory of the past, an interpretation that proves useful in design issues.) The set of
accepted words is denoted by L(A).

In all generality, a finite automaton may be a nondeterministic device: given a wordw,
one might not “know” a priori which choices to effect at vertices in order to accept it. A
finite automaton is said to be deterministic if given any state q ∈ Q and any letter x ∈ A,
there is at most one edge from vertex q that bears label x. In that case, one decides easily
(in linear time) whether a word is accepted by just following edges dictated by the sequence
of letters in w. All automata to be used in the examples below are deterministic.

PROPOSITION V.9 (Finite state automata counting). Any language accepted by a de-
terministic finite automaton has a rational generating function obtained as follows. If the
language is specified by the deterministic automaton A = 〈Q,Qf , q0〉, then the corre-
sponding ordinary generating function L0(z) is the component L0(z) of the linear system
of equations {

Lj(z) = φj + z
∑

a∈A
Lτ(qj ,a)(z)

}
,

where φj equals 1 if qj ∈ Qf and 0 otherwise, and where τ(qj , a) is the index of the state
reachable from state qj when the letter a is read.

As a consequence, the number of words in the language accepted by a finite-state
automaton always admits of an exponential-polynomial form.

Note. The most fundamental result of the theory of regular languages is that there
is complete equivalence between three descriptive models: regular expressions, determin-
istic finite automata, and nondeterministic finite automata. The corresponding theorems
are due to Kleene (the equivalence between regular expression and nondeterministic finite
automata) and to Rabin and Scott (the equivalence between nondeterministic and determin-
istic automata). Thus, finite automata whether deterministic or not accept (“recognize”) the
family of all regular languages.

PROOF. By the fundamental equivalence of models, one may freely assume the au-
tomaton to be deterministic. The quantity Lj is nothing but the OGF of the language
obtained by changing the initial state of the automaton to qj . Each equation expresses the
fact that a word accepted starting from qj may be the empty word (if qj is final) or, else,
it must consist of a letter a followed by a continuation that is itself accepted when the au-
tomaton is started from the “next” state, that is, the state of index τ(qj , a). (Equivalently,
one may reduce the proof to the enumeration of paths in graphs as detailed above.)

Existence of the exponential-polynomial form immediately results from rationality of
the OGF. �

As implied by the statement of the proposition, the OGF of the language defined by
a deterministic finite automaton involves a quasi-inverse (1 − zT )−1 where the transition
matrix T is a direct encoding of the automaton’s transitions. Corollary V.2 and Lemma V.1
have been precisely custom-tailored for this situation. As is by now usual, we shall allow
weights on letters of the alphabet, corresponding to a Bernoulli model on words. We say
that an automaton is irreducible (resp. aperiodic) if the underlying graph and the associated
matrix are irreducible (resp. aperiodic).

PROPOSITION V.10 (Random words and automata). Let L be a language recognized
by a deterministic finite automaton A that is irreducible and aperiodic. The number of
words of L satisfies

Ln ∼ cλn
1

(
1 +O(d−n)

)
,

where λ1 is the dominant (Perron-Frobenius) eigenvalue of the transition matrix of A and
c, d are positive constants with d > 1.
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


1 1 0 0
1 0 1 1
1 0 0 0
0 0 1 1




a b
a

a

b

a

d c
d

c

c

d

FIGURE 15. Locally constrained words: The transition matrix (T ) as-
sociated to the forbidden pairs F = {ac, ad, bb, cb, cc, cd, da, db}, the
corresponding automaton, and the graph with widths of vertices and
edges drawn in proportion to their asymptotic frequencies.

In a random word of Ln, the number of traversals of a designated vertex or edge has
a mean that is asymptotically linear in n and is given by Theorem V.6.

� 15. Unambiguous automata. A nondeterministic finite state automaton is said to be unambiguous
if the set of accepting paths for any given words comprises at most one element. The translation
into generating function as described above also applies to such automata, even though they are
nondeterministic. �

EXAMPLE 14. Locally constrained words. Consider a fixed alphabet A = {a1, . . . , am}
and a set F ⊆ A2 of forbidden transitions between consecutive letters. The set of words
overA with no such forbidden transition is denoted by L and is called a locally constrained
language. (The particular case where exactly all pairs of equal letters are forbidden corre-
sponds to Smirnov words and has been discussed on p. 34.)

Clearly, the words of L are recognized by an automaton whose state space is isomor-
phic to A: state q simply memorizes the fact that the last letter read was a q. The graph
of the automaton is then obtained by the collection of allowed transitions (q, r) 7→ a,
with (q, r) 6∈ F . (In other word, the graph of the automaton is the complete graph in which
all edges that correspond to forbidden transitions are deleted.) Consequently, the OGF of
any locally constrained language is a rational function. Its OGF is given by

(1, 1, . . . , 1)(I − zT )−1(1, 1, . . . , 1)t,

where Tij is 0 if (ai, aj) ∈ F and 1 otherwise. If each letter can follow any other letter
in an accepted word, the automaton is irreducible. The graph is aperiodic except in a few
degenerate cases (e.g., in the case where the allowed transitions would be a→ b, c, b→ d,
c→ d, d→ a). Under irreducibility and aperiodicity, the number of words will be ∼ cλ−n

1

and each letter will have on average an asymptotic constant frequency. (See (30) and (31)
of Chapter IV for the case of Smirnov words.)

For the example of Figure 15, the alphabet is A = {a, b, c, d}. There are eight forbid-
den transitions and the characteristic polynomial is found to be λ3(λ − 2). Thus, one has
λ1 = 2. The right and left eigenvectors are found to be

r = (2, 2, 1, 1)t, ` = (2, 1, 1, 1).
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Then, the matrix (τs,t), where τs,t represents the asymptotic frequency of transitions from
letter s to letter t is found in accordance with Theorem V.6:

Γ =




1
4

1
4 0 0

1
8 0 1

16
1
16

1
8 0 0 0

0 0 1
16

1
16



.

This means that a random path spends a proportion equal to 1
4 of its time on a transition be-

tween an a and a b, but much less ( 1
16 ) on transitions between pairs of letters bc, bd, cc, ca.

The letter frequencies in a random word of L are ( 1
2 ,

1
4 ,

1
8 ,

1
8 ), so that an a is four times

more frequent than a c or a d, and so on. See Figure 15 (right) for a rendering.
Various specializations, including multivariate GF’s and nonuniform letter models are

readily treated by this method. Bertoni et al. develop in [14] related variance and distri-
bution calculations in the case of the number of occurrences of a symbol in an arbitrary
regular language. �

EXAMPLE 15. De Bruijn graphs. Two thieves want to break into a house whose entrance
is protected by digital lock with an unknown four-digit code. As soon as the four digits
of the code are typed consecutively, the gate opens. The first thief proposes to try in order
all the four-digit sequences , resulting in as much as 40,000 key strokes in the worst-case.
The second thief, who is a mathematician, says he can try all four-digit combinations with
only 10,003 key strokes. What is the mathematician’s trade secret?

Clearly certain optimizations are possible: for instance, for an alphabet of cardinality
2 and codes of 2 letters, the sequence 00110 is better than the na ı̈ve one, 00 01 10 11,
which is redundant; a few more attempts will lead to an optimal solution for 3–digit codes
that has length 11 (rather than 24), for instance,

0001110100.

The general question is then: How far can one go and how to construct such sequences?
Fix an alphabet of cardinality m. A sequence that contains as factors (contiguous

blocks) all the k letter words is called a de Bruijn sequence. Clearly, its length must be
at least δ(m, k) = mk + k − 1, as it must have at least mk positions at distance at least
k from the end. Such a sequence of smallest possible length δ(m, k) is called a minimal
de Bruijn sequence. Such sequences were discovered by N. G. de Bruijn [26] in 1946, in
response to a question coming from electrical engineering, where all possible reactions of
a device presented as a black box must be tested at minimal cost. We shall expose here the
case of a binary alphabet, m = 2, the generalization to m > 2 being obvious.

Let ` = k−1 and consider the automaton B` that memorizes the last block of length `
read when scanning the input text from left to right. A state is thus assimilated to a string
of length ` and the total number of states is 2`. The transitions are easily calculated: let
q ∈ {0, 1}` be a state and let σ(w) be the function that shifts all letters of a word w
one position to the left, dropping the first letter of w in the process (thus σ maps {0, 1}`

to {0, 1}`−1); the transitions are

q
07→σ(q)0, q

17→σ(q)1.
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FIGURE 16. The de Bruijn graph: (left) ` = 3; (right) ` = 7.

If one further interprets a state q as the integer in the interval [0 . . 2` − 1 that it represents,
then the transition matrix assumes a remarkably simple form:

Ti,j =
1

2
[[(j ≡ 2i mod 2`) or (j ≡ 2i+ 1 mod 2`)]].

See Figure 16 for a rendering borrowed from [59].
Combinatorially, the de Bruijn graph is such that each node has indegree 2 and out-

degree 2. By a well known theorem going back to Euler: A necessary and sufficient con-
dition for an undirected connected graph to have an Eulerian circuit (that is, a closed
path that traverses each vertex exactly once) is that every node has even degree. For
strongly connected digraphs, the condition is that each node should have an outdegree
equal to its indegree. This last condition is obviously satisfied here. Take an Eulerian cir-
cuit starting and ending at node 0`; its length is 2`+1 = 2k. Then, clearly, the sequence
of edge labels encountered when prefixed with the word 0k−1 = 0` constitutes a minimal
de Bruijn sequence. In general, the argument gives a de Brujin sequence with minimal
length mk + k − 1. Et voilà! The trade secret of the thief-mathematician is exposed.

Back now to enumeration. The de Bruijn matrix is irreducible since a path labelled
by sufficiently many zeros always leads any state to the state 0`, while a path ending with
the letters of w ∈ {0, 1}` leads to state w. The matrix is aperiodic since it has a loop
on states 0` and 1`. Thus, by Perron Frobenius properties, it has a unique dominant eigen-
value, and it is not hard to check that its value is λ1 = 2, corresponding to the right
eigenvector (1, 1, . . . , 1)t. If one fixes a pattern w ∈ {0, 1}`, Theorem V.6 yields the fact
that a random word contains on average ∼ n

2` occurrences of pattern w. Note 14 also im-
plies that the distribution of the number of occurrences is concentrated around the mean as
the variance is O(n). This gives us in a simple manner a version of what was nicknamed
“Borges’s Theorem” in Chapter I: Almost every sufficiently long text contains all patterns
of some predetermined length `. As a matter of fact, the de Bruijn graph may be used to
quantify many properties of occurrences of patterns in random words, and it has been used
for this purpose in several works including [11, 50, 59]. �

EXAMPLE 16. Words with excluded patterns. Fix a finite set of patterns Ω = {w1, . . . , wr},
where each wj is a word of A?. The language E ≡ EΩ of words that contain no factor in Ω
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is described by the extended regular expression

E = A? \
r⋃

j=1

(A?wjA
?),

which constitutes a concise but highly ambiguous description. By closure properties of
regular languages, E is itself regular and there must exist a deterministic automaton that
recognizes it.

An automaton recognizing E can be constructed starting from the de Bruijn automaton
of index k = −1 + max |wj | and deleting all the vertices and edges that correspond to a
word of Ω. Precisely, vertex q is deleted whenever q contains a factor in Ω; the transition
(edge) from q associated with letter α gets deleted whenever the word qα contains a factor
in Ω. The pruned de Bruijn automaton, call it B◦

k, accepts all words of 0kE , when it is
equiped with the initial state 0k and all states are final. Thus, the OGF E(z) is in all cases
a rational function.

The matrix of B◦
k is the matrix of Bk with some nonzero entries replaced by 0. Assume

that B◦
k is irreducible. This assumption only eliminates a few pathological cases (e.g., Ω =

{01} on the alphabet {0, 1}). Then, the matrix of B◦
k admits a simple Perron-Frobenius

eigenvalue λ1. By domination properties (Ω 6= ∅), we must have λ1 < m, where m is
the cardinality of the alphabet. Aperiodicity is automatically granted. We then get by a
purely qualitative argument: The number of words of length n excluding patterns from the
finite set Ω is, under the assumption of irreducibility, asymptotic to cλn

1 , for some c > 0
and λ1 < ||A||. This last result is a strong metric form of Borges’ Theorem.

The construction of a pruned automaton is clearly a generalization of the case of words
obeying local constraints in Example 14 above. �

� 16. Words with excluded patterns and digital trees. Let S be a finite set of words. An automaton
recognizing S, considered as a finite language, can be constructed as a tree. The tree obtained is akin
to the classical digital tree or trie that serves as a data structure for maintaining dictionaries [85].

A modification of the construction yields an automaton of size linear in the total number of
characters that appear in words of S. [Hint. The construction can be based on the Aho–Corasick
automaton [2]). �

� 17. Words excluding a subsequence. The language formed of all words that do not containw1 · · ·wk

as a subsequence (or “hidden pattern”), except at the very end, is described by the unambiguous reg-
ular expression

(A \ w1)
? w1 (A \ w2)

? w2 · · ·wr−1 (A \ wk)?wk .

Assume the alphabet is endowed with a family of weights, with pj the weight of letter aj ∈ A. The
OGF F (z) of words not containing w as a subsequence satisfies, with qj := 1 − pj ,

F (z) =

k−1X

j=1

(p1 · · · pj)z
j

(1 − q1z) · · · (1 − qj+1z)
,

from which an asymptotic formula for [zn]F (z) derives. E.g., in the equiprobable case (pi = 1/m)

[zn]F (z) ∼ 1

mn
(m− 1)n−k+1 nk−1

(k − 1)!
.

(This problem is closely related to the discussion of pure-birth processes on page 63.) �
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V. 5.3. Transfer matrix methods. The transfer matrix method constitutes a variant
of the modelling by deterministic automata and by paths in graphs. The very general state-
ment of Theorem V.5 applies here with full strength. Here, we shall illustrate the situation
by the width of trees following an early article by Odlyzko and Wilf [103] and continue
with an example that draws its inspiration from the insightful exposition of domino tilings
and generating functions in the book of Graham, Knuth, and Patashnik [70].

EXAMPLE 17. Width of trees. The width of a tree is defined as the maximal number of
nodes that can appear on any layer at a fixed distance from the root. If a tree is drawn in
the plane, then width and height can be seen as the horizontal and vertical diomensions of
the bounding rectangle. Also, width is an indicator of the complexity of traversing the tree
in a breadth-first search (by a queue), while height is associated to depth-first search (by a
stack).

Transfer matrices are ideally suited to the problem of analysing the number of trees
of fixed width. Consider a simple variety of trees corresponding to the equation Y (z) =
zφ(Y (z)), where the “generator” φ describes the formation of trees and let Y [w](z) be the
GF of trees of width at most w. Such trees are easily built layer by layer. Say there are
k nodes at a certain level in the tree (with 1 ≤ k ≤ w); the number of possibilities for
attaching ` levels at the next level is the number of k-forests of depth 1 having ` leaves,
that is, the quantity

tk,` = [y`]φ(y)k.

Let T be the w × w matrix with entry Tk,` = z`tk,`. Then, clearly, the quantity zi(T h)i,j

(with 1 ≤ i, j ≤ w) is the number of i-forests of height h, width at most w, with j nodes
on level h. Thus, the GF of Y-trees having width at most w is

Y [w](z) = (z, 0, 0, . . .)(I − T )−1(1, 1, 1, . . .)t.

For instance, in the case of general Catalan trees, the matrix T has the shape,

T =




z
(
1
0

)
z2
(
2
0

)
z3
(
3
0

)
z4
(
4
0

)

z
(
2
1

)
z2
(
3
1

)
z3
(
4
1

)
z4
(
5
1

)

z
(
3
2

)
z2
(
4
2

)
z3
(
5
2

)
z4
(
6
2

)

z
(
4
3

)
z2
(
5
3

)
z3
(
6
3

)
z4
(
7
3

)



,

for width 4. The analysis of dominant poles provides asymptotic formulae for [zn]Y [w](z):

w = 2 w = 3 w = 4 w = 5 w = 6
0.0085 · 2.1701n 0.0026 · 2.8050n 0.0012 · 3.1638n 0.0006 · 3.3829n 0.0004 · 3.5259n

Additionally, the exact distribution of height in trees of size n becomes computable in
polynomial time (though with a somewhat high degree polynomial).

The character of these generating functions has not been investigated in detail since the
original work [103], so that, at the moment, analysis stops there. Fortunately, probability
theory can take over the problem. Chassaing and Marckert [22] have shown, for Cayley
trees, that the width satisfies

En(W ) =

√
π

2
+O

(
n1/4

√
logn

)
, Pn(

√
2W ≤ x) → 1 − Θ(x),

where Θ(x) is the Theta function defined in (44). This answers very precisely an open
question of Odlyzko and Wilf [103]. The distributional results of [22] extend to trees in any
simple variety (under mild and natural analytic assumptions on the generator φ): see the
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paper by Chassaing, Marckert, and Yor [23], which builds upon earlier results of Drmota
and Gittenberger [33]. In essence, the conclusion of these works is that the breadth first
search traversal of a large tree in a simple variety gives rise to a queue whose size fluctuates
asymptotically like a Brownian excursion, and is thus, in a strong sense, of a complexity
comparable to depth-first search: trees don’t have a preference as to the way they may be
traversed. �

� 18. A question on width polynomials. It is unknown whether the following assertion is true. The
smallest positive root ρk of the denominator of Y [k](z) satisfies

ρk = ρ+
c

k2
+ o(k−2),

for some c > 0. If such an estimate holds together with suitable companion bounds, it would yield
a purely analytic proof of the fact that expected width of n–trees is Θ(

√
n), as well as detailed

probability estimates. (The classical theory of Fredholm equations may be useful here.) �

EXAMPLE 18. Monomer-dimer tilings of a rectangle. Suppose one is given pieces that
may be one of the three forms: monomers (m) that are 1 × 1 squares, and dimers that are
dominoes, either vertically (v) oriented 1 × 2, or horizontally (h) oriented 2 × 1. In how
many ways can an n× 3 rectangle be covered completely and without overlap (‘tiled’) by
such pieces?

The pieces are thus of the following types,

m = , h = , v = ,

and here is a particular tiling of a 5 × 3 rectangle:

In order to approach this counting problem, one defines a class C of combinatorial ob-
jects called configurations. A configuration relative to an n× k rectangle is a partial tiling,
such that all the first n− 1 columns are entirely covered by dominoes while between zero
and three unit cells of the last column are covered. Here are for instance, configurations
corresponding to the example above.

These diagrams suggest the way configurations can be built by successive addition of
dominoes. Starting with the empty rectangle 0 × 3, one adds at each stage a collection of
at most three dominoes in such a way that there is no overlap. This creates a configuration
where, like in the example above, the dominoes may not be aligned in a flush-right manner.
Continue to add successively dominoes whose left border is at abscissa 1, 2, 3, etc, in a way
that creates no internal “holes”.

Depending on the state of filling of their last column, configuration can thus be clas-
sified into 8 classes that we may index in binary as C000, . . . , C111. For instance C001
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represent configurations such that the first two cells (from top to bottom, by convention)
are free, while the third one is occupied. Then, a set of rules describes the new type of con-
figuration obtained, when the sweep line is moved one position to the right and dominoes
are added. For instance, we have

C010 � =⇒ C101.

In this way, one can set up a grammar (resembling a deterministic finite automaton)
that expresses all the possible constructions of longer rectangles from shorter ones accord-
ing to the last layer added. The grammar comprises productions like

C000 = ε+mmmC000 +mvC000 + vmC000

+ ·mmC100 +m·mC010 +mm·C001 + v·C001 + ·vC100

+m··C011 + ·m·C101 + ··mC110 + ···C111 .

In this grammar, a “letter” like mv represent the addition of dominoes, in top to bottom
order, of typesm, v respectively; the letterm·mmeans adding twom-dominoes on the top
and on the bottom, etc.

The grammar transforms into a linear system of equations with polynomial coeffi-
cients. The substitution m 7→ z, h, v 7→ z2 then gives the generating functions of configu-
rations with z marking the area covered:

C000(z) =
(1 − 2z3 − z6)(1 + z3 − z6)

(1 + z3)(1 − 5z3 − 9z6 + 9z9 + z12 − z15)
.

In particular, the coefficient [z3n]C000(z) is the number of tilings of an n× 3 rectangle:

C000(z) = 1 + 3z3 + 22z6 + 131z9 + 823z12 + 5096z15 + · · · .
The sequence grows like c αn (for n ≡ 0 (mod 3)) where α

.
= 1.83828 (α is the cube root

of an algebraic number of degree 5). (See [21] for a computer algebra session.) On average,
for large n, there is a fixed proportion of monomers and the distribution of monomers in
a random tiling of a large rectangle is asymptotically normally distributed, as results from
the developments of Chapter IX. �

As is typical of the tiling example, one seeks to enumerate a “special” set of configu-
rations Cf . (In the example above, this is C000 representing complete rectangle coverings.)
One determines an extended set of configurations C (the partial coverings, in the example)
such that: (i) C is partitioned into finitely many classes; (ii) there is a finite set of “ac-
tions” that operate on the classes; (iii) size is affected in a well-defined additive way by
the actions. The similarity with finite automata is apparent: classes play the rôle of states
and actions the rôle of letters.

Often, the method of transfer matrices is used to approximate a hard combinatorial
problem that is not known to decompose, the approximation being by means of a family
of models of increasing “widths”. For instance, the enumeration of the number Tn of
tilings of an n × n square by monomers and dimers remains a famous unsolved problem
of statistical physics. Here, transfer matrix methods may be used to solve the n × w
version of the monomer–dimer coverings, in principle at least, for any fixed width w: the
result will always be a rational function, though its degree, dicated by the dimension of the
transfer matrix, will grow exponentially with w. (The “diagonal” sequence of the n × w
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rectangular models corresponds to the square model.) It has been at least determined by
computer search that the diagonal sequence Tn starts as (this is EIS A028420):

1, 7, 131, 10012, 2810694, 2989126727, 11945257052321, . . . .

From this and other numerical data, one estimates numerically that (Tn)1/n2 → 1.94021 . . .,
but no expression for the constant is known to exist. The difficulty of coping with the finite-
width models is that their complexity (as measured , e.g., by the number of states) blows up
exponentially with w—such models are best treated by computer algebra; see [135]—and
no law allowing to take a diagonal is visible. However, the finite width models have the
merit of providing at least provable upper and lower bounds on the exponential growth rate
of the hard “diagonal problem”.

In contrast, for coverings by dimers only, a strong algebraic structure is available and
the number of covers of an n×n square by horizontal and vertical dimers satisfies (n even)
beautiful formula originally discovered by Kasteleyn:

(78) U2n = 2n2/2
n∏

j=1

n∏

k=1

(
cos2

jπ

n+ 1
+ cos2

kπ

n+ 1

)
.

This sequence is EIS A004003,

1, 2, 36, 6728, 12988816, 258584046368, 53060477521960000, . . . .

It is elementary to prove from (78) that

lim
n→+∞

(
Û2n

)1/(2n)2

= exp

(
1

π

∞∑

n=0

(−1)n

(2n+ 1)2

)
= eG/π .

= 1.33851 . . . ,

where G is Catalan’s constant. This means in substance that each cell has a number of
degrees of freedoms equivalent to 1.33851. See Percus’ monograph [109] for proofs of
this famous result and Finch’s book [39, Sec. 5.23] for context and references.

