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In this edition of May 3, 2007:

— Chapters 0, 1, 2, 3, 4, 5, 6, 7, 8 are in quasi-semi-final form.
— Chapter 9 is still in a very preliminary form
— Chapter 10, in preparation is not included.
— Appendices are under constant revision.

Also, both long and short forms of construction names are currently used, with one destined to become the
standard eventually. For unlabelled classes, the dictionary is

S≡ SEQ, M≡ MSET, P≡ PSET, C ≡ CYC,

while for labelled classes,
S≡ SEQ, P≡ SET, C ≡ CYC .

c©Philippe Flajolet and Robert Sedgewick; May 3, 2007.
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PREFACE

ANALYTIC COMBINATORICS aims at predicting precisely the properties of large
structured combinatorial configurations, through an approach based extensively on
analytic methods. Generating functions are the central objects of the theory.

Analytic combinatorics starts from an exact enumerative description of combina-
torial structures by means of generating functions, which make their first appearance
as purely formal algebraic objects. Next, generating functions are interpreted as an-
alytic objects, that is, as mappings of the complex plane into itself. Singularities
determine a function’s coefficients in asymptotic form and lead to precise estimates
for counting sequences. This chain applies to a large numberof problems of discrete
mathematics relative to words, trees, permutations, graphs, and so on. A suitable adap-
tation of the methods also opens the way to the quantitative analysis of characteristic
parameters of large random structures, via a perturbational approach.

Analytic combinatorics can accordingly be organized basedon three components:

Symbolic Methodsdevelops systematic relations between some of the major
constructions of discrete mathematics and operations on generating func-
tions which exactly encode counting sequences.
Complex Asymptoticselaborates a collection of methods by which one can
extract asymptotic counting information from generating functions, once
these are viewed as analytic transformations of the complexdomain. Singu-
larities then appear to be a key determinant of asymptotic behaviour.
Random Structuresconcerns itself with probabilistic properties of large ran-
dom structures. Which properties hold with high probability? Which laws
govern randomness in large objects? In the context of analytic combina-
torics, these questions are treated by a deformation (adding auxiliary vari-
ables) and a perturbation (examining the effect of small variations of such
auxiliary variables) of the standard enumerative theory.

THE APPROACH to quantitative problems of discrete mathematics providedby
analytic combinatorics can be viewed as anoperational calculusfor combinatorics.
The present book exposes this view by means of a very large number of examples
concerning classical combinatorial structures—most notably, words, trees, composi-
tions, partitions, permutations, mapings, allocations, planar maps, and graphs. The
eventual goal is an effective way of quantifying metric properties of large random
structures.

Given its capacity of quantifying properties of large discrete structures,Analytic
Combinatoricsis susceptible to many applications, within combinatoricsitself, but,
perhaps more importantly, within other areas of science where discrete probabilistic
models recurrently surface, like statistical physics, computational biology, electrical
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engineering, and information theory. Last but not least, the analysis of algorithms
and data structures in computer science has served and stillserves as an important
motivation in the development of the theory.

⋆ ⋆ ⋆ ⋆ ⋆⋆

Part A: Symbolic Methods. This part specifically exposesSymbolic Methods,
which is a unified algebraic theory dedicated to setting up functional relations be-
tween counting generating functions. As it turns out, a collection of general (and
simple) theorems provide a systematic translation mechanism between combinato-
rial constructions and operations on generating functions. This translation process is
a purely formal one. Precisely, as regards basic counting, two parallel frameworks
coexist—one for unlabelled structures and ordinary generating functions, the other
for labelled structures and exponential generating functions. Furthermore, within the
theory, parameters of combinatorial configurations can be easily taken into account
by adding supplementary variables. Three chapters then compose this part: Chapter I
deals with unlabelled objects; Chapter II develops in a parallel way labelled objects;
Chapter III treats multivariate aspects of the theory suitable for the analysis of param-
eters of combinatorial structures.

⋆ ⋆ ⋆ ⋆ ⋆⋆

Part B: Complex asymptotics. This part specifically exposesComplex Asymp-
totics, which is a unified analytic theory dedicated to the process of extracting as-
ymptotic information from counting generating functions.A collection of general
(and simple) theorems provide a systematic translation mechanism between gener-
ating functions and asymptotic forms of coefficients. Four chapters compose this
part. Chapter IV serves as anintroduction to complex-analytic methodsand proceeds
with the treatment ofmeromorphic functions, that is, functions whose singularities are
poles,rational functionsbeing the simplest case. Chapter V developsapplications of
rational and meromorphic asymptotics of generating functions, with numerous appli-
cations related to words and languages, walks and graphs, aswell as permutations.
Chapter VI develops a general theory ofsingularity analysisthat applies to a wide
variety of singularity types, such as square-root or logarithmic, and has applications
to trees as well as to other recursively defined combinatorial classes. Chapter VII
presentsapplications of singularity analysisto 2-regular graphs and polynomials,
trees of various sorts, mappings, context-free languages,walks, and maps. It contains
in particular a discussion of the analysis of coefficients ofalgebraic functions. Chap-
ter VIII exploressaddle point methods, which are instrumental in analysing functions
with a violent growth at a singularity, as well as many functions with only a singularity
at infinity (i.e., entire functions).

⋆ ⋆ ⋆ ⋆ ⋆⋆

Part C: Random Structures. This part includes Chapter IX dedicated to the
analysis of multivariate generating functions viewed as deformation and perturbation
of simple (univariate) functions. As a consequence, many important characteristics
of classical combinatorial structures can be precisely quantified in distribution. Chap-
ter?? is an epilogue, which offers a brief recapitulation of the major asymptotic prop-
erties of discrete structures developed in earlier chapters.
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⋆ ⋆ ⋆ ⋆ ⋆⋆

Part D: Appendices.Appendix A summarizes some key elementary concepts of
combinatorics and asymptotics, with entries relative to asymptotic expansions, lan-
guages, and trees, amongst others. Appendix B recapitulates the necessary back-
ground in complex analysis. It may be viewed as a self-contained minicourse on
the subject, with entries relative to analytic functions, the Gamma function, the im-
plicit function theorem, and Mellin transforms. Appendix Crecalls some of the basic
notions of probability theory that are useful in analytic combinatorics.

⋆ ⋆ ⋆ ⋆ ⋆⋆

THIS BOOK is meant to be reader-friendly. Each major method is abundantly il-
lustrated by means of concrete examples1 treated in detail—there are scores of them,
spanning from a fraction of a page to several pages—offeringa complete treatment of a
specific problem. These are borrowed not only from combinatorics itself but also from
neighbouring areas of science. With a view of addressing notonly mathematicians of
varied profiles but also scientists of other disciplines,Analytic Combinatoricsis self-
contained, including ample appendices that recapitulate the necessary background in
combinatorics and complex function theory. A rich set of short Notes—there are more
than 250 of them—are inserted in the text2 and can provide exercises meant for self-
study or for students’ practice, as well as introductions tothe vast body of literature
that is available. We have also made every effort to focus oncore ideasrather than
technical details, supposing a certain amount of mathematical maturity but only basic
prerequisites on the part of our gentle readers. The book is also meant to be strongly
problem-oriented, and indeed it can be regarded as a manual,or even a huge algorithm,
guiding the reader to the solution of a very large variety of problems regarding dis-
crete mathematical models of varied origins. In this spirit, many of our developments
connect nicely with computer algebra and symbolic manipulation systems.

COURSEScan be (and indeed have been) based on the book in various ways.
Chapters I–III onSymbolic Methodsserve as a systematic yet accessible introduction
to the formal side of combinatorial enumeration. As such it organizes transparently
some of the rich material found in treatises3 like those of Bergeron-Labelle-Leroux,
Comtet, Goulden-Jackson, and Stanley. Chapters IV–VIII relative toComplex Asymp-
toticsprovide a large set of concrete examples illustrating the power of classical com-
plex analysis and of asymptotic analysis outside of their traditional range of applica-
tions. This material can thus be used in courses of either pure or applied mathematics,
providing a wealth of nonclassical examples. In addition, the quiet but ubiquitous
presence of symbolic manipulation systems provides a number of illustrations of the
power of these systems while making it possible to test and concretely experiment
with a great many combinatorial models. Symbolic systems allow for instance for
fast random generation, close examination of non-asymptotic regimes, efficient ex-
perimentation with analytic expansions and singularities, and so on.