� 19. Powers of Fibonacci numbers. Consider the OGFs

G(z) :=
1

1 − z − z2
=
X

n≥0

Fn+1z
n, G[k](z) :=

X

n≥0

(Fn+1)
k zn,

where Fn is a Fibonacci number. The OGF of monomer–dimer placements on a k × n board when
only monomers (m) and horizontal dimers (h) are allowed is obviously G[k](z). On the other hand,
it is possible to set up a transfer matrix model with state i (0 ≤ i ≤ k) corresponding to i positions
of the current column occupied by a previous domino. Consequently,

G[k](z) = coeffk,k(I − zT )−1, where Ti,j =

 
i

i+ j − k

!
,

for 0 ≤ i, j ≤ k. [The denominator of G[k](z) is otherwise known exactly [84, Ex. 1.2.8.30].] �

� 20. Tours on chessboards. The OGF of Hamiltonian tours on an n×w rectangle is rational (one is
allowed to move from any cell to any other vertically or horizontally adjacent cell). The same holds
for king’s tours and knight’s tours. �

� 21. Cover time of graphs. Given a fixed digraph G assumed to be strongly connected, and a
designated start vertex, one travels at random, moving at each time to any neighbour of the current
vertex, making choices with equal likelihood. The expectation of the time to visit all the vertices
is a rational number that is effectively (though perhaps not efficiently!) computable. [Hint: set up
a transfer matrix, a state of which is a subset of vertices representing those vertices that have been
already visited. For an interval [0, . .m], this can be treated by the dedicated theory of walks on the
integer interval, as in Section V. 2; for the complete graph, this is equivalent to the coupon collector
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FIGURE 17. A self-avoiding polygon or SAP (left) and a self-avoiding
walk or SAW (right).

problem. Most other cases are “hard” to solve analytically and one has to resort to probabilistic
approximations; see Aldous and Fill’s forthcoming book [3].] �

EXAMPLE 19. Self-avoiding walks and polygons. A long standing open problem
shared by statistical physics, combinatorics, and probability theory alike is that of quan-
tifying properties of self-avoiding configurations on the square lattice (Figure 17). Here
we consider objects that, starting from the origin (the “root”) follow a path, and are solely
composed of horizontal and vertical steps of amplitude ±1. The self-avoiding walk or SAW
can wander but is subject to the condition that it never crosses nor touches itself. The self-
avoiding polygons or SAPs, whose class is denoted by P , are self-avoiding walks, with
only an exception at the end, where the end-point must coincide with the origin. We shall
focus here on polygons. It proves convenient also to consider unrooted polygons (also
called simply-connected polyominoes), which are polygons where the origin is discarded,
so that they plainly represent the possible shapes of SAPs up to translation. For length 2n,
the number pn of unrooted polygons satisfies pn = Pn/(4n) since the origin (2n possibil-
ities) and the starting vertex (2 possibilities) of the corresponding SAPs are disregarded in
that case. Here is a table, for small values of n, listing polyominoes and the corresponding
counting sequences pn, Pn.

n: 2 3 4 5 6 7 8 9 10
pn (EIS A002931): 1 2 7 28 124 588 2938 15268 81826
Pn (EIS A010566): 8 24 112 560 2976 16464 94016 549648 3273040

Take the (widely open) problem of determining the number Pn of SAPs of perime-
ter 2n. This (intractable) problem can be approached as a limit of the (tractable) problem7

that consists in enumerating the collection P [w] of SAPs of width w, for increasing values
of w. The latter problem is amenable to the transfer matrix method, as first discovered by
Entig in 1980; see [35]. Indeed, take a polygon and consider a sweepline that moves from

7In this version of the text, we limit ourselves to a succinct description and refer to the original papers [35,
78] for details.
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its left to its right. Once width is fixed, there are at most 22w+2 possibilities for the ways
a vertical sweepline may intersect the polygon’s edges at half integer abscissæ. (There are
w + 1 edges and for each of these, one should “remember” whether they connect with the
upper or lower boundary.) The transitions are then themselves finitely described. In this
way, it becomes possible to set up a transfer matrix for any fixed width w. For fixed n, by
computing values of P [w]

n with increasingw, one finally determines (in principle) the exact
value of any Pn.

The program suggested above has been carried out to record values by the “Melbourne
School” under the impulse of Tony Guttmann. For instance, Jensen [78] found in 2003 that
the number of unrooted polygons of perimeter 100 is

p50 = 7545649677448506970646886033356862162.

Attaining such record values necessitates algorithms that are much more sophisticated than
the na ı̈ve approach we have just described, as well as a number of highly ingenious pro-
gramming optimizations.

It is an equally open problem to estimate asymptotically the number of SAPs of
perimeter n. Given the exact values till perimeter 100 or more, a battery of fitting tests
for asymptotic formula can be applied, leading to highly convincing (though still heuris-
tic) formulæ. Thanks to several workers in this area, we can regard the final answer as
“known”. From the works of Jensen and his predecessors, it results that a reliable empiri-
cal estimate is of the form

{
pn = Bµ2n(2n)−β(1 + o(1)),

µ
.
= 2.63815 85303, β = −5

2
± 3 · 10−7, B

.
= 0.5623013.

Thus, the answer is almost certainly of the form pn � µ2nn−5/2 for unrooted polygons
and Pn � µ2nn−3/2 for rooted polygons. It is believed that the same connective con-
stant µ dictates the exponential growth rate of self-avoiding walks. See Finch’s book [39,
Sec. 5.10] for a perspective and numerous references.

There is also great interest in the number pm,n of polyominos with perimeter 2n and
aream, with area defined as the number of square cells composing the polyomino. Studies
conducted by the Melbourne school yield numerical data that are consistent to an amaz-
ing degree (e.g., moments till order ten and small–n corrections are considered) with the
following assumption: The distribution of area in a fixed-perimeter polyomino obeys in
the asymptotic limit an “Airy area distribution”. This distribution is defined as the limit
distribution of the area under Dyck paths, a problem that was briefly discussed on p. 76
and to which we propose to return in Chapter VII. See [78, 114] and references therein for
a discussion of polyomino area. It is finally of great interest to note that the interpretation
of data was strongly guided by what is already known for exactly solvable models of the
type we are repeatedly considering in this book. �

V. 6. Additional constructions

We conclude this chapter with a discussion8 of a construction that builds on top of
rational functions by means of certain transformations. Specifically, it is possible to enu-
merate constrained permutations by making use of the transfer matrix (or finite automaton)
framework.

8Contents of this section are supplementary material that can be omitted on first reading.
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We examine here problems whose origin lies in nineteenth century recreational math-
ematics. For instance, the ménage problem solved and popularized by Édouard Lucas in
1891, see [25], has the following quaint formulation: What is the number of possible ways
one can arrange n married couples (‘ménages’) around a table in such a way that men
and women alternate, but no woman sits next to her husband?

The ménage problem is equivalent to a permutation enumeration problem. Sit first
conventionally the men at places numbered 0, . . . , n − 1, and let σi be the position at the
right of which the ith wife is placed. Then, a ménage placement imposes the condition
σi 6= i and σi 6= i+ 1 for each i. We consider here a linearly arranged table (see remarks
at the end for the other classical formulation that considers a round table), so that the
condition σi 6= i+1 becomes vacuous when i = n. Here is a ménage placement for n = 6
corresponding to the permutation

σ =


 1 2 3 4 5 6

4 5 6 2 1 3




61 2 3 4 5

Clearly, this is a generalization of the derangement problem (for which the weaker
condition σi 6= i is imposed), where the cycle decomposition of permutations suffices to
provide a direct solution (see Chapter 2).

Given a permutation σ = σ1 · · ·σn, any quantity σi − i is called an exceedance of σ.
Let Ω be a finite set of integers that we assume to be nonnegative. Then a permutation is
said to be Ω-avoiding if none of its exceedances lies in Ω. The counting problem, as we
now demonstrate, provides an interesting case of application of the transfer matrix method.

The set Ω being fixed, consider first for all j the class of augmented permutations
Pn,j that are permutations of size n such that j of the positions are distinguished and the
corresponding exceedances lie in Ω, the remaining positions having arbitrary values (but
with the permutation property being satisfied!). Loosely speaking, the objects in Pn,j can
be regarded as permutations with “at least” j exceedances in Ω. For instance, with Ω = {1}
and

σ =


 1 2 3 4 5 6 7 8 9

2 3 4 8 6 7 1 5 9


 ,

there are 5 exceedances that lie in Ω (at positions 1, 2, 3, 5, 6) and with 3 of these distin-
guished (say by enclosing them in a box), one obtains an element counted by P9,3 like

2 3 4 8 6 7 1 5 9.

Let Pn,j be the cardinality of Pn,j . We claim that the number Qn = QΩ
n of Ω-avoiding

permutations of size n satisfies

(79) Qn =
n∑

j=0

(−1)jPn,j .

Equation (79) is typically an inclusion-exclusion relation. To prove it formally, define the
number Rn,k of permutations that have exactly k exceedances in Ω and the generating
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FIGURE 18. A graphical rendering of the legal template 20?02?11?
relative to Ω = {0, 1, 2}.

polynomials

Pn(w) =
∑

j

Pn,jw
j , Rn(w) =

∑

k

Rn,kw
k .

The GF’s are related by

Pn(w) = Rn(w + 1) or Rn(w) = Pn(w − 1)..

(The relation Pn(w) = Rn(w + 1) simply expresses symbolically the fact that each Ω-
exceedance in R may or may not be taken in when composing an element of P .) In
particular, we have Pn(−1) = Rn(0) = Rn,0 = Qn as was to be proved.

The preceding discussion shows that everything relies on the enumeration Pn,j of per-
mutations with distinguished exceedances in Ω. Introduce the alphabet A = Ω ∪ {‘?’},
where the symbol ‘?’ is called the ‘don’t-care symbol’. A word on A, an instance with
Ω = {0, 1, 2} being 20?02?11?, is called a template. To an augmented permutation, one
associates a template as follows: each exceedance that is not distinguished is represented
by a don’t care symbol; each distinguished exceedance (thereby an exceedance with value
in Ω) is represented by its value. A template is said to be legal if it arises from an augmented
permutation. For instance a template 2 1 · · · cannot be legal since the corresponding con-
straints, namely σ1 − 1 = 2, σ2 − 2 = 1, are incompatible with the permutation structure
(one should have σ1 = σ2 = 3). In contrast, the template 20?02?11? is seen to be legal.
Figure 18 is a graphical rendering; there, letters of templates are represented by dominoes,
with a cross at the position of a numeric value in Ω, and with the domino being blank in
the case of a don’t-care symbol.

Let Tn,j be the set of legal templates relative to Ω that have length n and comprise j
don’t care symbols. Any such legal template is associated to exactly j! permutations, since
n− j position-value pairs are fixed in the permutation, while the j remaining positions and
values can be taken arbitrarily. There results that

(80) Pn,n−j = j!Tn,j and Qn =

n∑

j=0

(−1)n−jj!Tn,j ,

by (79). Thus, the enumeration of avoiding permutations rests entirely on the enumeration
of legal templates.

The enumeration of legal templates is finally effected by means of a transfer matrix
method, or equivalently, by a finite automaton. If a template τ = τ1 · · · τn is legal, then the
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following condition is met,

(81) τj + j 6= τi + i,

for all pairs (i, j) such that i < j and neither of τi, τj is the don’t-care symbol. (There are
additional conditions to characterize templates fully, but these only concern a few letters at
the end of templates and we may ignore them in this discussion.) In other words, a τi with
a numerical value preempts the value τi + i. Figure 18 exemplifies the situation in the case
Ω = {0, 1, 2}. The dominoes are shifted one position each time (since it is the value of
σ− i that is represented) and the compatibility constraint (81) is that no two crosses should
be vertically aligned. More precisely the constraints (81) are recognized by a deterministic
finite automaton whose states are indexed by subsets of {0, . . . , b− 1} where the “span” b
is defined as b = maxω∈Ω ω. The initial state is the one associated with the empty set (no
constraint is present initially), the transitions are of the form




(qS , j) 7→ qS′ where S′ = ((S − 1) ∪ {j − 1}) ∩ {0, . . . , b− 1}, j 6= ‘?’

(qS , ?) 7→ qS′ where S′ = (S − 1) ∩ {0, . . . , b− 1};
the final state is equal to the initial state (this translates the fact that no domino can pro-
trude from the right, and is implied by the linear character of the ménage problem under
consideration). In essence, the automaton only needs a finite memory since the dominoes
slide along the diagonal and, accordingly, constraints older than the span can be forgotten.
Notice that the complexity of the automaton, as measured by its number of states, is 2b.

Here are the automata corresponding to Ω = {0} (derangements) and to Ω = {0, 1}
(ménages).

{0} { } { }

For the ménage problem, there are two states depending on whether or not the currently
examined value has been preempted at the preceding step.

From the automaton construction, the bivariate GF TΩ(z, u) of legal templates, with
u marking the position of don’t care symbols, is a rational function that can be determined
in an automatic fashion from Ω. For the derangement and ménage problems, one finds

T {0}(z, u) =
1

1 − z(1 + u)
, T {0,1}(z, u) =

1 − z

1 − z(2 + u) + z2
.

In general, this gives access to the OGF of the corresponding permutations. Consider the
partial expansion of TΩ(z, u) with respect to u, taken under the form

(82) TΩ(z, u) =
∑

r

cr(z)

1− uur(z)
,

assuming for convenience only simple poles. There the sum is finite and it involves alge-
braic functions cj and uj of the variable z. Finally, the OGF of Ω-avoiding permutations
is obtained from TΩ by the transformation

znuk 7→ (−z)nk!,
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which is the transcription of (80). Define the (divergent) OGF of all permutations,

F (y) =
∞∑

n=0

n! yn = 2F0[1, 1; y],

in the terminology of hypergeometric functions. Then, by the remarks above and (82), we
find

QΩ(z) =
∑

r

cr(−z)F (−uj(−z)).

In other words, the OGF of Ω-avoiding permutations is a combination of compositions of
the OGF of the factorial series with algebraic functions.

The expressions simplify much in the case of ménages and derangements where the
denominators of T are of degree 1 in u. One has

Q{0}(z) =
1

1 + z
F (

z

1 + z
) = 1 + z2 + 2z3 + 9z4 + 44z5 + 265z6 + 1854z7 + · · · ,

for derangements, whence a new derivation of the known formula,

Q{0}
n =

n∑

k=0

(−1)k

(
n

k

)
(n− k)!.

Similarly, for (linear) ménage placements, one finds

Q{0,1}(z) =
1

1 + z
F (

z

(1 + z)2
) = 1 + z3 + 3z4 + 16z5 + 96z6 + 675z7 + · · · ,

which is EIS A00027 and corresponds to the formula

Q{0,1}
n =

n∑

k=0

(−1)k

(
2n− k

k

)
(n− k)!.

Finally, the same techniques adapts to constraints that “wrap around”, that is, con-
straints taken modulo n. (This corresponds to a round table in the ménage problem.) In
that case, what should be considered is the loops in the automaton recognizing templates
(see also the previous discussion of the zeta function of graphs). One finds in this way the
OGF of the circular (i.e., classical) ménage problem to be EIS A000179,

Q̂{0,1}(z) =
1 − z

1 + z
F (

z

(1 + z)2
) + 2z = 1 + z+ z3 + 2z4 + 13z5 + 80z6 + 579z7 + · · · ,

which yields the classical solution of the (circular) ménage problem,

Q̂{0,1}
n =

n∑

k=0

(−1)k 2n

2n− k

(
2n− k

k

)
(n− k)!,

a formula that is due to Touchard; see [25, p. 185] for pointers to the vast classical literature
on the subject. The algebraic part of the treatment above is close to the inspiring discus-
sion offered in Stanley’s book [123]. An application to robustness of interconnections in
random graphs is presented in [49].

For asymptotic analysis purposes, the following general property proves useful: Let F
be the OGF of factorial numbers and assume that y(z) is analytic at the origin where it
satisfies y(z) = z − λz2 +O(z3); then it is true that

(83) [zn]F (y(z)) ∼ [zn]F (z(1 − λz)) ∼ n!e−λ.
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(The proof results from simple manipulations of divergent series in the style of [10].) This
gives at sight the estimates

Q{0}
n ∼ ne−1, Q{0,1}

n ∼ ne−2.

More generally, for any set Ω containing λ elements, one has

Q{Ω}
n ∼ ne−λ.

Furthermore, the number RΩ
n,k of permutations having exactly k occurrences (k fixed) of

an exceedance in Ω is asymptotic to

Q{Ω}
n ∼ ne−λλ

k

k!
.

In other words, the rare event that an exceedance belongs to Ω obeys of Poisson distribution
with λ = |Ω|. These last two results are established by means of probabilistic techniques
in the book [7, Sec. 4.3]. The relation (83) points to a way of arriving at such estimates by
purely analytic-combinatorial techniques.

� 22. Other constrained permutations. Given a permutation σ = σ1 · · ·σn, a succession gap is
defined as any difference σi+1 − σi. Discuss the counting of permutations whose succession gaps
are constrained to lie outside of a finite set Ω. In how many ways can a kangaroo pass through all
points of the integer interval [1, n] starting at 1 and ending at n while making hops that belong to
{−2,−1, 1, 2}? �

� 23. Shuffle products. Let L,M be two languages over two disjoint alphabets. Then, the shuffle
product S of L and M is such that bS(z) = bL(z) · cM(z), where bS, bL,cM are the exponential
generating functions of S,L,M. Accordingly, if the OGF L(z) and M(z) are rational then the
OGF S(z) is also rational. [This technique may be used to analyse generalized birthday paradox and
coupon collector problems; see [46].] �

V. 7. Notes

Applications of rational functions in discrete and continuosu mathematics are in abun-
dance. Many examples are to be found in Goulden and Jackson’s book [67]. Stanley [123]
even devotes a full chapter of his book Enumerative Combinatorics, vol. I, to rational gen-
erating functions. These two books push the theory further than we can do here, but the
corresponding asymptotic aspects which we expose lie outside of their scope. The analytic
theory of positive rational functions starts with the works of Perron and Frobenius at the
beginning of the twentieth century and is explained in books on matrix theory likes those of
Bellman [8] and Gantmacher [62]. Its importance has been long recognized in the theory
of finite Markov chains, so that the basic theory of positive matrices is well developed in
many elementary treatises on probability theory. For such aspects, we refer for instance to
the classic presentations by Feller [37] or Karlin and Taylor [80].

The supercritical sequence schema is the first in a list of abstract schemas that neatly
exemplify the interplay between combinatorial, analytic, and probabilistic properties of
large random structures. The origins of this approach are to be traced to early works of
Bender [9, 10] followed by Soria and Flajolet [57, 58, 120].

Turning to more specific topics, we mention in relation to Section V. 2 the first global
attempt at a combinatorial theory of continued fractions by Flajolet in [40] together with
related works of Jackson of which an exposition is to be found in [67, Ch. 5] and a sum-
mary in [48] in relation to birth and death processes. Walks on graphs are well discussed
in Godsil’s book [65]. The discussion of local constraints in permutations based on [49]
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combines the combinatorial elements bound in Stanley’s book [123] with the general phi-
losophy of analytic combinatorics. Our treatment of words and languages largely draws its
inspiration from the line of research started by Sch ützenberger in the early 1960’s and on
the subsequent account to be found in Lothaire’s book [93].

There are many topics that would naturally fit into this chapter but weren’t ready for the present
edition. Amongst the ones that may be treated (briefly) in future editions, we mention: exactly
solvable models of convex polygons, the Ehrenfest urn model, random walks on undirected graphs,
shuffles and Laplace transforms, variations on cycles in graphs, digital trees and the Aho-Corasick
construction, the Goulden-Jackson cluster method. Future editions will be available from Philippe
Flajolet’s web page.



CHAPTER VI

Singularity Analysis of Generating
Functions

Es ist eine Tatsache, daß die genauere Kenntnis
des Verhaltens einer analytischen Funktion

in der N ähe ihrer singul ären Stellen
eine Quelle von arithmetischen S ätzen ist.

— ERICH HECKE [74, Kap. VIII]

A function’s singularities are reflected in the function’s coefficients. For rational fractions
and meromorphic functions, the local analysis of polar singularities provides contributions
to coefficients in the form of exponential polynomials, that is, products of polynomials and
simple exponentials. In this chapter, we present a general approach to singularity anal-
ysis of generating functions that is no longer restricted to polar singularities and extends
to a very large class of functions that have moderate growth or decay at their dominant
singularities. The basic principle is the existence of a correspondence between

the asymptotic expansion of a function near its dominant singularities
and

the asymptotic expansion of the function’s coefficients.

This mapping essentially preserves orders of growth in the sense that larger functions have
larger coefficients.

Precisely, the method of singularity analysis applies to “algebraic–logarithmic” func-
tions whose singular expansions involve fractional powers and logarithms. It relies on
two types of results: first, it is possible to set up a catalogue of asymptotic expansions
for coefficients of standard functions occurring in such singular expansions second, trans-
fer theorems allow us to extract the asymptotic order of coefficients of error terms from
singular expansions and error terms.

The developments are based on Cauchy’s coefficient formula used in conjunction with
special contours of integration known as Hankel contours. The contours come very close
to the singularities then steer away; by design, they have the property of capturing essential
asymptotic informations contained in the functions’ singularities.

An important feature of the method is to require only local asymptotic properties of the
function to be analysed. In this way, it is often instrumental in the case of functions only
indirectly accessible through functional equations. In particular, the method of singularity
analysis allows us to treat models where singularities of the square–root type occur, which
is invariably the case for simple tree types. It also applies to search trees of various kinds
as well as to several searching and sorting algorithms whose analyses (see later chapters)
often involve logarithmic factors.

119
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VI. 1. Introduction

Rational and meromorphic functions have coefficients whose asymptotic form in-
volves “exponential polynomials”, that is, finite linear combinations of elements of the
form (

1

ω

)n

nk−1,

with k a positive integer. This reflects the nature of polar singularities, with corresponding
elements of the form

1

(1 − z
ω )k

,

for the function itself. We examine here a class of methods that yield a much wider range
of subexponential factors. The method, called singularity analysis, provides asymptotic
forms of coefficients which are of the type

(
1

ω

)n

nα−1 (log n)β ,

with α and β being arbitrary real (or even complex) numbers. Such forms relate to singu-
larities of a more complicated nature than mere poles, namely, elements of the form

1

(1 − z
ω )α

(
log

1

1 − z
ω

)β

.

in the asymptotic expansion of the function at its singularity ω.
The exponential factor ω−n is, as seen in Chapter IV, easily accounted for as the

location of the dominant singularities always induces a multiplicative exponential factor
for coefficients. If f(z) is singular at z = ω, then g(z) := f(z/ω) satifies, by the scaling
rule of Taylor expansions

[zn] f(z) = ωn[zn] f(
z

ω
) = ωn[zn] g(z),

and g(z) itself is singular on the unit disc. Consequently, in most of the discussion that
follows, we shall examine functions f(z) that are singular at z = 1, a condition that entails
no loss of generality.

Consider commonly encountered functions that are singular at 1. Here is a small
sample of those admitting expansions of an elementary form:

(1)

Function Coeff. (exact) Coeff. (asymptotic)

(f1) [zn] 1 −
√

1 − z =
2

n4n

 
2n − 2

n − 1

!
∼ 1

2
√
πn3

(f2) [zn]
1√

1 − z
=

1

4n

 
2n

n

!
∼ 1√

πn

(f3) [zn]
1

1 − z
= 1 ∼ 1

(f4) [zn]
1

1 − z
log

1

1 − z
= Hn ∼ log n

(f5) [zn]
1

(1 − z)2
= n + 1 ∼ n.