1Examples are marked by “EXAMPLE · · · �”.
2Notes are indicated by� · · · �.
3References are to be found in the bibliography section at theend of the book.



iv

Our initial motivation when starting this project was to build a coherent set of
methods useful in the analysis of algorithms, a domain of computer science now well-
developed and presented in books by Knuth, Hofri, Mahmoud, and Szpankowski, in
the survey by Vitter–Flajolet, as well as in our earlierIntroduction to the Analysis of
Algorithmspublished in 1996. This book can then be used as a systematic presenta-
tion of methods that have proved immensely useful in this area; see in particular the
Art of Computer Programmingby Knuth for background. Studies in statistical physics
(van Rensburg, and others), statistics (e.g., David and Barton) and probability theory
(e.g., Billingsley, Feller), mathematical logic (Burris’book), analytic number theory
(e.g., Tenenbaum), computational biology (Waterman’s textbook), as well as informa-
tion theory (e.g., the books by Cover–Thomas, MacKay, and Szpankowski) point to
many startling connections with yet other areas of science.The book may thus be
useful as a supplementary reference on methods and applications in courses on statis-
tics, probability theory, statistical physics, finite model theory, analytic number theory,
information theory, computer algebra, complex analysis, or analysis of algorithms.

Acknowledgements. This book would be substantially different and much less in-
formative without Neil Sloane’sEncyclopedia of Integer Sequences, Steve Finch’s
Mathematical Constants, Eric Weisstein’sMathWorld, and theMacTutor History of
Mathematicssite hosted at St Andrews. All are (or at least have been at some stage)
freely available on the Internet. Bruno Salvy and Paul Zimmermann have devel-
oped algorithms and libraries for combinatorial structures and generating functions
that are based on the MAPLE system for symbolic computations and have proven
to be extremely useful. We are deeply grateful to the authorsof the free software
Unix, Linux, Emacs, X11, TEX and LATEX as well as to the designers of the symbolic
manipulation system MAPLE for creating an environment that has proved invaluable
to us. We also thank students in courses at Barcelona, Berkeley (MSRI), Bordeaux,
Caen, Paris (́Ecole Polytechnique,́Ecole Normale, University), Princeton, Santiago de
Chile, Udine, and Vienna whose feedback has greatly helped us prepare a better book.
Thanks finally to numerous colleagues for their feedback. Inparticular, we wish to
acknowledge the support, help, and interaction provided atan incredibly high level
by members of theAnalysis of Algorithms (AofA)community, with a special mention
for Hsien-Kuei Hwang, Svante Janson, Don Knuth, Guy Louchard, Andrew Odlyzko,
Daniel Panario, Helmut Prodinger, Bruno Salvy, Michèle Soria, Wojtek Szpankowski,
Brigitte Vallée, Mark Ward, and Mark Wilson. Stan Burris, Svante Janson, Loı̈c Tur-
ban, and Brigitte Vallée especially have provided insightful suggestions and generous
feedbacks that have led us to revise the presentation of several sections of this book
and correct many errors. Finally, support of our home institutions (INRIA and Prince-
ton University) as well as various grants (French government, European Union and
the ALCOM Project, NSF) have contributed to making our collaborationpossible.
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An invitation to Analytic
Combinatorics
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— PLATO, The Timaeus1

ANALYTIC COMBINATORICS is primarily a book aboutCombinatorics, that is,
the study of finite structures built according to a finite set of rules.Analyticin the title
means that we concern ourselves with methods from mathematical analysis, in partic-
ular complex and asymptotic analysis. The two fields, combinatorial enumeration and
complex asymptotics, are organized into a coherent set of methods for the first time
in this book. Our broad objective is to discover how the continuous may help us to
understand the discrete and toquantifyits properties.