Such a table obviously has structure: a logarithmic factor in the function is reflected by a
similar factor in the coefficients; square-roots somehow induce square-roots; finally func-
tions of larger growth have larger coefficients; see Figure 1.
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FIGURE 1. The five functions from Eq. (1) and a plot of their coef-
ficient sequences illustrate the tendency of coefficient extraction to be
consistent with orders of growth of functions.

Here is a partial explanation of such observations. First, regarding the basic functions
in the scale, the Newton expansion

(1 − z)−α =

∞∑

n=0

(
n+ α− 1

n

)
zn

when specialized to an integer k immediately gives the asymptotic form of the coefficients
involved,

(2)
[zn](1 − z)−k ≡ (n+ 1)(n+ 2) · · · (n+ k − 1)

(k − 1)!

=
nk−1

(k − 1)!

(
1 + O(

1

n
)

)
.

For general α, it is therefore natural to expect

(3)
[zn](1 − z)−α ≡

(
n+ α− 1

α− 1

)

=
nα−1

(α− 1)!

(
1 + O(

1

n
)

)
.

It turns out that the asymptotic formula and even a full asymptotic expansion are valid
for real or complex α, provided we interpret (α − 1)! suitably. Indeed, one has, (see
Section VI. 2 and Theorem VI.1)

(4) [zn](1 − z)−α ∼ nα−1

Γ(α)

(
1 +

α(α− 1)

2n
+ · · ·

)
,

where Γ(α) is the Euler Gamma function defined as

(5) Γ(α) :=

∫ ∞

0

e−ttα−1 dt,

for <(α) > 0, which coincides with (α− 1)! whenever α is an integer. Basic properties of
this function are recalled in APPENDIX: Gamma function, p. 163.

We indeed observe from the pair (2)–(3) that functions of the form (1 − z)−α that
are larger at the singularity z = 1 (corresponding to larger values of α) also have larger
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coefficients. The correspondence that this observation suggests is very general as we are
going to see repeatedly throughout this chapter.

Second, an asymptotic expansion of f(z) around z = 1 is typically of the form

(6) f(z) = σ(z) + O(τ(z)) where σ(z) � τ(z) as z → 1,

with σ and τ belonging to an asymptotic scale of standard functions like the collection
{(1−z)−α}α∈R in simpler cases. Taking formally Taylor coefficients in the expansion (6),
we arrive at

(7) fn ≡ [zn]f(z) = [zn]σ(z) + [zn]O(τ(z)).

Therefore, in order to extract asymptotic informations on the coefficients of f(z), two
ingredients are needed:

(i) A catalogue of exact or asymptotic forms for coefficients of standard singular
functions σ(z);

(ii) A way of extracting coefficients of functions known only by their order of growth
around the singularity.

The first aspect (i) is achieved by expansions of the type (4). The second aspect (ii) is
achieved by transfer lemmas which under suitable conditions, essentially analytic contin-
uation, guarantee that

[zn]O(τ(z)) = O([zn]τ(z)),

a relation which is much less trivial than its symbolic form would seem to imply (see
Section VI. 3 and Theorem VI.3).

In summary, under favourable conditions which it is the goal of this chapter to elicit,
we have available the implication

(8) f(z) = σ(z) + O(τ(z)) =⇒ fn = σn + O(τn).

The process of singularity analysis thus parallels the analysis of coefficients of rational and
meromorphic functions presented in the previous chapter. The range of singular behaviours
taken into account by singularity analysis is however considerably larger. We shall allow
here functions from the scale

1

(1 − z)α
(log

1

1 − z
)β (z → 1),

which, for coefficients, appear to induce subexponential factors of the form

θ(n) = nα−1(logn)β .

(See Theorem VI.2.) Even iterated logarithms (log log’s) and more exotic functions can be
encapsulated in the method.

As an illustration of the modus operandi, consider the function

f(z) =
e−z−z2/2

√
1 − z

,

which is the EGF of 2–regular graphs (or equivalently, “clouds”, see Chapter II or [25]).
Singularity analysis permits us to reason as follows. The function f(z) is only singular at
z = 1 where it has a branch point. Expanding the numerator around z = 1, we have

(9) f(z) =
e−3/4

√
1 − z

+ O((1 − z)3/2).
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Therefore (see Theorems VI.1 and VI.3, as well as the discussion on page 134 below),
upon translating formally and term–by–term, one has

(10) [zn]f(z) = e−3/4

(
n− 1/2

n

)
+ O

(
n− 3/2

n

)
=
e−3/4

√
πn

+ O(n−3/2),

and a full asymptotic expansion into descending powers of n can be obtained.

VI. 2. Coefficient asymptotics for the basic scale

This section and the next are essentially based on the theory developed by Flajolet and
Odlyzko [52] and called singularity analysis. Technically the theory relies on a systematic
use of Hankel contours in Cauchy coefficient integrals. Hankel contours classically serve
to express the Gamma function: see APPENDIX: Gamma function, p. 163. Here they are
first used to estimate coefficients of a standard scale of functions, and then to prove trans-
fer theorems for error terms . This constitutes the basic process by which an asymptotic
expansion of a function near a singularity is directly mapped to a matching asymptotic
expansion of its coefficients.

Returning to the binomial expansion, we have for general α,

[zn](1 − z)−α = (−1)n

(−α
n

)
=

(
n+ α− 1

n

)
=
α(α + 1) · · · (α + n− 1)

n!
.

This quantity is expressible in terms of Gamma factors ( APPENDIX: Gamma function,
p. 163), and

(11)

(
n+ α− 1

n

)
=

Γ(n+ α)

Γ(α)Γ(n + 1)
,

provided α is neither 0 nor a negative integer. When α ∈ {0,−1, . . .}, the coefficients(
n+α−1

n

)
eventually vanish, so that the asymptotic problem of estimating [zn](1 − z)−α

becomes void. The asymptotic analysis of the coefficients
(

n+α−1
n

)
can be carried out

elementarily by means of Stirling’s formula or by real integral estimates: see Notes 1
and 2. However, a far more productive method consists in analysing these coefficients by
means of Cauchy’s coefficient formula applied to their GF. For us, this approach has two
major advantages: it paves the way to the proof of transfer theorems; it readily extends to
coefficients of functions involving logarithmic (and even iterated logarithmic) factors.

� 1. Stirling’s formula and asymptotics of binomial coefficients. The gamma function form (11) of
the binomial coefficients yields

[zn](1 − z)−α =
nα−1

Γ(α)

„
1 + O(

1

n
)

«
,

when Stirling’s formula is applied to the gamma factors. �

� 2. Beta integrals and asymptotics of binomial coefficients. The following constitutes a direct way
of obtaining the general asymptotic form of

`
n+α−1

n

´
based on the Eulerian Beta integral (see [131,

p.254] and APPENDIX: Gamma function, p. 163). Consider the quantity

φ(n, α) =

Z 1

0

tα−1(1 − t)n−1 dt =
(n− 1)!

α(α + 1) · · · (α+ n − 1)
≡ 1

n
`

n+α−1
n

´ ,

where the second form results elementarily from successive integrations by parts. The change of
variables t = x/n yields

φ(n, α) =
1

nα

Z n

0

xα−1(1 − x/n)n−1 dt ∼
n→∞

1

nα

Z ∞

0

xα−1e−x dx ≡ Γ(α)

nα
,
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0 2/n10 1

1/2

R

FIGURE 2. The contours C0, C1, and C2 ≡ H(n) used for estimating the
coefficients of functions from the standard asymptotic scale.

where the asymptotic form results from the standard limit formula of the exponential: exp(a) =
limn→∞(1 + a/n)n. �

THEOREM VI.1 (Standard function scale). Let α be a number not belonging to the set
{0,−1,−2, . . .}. The coefficient of zn in

f(z) = (1 − z)−α

admits for large n a full asymptotic expansion in descending powers of n,

[zn]f(z) ∼ na−1

Γ(α)

(
1 +

∞∑

k=1

ek(α)

nk

)
,

where ek(α) is a polynomial in α of degree 2k.

The polynomial ek(α) turns out to be divisible by α(α− 1) · · · (α− k). In particular,
we have

(12)
fn = [zn](1 − z)−α ∼ nα−1

Γ(α)

(
1 +

α (α− 1)

2n
+
α (α− 1) (α− 2) (3α− 1)

24n2

+
α2 (α− 1)

2
(α− 2) (α− 3)

48n3
+ · · ·

)
.

PROOF. First the coefficient [zn](1 − z)−α is expressed by means of Cauchy’s coef-
ficient formula,

(13) fn =
1

2iπ

∫

C
(1 − z)−α dz

zn+1
,

with C a small enough contour that encircles the origin, for instance the positively oriented
circle C0 = {z, |z| = 1

2}. Next this contour C0 gets deformed into another one, C1,
consisting of a large circle of radius R > 1 with a notch that comes back near and to
the left of z = 1. (In effect, any simple closed contour around the origin that does not
cross the half–line z ≥ 1 is adequate.) Since the integrand along large circles decreases
as O(R−n−α), we can finally let R tend to infinity. We are then left with an integral
representation for fn where C is thus replaced by a contour C2 that starts from −∞ in the
lower half plane, winds around 1 clockwise and ends at +∞ in the upper half plane. This
is a typical case of a Hankel contour otherwise described in APPENDIX: Gamma function,
p. 163.
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In order to specify fully the integration path, we particularize C2 to be the contour
H(n) that passes at a distance 1

n from the half line [1,+∞[:

(14) H(n) = H−(n) + H+(n) + H◦(n)

where

(15)





H−(n) = {z = w − i
n , w ≥ 1}

H+(n) = {z = w + i
n , w ≥ 1}

H◦(n) = {z = 1 − eiφ

n , φ ∈ [−π
2 ,

π
2 ]}.

Now, a change of variable

(16) z = 1 +
t

n

in the integral (13) gives the form

(17) fn =
nα−1

2iπ

∫

H
(−t)−α

(
1 +

t

n

)−n−1

dt

where H is exactly the Hankel contour encountered in the proof of Theorem B.1.
We have

(18)(
1 +

t

n

)−n−1

= e−(n+1) log(1+t/n) = e−t

[
1 +

t2 − 2t

2n
+

3t4 − 20t3 + 24t2

24n2
+ · · ·

]
.

Thus, the integrand in (17) converges pointwise (as well as uniformly in any bounded do-
main of the t plane) to (−t)−αe−t which is precisely the “kernel” that appears in Hankel’s
formula for the Gamma function. Substitution of the asymptotic form

(1 +
t

n
)−n−1 = e−t(1 + O(

1

n
)),

as n→ ∞ inside the integral (17) suggests that

[zn](1 − z)−α =
nα−1

Γ(α)
(1 + O(

1

n
)).

Furthermore, the full expansion (18) when plugged into the integral (17) formally leads to
an expansion in descending powers of n.

To complete the argument outlined in the previous paragraph, one then proceeds as
follows:

(i) Split the contour according to |t| ≤ log2 n and |t| ≥ log2 n. The part corre-
sponding to |t| ≥ log2 n is seen to be negligible in the scale of the problem; for
instance, there,

(1 +
t

n
)−n = O(exp(− log2 n)).

(ii) On the remaining part of the contour, |t| ≤ log2 n, the quantity t
n is small

enough, being of order log2 n
n , so that a terminating form of (18) may be de-

veloped to any predetermined order with uniform error terms.

These considerations justify term-by-term integration of expansion (18) within the integral
of (17).
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n = 10 n = 20 n = 50
4n

√
πn3

`
1 1 8708 6 935533866 2022877684829178931751713264

− 9
8
N−1

16 603 65 45410086 197 7362936920522405787299715

+ 145
128

N−2
16 815 656 5051735 19782 79553371460627490749710

− 1155
1024

N−3
1679 4 6564 073885 1978261 300061101426696482732

+ 36939
32768

N−4
16796 656412 2750 19782616 64919884629357813591

− 295911
262144

N−5
16796 6564120 303 1978261657 612856326190245636

+ 4735445
4194304

N−6
16796 656412042 6 197826165775 9023715384519184

− 37844235
33554432

N−7
´

16796 6564120420 19782616577561 03402179527600

Cn 16796 6564120420 1978261657756160653623774456

FIGURE 3. Improved approximations to the Catalan numbers obtained
by successive terms of their asymptotic expansion.

The full expansion is then computed as follows. A term of the form tr

ns in the expan-
sion (18) induces, by Hankel’s formula, a term of the form 1

Γ(α−r)
1

ns . The expansion so
obtained is nondegenerate provided α differs from a negative integer or zero. Since

1

Γ(α− k)
=

1

Γ(α)
(α− 1)(α− 2) · · · (α− k).

the expansion in the statement of the theorem eventually follows. �

The asymptotic approximations obtained are far from being as accurate as the ones that
derive from meromorphic asymptotics in Chapter IV, where exponentially small error terms
could be derived. However here, when the first few terms of the asymptotic expansion
are included, it is not uncommon to obtain results with about 10−6 accuracy, already for
values of n in the range 101–102. Figure 3 examplifies this situation by displaying the
approximations obtained for the Catalan numbers,

Cn =
4n

n+ 1
[zn](1 − z)−1/2,

whenC10, C20, C50 are considered and up to eight asymptotic terms are taken into account.

The basic principle underlying the method of proof of Theorem VI.1 is simple. It
consists in taking a contour of integration that comes close to the singularity at z = 1.
By choosing this contour to pass at distance 1

n , the kernel in Cauchy’s coefficient formula
transforms into an exponential, while the function can be locally expanded, with the dif-
ferential coefficient only introducing a rescaling factor of 1/n:

1

zn+1
7→ e−t, (1 − z)−α 7→ nα(−t)−α, dz 7→ 1

n
dt.

In other words, the contour H(n) “captures” the behaviour of the function near its singu-
larity, thereby enabling coefficient estimation.

This principle has the further advantage of generalizing to a wide class of singular
functions, most notably the ones that involve logarithmic terms, as well as leading to a
whole range of transfers of O(.) and o(.) terms, to be established in the next section.
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THEOREM VI.2 (Standard coefficient scale, logarithms). Let α be a number not in
{0,−1,−2, . . .}. The coefficient of zn in

f(z) = (1 − z)−α

(
1

z
log

1

1 − z

)β

admits for large n a full asymptotic expansion in descending powers of logn,

(19) fn = [zn]f(z) ∼ nα−1

Γ(α)
(logn)β

[
1 +

C1

1!

β

logn
+
C2

2!

β(β − 1)

(log n)2
+ · · ·

]
.

There, Ck = Ck(α) represents

Γ(α)
dk

dsk

1

Γ(s)

∣∣∣∣
s=α

.

A coefficient of 1
z is introduced in front of the logarithm since log(1 − z)−1 = z +

O(z2). In this way, f(z) is a bona fide power series in z, even in cases when β is not a
positive integer.

PROOF. The proof is a simple variant of that of Theorem VI.1, see [52] for details.
The basic expansion used is now

f(1 +
t

n
)(1 +

t

n
)−n−1 ∼ e−t

(−n
t

)α (
log

(−n
t

))β

∼ e−t(−t)−α

nα
(logn)β

(
1 − log(−t)

logn

)β

∼ e−t(−t)−α

nα
(logn)β

(
1 − β

log(−t)
logn

+
β(β − 1)

2!
(
log(−t)
logn

)2 + · · ·
)
.

It proves again justified to employ this expansion inside the integral defining the coeffi-
cients. What comes out is a collection of Hankel integrals of the form

− 1

2iπ

∫ (0)

+∞
(−t)−se−t(log(−t))k dt

which reduce to derivatives of 1
Γ(s) as is seen by differentiation with respect to s under the

integral sign. �

A typical example of application of Theorem VI.2 is

[zn]
1√

1 − z

1
1
z log 1

1−z

=
1√

πn logn

(
1 − γ + 2 log 2

log n
+ O(

1

log2 n
)

)
.

(Surprising as it may seem, such singular functions do occur in combinatorics and the
analysis of algorithms [56].)

Furthermore, a direct adaptation of the proof of our basic theorems leads to results
regarding the coefficients of many functions that have a nearly polynomial growth. It is
proved in [52] that, for a class of functions L slowly varying at ∞ and for α 6= 0,−1, . . .,
one has:

(20) [zn]
1

(1 − z)α
L(

1

1 − z
) ∼ nα−1

Γ(α)
L(n).
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α 6∈ {0,−1,−2, . . .} (Eq.) α ∈ {0,−1,−2, . . .} (Eq.)

β 6∈ Z≥0
nα−1

Γ(α)
(log n)β

∞X

j=0

Cj

(log n)j
(19) fn ∼ nα−1(log n)β

∞X

j=1

C?
j

(log n)j
(21)

β ∈ Z≥0
nα−1

Γ(α)

∞X

j=0

Ej(log n)

nj
(22) nα−1

∞X

j=0

Fj(log n)

nj
(24)

FIGURE 4. The general and special cases of fn ≡ [zn]f(z) when f(z)
is as in Theorem VI.2.

Logarithms and their powers constitute typical instances of such slowly varying functions;
iterated logarithms also belong to this class and, for a general α 6= 0,−1, . . ., the rela-
tion (20) specializes to

[zn](1 − z)−α

(
1

z
log

1

1 − z

)β (
1

z
log

(
1

z
log

1

1 − z

))δ

∼ nα−1

Γ(α)
(log n)β(log logn)δ .

A full asymptotic expansion in descending powers of logn can once more be derived in
this case [52].

Special cases. The conditions of Theorem VI.2 exclude explicity the case when α is an
integer ≤ 0. The formulæ actually remain valid in this case, provided one interprets them
as limit cases, making use of 0 = 1/Γ(0) = 1/Γ(−1) = · · · . When β is a positive integer,
stronger forms are valid. Such cases are summarized in Figure 4 and discussed now.

The case of integral α ∈ Z≤0. When α is an integer ≤ 0, the coefficients of f(z) =
(1− z)−α eventually reduce to zero, so that the asymptotic coefficient expansion becomes
trivial. This situation is implicitly covered by the statement of Theorem VI.1 since, in that
case, 1/Γ(α) = 0. When logarithms are present (with α ∈ Z≤0 still), the expansion of
Theorem VI.2 regarding

[zn](1 − z)−α(
1

z
log

1

1 − z
)β

remains valid provided we again take into account the equality 1/Γ(α) = 0 in formula (19)
after effecting simplifications by Gamma factors: It is only the first term of (19) that van-
ishes,

(21) fn = [zn]f(z) ∼ nα−1 (logn)
β

[
C∗

1

1!

β

logn
+
C∗

2

2!

β(β − 1)

(log n)2
+ · · ·

]
,

where, C∗
k ≡ C∗

k (α) satisfies

C∗
k =

dk

dsk

1

Γ(s)

∣∣∣∣
s=α

.

For instance, we find

[zn]
z

log(1 − z)−1
= − 1

n log2 n
+

2γ

n log3 n
+ O(

1

n log4 n
).

The case of integral β ∈ Z≥0. When β is a nonnegative integer, the error terms
can be further improved with respect to the ones predicted by the general statement of
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Theorem VI.2. For instance, we have (see also Note 3):

[zn]
1

1 − z
log

1

1 − z
= logn+ γ +

1

2n
− 1

12n2
+ O(

1

n4
)

[zn]
1√

1 − z
log

1

1 − z
∼ 1√

πn

(
logn+ γ + 2 log 2 + O(

log n

n
)

)
.

(In such a case, the expansion of Theorem VI.2 terminates since only its first (k+1) terms
are nonzero.) In fact, in the general case of nonintegral α, there exists an expansion of the
form

(22) [zn](1 − z)−α logk 1

1 − z
∼ nα−1

Γ(α)

[
E0(logn) +

E1(logn)

n
+ · · ·

]
,

where the Ej are polynomials of degree k, as can be proved by adapting the argument
employed for general α. It is worth however mentioning an alternative approach due to
Frobenius and Jungen [79], and based on the observation that

(1 − z)−α

(
log

1

1 − z

)k

=
∂k

∂αk
(1 − z)−α.

If one lets the operators of differentiation ( ∂/∂α ) and coefficient extraction ( [zn] ) com-
mute —this can be justified by Cauchy’s coefficient formula upon differentiating under the
integral sign— one gets directly

(23) [zn](1 − z)−α

(
log

1

1 − z

)k

=
∂k

∂αk

Γ(n+ α)

Γ(α)Γ(n+ 1)
.

For instance, there is an exact formula,

[zn](1 − z)−α log
1

1 − z
=

Γ(n+ α)

Γ(α)Γ(n+ 1)

[
1

α
+

1

α+ 1
+ · · · + 1

n+ α− 1

]
.

The joint case α ∈ Z≤0, β ∈ Z≥0. If α is an integer of Z≤0, the coefficients appear
as finite differences of coefficients of logarithmic functions. Explicit formulæ are then
available elementarily from the calculus of finite differences. For instance, with α = −r
for r ∈ Z≥0, one has

(24) [zn](1 − z)r log
1

1 − z
= (−1)r r!

n(n− 1) · · · (n− r)
.

The case α = −r, β = k is covered similarly by (23). Note that, in this case, there is a
formula analogous to (22),

(25) [zn](1 − z)r logk 1

1 − z
∼ n−r−1

[
F0(logn) +

F1(logn)

n
+ · · ·

]
,

but now with deg (Fj) = k − 1.

� 3. Shifted harmonic numbers. Define the α-shifted harmonic number by

hn(α) :=
n−1X

j=0

1

j + α
.

Set L(z) := − log(1 − z). Then, one has

[zn](1 − z)−αL(z) =
`

n+α−1
n

´
hn(α)

[zn](1 − z)−αL(z)2 =
`

n+α−1
n

´ `
h′

n(α) + hn(α)2
´
.
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FIGURE 5. A ∆–domain and the contour used to establish Theorem 5.4.

(Note: hn(α) = ψ(α+ n) − ψ(α), where ψ(s) := ∂s log Γ(s).) In particular,

[zn]
1√

1 − z
log

1

1 − z
=

1

4n

 
2n

n

!
[2H2n −Hn],

where Hn ≡ hn(1) is the usual harmonic number. �

� 4. Oscillations and complex exponents. Fluctuations occur in the case of singular expansions
involving complex exponents. From the consideration of [zn](1 − z)±i � n∓i, one finds

[zn] cos

„
log

1

1 − z

«
=
P (log n)

n
+O(

1

n2
),

where P (u) is a continuous and 1–periodic function. In general, oscillations are present in [zn](1 −
z)−α for any nonreal α. �

VI. 3. Transfers

Once coefficients of a fairly extensive scale have been made explicit, there remains
to show how to translate error terms in the asymptotic approximation of a function near a
singularity. This task is even technically simpler as a coarser analysis suffices. It still relies
on the principles of contour integration by means of Hankel-type paths.

A natural extension of the previous results is to assume the error terms valid in the
complex plane slit along the real half line [1,+∞[. In fact weaker conditions suffice and
any domain whose boundary makes an acute angle with the half line [1,+∞[ is suitable.

DEFINITION VI.1. Given two numbers φ,R with R > 1 and 0 < φ < π
2 , the open

domain ∆(φ,R) is defined as

∆(φ,R) = {z
∣∣ |z| < R, z 6= 1, |Arg(z − 1)| > φ}.

A domain is a ∆–domain if it is a ∆(φ,R) for some R (R > 1) and some φ (0 < φ < π
2 ).

A function is ∆–analytic if it is analytic in some ∆–domain.

Analyticity in a ∆–domain (Figure 5) is the basic condition for transfer to coefficients
of error terms in asymptotic expansions.

THEOREM VI.3 (Transfer, Big-Oh and little-oh). (i) Assume that f(z) is ∆–analytic
and that it satisfies in the intersection of a neighbourhood of 1 and of its ∆–domain the
condition

f(z) = O
(

(1 − z)−α(log
1

1 − z
)β

)
.



VI. 3. TRANSFERS 131

Then
[zn]f(z) = O(nα−1(log n)β).

(ii) Assume that f(z) is ∆–analytic and that it satisfies in the intersection of a neighbour-
hood of 1 and of the ∆–domain the condition

f(z) = o

(
(1 − z)−α(log

1

1 − z
)β

)
.

Then
[zn]f(z) = o(nα−1(logn)β).

PROOF. The starting point is Cauchy’s coefficient formula,

fn ≡ [zn]f(z) =
1

2iπ

∫

γ

f(z)
dz

zn+1
,

where γ is a loop around the origin which is internal to the ∆–domain of f . We choose the
positively oriented contour (Figure 5) γ = γ1 + γ2 + γ3 + γ4, with





γ1 = { z
∣∣ |z − 1| =

1

n
, |Arg(z − 1)| ≥ θ] }

γ2 = { z
∣∣ 1

n
≤ |z − 1|, |z| ≤ r, Arg(z − 1) = θ }

γ3 = { z
∣∣ |z − 1| = r, |Arg(z − 1)| ≥ θ] }

γ4 = { z
∣∣ 1

n
≤ |z − 1|, |z| ≤ r, Arg(z − 1) = −θ }.

If the ∆ domain of f is ∆(φ,R), we assume that 1 < r < R, and φ < θ < π
2 , so that the

contour γ lies entirely inside the domain of analyticity of f .
For j = 1, 2, 3, 4, let

f (j)
n =

1

2iπ

∫

γj

f(z)
dz

zn+1
.

The analysis proceeds by bounding the absolute value of the integral along each of the four
parts. In order to keep notations simple, we detail the proof in the case where β = 0.

(1) Inner circle. From trivial bounds, the contribution there is

|f (1)
n | = O(

1

n
) · O((

1

n
)−α),

as the function is O(( 1
n )−α), the contour has length O( 1

n ), and z−n−1 is O(1)
there.

(2) Rectilinear part. Setting ω = eiθ, and performing the change of variable z =
1 + ωt

n , we find

|f (2)
n | < 1

2π

∫ ∞

1

K

(
t

n

)−α ∣∣∣∣1 +
ωt

n

∣∣∣∣
−n−1

dt,

for some constant K > 0 such that |f(z)| < K(1 − z)−α over the ∆–domain.
From the relation∣∣∣∣1 +

ωt

n

∣∣∣∣ ≥ 1 + <(
ωt

n
) = 1 +

t

n
cos θ,

there results

|f (2)
n | < K

2π
Jnn

α−1 where Jn =

∫ ∞

1

t−α

(
1 +

t cos θ

n

)−n

dt.
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For a given α, the integrals Jn are all bounded above by some constant since
they admit a limit as n tends to infinity:

Jn →
∫ ∞

1

t−αe−t cos θ dt.

(The condition on θ that 0 < θ < π
2 precisely ensures convergence of the inte-

gral.) Thus, globally, on this part of the contour, we have

|f (2)
n | = O(nα−1),

and the same bound holds for γ4 by symmetry.
(3) Outer circle. There, f(z) is bounded while z−n is of the order of r−n. Thus,

f
(3)
n is exponentially small.

In summary, each of the four integrals of the split contour contributes O(nα−1). The
statement of Part (i) of the theorem thus follows.

(ii) An adaptation of the proof shows that o(.) error terms may be translated similarly.
All that is required is a further breakup of the rectilinear part in the proof of Theorem VI.3
at a distance log2 n/n from 1, see [52] for details. �

An immediate corollary of Theorem VI.3 is the possibility of transferring asymptotic
equivalence from singular forms to coefficients:

COROLLARY VI.1 (sim–transfer). Assume f is ∆–analytic and, as z → 1 in ∆,

f(z) ∼ (1 − z)−α,

with α 6∈ {0,−1,−2, · · · }. Then, the coefficients of f satisfy

[zn]f(z) ∼ nα−1

Γ(α)
.

PROOF. It suffices to observe that, with g(z) = (1 − z)−α, one has

f(z) ∼ g(z) iff f(z) = g(z) + o(g(z)),

then apply Theorem VI.1 to the first term, and Theorem VI.3 (little-oh transfer) to the
remainder. �

� 5. Transfer of nearly polynomial functions. Let f(z) be ∆–singular and satisfy the singular
expansion f(z) ∼ (1 − z)r, where r ∈ Z≥0. Then, fn = o(n−r−1). [This is a direct consequence
of the little-oh transfer.] �

� 6. Transfer of “large” functions. The ∆–analyticity condition can be weakened for functions that
are large at their singularity. Assume that f(z) is analytic in the open disk |z| < 1, and that in the
whole of the open disk

f(z) = O((1 − z)−α).

Then, provided that α > 1,

[zn]f(z) = O(nα−1).

[Hint. Integrate on the circle of radius 1 − 1
n

; see also [52].] �
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Function Coefficients

(1 − z)3/2 1√
πn5

(
3

4
+

45

32n
+

1155

512n2
+ O(

1

n3
))

(1 − z) (0)

(1 − z)1/2 − 1√
πn3

(
1

2
+

3

16n
+

25

256n2
+ O(

1

n3
))

(1 − z)1/2 log(1 − z)−1 − 1√
πn3

(
1

2
log n +

γ + 2 log 2 − 2

2
+ O(

log n

n
))

(1 − z)1/3 − 1

3Γ( 2
3
)n4/3

(1 +
2

9n
+

7

81n2
+ O(

1

n3
))

z log−1(1 − z)−1 1

n log2 n
(−1 +

2γ

log n
+
π2 − 6γ2

2 log2 n
+ O(

1

log3 n
))

1 (0)

log(1 − z)−1 1

n

log2(1 − z)−1 1

n
(2 log n + 2γ − 1

n
− 1

6n2
+ O(

1

n4
))

(1 − z)−1/3 1

Γ( 1
3
)n2/3

(1 + O(
1

n
))

(1 − z)−1/2 1√
πn

(1 − 1

8n
+

1

128n2
+

5

1024n3
+ O(

1

n4
))

(1 − z)−1/2 log(1 − z)−1 1√
πn

(log n+ γ + 2 log 2 − log n + γ + 2 log 2

8n
+ O(

log n

n2
))

(1 − z)−1 1

(1 − z)−1 log(1 − z)−1 log n + γ +
1

2n
− 1

12n2
+

1

120n4
+ O(

1

n6
))

(1 − z)−1 log2(1 − z)−1 log2 n+ 2γ log n+ γ2 − π2

6
+ O(

log n

n
)

(1 − z)−3/2

r
n

π
(2 +

3

4n
− 7

64n2
+ O(

1

n3
))

(1 − z)−3/2 log(1 − z)−1

r
n

π
(2 log n+ 2γ + 4 log 2 − 2 +

3 log n

4n
+ O(

1

n
))

(1 − z)−2 n + 1

(1 − z)−2 log(1 − z)−1 n log n + (γ − 1)n + log n+
1

2
+ γ + O(

1

n
)

(1 − z)−2 log2(1 − z)−1 n(log2 n+ 2(γ − 1) log n + γ2 − 2γ + 2 − π2

6
+ O(

log n

n
))

(1 − z)−3 1
2
n2 + 3

2
n+ 1

FIGURE 6. A table of some commonly encountered functions and the
asymptotic forms of their coefficients.

The theorems that we have seen justify a fairly mechanical process for translating
asymptotic information on a function into information on its coefficients. The process is
based on a set of simple rules. With α 6∈ {0,−1,−2, . . .}, we have





f(z) = (1 − z)−α =⇒ fn =
nα−1

Γ(α)
+ · · ·

f(z) = O((1 − z)−α) =⇒ fn = O(nα−1)

f(z) = o((1 − z)−α) =⇒ fn = o(nα−1)

f(z) ∼ (1 − z)−α =⇒ fn ∼ nα−1

Γ(α)
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together with corresponding refinements for logarithmic terms. A table that extends exam-
ples already given is displayed in Fig 6. The only requirement of the method is that the
asymptotic expansion of the function should be valid in an area of the complex plane ex-
tending beyond the disk of convergence of the original series, as described by the notions of
∆–domain and ∆–analyticity. This is usually not a stringent requirement in combinatorial
applications, as we shall see repeatedly in this chapter and the next one.

VI. 4. First examples of singularity analysis

The previous section has provided tools by which, starting from the expansion of a
function at its singularity1, one can justify the term-by-term transfer to coefficients,

(26) f(z) =
z→1

σ(z) +O(τ(z)) (z ∈ ∆) =⇒ fn =
n→∞

σn +O(τn).

There, it is assumed that σ is a finite linear combination of standard functions of the form
({(1− z)−α} or logarithmic variants, that τ(z) also lies in the scale. (Note: the case when
the exponent −α of τ(z) lies in Z≤0, adjustments must be made, as already discussed.)
The fundamental condition is the validity of expansion (26) in a ∆-domain in accordance
with Theorem VI.3; the coefficients σn, τn are given by the basic Theorems VI.1 and VI.2.

The functions
1

1 − z
, exp(z), log

1

1 − z
,
√

1 − z,

are all ∆–analytic (with exp(z) being even entire). Thus, one should expect the method
of singularity analysis to be applicable to most functions that are composition of base
functions, provided their singular growth is only polynomial. (For instance exp(z/(1 − z))
is excluded, but such fast growing functions are well covered by the saddle point method
described in a later chapter.) This class includes the generating functions for many of the
elementary non–recursive combinatorial structures that can be specified using sequences,
sets, and cycles. Thus, singularity analysis is a priori broadly applicable to elementary
combinatorics.

We examine here several applications of singularity analysis to such functions explic-
itly given by “analytic” expressions. The examples are drawn from combinatorial enumer-
ation.

1. “Clouds” and 2–regular graphs. The function

C(z) =
e−

z
2− z2

4√
1 − z

is the EGF of 2–regular graphs or equivalently “clouds”. (Let n straight lines in the plane
be given; a “cloud” is a set of n points no three of which are collinear; see Chapter II
and [25].) Combinatorially, the generating function reflects the decomposition of 2–regular
graphs as sets (P) of connected components that are undirected cycles (UC) of size ≥ 3:

C = P(UC≥3(Z)), C(z) = exp

(
1

2

(
log(1 − z)−1 − z − z

2

))
.

As this is our first example, it is worth spelling out in detail the process of singularity
analysis applied to this function.

The function C(z) being the product of e−z/2−z2/4 (that is entire) and of (1− z)−1/2

(that is analytic in the unit disk) is itself analytic in the unit disk. Furthermore, as (1 −

1Such an expansion is also called a singular expansion for short.
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z)−1/2 is ∆–analytic (it is well-defined and analytic in the complex plane slit along [1,+∞[,
for instance), C(z) is itself ∆–analytic, with a singularity at z = 1.

The asymptotic expansion of C(z) near z = 1 obtains starting from the standard
(analytic) expansion of e−z/2−z2/4 at z = 1,

e−z/2−z2/4 = e−3/4 + e−3/4(1 − z) +
e−3/4

4
(1− z)

2 − e−3/4

12
(1 − z)

3
+ · · · .

The factor (1 − z)−1/2 is its own asymptotic expansion, clearly valid in any ∆–domain.
Forming the product yields:

C(z) =
e−3/4

√
1 − z

+ e−3/4
√

1 − z +
e−3/4

4
(1 − z)

3/2 − e−3/4

12
(1 − z)

5/2
+ · · · .

By the principles of singularity analysis (Theorems VI.1 and VI.3), the asymptotic de-
termination of the coefficients cn = [zn]C(z) results from a direct translation which we
present here in tabular form:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C(z) = cn =

e−3/4 1√
1 − z

e−3/4

(
n− 1/2

−1/2

)
∼ e−3/4

√
πn

[
1 − 1

8n
+

1

128n2
+ · · ·

]

+ e3/4
√

1 − z +e−3/4

(
n− 3/2

−3/2

)
∼ −e−3/4

2
√
πn3

[
1 +

3

8n
+ · · ·

]

+ O((1 − z)3/2) +O(
1

n5/2
).

Terms are then collected with expansions suitably truncated to the coarsest error term, so
that here a 3–term expansion results.

In the sequel, we shall not detail such computations and content ourselves with putting
in parallel the function’s expansion and the coefficient’s expansion, like

(27)





C(z) =
e−3/4

√
1 − z

+ e3/4
√

1 − z + +O((1 − z)3/2) (z → 1)

cn =
e−3/4

√
πn

− 5e−3/4

8
√
πn3

+ O(
1

n5/2
) (n→ +∞).

Here is a numerical check. Set c(1)n := e−3/4/
√
πn and let c(2)n represent the sum of the

first two terms of the expansion of cn in (27). One finds:

n 5 50 500

n!c
(1)
n 14.30212 1.1462888618 · 1063

1.4542120372 · 101132

n!c
(2)
n 12.51435 1.1319602511 · 1063

1.4523942721 · 101132

n!cn 12 1.1319677968 · 1063
1.4523943224 · 101132

2. Unary–binary Trees. The function

U(z) =
1 − z −

√
(1 + z)(1 − 3z)

2z

is the OGF of unary–binary trees enumerated by Motzkin numbers. It is singular at z = −1
and z = 1

3 , the dominant singularity being at z = 1
3 . By branching properties of the square-

root function, U(z) is analytic in a ∆–domain like the one depicted below:
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0
−1

1

3

Around the point 1
3 , a singular expansion holds, which translates into an asymptotic ex-

pression for Un := [zn]U(z):




U(z) = 1 − 31/2
√

1 − 3z + O((1 − 3z)3/2)

Un =

√
3

4πn3
3n + O(3nn−5/2).

Further terms in the singular expansion of U(z) at z = 1
3 provide additional terms in the

asymptotic expression of the Motzkin numbers (Un), for instance,

Un ∼
√

3

4πn3
3n

(
1 − 15

16
n−1 +

505

512
n−2 − 8085

8192
n−3 +

505659

524288
n−4 +O

(
n−5

))
.

3. Children’s Rounds. The function

R(z) = exp(z log
1

1 − z
) = (1 − z)−z

is the EGF of certain combinatorial configurations introduced by Stanley [122] and nick-
named by him “children’s rounds”. A round is a labelled set of directed cycles each of
which has a center attached:

R = P(Z ? C(Z)).

An equivalent form of R(z) is

R(z) =
1

1 − z
e(1−z) log(1−z)

so that the only singularity is at z = 1, where

R(z) =
1

1 − z
+ log(1 − z) + O((1 − z)0.99).

Thus for coefficients,

rn ≡ [zn]R(z) = 1 − 1

n
+ O(n−1.99).

A more detailed analysis yields

rn = 1 − 1

n
− 1

2n2
(logn+ γ − 1) + O(

log2 n

n3
),

and an expansion to any order can be obtained.

� 7. The asymptotic shape of the rounds numbers. A full asymptotic expansion of rn is of the form

rn ∼ 1 −
X

j≥1

Pj(log n)

nj
,

where Pj(x) is a polynomial of degree j − 1 in x. (The coefficients of Pj are rational combinations
of powers of γ, ζ(2), . . . , ζ(j− 1).) This expansion can be obtained by a computer algebra program
to any predetermined order. �
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4. An elementary function. The final example is meant to show the way rather arbi-
trary compositions of basic functions can be treated by singularity analysis. Consider the
function

F (z) =
1

2

[
1 −

√
1 − 4 log

1

1 − log 1
1−z

]
,

which is built as a composition

F (z) = C(L(L(z))) where C(z) =
1

2
(1 −

√
1 − 4z), L(z) = log

1

1 − z
.

(Combinatorially, F is the EGF of trees in which nodes are replaced by cycles of cycles, a
rather artificial combinatorial object!)

The problem is to locate the dominant singularity of F (z) and determine its nature,
which can be done inductively on the structure of F (z). The dominant positive singularity
ρ of F (z) satisfies

L(L(ρ)) =
1

4
so that ρ = 1 − ee−1/4−1,

since C(z) is singular at 1
4 , L(z) has positive coefficients and it assumes the value ∞ when

it becomes singular.
Since L(L(z)) is analytic at ρ, a local expansion of F (z) is obtained by composing an

expansion of C(z) at 1
4 with the standard Taylor expansion of L(L(z)) at ρ. All computa-

tions done, this gives us

F (z) =
1

2
− C1(ρ− z)1/2 + O((ρ − z)3/2) with C1 = e

5
8− 1

2 e−1/4

.

In summary, we have found

fn ≡ [zn]F (z) =
C1

2ρ
√
πn3

(
1

ρ

)n [
1 + O(

1

n
)

]
,

with
ρ = 1 − ee−1/4−1 ≈ 0.198443, C1 = e

5
8− 1

2 e−1/4 ≈ 1.26566.

The method clearly applies in a large number of cases to elementary functions of com-
binatorial analysis that are defined explicitly by composition of exponentials, logarithms,
and algebraic roots. Such functions arise systematically from elementary iterative struc-
tures studied in Section IV.3.3, and singularity analysis can often be employed in order to
refine the exponential growth estimates globally obtained there.
� 8. The asymptotic number of trains. Combinatorial trains have been introduced in Section IV.3.3
as a way to exemplify the power of complex asymptotic methods. One finds that at its dominant
singularity ρ, the EGF Tr(z) is of the form Tr(z) ∼ C/(1 − z/ρ), and, by singularity analysis,

[zn]Tr(z) ∼ 0.11768 31406 15497 · 2.06131 73279 40138n .

(This asymptotic approximation is good to 15 significant digits for n = 50, in accordance with the
fact that the dominant singularity is a simple pole.) �

VI. 5. Inversion and implicitly defined functions

Recursively defined structures lead to functional equations whose solutions may, in
many cases, be analysed locally near singularities. A common pattern in this context is
the appearance of singularities of the square-root type, which proves to be universal for a
broad class of problems involving trees and tree-like structures. Accordingly, by singular-
ity analysis, the square-root singularity induces in coefficients subexponential terms of the
form n−3/2.
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y :

1

0

0.5

-0.5

10.5-1 0

-1

-0.5
z = yey

=⇒

-1

1

0.5

0

-0.5

10-1-1.5 0.5-0.5

FIGURE 7. The images of concentric circles by the mapping y 7→
z = ye−y. It is seen that y 7→ z = ye−y is injective on |y| ≤ 1 with
an image extending beyond the circle |z| = e−1 [in grey], so that the
inverse function y(z) is analytically continuable in a ∆–domain around
z = e−1.

Inverse functions. We return to the analysis of the coefficients of a function defined im-
plicitly by an equation

(28) y(z) = zφ(y(z)) or equivalently z =
y(z)

φ(y(z))
.

Here again, it is assumed that φ(u) is a function with nonnegative coefficients and φ(0) 6=
0.

The problem of solving (28) is one of functional inversion. We have seen in Chapter IV
that an analytic function admits locally an analytic inverse if and only if its first derivative
is nonzero. Set ψ(u) = u/φ(u); the equation ψ′(u) = 0 has, under the conditions of the
problem, at most one positive solution strictly within the disc of convergence of φ, which
satisfies

(29) φ(τ) − τφ′(τ) = 0.

We assume from now this quantity τ to exist. For reasons already discussed (see Section 6
of Chapter IV) the radius of convergence of y(z) is the corresponding positive value ρ of
z such that y(ρ) = τ , that is to say

ρ =
τ

φ(τ)
=

1

φ′(τ)
.

The analysis now needs to be more precise in three respects:

(i) all the dominant singularities are to be located;
(ii) analyticity of y(z) in a ∆–domain must be established;

(iii) a singular expansion needs to be determined.

These points are somewhat intertwined.
The situation corresponding to the function φ(u) = eu, so that y(z) = zey(z) (the

Cayley generating function), is typical of the general situation. From (29), the radius of
convergence of y(z) is ρ = e−1 corresponding to τ = 1. The image of a circle in the
y–plane, centered at the origin and having radius r < 1, by the function ye−y is a curve of
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the z–plane that properly contains the circle |z| = re−r, see Figure 7, as φ(y) = ey that
has nonnegative coefficients satisfies

φ(reiθ) ≤ φ(r) for all θ ∈ [−π,+π].

Furthermore, the inequality is strict except for θ 6= 0. The image of the circle of radius 1
is a curve C that has a cusp at ρ = e−1 since the first derivative of y/φ(y) vanishes there.

This geometry shows that the inverse function of y/φ(y), that is y(z), is uniquely
defined for z inside C. Thus, y(z) is ∆–analytic. A singular expansion for y(z) is then
simply derived from reversion of the power series expansion of z = ye−y. We have

ye−y = e−1 − e−1

2
(y − 1)2 +

e−1

3
(y − 1)3 − e−1

8
(y − 1)4 + · · · ,

so that solving for y gives

y − 1 =
√

2(1 − ez)1/2 +
2

3
(1 − ez) + O((1 − ez)3/2).

The discussion of the general case follows the same principles. The relation between
z and y, in the vicinity of (z, y) = (ρ, τ), may be put under the form (see Chapter IV,
Section 6),

(30) ρ− z = H(y), where H(y) :=

(
τ

φ(τ)
− y

φ(y)

)
,

the functionH(y) in the right hand side being such that H ′(τ) = 0. Thus, the dependency
between y and z is locally a quadratic one:

ρ− z =
1

2!
H ′′(τ)(y − τ)2 +

1

3!
H ′′′(τ)(y − τ)3 + · · · .

This relation can be locally inverted: first extract square roots and derive

−√
ρ− z =

√
H ′′(τ)

2
(y − τ)

[
1 + c1(y − τ) + c2(y − τ)2 + ...

]
.

(The determination with a −√ should be chosen there as y(z) increases to τ− as z → ρ−.)
This implies, by solving with respect to y − τ :

y − τ = −d1(ρ− z)1/2 + d2(ρ− z) + d3(ρ− z)3/2 + · · · with d1 = (2/H ′′(τ))1/2.

PROPOSITION VI.1. Let φ be a function analytic at 0 having nonnegative Taylor coef-
ficients with φ(0) = 0, and such that there exists a positive solution τ to the characteristic
equation,

φ(τ) − τφ′(τ) = 0,

strictly within the disc of convergence of φ. Let y(z) be the solution analytic at the origin
of y(z) = zφ(y(z)). Then y(z) has a dominant singularity at

z = ρ where ρ =
τ

φ(τ)
.