COMBINATORICS is as told by its name the science of combinations. Given ba-
sic rules for assembling simple components, what are the properties of the resulting
objects? Here, our goal is to develop methods dedicated toquantitativeproperties of
combinatorial structures. In other words, we want to measure things. Say that we
haven different items like cards or balls of different colours. Inhow many ways
can we lay them on a table, all in one row? You certainly recognize this counting
problem—finding the number ofpermutationsof n elements. The answer is of course
the factorial number,n ! = 1 ·2 · · ·n. This is a good start, and, equipped with patience
or a calculator, we soon determine that ifn = 31, say, then the number is the rather
large2

31 ! = 8222838654177922817725562880000000
.
= 0.8222838654 · 1034.

The factorials solve an enumerative problem, one that took mankind some time to sort
out, because the sense of the ‘· · · ’ in the formula is not that easily grasped. In his book

1“So their combinations with themselves and with each other give rise to endless complexities, which
anyone who is to give a likely account of reality must survey.” Plato speaks of Platonic solids viewed as
idealized primary constituents of the physical universe.

2 We use ‘α
.
= d to represent a numerical estimation of the realα by the decimald, with the last digit

being at most±1 from its actual value.

1



2 AN INVITATION TO ANALYTIC COMBINATORICS

The Art of Computer Programming(vol III, p. 23), Donald Knuth traces the discovery
to the HebrewBook of Creation(c. A .D. 400) and the Indian classicAnuyogadv̄ara-
sutra(c. A .D. 500).

Here is another more subtle problem. Assume that you are interested in permuta-
tions such that the first element is smaller than the second, the second is larger than the
third, itself smaller than the fourth, and so on. The permutations go up and down and
they are diversely known as up-and-down or zigzag permutations, the more dignified
name beingalternatingpermutations. Say thatn = 2m+ 1 is odd. An example is for
n = 9:

8 7 9 3
ր ց ր ց ր ց ր ց

4 6 5 1 2

The number of alternating permutations forn = 1, 3, 5, . . . turns out to be

1, 2, 16, 272, 7936, 353792, 22368256, . . . .

What are these numbers and how do they relate to the total number of permutations of
corresponding size? A glance at the corresponding figures, that is,1!, 3!, 5!, . . . or

1, 6, 120, 5040, 362880, 39916800, 6227020800, . . .

suggests that the factorials grow somewhat faster—just compare the lengths of the last
two displayed lines. But how and by how much? This is the prototypical question we
are addressing in this book.

Let us now examine the counting of alternating permutations. In 1881, the French
mathematician Désiré André made a startling discovery.Look at the first terms of the
Taylor expansion of the trigonometric functiontan(z):

tan z = 1
z

1!
+ 2

z3

3!
+ 16

z5

5!
+ 272

z7

7!
+ 7936

z9

9!
+ 353792

z11

11!
+ · · · .

The counting sequence for alternating permutations curiously surfaces. We say that
the function on the left is agenerating functionfor the numerical sequence (precisely,
a generating function of theexponentialtype due to the presence of factorials in the
denominators).

André’s derivation may nowadays be viewed very simply as reflecting the con-
struction of permutations by means of certain binary trees:Given a permutationσ a
tree can be obtained onceσ has been decomposed as a triple〈σL,max, σR〉, by tak-
ing the maximum element as the root, and appending, as left and right subtrees, the
trees recursively constructed fromσL andσR. Part A of this book develops at length
symbolic methodsby which the construction of the classT of all such trees,

T = 1 + (T ,max , T )

translates into an equation relating generating functions,

T (z) = z +

∫ z

0

T (w)2 dw.

In this equation,T (z) :=
∑

n Tnz
n/n! is the exponential generating function of the

sequence(Tn), whereTn is the number of alternating permutations of (odd) lengthn.
There is a compelling formal analogy between the combinatorial specificationand the
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world of generating functions: Unions (∪) give rise to sums (+), max-placement gives
an integral (

∫
), forming a pair of trees means taking a square ([·]2).

At this stage, we know thatT (z) must solve the differential equation

d

dz
T (z) = 1 + T (z)2, T (0) = 0,

which, by classical manipulations, yieldsT (z) ≡ tan z. The generating function then
provides a simplealgorithmto compute recurrently the coefficients, since the formula,

tan z =
sin z

cos z
=
z − z3

3! + z5

5! − · · ·
1 − z2

2! + z4

4! − · · ·
,

implies (n odd)

Tn −
(
n

2

)
Tn−2 +

(
n

4

)
Tn−4 − · · · = (−1)(n−1)/2, where

(
a

b

)
=

a!

b!(a− b)!

is the conventional notation for binomial coefficients. At this stage, the exact enumer-
ative problem may be regarded as solved since a very simple recurrent algorithm is
available for determining the counting sequence, while thegenerating function admits
an explicit expression in terms of a well known function.

ANALYSIS, by which we mean mathematical analysis, is often describedas the
art and science ofapproximation. How fast do the factorial and the tangent number
sequences grow? What aboutcomparingtheir growths? These are typical problems
of analysis.

First, consider the number of permutations,n!. Quantifying the growth of these
numbers asn gets large takes us to the realm ofasymptotic analysis. The way to
express factorial numbers in terms of elementary functionsis known as Stirling’s for-
mula,

n! ∼ nne−n
√

2πn,

where the∼ sign means “approximately equal” (in fact, in the precise sense that the
ratio of both terms tends to 1 asn gets large). This beautiful formula, associated with
the name of the eighteenth century Scottish mathematician James Stirling, curiously
involves both the basise of natural logarithms and the perimeter2π of the circle.
Certainly, you cannot get such a thing without analysis. As afirst step, there is an
estimate for

logn! =
n∑

j=1

log j ∼
∫ n

1

log xdx ∼ n log
(n
e

)
,

explaining at least thenne−n term, but already requiring some amount of elementary
calculus. (Stirling’s formula precisely came a few decadesafter the fundamental bases
of calculus had been laid by Newton and Leibniz.) Note the usefulness of Stirling’s
formula: it tells us almost instantly that100! has 158 digits, while1000! borders the
astronomical102568.

We are now left with estimating the growth of the sequence of tangent numbers,
Tn. The analysis leading to the derivation of the generating functiontan(z) has been
so far essentially algebraic or “formal”. Well, we can plot the graph of the tangent
function, for real values of its argument and see that the function becomes infinite
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FIGURE .1. Two views of the functionz 7→ tan z: (left) a plot for real values
of z ∈ [−5..5]; (right) the modulus| tan z| whenz is assigned complex values in
the square±2.25 ± 2.25

√
−1.

at the points±π
2 , ±3π

2 , and so on (Figure 1). Such points where a function ceases
to be smooth are calledsingularities. By methods amply developed in this book, it
is the local nature of a generating function at its “dominant” singularities (i.e., the
ones closest to the origin) that determines the asymptotic growth of the sequence of
coefficients. In this perspective, the basic fact thattan z has dominant singularities at
±π

2 enables us to reason as follows: first approximate the generating functiontan z
near its two dominant singularities, namely,

tan(z) ∼
z→±π/2

8z

π2 − 4z2
;

then extract coefficients of this approximation; finally, get in this way a valid approx-
imation of coefficients:

Tn

n!
∼

n→∞
2 ·
(

2

π

)n+1

(n odd).

With present day technology, we also have availablesymbolic manipulationsys-
tems (also called “computer algebra” systems) and it is not difficult to verify the ac-
curacy of our estimates. Here is a small pyramid forn = 3, 5, . . . , 21,

2 1
16 15

272 271
7936 7935

353792 353791
22368256 22368251

1903757312 1903757267
209865342976 209865342434

29088885112832 29088885104489
4951498053124096 4951498052966307

(Tn) (T ⋆
n)
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FIGURE .2. The collection of all binary trees for sizesn = 2, 3, 4, 5 with re-
spective cardinalities2, 5, 14, 42.

comparing the exact values ofTn against the approximationsT ⋆
n , where (n odd)

T ⋆
n :=

⌊
2 · n!