The singular expansion of y at ρ is of the form

y(z) = τ +

∞∑

j=1

d∗j (1 − z

ρ
)j/2.

for some computable constants d∗j . In particular, one has

d∗1 = −
√

2φ(τ)

φ′′(τ)
.
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� 9. Computability of the singular expansion. Define

h(w) :=

s
τ/φ(τ ) − w/φ(w)

(τ − w)2
,

so that y(z) satisfies
√
ρ− z = (τ − y)h(y). The singular expansion of y can then be deduced by

Lagrange inversion from the expansion of the negative powers of h(w) at w = τ . This technique
yields for instance explicit forms for coefficients in the singular expansion of y = zey. �

A simple example like φ(u) = 1 + u2 for which

y(z) =
1 −

√
1 − 4z2

2z

shows that it need not however be true in all generality y has a unique dominant singularity:
here there are two conjugate singularities, − 1

2 and + 1
2 . However, the conditions for this

to happen are rather simple. Let us say that a power series h(u) is d–periodic if h(u) =
uek(ud) for some power series k, with d maximal. A function is called here periodic if it is
d–periodic from some d ≥ 2 and aperiodic otherwise. An elementary argument developed
in Note 10 shows that that periodicity does not occur for y(z) unless φ(u) is itself periodic,
in which case y(z) = zw(zd) for some analytic w(z), when φ(u) = ψ(ud) for some
d ≥ 2.

From singularity analysis, we get directly:

THEOREM VI.4 (Coefficients of tree functions). Assume the conditions of Proposi-
tion VI.1, and, additionally, that φ(w) is aperiodic. The coefficients of the solution y(z) to
y = zφ(y) satisfy

[zn]y(z) ∼ d∗1ρ
−n

2
√
πn3

[
1 +

∞∑

k=1

ek

nk

]
,

for some effectively computable coefficient sequence ek.

In case φ(u) is d–periodic for some d ≥ 2, the additional conguence condition, n ≡
1 (d), must be imposed for an asymptotic expansion as the other coefficients all vanish.
The dominant singularities are at ρe2ijπ/d and their contributions must be added up in
accordance with the discussion of the next section (details left as an exercise).

� 10. Periodicities. Assume that φ(u) = ψ(ud)with ψ analytic at 0. Let y = y(z) be the root
of y = zφ(y). Set Z = zd and let Y be the root of Y = Zψ(Y )d. One has by construction
y(z) = Y (zd)1/d, given that yd = zdφ(y)d. Since Y (Z) = Y1Z + Y2Z

2 + · · · , we verify that the
nonzero coefficients of y(z) are amongst those of index 1, 1 + d, 1 + 2d, . . . .

If d is chosen maximal, then ψ(u)d is aperiodic. Thus, Theorem VI.4 applies to Y (Z). The
function Y (Z) is ∆–regular (relative to its dominant singularity at ρ1/d), and it has a square root
singularity there and none other on |Z| = ρ1/d. Also, since Y = zψ(Y )1/d, Y (Z) cannot vanish
on |Z| ≤ ρ1/d, Z 6= 0. Thus, [Zν ]Y (Z)1/d is analytic in |Z| ≤ ρ1/d, except at ρ1/d wheer it has a√ branch point. All computations done, we find that

[zn]y(z) ∼ d · d
∗
1ρ

−n

2
√
πn3

when n ≡ 1 (mod d).

This is a kind of Perron-Frobenius property for periodic tree functions. �

Here is a table of the most basic varieties of simple trees and the corresponding as-
ymptotic estimates found in this way:
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Type φ(u) Sing. expansion of y(z) yn

binary (1 + u)2 1 − 4
q

1
4
− z + · · · 4n

√
πn3

+O(n−5/2)

unary-binary 1 + u+ u2 1 − 3
q

1
3
− z + · · · 3n+1/2

2
√
πn3

+O(n−5/2)

general (1 − u)−1 1
2
−
q

1
4
− z

4n−1

√
πn3

+O(n−5/2)

Cayley eu 1 −
√

2e
√
e−1 − z + · · · en

√
2πn3

+O(n−5/2)

Combining Proposition VI.1 with methods of the previous section, we have available a
method that permits us to analyse in turn [zn]f(y(z)), for a wide class of implicitly defined
y(z). This observation will be put to good use in Chapter VII, when analysing a variety of
tree parameters.

� 11. Stirling’s formula via singularity analysis. Since the solution to Y = zeY analytic at 0
satisfies [zn] = nn−1/n! (by Lagrange inversion) and, at the same time, its singularity is known
from Proposition VI.1, we have:

nn−1

n!
∼ en

√
2πn3

„
1 − 1

12
n−1 +

1

288
n−2 +

139

51840
n−3 − · · ·

«
.

Thus Stirling’s formula also results from singularity analysis. �

Pólya operators. The solution to the functional equation

(31) f(z) = z exp

(
f(z)

1
+
f(z2)

2
+ · · ·

)

is the OGF of nonplane unlabelled trees. Let Y be the solution to

(32) Y (z) = zeY (z),

that is to say the Cayley function. It is known that f(z) has a radius of convergence ρ
strictly less than 1 as its coefficients dominate those of Y (z).

Rewriting the defining equation of f(z) as

f(z) = ζef(z) with ζ = exp(
f(z2)

2
+
f(z3)

3
+ · · · ),

we observe that ζ = ζ(z) is analytic for |z| < ρ1/2, that is to say in a disk that properly
contains the disk of convergence of f(z). We may thus rewrite f(z) as

f(z) = Y (ζ(z)).

Since ζ(z) is analytic at z = ρ, a singular expansion of f(z) near z = ρ results from
composing the singular expansion of Y at e−1 with the analytic expansion of ζ at ρ. In this
way, we get that for some constant C,

f(z) = 1 − C(1 − 1

ρ
)1/2 + O((1 − z

ρ
)).

Thus,

[zn]f(z) ∼ C

2
√
πn3

ρ−n.

Numerically, ρ and C may be determined to great accuracy as ρ is a root of the equa-
tion ζ(ρ) = e−1 while f can be estimated precisely within its disk of convergence from
knowledge of its first Taylor coefficients. The equation ζ(ρ) = e−1 can then be solved by
Newton’s method for instance, as ρ lies within the disk of convergence of ζ(z).
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� 12. Compute C and ρ to 100 significant digits. �

VI. 6. Singularity analysis and closure properties

At this stage, we have available composition rules for singular expansions of the types
previously considered under operations like ±, ×, ÷. These are induced by corresponding
rules for extended formal power series, where generalized exponents and logarithmic fac-
tors are allowed. In the previous section, we have also seen that inversion of usually gives
rise to square-root singularities.

In this section we examine first the rôle of functional composition, then we show that
generating functions amaneable to singularity analysis are closed under differentiation and
integration.

VI. 6.1. Functional composition. Let f and g be functions analytic at the origin with
nonnegative coefficients, and consider the composition

h = f ◦ g, h(z) = f(g(z)).

Let ρf , ρg, ρh be the corresponding radii of convergence, and let τf = f(ρf ), and so on.
We shall asume that f and g are ∆–continuable and that they admit singular expansions
in the scale of powers. There are three cases to be distinguished depending on how τg

compares to ρf . Clearly one has:

— Supercritical case, when τg > ρf . In that case, when z increases from 0, there is
a value r strictly less than ρg such that g(r) attains the value ρf , which triggers a
singularity of f ◦ g. In other words r ≡ ρh = g(−1)(ρf ). Around this point, g is
analytic and a singular expansion of f ◦ g is obtained by composing the singular
expansion of f with the regular expansion of g at r. The singularity type is that
of the external function (f).

— Subcritical case, when τg < ρf . In this dual situation, the singularity of f ◦ g is
driven by that of the inside function g. We have ρh = ρg , τh = f(ρg) and the
singular expansion of f ◦ g is obtained by composing the regular expansion of f
with the singular expansion of g at ρg. The singularity type is that of the internal
function (g).

— Critical case, when τg = ρf . In this boundary case, there is a confluence of
singularities. We have ρh = ρg , τh = τf , and the the singular expansion is
obtained by composition rules of the singular expansions. The singularity type is
a mix of the types of the internal and external functions (f, g).

This terminology extends the notion of supercritical sequence schema introduced in
Chapter V, where we considered the case f(z) = (1 − z)−1 and discussed some of the
probabilistic consequences. Rather than stating general conditions that would be unwieldy,
it is better to discuss examples directly, referring to the above guidelines supplemented by
the plain algebra of generalized power expansions, whenever necessary.

EXAMPLE 1. Combinatorial sums. Based on the discussion above, a reasonably general
strategy for the asymptotic analysis of a class of combinatorial sums of the form

Sn =

n∑

k=1

fkg
(k)
n .

can be developped. There fk is a sequence of numbers, usually of a simple form and called
the weights, while the g(k)

n are a triangular array of numbers, for instance Pascal’s triangle.
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For the weights fk we shall consider expressly sequences such that f(z) is ∆–analytic
with a singular expansion involving functions of the standard scale of Theorems VI.1, VI.2,
VI.3. Typical examples for f(z) and (fk) are2

(33)
1
k

1
4k

(
2k
k

)
1 Hk k k2

log 1
1−z

1√
1−z

1
1−z

1
1−z log 1

1−z
z

(1−z)2
z+z2

(1−z)3 .

The triangular arrays g(k)
n discussed here are taken here to arise as coefficients of the

powers of some fixed function,

g(k)
n = [zn](g(z))k where g(z) =

∞∑

n=1

gnz
n,

with g(z) an analytic function at the origin having non–negative coefficients and satisfying
g(0) = 0. Examples are

(34)
z

1−z zez z(1 + z) 1−
√

1−4z
2

1−2z−
√

1−4z
2z T (z) [T = zeT ]

(
n−1
k−1

)
kn−k

(n−k)!

(
k

n−k

)
k
n

(
2n−k−1

n−1

)
k
n

(
2n

n−k

)
k nn−k−1

(n−k)!

An interesting class of such arrays arises from the Lagrange inversion theorem. Indeed,
if g(z) is implicily defined by g(z) = zG(g(z)), one has gn,k = k

n [wn−k ]G(z)n. (For
instance, the last three cases of (34) are obtained in this way by taking G(w) as 1/(1 −
w), (1 + w)2, ew.)

By design, the generating function of the Sn is simply

S(z) =

∞∑

n=0

Snz
n = f(g(z)) with f(z) =

∞∑

k=0

fkz
k.

Thus the asymptotic analysis of Sn can be directly based on the general discussion of
composition of singularities of f(z) and g(z).

A. Bernoulli sums. Let φ be a function mapping Z≥0 into itself and set fk := φ(k).
Consider the sums

Sn :=

n∑

k=0

φ(k)
1

2n

(
n

k

)
.

If Xn is a Bernoulli random variable of Bern(n, 1
2 ), then Sn = E(φ(Xn)) is exactly the

expectation of φ(Xn). Then, with previous notations, we find for the ogf of the sequence
(Sn):

S(z) =
2

2 − z
f

(
z

2 − z

)
.

Considering weights whose ogf has, like in (33) radius of convergence 1, what we have is a
variant of the composition schema, with an additional prefactor. The composition scheme
is of the subcritical type since the function g(z) = z/(2 − z) has radius of convergence
equal to 2. The singularities of S(z) are then of the same type as those of the weight gf
f(z) and one verifies, in all cases of (33), that, to first asymptotic order, Sn ∼ φ(n/2): this

2Weights like log k,
√
k, 1/(k2 + 1), etc, also satisfy these conditions [60, 43], but the proofs require

advanced techniques discussed below.
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is in agreement with the fact that the binomial distribution is concentrated near its mean n
2 .

Singularity analysis provides additionally complete asymptotic expansions, for instance,

E(
1

Xn
| Xn > 0) =

2

n
+

2

n2
+

6

n3
+O(n−4)

E(HXn) = log
n

2
+ γ +

1

2n
− 1

12n2
+ O(n−3).

See [38, 43] for more along these lines.

� 13. General Bernoulli sums. Let Xn ∈ Bern(n; p) be a general Bernoulli random variable,

P(Xn = k) =

 
n

k

!
pkqn−k, q = 1 − p.

Then with fk = φ(k), one has

E(φ(Xn)) = [zn]
1

1 − qz
f

„
pz

1 − qz

«
,

so that the analysis develops as in the case Bern(n; 1
2
). �

B. Generalized Knuth–RamanujanQ-functions. For reasons motivated by analysis of
algorithms, Knuth has encountered repeatedly sums of the form

Qn({fk}) = f0 + f1
n− 1

n
+ f2

(n− 1)(n− 2)

n2
+ · · · .

(See, e.g., [87, pp. 305–307].) There (fk) is a sequence of coefficients (usually of at most
polynomial growth). For instance, we have seen in Chapter II, Section 3 that the case
fk ≡ 1 yields the expected time till the first collision in the birthday paradox problem.

A closer examination shows that the analysis of such Qn is reducible to singularity
analysis. Writing

Qn({fk}) = f0 +
n!

nn−1

∑

k≥1

fk
nn−k−1

(n− k)!

reveals the closeness with the last column of (34). Indeed, setting

F (z) =
∑

k≥1

fk

k
zk,

one has (n ≥ 1)

Qn = f0 +
n!

nn−1
[zn]S(z) where S(z) = F (T (z)),

and T (z) is the Cayley tree function (T = zeT ).
For weights fk = φ(k) that are of polynomial growth, the schema is critical. Thus,

the singular expansion S(z) is obtained by composing the singular expansion of f with
the expansion of T , namely, T ∼ 1 −

√
2
√

1 − ez. For instance, φ(k) = kr for some
integer r ≥ 1 leads to F (z) that has an rth order pole at z = 1. Then, the singularity type of
F (T (z)) is of the form Z−r/2 where Z = (1− ez), which is reflected by Sn � ennr/2−1.
After the final normalization, we see that Qn � n(r+1)/2. Globally, for many weights of
the form fk = φ(k), we expect Qn to be of the rough form

√
kφ(

√
n), which agrees with

the fact that the expectation of the first collision in the birthday problem is on average near√
πn/2. �
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� 14. Higher moments of the birthday problem. Take the model where there are n days in the year
and let B be the random variable representing the first birthday collision. Then Pn(B > k) =
k!n−k

`
n
k

´
, and

En(Φ(B)) = Φ(1) +Qn({∆Φ(k)}), where ∆Φ(k) := Φ(k + 1) − Φ(k).

For instance En(B) = 1 +Qn(〈1, 1, . . .〉). We thus get moments of various functionals (here stated
to two asymptotic terms):

Φ(x) x x2 + x x3 + x2 x4 + x3

En(Φ(B))
p

πn
2

+ 2
3

2n+ 2 3
q

πn3

2
− 2n 8n2 − 7

q
πn3

2

via singularity analysis. �

� 15. How to weigh an urn? The “shake-and-paint” algorithm. You are given an urn containing
an unknown number N of identical looking balls. How to estimate this number in much fewer than
O(N) operations? A probabilistic solution due to Brassard and Bratley [18] uses a brush and paint.
Shake the urn, pull out a ball, then mark it with paint and replace it into the urn. Repeat until you
find an already painted ball. LetX be the number of operations. One has E(X) ∼

p
πN/2. Further

more the quantity Y := X2/2 constitues, by the previous note, an asymptotically unbiased estimator
of N , in the sense that E(Y ) ∼ N . In other words, count the time till an already painted ball is first
found, and return half of the square of this time. One also has

p
V(Y ) = N . By performing the

experiment m times (using m different colours of paint) and by taking the arithmetic average of
the m estimates, one obtains an unbiased estimator whose typical accuracy is

p
1/m. For instance,

m = 16 gives an expected accuracy of 25%. (Similar principles are used in the design of data mining
algorithms.) �

� 16. Catalan sums. These are defined by

Sn :=
X

k≥0

fk

 
2n

n− k

!
, S(z) =

1√
1 − 4z

f

„
1 − 2z −

√
1 − 4z

2z

«
.

The case when ρf = 1 corresponds to a critical composition and it can be discussed much in the
same way as the Ramanujan sums. �

EXAMPLE 2. “Supertrees”. Let G be the class of general Catalan trees with ogf
G(z) = 1

2 (1−
√

1 − 4z). Its radius of convergence is 1
4 and its singular value isG( 1

4 ) = 1
2 .

Consider the two generating functions:

H(z) = G(zG(z)), K(z) = G(2zG(z)).

The function zG(z) is the ogf of planted trees, that is trees such that to the root is attached
a stem and an extra node, corresponding to the specification ZG. Then, H(z) is the ogf
of the class H = G[ZG] of trees such that, on each node there is grafted a planted tree
(by the combinatorial substitution of Chapter I) —we shall call such objects “supertrees”.
The ogf K(z) similarly corresponds to the case when the stems can be of any two colours,
H = G[(Z + Z ′)G]. Combinatorial sum expressions are available:

Hn =
n∑

k=1

1

k

(
2k − 2

k − 1

)(
2n− k − 1

n− 1

)
, Kn =

n∑

k=1

2k

k

(
2k − 2

k − 1

)(
2n− k − 1

n− 1

)
.

Since ρG = 1
4 and τG = 1

2 , the composition scheme is subcritical in the case of H
and critical in the case of K. In the first case, the singularity is of square-root type and one
finds easily:

H(z) ∼
z→ 1

4

2 −
√

2

4
− 1√

8

√
1

4
− z, Hn ∼ 4n

8
√

2πn
.
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In the second case, one has

K(z) ∼
z→ 1

4

1

2
− 1√

2
(
1

4
− z)1/4, Kn ∼ 4n

8Γ( 3
4 )n5/4

.

The occurrence of the exponent 5
4 is striking. This examples shows that asymptotic terms of

the type np/q with q 6= 1, 2 may well appear in elementary combinatorics and coefficients
of simple algebraic functions. Such situations tend to be associated with nonstandard limit
laws, akin to the stable distributions of probability theory [6]. �

EXAMPLE 3. Supercritical cycle schema. Consider the scheme H = C(G) which forms
labelled cycles from basic components of G. The egfs are related by

H(z) = log
1

1 −G(z)
.

Consider the case where G attains the value 1 before becoming singular, that is, τG > 1.
Then, this corresponds to a supercritical composition schema. This case can be discussed
much in the same way as the supercritical sequence schema (Chapter V), with a logarithmic
singularity replacing a polar singularity.

Let σ := ρH , which is determined by G(σ) = 1. First, one finds:

H(z) ∼
z→σ

log
1

1 − z/ρ
− log(σG′(σ)) +A(z),

where A(z) is analytic at z = σ. Thus:

[zn]H(z) ∼ σ−n

n
.

(The error term implicit in this estimate is exponentially small).
The bgf H(z, u) = log(1 − uG(z))−1 has the variable u marking the number of

components in H-objects. In particular, the mean number of components in a random H-
object of size is ∼ λn, where λ = 1/(σG′(σ)), and the distribution is concentrated around
its mean. Similarly, the mean number of components with size k in a random Hn object is
found to be asymptotic to λgkσ

k, where gk = [zk]G(z), �

VI. 6.2. Differentiation and integration. Functions amenable to singularity analysis
are closed under differentiation3. This is once more in sharp contrast with real analysis.
The following statement is a version tuned to our needs of well-known differentiability
properties of complex asymptotic expansions (see, e.g., Olver’s book [105, p. 9]). For
simplicity, we restrict attention to functions whose singular expansion is of the form

(35) f(z) =

J∑

j=0

cj(1 − z)αj +O((1 − z)A).

THEOREM VI.5 (Singular differentiation). If f(z) is ∆-regular and admits a singular
expansion near its singularity in the sense of (35), then for each integer r > 0, dr

dzr f(z) is
also ∆-regular and admits an expansion obtained through term-by-term differentiation:

dr

dzr
f(z) = (−1)r

J∑

j=0

cj
Γ(αj + 1)

Γ(αj + 1 − r)
(1 − z)αj−r +O((1 − z)A−r).

3The presentation of this section is borrowed from [38].
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z

radius

1

κ | 1 − z |

φ
φ ’

FIGURE 8. The geometry of the contour γ(z) used in the proof of the
differentiation theorem.

PROOF. Clearly, all that is required is to establish the effect of differentiation on error
terms, which is expressed symbolically as

d

dz
O((1 − z)A) = O((1 − z)A−1).

By iteration, only the case of a single differentiation (r = 1) needs to be considered.
Let g(z) be a function that is regular in a domain ∆(φ, η) where it is assumed to satisfy

g(z) = O((1− z)A) for z ∈ ∆. Choose a subdomain ∆′ := ∆(φ′, η′), where φ < φ′ < π
2

and 0 < η′ < η. By elementary geometry, for any sufficiently small κ > 0, the disc of
radius κ(z − 1) centered at a value z ∈ ∆′ lies entirely in ∆; see Figure 8. We fix such a
small value κ and let γ(z) represent the boundary of that disc oriented positively.

The starting point is Cauchy’s integral formula

(36) g′(z) =
1

2πi

∫

C

g(w)
dw

(w − z)2
,

a direct consequence of the residue theorem. Here C should encircle z while lying inside
the domain of regularity of g, and we opt for the choice C ≡ γ(z). Then trivial bounds
applied to (36) give:

|g′(z)| = O
(
||γ(z)|| · (1 − z)A|1 − z|−2

)

= O
(
|1 − z|A−1

)
.

The estimate involves the length of the contour, ||γ(z)||, which is O(1−z) by construction,
as well as the bound on g itself, which is O((1 − z)A) since all points of the contour are
themselves at a distance exactly of the order of |1 − z| from 1. �

It is also well known that integration of asymptotic expansions is usually easier than
differentiation. Here is a statement custom-tailored to our needs.

THEOREM VI.6 (Singular integration). Let f(z) be ∆-regular and admit a ∆-expansion
near its singularity in the sense of (35). Then

∫ z

0
f(t) dt is also ∆-regular. Assume that

none of the quantities αj and A equals −1.
(i) If A < −1, then the singular expansion of

∫
f is

(37)
∫ z

0

f(t) dt = −
J∑

j=0

cj
αj + 1

(1 − z)αj+1 +O
(
(1 − z)A+1

)
.
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0 1

1 + η

φ

z
γ1

γ2

FIGURE 9. The contour used in the proof of the integration theorem.

(ii) If A > −1, then the singular expansion of
∫
f is

∫ z

0

f(t) dt = −
J∑

j=0

cj
αj + 1

(1 − z)αj+1 + L0 +O
(
|1 − z|A+1

)
,

where the “integration constant” L0 has the value

L0 :=
∑

αj<−1

cj
αj + 1

+

∫ 1

0

[
f(t) −

∑

αj<−1

cj(1 − t)αj

]
dt.

The case where either some αj or A is −1 is easily treated by the additional rules
∫ z

0

(1 − t)−1 dt = L(z),

∫ z

0

O(|1 − t|−1) dt = O(L(z)).

that are consistent with elementary integration, and similar rules are easily derived for
powers of logarithms. Furthermore, the correspondingO–transfers hold true. (The proofs
are simple modifications of the one given below for the basic case.)

PROOF. The basic technique consists in integrating, term by term, the singular expan-
sion of f . We let r(z) be the remainder term in the expansion of f , that is,

r(z) := f(z)−
J∑

j=0

cj(1 − z)αj .

By assumption, throughout the ∆-domain one has, for some positive constant K,

|r(z)| ≤ K|1 − z|A.
(i) Case A < −1. Straight-line integration between 0 and z, provides (37), as soon as

it has been established that
∫ z

0

r(t) dt = O
(
|1 − z|A+1

)
.