(
2

π

)n+1
⌋
,

and discrepant digits of the approximation are displayed inbold. Forn = 21, the error
is only of the order of one in a billion. Asymptotic analysis is in this case wonderfully
accurate.

In the foregoing discussion, we have played down a fact, and an important one.
When investigating generating functions from an analytic standpoint, one should gen-
erally assigncomplexvalues to arguments not just real ones. It is singularities in
the complex plane that matter and complex analysis is neededin drawing conclu-
sions regarding the asymptotic form of coefficients of a generating function. Thus,
a large portion of this book relies on acomplex analysistechnology, which starts to
be developed in Part B of the book titledComplex Asymptotics. This approach to
combinatorial enumeration parallels what happened in the nineteenth century, when
Riemann first recognized the deep relation between complex-analytic properties of the
zeta function,ζ(s) :=

∑
1/ns, and the distribution of primes, eventually leading to

the long-sought proof of the Prime Number Theorem by Hadamard and de la Vallée-
Poussin in 1896. Fortunately, relatively elementary complex analysis suffices for our
purposes, and we can include in this book a complete treatment of the fragment of the
theory needed to develop the bases of analytic combinatorics.

Here is yet another example illustrating the close interplay between combina-
torics and analysis. When discussing alternating permutations, we have enumerated
binary trees bearing distinct integer labels that satisfy aconstraint—to increase along
branches. What about the simpler problem of determining thenumber of possible
shapesof binary trees? LetCn be the number of binary trees that haven binary
branching nodes, hencen + 1 “external nodes”. It is not hard to come up with an
exhaustive listing for small values ofn; see Figure 2, from which we determine that

C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42.

These numbers are probably the most famous ones of elementary combinatorics. They
have come to be known as theCatalan numbersas a tribute to the Belgian French
mathematician Eugène Charles Catalan (1814-1894), but they already appear in works
of Euler and Segner in the second half of the eighteenth century. In his reference
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treatise onEnumerative Combinatorics, Stanley lists over twenty pages a collection of
some 66 different types of combinatorial structures that are enumerated by the Catalan
numbers.

First, one can write a combinatorial equation, very much in the style of what has
been done earlier, but without labels:

C = 2 + (C, • , C) .

With symbolic methods, it is easy to see that theordinary generating functionof the
Catalan numbers defined as

C(z) :=
∑

n≥0

Cnz
n,

satisfies an equation that is a direct reflection of the combinatorial definition, namely,

C(z) = 1 + z C(z)2.

This is a quadratic equation whose solution is

C(z) =
1 −

√
1 − 4z

2z
.

Then, by means of Newton’s theorem relative to the expansionof (1 + x)α, one finds
easily (x = −4z, α = 1

2 ) theclosed formexpression

Cn =
1

n+ 1

(
2n

n

)
.

Regarding asymptotic approximation, Stirling’s formula comes to the rescue: it
implies

Cn ∼ C⋆
n where C⋆

n :=
4n

√
πn3

.

This approximation is quite usable: it predictsC⋆
1
.
= 2.25 (whereasC1 = 1), which

is off by a factor of 2, but the error drops to 10% already forn = 10, and it appears to
be less than 1% for anyn ≥ 100.

A plot of the generating functionC(z) in Figure 3 illustrates the fact thatC(z) has
asingularityatz = 1

4 as it ceases to be differentiable (its derivative becomes infinite).
That singularity is quite different from a pole and for natural reasons it is known as
a square-root singularity. As we shall see repeatedly, under suitable conditions in
the complex plane, a square root singularity for a function at a pointρ invariably
entails an asymptotic formρ−nn−3/2 for its coefficients. More generally, it suffices
to estimate a generating function near a singularity in order to deduce an asymptotic
approximation of its coefficients. This correspondence is amajor theme of the book,
one that motivates the four central chapters.