By Cauchy’s integral formula, we can choose any path of integration that stays within the
region of analyticity of r. We choose the contour γ := γ1 ∪ γ2, shown in Figure 9. Then,
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one has ∣∣∣∣
∫

γ

r(t) dt

∣∣∣∣ ≤
∣∣∣∣
∫

γ1

r(t) dt

∣∣∣∣+
∣∣∣∣
∫

γ2

r(t) dt

∣∣∣∣

≤ K

∫

γ1

|1 − t|A |dt| +K

∫

γ2

|1 − t|A| |dt|

= O(|1 − z|A+1).

where the symbol |dt| designates the differential line element (often denoted by ds) in
the corresponding curvilinear integral. Both integrals are O(|1 − z|A+1): for the integral
along γ1, this results from explicitly carrying out the integration; for the integral along γ2,
this results from the trivial bound O(||γ2||(1 − z)A).

(ii) Case A > −1. We let f−(z) represent the “divergence part” of f that gives rise
to nonintegrability:

f−(z) :=
∑

αj<−1

cj(1 − z)αj .

Then with the decomposition f = [f−f−]+f−, integrations can be performed separately.
First, one finds

∫ z

0

f−(t) dt = −
∑

αj<−1

cj
αj + 1

(1 − z)αj+1 +
∑

αj<−1

cj
αj + 1

.

Next, observe that the asymptotic condition guarantees the existence of
∫ 1

0
applied to [f −

f−], so that
∫ z

0

[f(t) − f−(t)] dt =

∫ 1

0

[f(t) − f−(t)] dt+

∫ z

1

[f(t) − f−(t)] dt.

The first of these two integrals is a constant that contributes toL0. As to the second integral,
term-by-term integration yields

∫ z

1

[f(t) − f−(t)] dt = −
∑

αj>−1

cj
αj + 1

(1 − z)αj+1 +

∫ z

1

r(t) dt.

The remainder integral is finite, given the growth condition on the remainder term, and,
upon carrying out the integration along the rectilinear segment joining 1 to z, trivial bounds
show that it is indeed O(|1 − z|A+1). �

VI. 6.3. Polylogarithms. The generalized polylogarithm Liα,r, where α is an arbi-
trary complex number and r a nonnegative integer is defined for |z| < 1 by

Liα,r(z) :=
∑

n≥1

(logn)r z
n

nα
,

and the notation Liα abbreviates Liα,0. In particular, one has Li1,0(z) = Li1(z), the usual
logarithm. The singular expansion of the polylogarithm, taken from [43], involves the
Riemann ζ function:

THEOREM VI.7 (Singularities of polylogarithms). The function Liα,r(z) is ∆–continuable
and, for α 6∈ {1, 2, . . .}, it satisfies the singular expansion

(38) Liα,0(z) ∼ Γ(1−α)wα−1+
∑

j≥0

(−1)j

j!
ζ(α−j)wj , w = − log z =

∞∑

`=1

(1 − z)`

`
.
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For r > 0, the singular expansion of Liα,r is obtained by

Liα,r(z) = (−1)r ∂r

∂αr
Liα,0(z), L(z) := log

1

1 − z
,

and corresponding termwise differentiation of (38) with respect to α.

In particular, for α < 1, the main asymptotic term of Liα,r is

Γ(1 − α)(1 − z)α−1Lr(z).

Similar expansions hold when α is a positive integer; see [43] for details.

PROOF (SKETCH). The proof when z → 1− along the real line is a simple conse-
quence of Mellin transform techniques (see APPENDIX: Mellin transform, p. 167). Take
r = 0 and set Λ(w) = Liα(e−w). The Mellin transform of Λ is

Λ?(s) = ζ(s+ α)Γ(s),

since Λ is a harmonic sum. There are poles at s = 0,−1,−2, . . . due to the Gamma factor
and a pole at s = 1 − α due to the zeta function. A standard Mellin analysis then yields
the estimate (38) when w → 0, at least when z is real.

In order to extend the estimate beyond the disc of convergence |z| = 1, one starts from
a Lindel öf integral representation of the polylogarithm (Chapter IV),

Liα(−z) = − 1

2iπ

∫ 1/2+i∞

1/2−i∞

zs

s

π

sinπs
ds.

Setting z = −ei(w−π) and s = 1/2+it, the integral can then be analysed as a “harmonic in-
tegral” (a continuous analogue of harmonic sums) by means of Mellin transforms; see [43]
for details. �

� 17. Stirling’s formula from polylogarithms. One has log n! = [zn](1 − z)−1 Li0,1(z), to which
singularity analysis is applicable. Theorem VI.7 yields the singular expansion

1

1 − z
Li0,1(z) ∼ L(z) − γ

(1 − z)2
+

1

2

−L(z) + γ − 1 + log 2π

1 − z
+ · · · ,

from which Stirling’s formula reads off:

log n! ∼ n log n − n +
1

2
log n+ log

√
2π + · · · .

[Stirling’s constant log
√

2π comes out as −ζ ′(0).] Similarly, for the “superfactorial function”:

1122 · · ·nn ∼ An
1
2

n2+ 1
2

n+ 1
12 e−

1
4

n2

, A := exp
`

1
12

− ζ′(−1)
´

= exp
“
− ζ′(2)

2π2 + log(2π)+γ
12

”
.

The constant A is the Glaisher-Kinkelin constant [39, p. 135]. �

VI. 6.4. Hadamard Products. The Hadamard product of two functions f(z), g(z)
analytic at the origin is defined as their term-by-term product,

(39) f(z) � g(z) =
∑

n≥0

fngnz
n, where f(z) =

∑

n≥0

fnz
n, g(z) =

∑

n≥0

gnz
n.

As we are going to see following an article of Fill, Flajolet, and Kapur [38], the class of
functions amenable to singularity analysis is closed under Hadamard products. Establish-
ing sucha closure property requires methods for composing functions from the basic scale,
namely (1−z)a, as well as error terms of the formO((1−z)A). We address these problems
in turn.

The expansion around the origin,

(40) (1 − z)a = 1 +
−a
1
z +

(−a)(−a+ 1)

2!
z2 + · · · ,
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gives through term-by-term multiplication

(41) (1 − z)a � (1 − z)b = 2F1[−a,−b; 1; z].

Here 2F1 represents the classical hypergeometric function of Gauss defined by

(42) 2F1[α, β; γ; z] = 1 +
αβ

γ

z

1!
+
α(α + 1)β(β + 1)

γ(γ + 1)

z2

2!
+ · · · .

From the transformation theory of hypergeometrics, see e.g. [131, Ch XIV], we know that,
in general, hypergeometric functions can be expanded in the vicinity of z = 1 by means of
the z 7→ 1 − z transformation. Instantiation of this transformation with γ = 1 yields

(43) 2F1[α, β; 1; z] =
Γ(1 − α− β)

Γ(1 − α)Γ(1 − β)
2F1[α, β;α + β; 1 − z]

+
Γ(α+ β − 1)

Γ(α)Γ(β)
(1 − z)−α−β+1

2F1[1 − α, 1 − β; 2 − α− β; 1 − z].

From theer, we state:

PROPOSITION VI.2 (Singularity analysis of Hadamard products). (i) When a, b, and
a+b are not integers, the Hadamard product (1−z)a�(1−z)b has an infinite ∆-expansion
with exponent scale {0, 1, 2, . . .} ∪ {a+ b+ 1, a+ b+ 2, . . .}, namely,

(1 − z)a � (1 − z)b ∼
∑

k≥0

λ
(a,b)
k

(1 − z)k

k!
+
∑

k≥0

µ
(a,b)
k

(1 − z)a+b+1+k

k!
,

where the coefficients λ and µ are given by

λ
(a,b)
k =

Γ(1 + a+ b)

Γ(1 + a)Γ(1 + b)

(−a)k(−b)k

(−a− b)k
, µ

(a,b)
k =

Γ(−a− b− 1)

Γ(−a)Γ(−b)
(1 + a)k(1 + b)k

(2 + a+ b)k
.

Here xk is defined when k is a nonnegative integer as x(x+ 1) · · · (x+ k − 1).
(ii) Assume that f(z) and g(z) are ∆-regular in ∆(ψ0, η) and that

f(z) = O((1 − z)a) and g(z) = O((1 − z)b), z ∈ ∆(ψ0, η),

where a and b satisfy a+ b+ 1 < 0. Then the Hadamard product (f � g)(z) is regular in
a (possibly smaller) ∆-domain, call it ∆′, where it admits the expansion

(44) (f � g)(z) = O((1 − z)a+b+1).

Part (ii) is proved by means of contour integration techniquesin [38]. Globally, The-
orem VI.2 establishes the closure under Hadamard products of functions amenable to sin-
gularity analysis in the sense of (35). The treatment of boundary cases and of logarithmic
factors is discussed in [38].

EXAMPLE 4. Pólya’s drunkard problem. (This example is taken from [38].) In the d–
dimensional lattice Zd of points with integer coordinates, the drunkard performs a random
walk starting from the origin with steps in {−1,+1}d, each taken with equal likelihood.
The probability that the drunkard is back at the origin after 2n steps is

(45) q(d)
n =

(
1

22n

(
2n

n

))d

,
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since the walk is a product d independent 1–dimensional walks. The probability that 2n is
the epoch of the first return to the origin is the quantity p(d)

n , which is determined implicitly
by

(46)

(
1 −

∞∑

n=1

p(d)
n zn

)−1

=

∞∑

n=0

q(d)
n zn,

as results from the convolution equations expressing the decomposition of loops into prim-
itive loops. In terms of the associated ordinary generating functions P and Q, this relation
thus reads as (1 − P (z))−1 = Q(z).

The asymptotic analysis of the qn’s is straightforward; the one of the pn’s is more
involved and is of interest in connection with recurrence and transience of the random
walk; see, e.g., [32, 91]. The Hadamard closure theorem provides a direct access to this
problem. Define

λ(z) :=
∑

n≥0

1

22n

(
2n

n

)
zn ≡ 1√

1 − z
.

Then, Equations (45) and (46) imply:

P (z) = 1 − 1

λ(z)�d
, where λ(z)�d := λ(z) � · · · � λ(z) (d times).

The singularities of P (z) are found to be as follows.

d = 1: No Hadamard product is involved and

P (z) = 1 −
√

1 − z, implying p(1)
n =

1

n22n−1

(
2n− 2

n− 1

)
∼ 1

2
√
πn3

.

(This agrees with the classical combinatorial solution expressed in terms of Catalan num-
bers.)

d = 2: By the Hadamard closure theorem, the function Q(z) = λ(z) � λ(z) admits
a priori a singular expansion at z = 1 that is composed solely of elements of the form
(1 − z)α possibly multiplied by integral powers of the logarithmic function L(z). From
a computational standpoint (cf. the Zigzag Algorithm), it is then best to start from the
coefficients themselves,

q(2)n ∼
(

1√
πn

− 1

8
√
πn3

+ · · ·
)2

∼ 1

π

(
1

n
− 1

4n2
+ · · ·

)
,

and reconstruct the only singular expansion that is compatible, namely

Q(z) =
1

π
L(z) +K +O((1 − z)1−ε),

where ε > 0 is an arbitrarily small constant and K is fully determined as the limit as
z → 1 of Q(z) − π−1L(z). Then it can be seen that the function P is ∆–continuable.
(Proof: Otherwise, there would be complex poles arising from zeros of the function Q on
the unit disc, and this would entail in p(2)

n the presence of terms oscillating around 0, a fact
that contradicts the necessary positivity of probabilities.) The singular expansion of P (z)
at z = 1 results immediately from that of Q(z):

P (z) ∼ 1 − π

L(z)
+

π2K

L2(z)
+ · · · .
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so that, by Theorems VI.2 and VI.3, one has

p
(2)
n =

π

n log2 n
− 2π

γ + πK

n log3 n
+O

(
1

n log4 n

)

K = 1 +
∞∑

n=1

(
16−n

(
2n

n

)2

− 1

πn

)

.
= 0.8825424006106063735858257 .

(See the study by Louchard et al. [95, Sec. 4] for somewhat similar calculations.)

d = 3: This case is easy since Q(z) remains finite at its singularity z = 1 where it
admits an expansion in powers of (1 − z)1/2, to the effect that

q(3)n ∼
(

1√
πn

− 1

8
√
πn3

+ · · ·
)3

∼ 1

π3/2

(
1

n3/2
− 3

8n5/2
+ · · ·

)
.

The functionQ(z) is a priori ∆-continuable and its singular expansion can be reconstructed
from the form of coefficients:

Q(z) ∼
z→1

Q(1) − 2

π

√
1 − z +O(|1 − z|),

leading to

P (z) =

(
1 − 1

Q(1)

)
− 2

πQ2(1)

√
1 − z +O(|1 − z|).

By singularity analysis, the last expansion gives

p
(3)
n =

1

π3/2Q2(1)

1

n3/2
+O

(
1

n2

)

Q(1) =
π

Γ
(

3
4

)4
.
= 1.3932039296856768591842463.

A complete asymptotic expansion in powers n−3/2, n−5/2, . . . can be obtained by the same
devices. In particular this improves the error term above to O(n−5/2). The explicit form
of Q(1) results from its expression as the generalized hypergeometric 3F2[

1
2 ,

1
2 ,

1
2 ; 1, 1; 1],

which evaluates by Clausen’s theorem and Kummer’s identity to the square of a complete
elliptic integral. (See the papers by Larry Glasser for context, for instance [64]; nowadays,
several computer algebra systems even provide this value automatically.)

Higher dimensions are treated similarly, with logarithmic terms surfacing in asymp-
totic expansions for all even dimensions. �

VI. 7. Multiple singularities

The basic principle for a function with multiple dominant singularities parallels the
situation of rational and meromorphic functions: the contributions from each singularity
must be added up.

Let us demonstrate the modus operandi before stating the general theorem. Take for
instance the function

(47) g(z) =
ez

√
1 − z2

.

There are two singularities at z = +1 and z = −1, with

g(z) ∼ e√
2
√

1 − z
z → +1 and g(z) ∼ e−1

√
2
√

1 + z
z → −1.
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0 1

FIGURE 10. A contour used to prove the transfer theorem in the case
of multiple singularities (here r = 3).

We have

[zn]
e√

2
√

1 − z
∼ e√

2πn
and [zn]

e−1

√
2
√

1 + z
∼ e−1(−1)n

√
2πn

.

To get the coefficient [zn]g(z), it proves justified to add up these two contributions (by
Theorem VI.8 below), so that

[zn]g(z) ∼ 1√
2πn

[e+ (−1)ne−1].

The justification for this process is provided by the technical result below.
THEOREM VI.8 (Multiple singularities). Let f(z) have a finite number of singularities

on the unit circle at points ζj = eiθj , for j = 1 . . r.
(H1). Let ∆0 be a ∆–domain. Assume that f(z) is analytic in the indented disk

D =

r⋂

j=1

(ζj · ∆0),

with ζ · ∆0 the image of ∆0 by the rotation z 7→ ζz.
(H2). Assume that there are r functions h1(z), . . . , hr(z) with hj(z) analytic in a

circular neighbourhood of ζj such that as z → ζj in D, one has

f(z) = hj(z) + O
(

(1 − z

ζj
)−α

)
.

Under these assumptions, the coefficients of f(z) satisfy

[zn]f(z) = O(nα−1).

A function analytic in a domain like D is sometimes said to be star–continuable, a no-
tion that is the natural generalization of ∆–analyticity for functions with several dominant
singularities.

PROOF. Like in the case of a single variable, the proof bases itself on Cauchy’s co-
efficient formula. A composite contour γ like the one depicted on Figure 10 is used.
Estimates on each fragment of the contour obey the same principles as in the proof of
Theorem VI.3. �
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In other words, each dominant singularity can be analysed independently, the singu-
lar expansions are then each transferred to coefficients and the corresponding asymptotic
contributions are finally collected.

This theorem applies to a function like g(z) defined in Eq. (47) as follows. Define

f(z) = g(z) − e√
2
√

1 − z
− e−1

√
2
√

1 + z
.

Let ζ1 = 1 and ζ2 = −1 be the two dominant singularities. Then, f(z) satisfies the
conditions of Theorem VI.8 with α = 1

2 , and

h1(z) = − e−1

√
2
√

1 + z
, h2(z) = − e√

2
√

1 − z
.

Thus,
[zn]f(z) = O(n−3/2).

The coefficient [zn]g(z) is then recovered by

[zn]g(z) = [zn]
e√

2
√

1 − z
+ [zn]

e−1

√
2
√

1 + z
+ O(n−3/2).

The process is simple though its justification is slightly complicated by the fact that
one must deal with multiple expansions valid at different points (this is the rôle played by
the “regular” parts hj).

As yet another example, consider the problem of estimating the coefficients of

f(z) =

√
1 + z

1 − z
= exp

(
1

2
log

1 + z

1 − z

)
,

which is the EGF of permutations having only cycles of odd length. We have

f(z) =
21/2

√
1− z

− 2−3/2
√

1 − z + O((1 − z)3/2) (z → 1)

f(z) = 2−1/2
√

1 + z + O((1 + z)3/2) (z → −1).

Therefore,

[zn]f =
21/2

√
πn

+
−2−1/2 + (−1)n21/2

√
πn3

+ O(n−5/2).

This last example illustrates the occurrence of singular parts with different weights.

The situation of multiple dominant singularities ties with the corresponding discussion
of Chapter IV. In the periodic case where the dominant singularities are at all roots of unity,
different regimes manifest themselves cyclically depending on modular properties of the
index n, like in the two examples above. In the (seldom occurring) case where dominant
singularities have arguments incommensurable to π, aperiodic fluctuations may appear, the
discussion being similar to the corresponding case for rational functions.

VI. 8. Tauberian theory and Darboux’s method

There are several alternative approaches to the analysis of coefficients of generating
functions with moderate growth. All of them naturally provide estimates compatible with
singularity analysis methods (Theorems VI.1, VI.2, and VI.3). Each one requires some
sort of “regularity condition” either on the part of the function or on the part of the coef-
ficient sequence, the regularity condition of singularity analysis being in essence analytic
continuation.



156 VI. SINGULARITY ANALYSIS OF GF’S

The methods briefly surveyed here fall into three broad categories:

(i) Elementary real analytic methods;
(ii) Tauberian theorems;

(iii) Darboux’s method.

Elementary real analytic methods assume some a priori smoothness conditions on the
coefficient sequence; they are included here for the sake of completeness, though properly
speaking they do not belong to the galaxy of complex asymptotic methods. Their scope
is mostly limited to the analysis of products while the other methods permit to approach
more general functional composition patterns.

Tauberian theorems belong to the category of advanced real analysis methods; they
also needs some a priori regularity on the coefficients, typically positivity or monotonicity.

Darboux’s method requires some smoothness of the function on the closed unit disk,
and, by its techniques and scope, it is the closest to singularity analysis.

We content ourselves with a brief discussion of the main results. For more information,
the reader is referred to Odlyzko’s excellent survey [102].

Elementary real analytic methods. An asymptotic equivalent of the coefficients of a
function can sometimes be worked out elementarily from simple properties of the com-
ponent functions. The regularity conditions are a smooth asymptotic behaviour of the
coefficients of one of the two factors in a product of generating functions. A good source
for these techniques is Bender’s survey [10].

THEOREM VI.9 (Bender’s method). Let a(z) =
∑
anz

n and b(z) =
∑
bnz

n be two
power series with radii of convergence α > β ≥ 0 respectively. Assume that b(z) satisfies
the ratio test,

bn−1

bn
→ β as n→ ∞.

Then the coefficients of the product f(z) = a(z) · b(z) satisfy, provided a(β) 6= 0,

[zn]f(z) ∼ a(β)bn as n→ ∞.

PROOF. (Sketch) The basis of the proof is the following chain:

fn = a0bn + a1bn−1 + a2bn−2 + · · · + anb0)

= bn

(
a0 + a1

bn−1

bn
+ a2

bn−2

bn
+ · · · + an

b0
bn

)

= bn

(
a0 + a1(

bn−1

bn
) + a2(

bn−2

bn−1
)(
bn−1

bn
) + · · ·

)

∼ bn(a0 + a1β + a2β
2 + · · · ).

There, only the last line requires a little elementary analysis that is left as an exercise to the
reader. �

This theorem applies for instance to the EGF of 2–regular graphs:

f(z) = a(z) · b(z) with a(z) = e−z/2−z2/4, b(z) =
1√

1 − z

=⇒ fn ∼ e−3/4

(
n− 1/2

n

)
∼ e−3/4

√
πn

.

Clearly, a whole collection of lemmas could be given in the same vein. Singularity analysis
usually provides more complete expansions, though Theorem VI.9 does apply to a few
situations not covered by it.
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� 18. Estimate asymptotically the coefficients of zn in
„X zn

n!

«“X
n!zn

”
,
“X

2nzn
”“X

nz2n
”
.

�

Tauberian theory. Tauberian methods apply to functions whose growth is known along
the positive real line. The regularity conditions are in the form of additional assump-
tions on the coefficients (positivity or monotonicity) known under the name of Tauberian
“side conditions”. An insightful introduction to the subject may be found in Titchmarsh’s
book [126], and a detailed exposition in Postnikov’s monograph [113]. We cite the most
famous of all Tauberian theorems due to Hardy, Littlewood, and Karamata. Here, a func-
tion is said to be slowly varying at infinity iff, for any c > 0, one has L(cx)/L(x) → 1 as
x → +∞; examples of slowly varying functions are provided by powers of logarithms or
iterated logarithms.

THEOREM VI.10 (The HLK Tauberian theorem). Let f(z) be a power series with
radius of convergence equal to 1, satisfying

(48) f(z) ∼ 1

(1 − z)α
L(

1

1− z
),

for some α ≥ 0 with L a slowly varying function. Assume that the coefficients fn =
[zn]f(z) are all non–negative (this is the “side condition”). Then

(49)
n∑

k=0

fk ∼ nα

Γ(α+ 1)
L(n).

The conclusion (49) is consistent with what singularity analysis gives: Under the con-
ditions, and if in addition analytic continuation is assumed, then

(50) fn ∼ nα−1

Γ(α)
L(n),

which by summation yields the estimate (49).
It must be noted that a Tauberian theorem requires very little on the part of the function.

However, it also gives less since the result it provides is valid in the more restrictive sense
of mean values, or Cesàro averages. (However, if further regularity conditions on the fn are
injected, for instance monotonicity, then the conclusion of (50) can be deduced from (49)
by purely elementary real analysis.) The method applies only to functions that are large
enough at their singularity, and despite numerous efforts to improve the conclusions, it is
the case that Tauberian theorems have little concrete to offer in terms of error estimates.

Appeal to a Tauberian theorem is justified when a function has, apart from the positive
half line, a very irregular behaviour near its circle of convergence, for instance when each
point of the unit circle is a singularity. (The function is then said to admit the unit circle as
a natural boundary.) An interesting example of this situation is discussed by Greene and
Knuth [71] who consider the function

(51) f(z) =

∞∏

k=1

(1 +
zk

k
)
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that is the EGF of permutations having cycles all of different lengths. A little computation
shows that

log

∞∏

k=1

(1 +
zk

k
) =

∞∑

k=1

zk

k
− 1

2

∞∑

k=1

z2k

k2
+

1

3

∞∑

k=1

z3k

k3
− · · ·

∼ log
1

1 − z
− γ + o(1).

(Only the last line requires some care, see [71].)
Thus, we have

f(z) ∼ e−γ

1 − z
=⇒ 1

n
(f0 + f1 + · · · + fn) ∼ e−γ ,

by virtue of Theorem VI.9. In fact, Greene and Knuth were able to supplement this argu-
ment by a “bootstrapping” technique and show a stronger result, namely

fn → e−γ .

� 19. Find estimates for

[zn]
∞Y

k=1

(1 +
zk

√
k

).

�

Darboux’s method. The method of Darboux requires, as regularity condition, that func-
tions be smooth enough —i.e., sufficiently differentiable— on their circle of convergence.
What lies at the heart of this many–facetted method is a simple relation between the
smoothness of a function and the corresponding decrease of its Taylor coefficients.

THEOREM VI.11 (Darboux’s method). Assume that f(z) is continuous in the closed
disk |z| ≤ 1, and is in addition k times continuously differentiable (k ≥ 0) on |z| = 1.
Then

(52) [zn]f(z) = o

(
1

nk

)
.

PROOF. Start from Cauchy’s coefficient formula

fn =
1

2iπ

∫

C
f(z)

dz

zn+1
.

Because of the continuity assumption, one may take as integration contour C the unit circle.
Setting z = eiθ yields the Fourier version of Cauchy’s coefficient formula,

(53) fn =
1

2π

∫ 2π

0

f(eiθ)e−niθ dθ.

The integrand in (53) is strongly oscillating and the Riemann–Lebesgue lemma of classical
analysis (see [126, p. 403]) shows that the integral giving fn tends to 0 as n→ ∞.

This argument covers the case k = 0. The case of a general k is then derived through
successive integrations by parts, as

[zn]f(z) =
1

2π(in)k

∫ 2π

0

f (k)(eiθ)e−niθ dθ.

�
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Various consequences of Theorem VI.11 are given in reference texts also under the
name of Darboux’s method. See for instance [25, 71, 75, 133]. We shall only illustrate the
mechanism by rederiving in this framework the analysis of the EGF of 2–regular graphs.
Clearly, we have

(54)
f(z) =

e−z/2−z2/4

√
1 − z

=
e−3/4

√
1 − z

+ e−3/4
√

1 − z +R(z).

ThereR(z) is the product of (1−z)3/2 with a function analytic at z = 1 that is a rest in the
Taylor expansion of e−z/2−z2/4. Thus,R(z) is of class C

1, i.e., continuously differentiable
once. By Theorem VI.11, we have

[zn]R(z) = o

(
1

n

)
,

so that

(55) [zn]f(z) = e−3/4

(
n− 1/2

n

)
+ e−3/4

(
n− 3/2

n

)
+ o

(
1

n

)
=
e−3/4

√
πn

+ o

(
1

n

)
.

Darboux’s method bears some resemblance to singularity analysis in that the estimates
derive from translating error terms in expansions. Smoothness conditions, rather than plain
order of growth information, are required by it. It is often applied in situations like in (54)–
(55) to functions that are products of the type h(z)(1 − z)α with h(z) analytic at 1, or
combinations thereof. In such particular cases, Darboux’s method is however subsumed
by singularity analysis.

It is inherent to Darboux’s method that it cannot be applied to functions whose ex-
pansions only involve terms that become infinite, while singularity analysis can. A clear
example arises in the analysis of the common subexpression problem [56] where there
occurs a function with a singular expansion of the form

1√
1 − z

1√
log 1

1−z

[
1 +

c1

log 1
1−z

+ · · ·
]
.

� 20. This exercise gives an instance where Darboux’s method applies but not singularity analysis.
Let

Fr(z) =

∞X

n=0

z2n

(2n)r
.

Show that F0(z), and hence each Fr , is singular at every point of the unit circle. [Hint: examine the
growth of F0 near 2nth roots of unity.] Use Darboux’s method to analyse asymptotically

[zn]ezF5(z).

�

VI. 9. Notes

General surveys of asymptotic methods in enumeration have been given by Ben-
der [10] and more recently Odlyzko [102]. A general reference to asymptotic analysis
that has a remarkably concrete approach is De Bruijn’s book [27]. Comtet’s book [25] and
Wilf’s book [133] each devote a chapter to these questions.

This chapter is almost entirely based on the theory developed by Flajolet and Odlyzko
in [52], where the term “singularity analysis” originates from. That theory itself draws its
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inspiration from classical analytic number theory, for instance the prime number theorem
where similar constours are used (see the discussion in [52] for sources). Another area
where Hankel contours are used is the inversion theory of integral transforms [31], in
particular in the case of algebraic and logarithmic singularities.

As seen repeatedly in this chapter, singularity analysis applies to functions with a mod-
erate (at most polynomial) rate of growth near their dominant singularities. The conditions
are simply analytic continuation and validity of the singular expansions in the correspond-
ing domains. Such conditions are automatically satisfied by a large number of functions
given by explicit “analytic” expressions, most notably a large subset of the generating
functions of elementary combinatorial structures defined by the basic constructions of se-
quence, set, and cycle. Thus singularity analysis ties well with the symbolic enumeration
methods of Chapters 1–3.

The cases of molecules and of simple trees show that singularity analysis also applies
to many functions defined by functional equations corresponding to recursively defined
combinatorial structures. A detailed study of singular functional equations does permit
in cases like these to analyse coefficients of generating functions that are only defined
implicitly. Many of these problems belong to an area of on-going research. Prototypes are
to be found in Pólya’s paper that contains numerous examples of nonplane trees, Odlyzko’s
analysis of balanced 2-3 trees (we gave earlier a first approximation of the analysis), as
well as in two problems to be examined later: the analysis of the height of binary trees
in (a singular iteration problem), and the analysis of multidimensional search in k–d–trees
and quad-trees (a singular differential system).

The application of the method of singularity analysis is rather mechanical since it
corresponds to a direct term by term translation, once general analyticity conditions are
recognized to hold. Salvy [115] has indeed succeeded in automating the analysis of a large
class of generating functions in this way; related decision procedures in this context are
also discussed in [54].

Darboux’s method can often be employed as an alternative to singularity analysis. It
is still by far the most widely used technique in the literature, though the direct mapping
of asymptotic scales afforded by singularity analysis appears to us much more transparent.
Darboux’s method is well explained in the books by Comtet [25], Henrici [75], Olver [105],
and Wilf [133]. Tauberian theory is treated in detail in Postnikov’s monograph [113], with
an excellent introduction to be found in Titchmarsh’s book [126].

Finally, another range of asymptotic behaviour —that of very rapidly growing func-
tions and entire functions— can be covered by the use of the saddle point method examined
in Chapter VIII. The Mellin transform is the basis of another range of complex-asymptotic
techniques applying to functions of an “arithmetical nature”: in this book, it is only dis-
cussed briefly in APPENDIX: Mellin transform, p. 167.



APPENDIX B

Basic Complex Analysis

1. Equivalent definitions of analyticity. Three different notions are introduced at the be-
ginning of Chapter IV: analyticity (defined by power series expansions), holomorphy (de-
fined as complex differentiability), and the property of having null integrals along loops.
As is known from any textbook on complex analysis, these three notions are equivalent.
This appendix entry sketches a proof of the equivalence, which is summarized by the fol-
lowing diagram:

Analyticity
[A]
=⇒ C-differentiability

⇑ [C] ⇓ [B]

(Integral representation)
[C]⇐= Null integrals

A. Analyticity implies complex-differentiability. Asume that f(z) is analytic in the disc
D(z0;R). We may assume without loss of generality that z0 = 0 and R = 1 (else effect
a linear transformation on the argument z). According to the definition of analyticity, the
series representation

f(z) =

∞∑

n=0

fnz
n,

converges for all z with |z| < 1. We are first going to prove that f(z) given by this repre-
sentation is analytic at any z1 interior toD(0; 1) by means of simple series rearrangements.
First, formally, the binomial theorem provides

(1)

f(z) =
∑

n≥0

fnz
n =

∑

n≥0

fn(z1 + z − z1)
n

=
∑

n≥0

n∑

k=0

(
n

k

)
fnz

k
1 (z − z1)

n−k

=
∑

m≥0

cm(z − z1)
m, cm :=

∑

k≥0

(
m+ k

k

)
fm+kz

k
1 .

Let r1 be any number smaller than 1 − |z1|. We observe that (1) makes analytic sense.
Indeed, one has the bound |fn| ≤ CAn, valid for any A > 1 and some C > 0. Thus, the
terms in (1) are dominated in absolute value by those of the double series

(2)
∑

n≥0

n∑

k=0

(
n

k

)
CAn|z1|krn−k

1 = C
∑

n≥0

An(|z1| + r1)
n =

C

1 −A(|z1| + r1)
,

which is absolutely convergent as soon as A is chosen such that A < (|z1| + r1)
−1.

161
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Complex differentiability of at any z1 ∈ D(0; 1) derives from the calculation, valid
for small enough δ,

(3)

1

δ
(f(z1 + δ) − f(z1))) =

∑

n≥0

nfnz
n−1
1 + δ

∑

n≥0

n∑

k=2

(
n

k

)
fnz

k
1 (δ)n−k−2

=
∑

n≥0

nfnz
n−1
1 +O(δ),

where boundedness of the coefficient of δ results from an argument analogous to the one
used in (2).

This argument also shows that the derivative of f at z1 is obtained by differentiat-
ing termwise the series representing f . More generally derivatives of all orders exist. In
view of this fact, the equalities of (1) can also be interpreted as the Taylor expansion (by
grouping terms according to values of k first):

(4) f(z1 + δ) = f(z1) + δf ′(z1) +
δ2

2!
f ′′(z1) + · · · .

B. Complex differentiability implies the “Null Integral” Property. This starts from the
Cauchy–Riemann equations. Let P (x, y) = <f(x + iy) and Q(x, y) = =f(x + iy). By
adopting successively in the definition of complex differentiability δ = h and δ = ih, one
finds P ′

x + iQ′
x = Q′

y − iP ′
y, implying

(5)
∂P

∂x
=
∂Q

∂y
and

∂P

∂y
=
∂Q

∂x
,

known as the Cauchy–Riemann equations. (The functions P and Q satisfy the partial
differential equations ∆f = 0, where ∆ is the 2-dimensional Laplacian ∆ := ∂2

∂x2 + ∂2

∂y2 ;
such functions are known as harmonic functions.)

The Proof of the Null Integral Property (i.e.,
∫

λ f = 0 for a loop λ) from differentia-
bility results from the Cauchy–Riemann equations, taking into account Greene’s formula,

∫

∂K

Adx +Bdy =

∫ ∫

K

(
∂B

∂x
− ∂A

∂y

)
dx dy,

which is valid for any (compact) domainK enclosed by a simple curve ∂K.

C. “Null Integrals” implies analyticity. The starting point is the formula

(6) f(a) =
1

2iπ

∫

γ

f(z)

z − a
dz,

knowing only differentiability of f and its consequence, the Null Integral Property (but
not postulating the existence of an analytic expansion). There γ is a simple positive loop
encircling a inside a region where f is analytic.

The proof of (6) is obtained by decomposing f(z) in the original integral as f(z) =
f(z) − f(a) + f(a). Define accordingly

g(z) =





f(z)−f(a)
z−a for z 6= a

f ′(a) for z 6= a.

By the differentiability assumption, g is continuous and holomorphic (differentiable) at any
point other than a. Its integral is thus 0 along γ. On the other hand, we have

∫

γ

1

z − a
dz = 2iπ,
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by a simple computation: deform γ to a small circle along a and evaluate the integral
directly by setting z − a = reiθ .

Once (6) is granted, it suffices to write, e.g., for an expansion at 0,

f(z) =
1

2iπ

∫

γ

f(t)
dt

t− z

=
1

2iπ

∫

γ

f(t)

(
1 +

z

t
+
z2

t2
+ · · ·

)
dt

t

=
∑

n≥0

fnz
n, fn :=

1

2iπ

∫

γ

f(t)
dt

tn+1
.

(Exchanges of integration and summation are justified by normal convergence.) Analytic-
ity is thus proved.

2. Gamma function. The formulæ of singularity analysis involve the Gamma function in
an essential manner. The Gamma function extends to nonintegral arguments the factorial
function and we collect in this appendix a few classical facts regarding it. Proofs may
be found in classic treatises like [75] or [131]. We first list the basic function–theoretic
properties. Next we prove the Hankel contour representation that illustrates a technique
fundamental to singularity analysis. Last, we conclude with a few classical expansions
that are of use in Chapter VI.

Euler introduced the Gamma function as

(7) Γ(s) =

∫ ∞

0

e−tts−1 dt,

where the integral converges provided <(s) > 0. Through integration by parts, one imme-
diately derives the basic functional equation of the Gamma function,

(8) Γ(s+ 1) = sΓ(s).

Since Γ(1) = 1, one has Γ(n + 1) = n!, so that the Gamma function serves to extend
the factorial function for nonintegral arguments. For combinatorial purposes, the special
value,

Γ

(
1

2

)
:=

∫ ∞

0

e−t dt√
t

= 2

∫ ∞

0

e−x2

dx =
√
π,

proves to be quite important. It implies in turn Γ(− 1
2 ) = −2

√
π.

� 1. Evaluation of the Gaussian integral. Define J :=
R∞

0
e−x2

dx. The idea is to evaluate J2:

J2 =

Z ∞

0

Z ∞

0

e−(x2+y2) dxdy.

Going to polar coordinates, (x2 + y2)1/2 = ρ, x = ρ cos θ, y = ρ sin θ yields, via the standard
change of variables formula:

J2 =

Z ∞

0

Z π
2

0

e−ρ2

ρdρdθ,

so that J2 = π/4. �

From (8) that the Gamma function can be analytically continued to the whole of C with
the exception of poles at 0,−1,−2, . . . . As s → −m, with m an integer, the functional
equation used backwards yields

Γ(s) ∼ (−1)m

m!

1

s+m
,
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FIGURE 1. A plot of Γ(s) for real s.

so that the residue of Γ(s) at s = −m is (−1)m/m!. Figure 1 depicts the graph of Γ(s)
for real values of s.

Hankel contour representation. Euler’s integral representation of Γ(s) used in conjunc-
tion with the functional equation permits us to continue Γ(s) to the whole of the complex
plane. A direct approach due to Hankel provides an alternative integral representation valid
for all values of s.

THEOREM B.1 (Hankel’s contour integral). Let
∫ (0)

+∞ denote an integral taken along
a contour starting at +∞ in the upper plane, winding counterclockwise around the origin,
and proceeding towards +∞ in the lower half plane. Then, for all s ∈ C,

(9)
1

Γ(s)
= − 1

2iπ

∫ (0)

+∞
(−t)−se−t dt.

In (9), (−t)−s is assumed to have its principal determination when t is negative real,
and this determination is then extended uniquely by continuity throughout the contour. The
left hand side of (9) can also be rewritten as 1

π sin(πs)Γ(1−s), by virtue of the complement
formula (this is absurd!).

PROOF. We refer to volume 2 of Henrici’s book [75, p. 35] or Whittaker and Watson’s
treatise [131, p. 245] for a detailed proof.

A contour of integration that fulfills the conditions of the theorem is typically the
contour H that is at distance 1 of the positive real axis comprising three parts: a line
parallel to the positive real axis in the upper half–plane; a connecting semi–circle centered
at the origin; a line parallel to the positive real axis in the lower half–plane. More precisely,
H = H− ∪ H+ ∪ H◦, where

(10)





H− = {z = w − i, w ≥ 0}
H+ = {z = w + i, w ≥ 0}
H◦ = {z = −eiφ, φ ∈ [−π

2 ,
π
2 ]}.

Let ε be a small positive real number, and denote by ε · H the image of H by the
transformation z 7→ εz. By analyticity, for the integral representation, we can equally well
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adopt as integration path the contour ε · H, for any ε > 0. The main idea is then to let ε
tend to 0.

Assume momentarily that s < 0. (The extension to arbitrary s then follows by analytic
continuation.) The integral along ε · H decomposes into three parts:

The integral along the semi–circle is 0 if we take the circle of a vanishing small
radius, since −s > 0.
The contributions from the upper and lower lines give, as ε→ 0

∫ (0)

+∞
(−t)−se−t dt = (−U + L)

∫ ∞

0

t−se−t dt

where U and L denote the determinations of (−1)−s on the half-lines lying in
the upper and lower half planes respectively.

By continuity of determinations, U = (e−iπ)−s and L = (e+iπ)−s. Therefore, the right
hand side of (9) is equal to

− (−eiπs + e−iπs)

2iπ
Γ(1 − s) = − sin(πs)

π
Γ(1 − s)

which reduces to 1/Γ(s) by the complement formula for the Gamma function. �

Expansions. The Gamma function has poles at the nonpositive integers but has no zeros.
Accordingly, 1/Γ(s) is an entire function with zeros at 0,−1, . . ., and the position of the
zeros is reflected by the product decomposition,

(11)
1

Γ(s)
= seγs

∞∏

m=1

[
(1 +

s

n
)e−s/n

]

(of the so–called Weierstraß type). There γ = 0.57721 denotes Euler’s constant

γ = lim
n→∞

(Hn − logn) ≡
∞∑

n=1

[
1

n
− log(1 +

1

n
)

]
.

The logarithmic derivative of the Gamma function is classically known as the psi func-
tion and is denoted by ψ(s):

ψ(s) =
d

ds
log Γ(s) =

Γ′(s)

Γ(s)
.

In accordance with (11), ψ(s) admits a partial fraction decomposition

(12) ψ(s+ 1) = −γ −
∞∑

n=1

[
1

n+ s
− 1

n

]
.

From (12), there results that the Taylor expansion of ψ(s+ 1), hence of Γ(s+ 1), involves
values of the Riemann zeta function,

ζ(s) =

∞∑

n=1

1

ns
,

at the positive integers: for |s| < 1,

ψ(s+ 1) = −γ +

∞∑

n=2

(−1)nζ(n)sn−1.
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so that the coefficients in the expansion of Γ(s) around any integer are polynomially ex-
pressible in terms of Euler’s constant γ and values of the zeta function at the integers. For
instance,

Γ(s+ 1) = 1 − γ s+

(
π2

12
+
γ2

2

)
s2 +

(
−ζ(3)

3
− π2γ

12
− γ3

6

)
s3 + O(s4).

Another direct consequence of the infinite product formulæ for Γ(s) and sinπs is the
complement formula for the Gamma function,

(13) Γ(s)Γ(−s) = − π

s sinπs
,

which directly results from the factorization of the sine function (due to Euler),

sin s = s

∞∏

n=1

(
1 − s2

n2π2

)
.

In particular, the complement formula entails the special value

Γ(
1

2
) =

√
π.

� 2. The duplication formula. This is

22s−1Γ(s)Γ(s+
1

2
) = π1/2Γ(2s),

which provides the expansion of Γ near 1/2:

Γ(s+
1

2
) = π1/2 − (γ + 2 log 2)π1/2s+

„
π5/2

4
+

(γ + 2 log 2)2 π1/2

2

«
s2 + O(s3).

�

Finally, a famous asymptotic formula is Stirling’s approximation, familiarly known as
“Stirling’s formula”:

Γ(s+ 1) = sΓ(s) ∼ sse−s
√

2πs

[
1 +

1

12s
+

1

288s2
− 134

51840s4
+ · · ·

]
.

It is valid for (large) real s > 0, and more generally for all s → ∞ in |Arg(s)| < π − δ
(any δ > 0). For the purpose of obtaining effective bounds, the following quantitative
relation [131, p. 253] often proves useful

Γ(s+ 1) = sse−s(2πs)1/2eθ/(12s) where 0 < θ < 1,

an equality that holds now for all s ≥ 1.

� 3. Stirling’s formula via the method of Laplace. Stirling’s formula for large s can be derived by
applying Laplace’s method to the integral

Z ∞

0

e−tts dt ≡
Z ∞

0

e−t+s log t dt,

and by expanding near the maximum of the integrand, namely, t = s. [See [25, p. 267] for an explicit
form of the full expansion related to derangement numbers.] �

� 4. Stirling’s formula via Euler–Maclaurin summation. Stirling’s formula can be derived from
Euler–Maclaurin summation applied to log Γ(s). �
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� 5. The Eulerian Beta function. It is defined for <(p),<(q) > 0 by any of the following integrals:

B(p, q) :=

Z 1

0

xp−1(1 − x)q−1 dx =

Z ∞

0

yp−1

(1 + y)p+q
dy = 2

Z π
2

0

cos2p−1 θ sin2p−1 θ dθ.

It satisfies:

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
.

[See [131, p. 254] for a proof generalizing that of Note 1.] �

3. Mellin transform. The Mellin transform of a function f defined over R>0 is the
complex variable function f ?(s) defined by the integral

(14) f?(s) :=

∫ ∞

0

f(x)xs−1 dx.

This transform is also occasionally denoted by M[f ] or M[f(x); s]. Its importance de-
volves from two properties: (i) it maps asymptotic expansions of a function at 0 and +∞
to singularities of the transform; (ii) it factorizes harmonic sums (defined below). The
conjunction of the mapping property and the harmonic sum property makes it possible
to analyse asymptotically rather complicated sums arising from a linear superposition of
models taken at different scales. Major properties are summarized in Figure 2

It is assumed that f is locally integrable. Then, the two conditions,

f(x) =
x→0+

O(xu), f(x) =
x→+∞

O(xv),

guarantee that f∗ exists for s in a strip,

s ∈ 〈−u,−v〉, i.e., −u < <(s) < −v.
Thus existence of the transform is granted provided v < u. The prototypical Mellin trans-
form is the Gamma function discussed elsewhere in this appendix:

Γ(s) :=

∫ ∞

0

e−xxs−1 dx = M[e−x; s], 0 < <(s) <∞.

Similarly f(x) = (1 + x)−1 is O(x0) at 0 and O(x−1) at infinity, and hence its transform
exists in the strip 〈−1, 0〉; it is in fact π/ sinπs. The Heaviside function H(x) := [[0 ≤
x < 1]] exists in 〈0 < +∞〉 and has transform 1/s.

Harmonic sum propery. The Mellin transform is a linear transform. In addition, it satis-
fies the important rescaling rule

f(x)
M7→ f?(s) implies f(µx)

M7→ µ−sf?(s),

for any µ > 0. Linearity then implies the derived rule

(15)
∑

k

λkf(µkx)
M7→
(
λkµ

−s
k

)
· f?(s),

valid a priori for any finite set of pairs (λk , µk) and extending to infinite sums whenever
the interchange of

∫
and

∑
is permissible. A sum of the form (15) is called a harmonic

sum, the function f is the “base function”, the λ’s the “amplitudes” and the µ’s the “fre-
quencies”. Equation (15) then yields the “harmonic sum rule”: The Mellin transform of a
harmonic sum factorizes as the product of the transform of the base function and a gener-
alized Dirichlet series associated to amplitudes and frequencies. Harmonic sums surface
recurrently in the context of analytic combinatorics and Mellin transforms are a method of
choice for coping with them.
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Here are a few examples of application of the rule (15):
∑

k≥1

e−k2x2 7→ 1
2Γ(s/2)ζ(s) <(s) > 1

∑

k≥0

e−x2k 7→ Γ(s)

1 − 2−s
<(s) > 0

∑

k≥0

(log k)e−
√

kx 7→ − 1
2ζ

′(s/2)Γ(s) <(s) > 2

∑

k≥1

1

k(k + x)
7→ ζ(2 − s)

π

sinπs
0 < <(s) < 1

� 6. Connection between power series and Dirichlet series. Let (fn) be a sequence of numbers with
at most polynomial growth, fn = O(nr), and with OGF f(z). Then, one has

X

n≥1

fn

ns
=

1

Γ(s)

Z ∞

0

f
`
e−x

´
xs−1 dx, <(s) > r + 1.

For instance, one obtains the Mellin pairs

e−x

1 − e−x

M7→ ζ(s)Γ(s) (<(s) > 1), log
1

1 − ex

M7→ ζ(s+ 1)Γ(s) (<(s) > 0).

These may be used to analyse sums or, conversely, deduce analytic properties of Dirichlet series. �

Mapping properties. Mellin transfoms map asymptotic terms in the expansions of a func-
tion f at 0 and +∞ onto singular terms of the transform f ?. This property stems from the
basic identities

H(x)xα M7→ 1

s+ α
(s ∈ 〈−α,+∞〉), (1 −H(x))xβ M7→ 1

s+ β
(s ∈ 〈−∞,−β〉),

as well as what one obtains by differentiation with respect to α, β.
The converse mapping property also holds. Like for other integral transforms, there is

an inversion formula: if f is continuous in an interval containing x, then

(16) f(x) =
1

2iπ

∫ c+i∞

c−i∞
f?(s)x−s ds,

where the abscissa c should be chosen in the “fundamental strip” of f ; for instance any c
satisfying −u < c < −v with u, v as above is suitable.

In many cases of practical interest, f ? is continuable into a meromorphic function
to the whole of C. If the continuation of f ? does not grow too fast along vertical lines,
then one can estimate the inverse Mellin integral of (16) by residues. This corresponds to
shifting the line of integration to some d 6= c and taking poles into account by the residue
theorem. Since the residue at a pole s0 of f? involves a factor of x−s0 , the contribution
of s0 will give useful information on f(x) as x → ∞ if s0 lies to the right of c, and on
f(x) as x → 0 if s0 lies to the left. Higher order poles introduce additional logarithmic
factors. The “dictionary” is simply

(17)
1

(s− s0)k

M−1

7→ ± (−1)k

k!
x−s0(logx)k ,

where the sign is ‘+’ for a pole on the left of the fundamental strip and ‘−’ for a pole on
the right.
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Function (f(x)) Mellin transform (f?(s))

f(x)

Z ∞

0

f(x)xs−1 dx definition, s ∈ 〈−u,−v〉
1

2iπ

Z c+i∞

c−i∞

f?(s)x−s ds f?(s) inversion th., −u < c < −v
X

i

λifi(x)
X

i

λif
?
i (s) linearity

f(µx) µ−sf?(s) scaling rule (µ > 0)

xρf(xθ)
1

θ
f?
“s+ ρ

θ

”
power rule

X

i

λif(µix)

 X

i

λiµ
−s
i

!
· f?(s) harmonic sum rule (µi > 0)

Z ∞

0

λ(t)f(tx) dt

Z ∞

0

λ(t)t−s dt · f?(s) harmonic integral rule

f(x) logk x ∂k
s f

?(s) diff. I, k ∈ Z≥0, ∂s := d
ds

∂k
xf(x)

(−1)kΓ(s)

Γ(s− k)
f?(s− k) diff. II, k ∈ Z≥0, ∂x := d

dx

∼
x→0

xα(log x)k ∼
s→−α

(−1)kk!

(s+ α)k+1
mapping: x→ 0, left poles

∼
x→+∞

xβ(log x)k ∼
s→−β

(−1)k−1k!

(s+ β)k+1
mapping: x→ ∞, right poles

FIGURE 2. Major properties of Mellin transforms.

Mellin asymptotic summation. The combination of mapping properties and the harmonic
sum property constitutes a powerful tool of asymptotic analysis. As an example, let us first
investigate the pair

F (x) :=
∑

k≥1

1

1 + k2x2
, F ?(s) =

1

2

π

sin 1
2πs

ζ(s),

where F ? results from the harmonic sum rule and is is originally defined in the strip 〈1, 2〉.
The function is meromorphically continuable to the whole of C with poles at the points
0, 1, 2 and 4, 6, 8, . . .. The transform F ? is small towards infinity, so that application of the
dictionary (17) is justified. One then finds mechanically:

F (x) ∼
x→0+

π

2x
− 1

2
+O(xM ), F (x) ∼

x→+∞
π2

6x2
− π4

90x4
+ · · · ,

for any M > 0.
A particularly important quantity in analytic combinatorics is the harmonic sum

Φ(x) :=
∞∑

k=0

(
1 − e−x/2k

)
.

It occurs for instance in the analysis of longest runs on page 61. By the harmonic sum rule,
one finds

Φ?(s) = − Γ(s)

1− 2s
, s ∈ 〈−1, 0〉

(The transform of e−x − 1 is also Γ(s), but in the shifted strip 〈−1, 0〉.) The singularities
of Φ? are at s = 0, where there is a double pole, at s = −1,−2, . . . which are simple
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poles, but also at the complex points

χk =
2ikπ

log 2
.

The Mellin dictionary (17) can still be applied provided one integrates along a long rect-
angular contour that passes in-between poles. The salient feature is here the presence of
fluctuations induced by the imaginary poles, since

x−χk = exp (2ikπ log2 x) ,

and each pole induces a Fourier element. All in all, one finds (any M > 0):

(18)





Φ(x) ∼
x→+∞

log2 x+
γ

log 2
+

1

2
+ P (x) +O(xM )

P (x) :=
1

log 2

∑

k∈Z\{0}
Γ

(
2ikπ

log 2

)
e2iπ log2 x.

The analysis for x → 0 is also possible: in this particular case, it yields

Φ(x) ∼
x→0

∑

n≥1

(−1)n−1

1 − 2−n

xn

n!
,

which is what would result from expanding the exponential in Φ(x) and reorganizing the
terms, and consequently constitutes an exact formula.

� 7. Mellin-type derivation of Stirling’s formula. One has the Mellin pair

L(x) =
X

k≥1

log
“
1 +

x

k

”
− x

k
, L?(s) = − π

s sinπs
ζ(1 − s), s ∈ 〈−2,−1〉

Note that L(x) = log(e−γx/Γ(1 + x)). Mellin asymptotics provides

L(x) ∼
x→+∞

−x log x− (γ − 1)x− 1

2
log x− log

√
2π − 1

12x
+

1

360
x3 − 1

1260x5
+ · · · ,

where one recognizes Stirling’s expansion of x!,

log x! ∼
x→+∞

log
“
xxe−x

√
2πx

”
+
X

n≥1

B2n

2n(2n − 1)
x1−2n,

with Bn the Bernoulli numbers. �

� 8. Mellin-type analysis of the harmonic numbers. For a parameter α > 0, one has the Mellin pair:

Kα(x) =
X

k≥1

„
1

kα
− 1

(k + x)α

«
, K?

α(s) = −ζ(α− s)
Γ(s)Γ(α− s)

Γ(α)
.

This serves to estimate harmonic numbers and their generalisations, for instance

Hn ∼
n→∞

log n+ γ +
1

2n
+
X

k≥2

Bk

k
n−k ∼ log n + γ +

1

2n
− 1

12n2
+

1

120n4
− · · · ,

since K1(n) = Hn. �

EXAMPLE 1. Euler-Maclaurin summation via Mellin analysis. Let f be continuous on
(0,+∞) and satisfy f(x) =x→+∞ O(x−1−δ), for some δ > 0, and

f(x) ∼
x→0+

∞∑

k=0

fkx
k.
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The summatory function F (x) satisfies

F (x) :=
∑

n≥1

f(nx), F ?(s) = ζ(s)f?(s),

by the harmonic sum rule. By the mapping property, the collection of singular expansions
of f? at s = 0,−1,−2, . . . is summarized by the formal sum

f?(s) �
(
f0
s

)

s=0

+

(
f1
s+ 1

)

s=1

+

(
f2
s+ 2

)

s=1

+ · · · .

Thus, provided F ?(s) is small towards ±i∞ in finite strips, one has

F (x) ∼
x→0

1

x

∫ ∞

0

f(t) dt+

∞∑

j=0

fjζ(−j)xj ,

where the main term is associated to the singularity of F ? at 1 and arises from the pole
of ζ(s), with F ?(1) giving the integral of f . The interest of this approach is that it is
very versatile and allows for various forms of asymptotic expansions of f at 0 as well as
multipliers like (−1)k, log k, and so on; see [47] for details. �

Good references on Mellin transforms are the books by Doetsch [31] and Widder [132].
The term “harmonic sum” and some of the corresponding technology originates with
the abstract [53]. This brief presentation is based on the survey article [47] to which
we refer for a detailed treatment. Mellin analysis of “harmonic integrals” is a classi-
cal topic of applied mathematics for which we refer to the books by Wong [134] and
Paris–Kaminski [108]. Good treatments of properties of use in discrete mathematics and
analysis of algorithms now appear in the books by Hofri [77], Mahmoud [97], and Sz-
pankowski [125].

4. Perron-Frobenius theory of nonnegative matrices. Perron-Frobenius theory gives
access to growth properties associated to nonnegative matrices and hence to the dominant
singularities of generating functions that satisfy linear systems of equations with nonneg-
ative coefficients. Applications to rational asymptotics, paths, graphs, and automata are
detailed in Chapter IV. The purpose here is only to sketch the main techniques from ele-
mentary matrix analysis that intervene in this theory. Excellent treatments are to be found
in the books of Bellman [8, Ch. 16], Gantmacher [62, Ch. 13], as well as Karlin and Tay-
lor [80, p. 536–551].

THEOREM B.2. LetA be a matrix whose entries are all positive. Then,A has a unique
eigenvalue λ(A) which has greatest modulus. This eigenvalue is positive and simple.

PROOF. The main idea consists in investigating the set of possible “expansion factors”

(19) S :=
{
λ
∣∣ ∃ v ≥ 0, A v ≥ λ v

}
.

(There v ≥ 0 means that all components of v are nonnegative and v ≥ w means that
the entries of v are at least as large as the corresponding entries of w.) The largest of the
expansion factors,

µ := sup(S),

plays a vital rôle in the argument. The proof relies on establishing that it coincides with
the dominant eigenvalue λ(A). We set d = dim(A).

Simple inequalities show that S contains at least the interval [0, dmini,j ai,j ]. Inequal-
ities relative to the norm || · ||1 show that S ⊆ [0,

∑
i,j ai,j ]. Thus, µ is finite and nonzero.

That the supremum value µ is actually attained (i.e., µ ∈ S) results from a simple topolog-
ical argument detailed in [8]: take a bounded family v(j) corresponding to a sequence λ(j)
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tending to µ and extract a convergent subsequence tending to a vector v(∞) which must
then satisfy A v∞) ≥ µ v(∞). We let w be such a vector of Rd

≥0 satisfying Aw ≥ µw.
Next, one has Aw = µw. Indeed, suppose a contrario that this is not the case and

that, without loss of generality,

(20)
∑

j

A1,jwj − µw1 = η,
∑

j

Ai,jwj − µw1 ≥ 0 (i = 2, . . . , d),

for η > 0. Then, given the slack afforded by η, one could construct a small perturbation w?

of w (by w?
j = wj for j = 2, . . . , d and w?

1 = w1 + e1/(2µ)) as well as a value µ? such
that Aw? ≥ µ? w with µ? > µ, a contradiction. Thus, µ is an eigenvalue of A and w is an
eigenvector corresponding to this eigenvalue.

Furthermore, all eigenvalues are dominated in modulus by µ. Let indeed ν and x be
such that A x = ν x. One has A| x | ≥ |ν| | x |, where | x | designates the vector whose
entries are the absolute values of the corresponding entries of x. Thus, by the maximality
property defining µ, one must have |ν| ≤ µ. If |ν| = µ and x is a corresponding eigenvec-
tor, then A| x | ≥ µ| x |, and by the same argument as in (20), one must have A| x | = µ|x|.
Thus |x| is also an eigenvector corresponding to µ. Then, by the triangular inequality,
one has |A x | ≥ A| x |, so that in fact A| x | = |A x |, which by the converse triangular
inequality implies that x = ω y, where ω ∈ C and y has nonnegative entries. From this
observation and the fact that A y = ν y, it results that ν is positive real, so that ν = µ.
Unicity of the dominant eigenvalue is therefore established.

Finally, simplicity of the eigenvalue µ results from a specific argument based on sub-
matrices. If Bk is obtained from A by deleting the kth row and the kth column, then, on
general grounds, one has λ(A) > λ(Bk). From there, through the equality

− d

dλ
|A− λI | = |B1 − λI | + · · · + |Bd − λI |

(here |A| = det(A)), it can be verified that the derivative of the characteristic polynomial
of A at µ is strictly negative, and in particular nonzero; hence simplicity of the eigen-
value µ. See [8] for details. �

5. Regular expressions1. A language is a set of words over some fixed alphabet A. The
structurally simplest (yet nontrivial) languages are the regular languages that can be de-
fined in a variety of ways: by regular expressions and by finite automata, either determin-
istic or nondeterministic.

DEFINITION B.1. The category RegExp of regular expressions is defined by the prop-
erty that it contains all the letters of the alphabet (a ∈ A) as well as the empty symbol ε,
and is such that, if R1, R2 ∈ RegExp, then the formal expressions R1 ∪ R2, R1 · R2 and
R?

1 are regular expressions.

Regular expressions are meant to specify languages. The language L(R) denoted by
a regular expressionR is defined inductively by the rules: (i) L(R) = {a} if R is the letter
a ∈ A and L(R) = {ε} (with ε the empty word) if R is the symbol ε; (ii) L(R1 ∪ R2) =
L(R1)∪ L(R2) (with ∪ the set-theoretic union); (iii) L(R1 ·R2) = L(R1) · L(R2) (with
· the concatenation of words extended to sets); (iv) L(R?

1) = {ε} + L(R1) + L(R1) ·
L(R1) + · · · . A language is said to be a regular language if it is specified by a regular
expression.

A language is a set of words, but a word w ∈ L(R) may be parsable in several ways
according to R. More precisely, one defines the ambiguity coefficient (or multiplicity) of w

1This entry supplements Appendix A: Regular languages.
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with respect to the regular expressionR as the number of parsings, written κ(w) = κR(w).
In symbols, we have

κR1∪R2(w) = κR1(w) + κR2(w), κR1·R2(w) =
∑

u·v=w

κR1(u)κR2(v),

with natural initial conditions (κa(b) = δa,b, κε(w) = δε,w), and with the definition of
κR?(w) taken as induced by the definition of R? via unions and products, namely,

κR?(w) = δε,w +

∞∑

j=1

κRj (w).

As such, κ(w) lies in the completed set N ∪ {+∞}. We shall only consider here regular
expressions R that are proper, in the sense that κR(w) < +∞. It can be checked that
this condition is equivalent to requiring that no S? with ε ∈ L(S) enters in the inductive
definition of the regular expression R. (This condition is substantially equivalent to the
notion of well-founded specification in Chapter 1.) A regular expression R is said to be
unambiguous iff for all w, we have κR(w) ∈ {0, 1}; it is said to be ambiguous, otherwise.

Given a language L = L(R), we are interested in two enumerating sequences

LR,n =
∑

|w|=n

κR(w), Ln =
∑

|w|=n

1w∈L,

corresponding to the counting of words in the language, respectively, with and without
multiplicities.
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18. Gilles Brassard and Paul Bratley, Algorithmique: conception et analyse, Masson, Paris, 1987.
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digital tree (trie), 106
shake and paint, 145

alignment, 33, 86
ambiguity

regular expression, 66, 172
analytic continuation, 14
analytic function, 6–14

composition, 142–146
differentiation, 146–149
Hadamard product, 150–153
integration, 146–149
inversion, 44–47, 137–142
iteration, 47–50
Lindel öf integrals, 13

approximate counting, 64–66
area (of Dyck path), 76
argument principle, 39
asymptotics, 139–142
autocorrelation (in words), 41

balanced tree, see tree
Bernoulli numbers, 37
Bernoulli trial, 58
Beta function (B), 167
binomial coefficient

asymptotics, 123–126
birth and death process, 69
birth process, 63
birthday paradox, 144
Boltzmann model, 46
branch point (function), 6

Carlitz composition, 34
Catalan numbers (Cn)

asymptotics, 126
Catalan sum., 145
Cauchy’s residue theorem, 10

Cauchy–Riemann equations, 162
Cayley tree function, see Tee function (T )118
Chebyshev polynomial, 73
cloud, 134
coding theory, 20
coin fountain, 77
combinatorial sums, 142–146
complex differentiability, 7
composition (of integer)

Carlitz, 34
largest summand, 83, 87
local constraints, 34
prime summands, 83–85
profile, 86
restricted summands, 83–85

composition (singular), 142–146
computable numbers, 25
computer algebra, see symbolic manipulation
conformal map, 7
constructible class, 24–27
continuant polynomial, 70
continuation (analytic), 14
continued fraction, 50, 69–81
convexity (of GFs), 46
cover time (walk), 110–111

Darboux’s method, 158
data mining, 145
de Bruijn graph, 104–105
denumerant, 30–31
dependency graph, 88
derangement, 33, 113
devil’s staircase, 100–101
differentiation (singular), 146–149
digital tree (trie), 106
digraph, see graph
disc of convergence (series), 7
distribution, see probability distribution
dominant singularity, 16
double exponential distribution, 59
drunkard problem, 151–153
Dyck path

area, 76
height, 72–76

dynamical source, 68

eigenvalue, see matrix
entire function, 18
Euler’s constant (γ), 165
Euler–Maclaurin summation, 13, 170
Eulerian tour (in graph), 105
exceedances (in permutations), 113
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excursion (lattice path), 69
exponential growth formula, 18–23
exponential order (./), 18
exponential polynomial, 119

Fibonacci polynomial, 73
finite automaton, 101–106

deterministic, 101
non-deterministic, 101

finite state model, 101, 107–112
formal language, see language
fractals, 49
fragmented permutation

asymptotic, 21
function (of complex variable)

analytic, 6–14
differentiable, 7
entire, 7, 18
holomorphic, 7
meromorphic, 8

functional equation, 44–52
Fundamental Theorem of Algebra, 40

Gamma function (Γ), 121, 163–167
Gaussian integral, 163
graph

adjacency matrix, 94
aperiodic, 89
de Bruijn, 104–105
paths, 94–101
periodic, 89
regular, 134
spanning tree, 96
strongly connected, 89
zeta function, 95

Hadamard product, 150–153
Hankel contour, 124, 164
harmonic function, 162
harmonic number (Hn), 129

asymptotics, 170
harmonic sum, 167
height (of tree), 73–76
Hermite polynomial, 80
hidden pattern, 66–68, 106
hierarchy, 47
holomorphic function, 7
homotopy (of paths), 9
hypergeometric function (2F1), 151

Implicit Function Theorem (analytic), 40
inclusion-exclusion, 113
integration (singular), 146–149
interconnection network, 78
inversion (analytic), 137–142
involution (permutation), 78
iteration, 47
iteration (of analytic function), 48–50
iterative specification, 24–27

Jacobi trace formula, 91, 95

Knuth–Ramanujan function, see Ramanujan’s Q-
function

language, 172

regular, 117, 172–173
Laplace method, 166
Laplacian, 162

of graph, 96
largest components, 87
lattice path, 69–81

decompositions, 70
Lindel öf integrals, 13
Liouville’s theorem, 13
localization (of zeros and poles), 39
logarithm, binary (lg), 59
logarithmic-series distribution, 86
longest run (in word), 59–62
loop (in complex region), 10

magic duality, 13
majorant series, 24
Markov chain, 95
matrix

aperiodic, 89
eigenvalue, 88

dominant, 88
irreducible, 89
nonnegative, 90
norm, 93
Perron Frobenius theory, 88–90, 171–172
positive, 90
spectral radius, 88
spectrum, 88
stochastic, 95, 99
trace, 91, 95
transfer, 107–112

matrix tree theorem, 96
Meinardus’ method, 23
Mellin transform, 23, 61, 75, 167–171
m énage problem, 113
meromorphic function, 8
Motzkin numbers

asymptotics, 136
Motzkin path, 72, 75

natural boundary, 23
network, 78
N örlund-Rice integrals, 13
numerology, 68

orthogonal polynomials, 78
oscillations (of coefficients), 36, 50, 130

partially commutative monoid, 58–59
partition (of integer)

asymptotics, 22
denumerant, 30–31
into powers, 23
Meinardus’ method, 23

partition of set, see set partition
path (in complex region), 8
pattern

in words, 41–43, 66–68
periodicity (of coefficients), 35
periodicity (of GF), 81
permutation

alternating, 39
derangement, 33, 113
exceedances, 113
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involution, 22, 78
m énage, 113
odd cycles, 155
shortest cycle, 33–34

Perron Frobenius theory, 88–90, 171–172
Plana’s summation, 13
P ólya operators, 25
polylogarithm, 13, 149–150
polynomial

primitive, 92
polyomino, 111
prime number, 4–5
principal determination (function), 6
Pringsheim’s theorem, 15
probability distribution

Airy area, 112
double exponential, 59–62
geometric–birth, 65
logarithmic series, 86
stable laws, 146
theta function, 74, 107

psi function (ψ), 165

q–calculus, 66, 77

radius of convergence (series), 7, 18–19
radius of singularity (series), 15, 19
Ramanujan’s Q-function, 144–145
random generation, 87
random walk, see walk
rational function, 12, 29–31, 39–41

positive, 90–94
region (of complex plane), 6
regular

expression, 56, 117, 172–173
language, 56–59, 117, 172–173
specification, 56–59

regular point (analytic function), 15
renewal process, 87
Res (residue operator), 8
residue, 8–14

Cauchy’s theorem, 10
Rice integrals, see N örlund-Rice integrals
Riemann surface, 14
Rogers-Ramanujan identities, 77
Rouch é’s theorem, 39
round (children’s), 136
rounding notation (d · c), 32

saddle point
bounds, 21

schema (combinatorial-analytic), 55, 56
supercritical sequence, 81–87

self-avoiding configurations, 111–112
set partition

asymptotics, 22
shuffle product, 117
simple variety (of trees), 76
singular expansion, 134
singularity (of function), 14–18

dominant, 16
singularity analysis, 119–160
slow variation, 157
Smirnov word, 34, 62, 103
spanning tree, 96

spectral radius, 88
spectrum, see matrix
statistical physics, 56, 109–111
Stirling’s approximation, 141, 150, 166, 170
strip (〈·〉), 167
subexponential factor, 18
subsequence statistics

see hidden patterns, words, 1
supercritical cycle, 146
supercritical sequence, 81–87, 142
supertree, 145–146
surjection, 86

asymptotics, 32
surjection numbers, 38
symbolic manipulation, 26

Tauberian theory, 157
Taylor expansion, 162
theta function, 74–75, 107
trace monoid, see partially commutative monoid
trains, 27, 137
transfer matrix, 107–112
transfer theorem, 130–134
tree

balanced, 47–50
exponential bounds, 45–47
height, 73–76
simple variety, 76, 139–142
supertree, 145–146
width, 107–108

Tree function (T ), 138–141

unambiguous, see ambiguity
universality, 56
unperiodic (GF), 81

walk (in graph), 94–112
birth type, 63–66
cover time, 110–111
devil’s staircase, 100–101
integer line, 69–72
interval, 69–75
self-avoiding, 111–112

width (of tree), 107–108
winding number, 39
word

excluded patterns, 105
language, 172
local constraints, 103
longest run, 59–62
pattern, 41–43, 66–68
regular expression, 56
Smirnov, 34, 62, 103

zeta function (of graph), 95
zeta function, Riemann (ζ), 4, 38, 165