A consequence of the complex-analytic vision of combinatorics is the detection of
universality phenomenain large random structures. (The term is originally borrowed
from statistical physics and is nowadays finding increasinguse in areas of mathe-
matics like probability theory.) By universality is meant here that many quantitative
properties of combinatorial structures only depend on a fewglobal features of their
definitions, not on details. For instance a growth in the counting sequence of the form

C ·Ann−3/2,
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√
π
.
= 0.56418.

arising from a square-root singularity, will be shown to be universal acrossall vari-
eties of trees determined by a finite set of allowed node degrees—this includes unary-
binary trees, ternary trees, 0–11–13 trees, as well as many variations like nonplane
trees and labelled trees. Even though generating functionsmay become arbitrarily
complicated—like an algebraic function of a very high degree or even the solution to
an infinite functional equation—it is still possible to extract with relative easeglobal
asymptotic lawsgoverningcounting sequences.

RANDOMNESS is another ingredient in our story. How useful is it to determine,
exactly or approximately, counts that may be so large as to require hundreds if not
thousands of digits in order to be written down? Take again the example of alternating
permutations. When estimating their number, we have indeedquantified the propor-
tion of these amongst all permutations. In other words, we have been predicting the
probabilitythat a random permutation of some sizen is alternating. Results of this sort
are of interest in all branches of science. For instance, biologists routinely deal with
genomic sequences of length105, and the interpretation of data requires developing
enumerative or probabilistic models where the number of possibilities is of the order
of 4105

. The language of probability theory then proves a great convenience when
discussing characteristic parameters of discrete structures, as we can interpret exact
or asymptotic enumeration results as saying something concrete about the likeliness
of values that such parameters assume. Equally important ofcourse are results from
several areas of probability theory: as demonstrated in thelater sections of this book,
such results merge extremely well with the analytic-combinatorial framework.

Say we are now interested in runs in permutations. These are the longest frag-
ments of a permutation that already appear in (increasing) sorted order. Here is a
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permutation where runs have been separated by vertical bars:

2 5 8 | 3 9 | 1 4 7 | 6 | .
Runs naturally present in a permutation are for instance exploited by a sorting algo-
rithm called “natural list mergesort”, which builds longerand longer runs, starting
from the original ones and merging them until the permutation is eventually sorted.
For our understanding of this algorithm, it is then of obvious interest to quantify how
many runs a permutation is likely to have.

LetAn,k be the number of permutations of sizen havingk runs. Then, the prob-
lem is once more best approached by generating functions andone finds that the coef-
ficient ofukzn inside thebivariategenerating function,

1 − u

1 − uez(1−u)
= 1 + zu+

z2

2!
(u+ 1) +

z3

3!
(u2 + 4u+ 1) + · · · ,

gives the sought numbersAn,k/n!. (A simple way of establishing this formula bases
itself on the tree decomposition of permutations and on the symbolic method.) From
there, we can easily determine effectively the mean, variance, and even the higher
moments of the number of runs that a random permutation has: it suffices to expand
blindly, or even better with the help of a computer, the bivariate generating function
above asu→ 1:

1

1 − z
+

1

2

z (2 − z)

(1 − z)
2 (u− 1) +

1

2

z2
(
6 − 4 z + z2

)

(1 − z)
3 (u− 1)

2
+ · · · .

Whenu = 1, we just enumerate all permutations: this is the constant term 1/(1 − z)
equal to the exponential generating function of all permutations. The coefficient of
u − 1 gives the generating function of themeannumber of runs, the next one gives
access to the second moment, and so on. In this way, we discover that the expectation
and standard deviation of the number of runs in a permutationof sizen evaluate to

µn =
n+ 1

2
, σn =

√
n+ 1

12
.

Then by easy analytic-probabilistic inequalities (Chebyshev inequalities) that other-
wise form the basis of what is known as the second moment method, we learn that the
distribution of the number of runs is concentrated around its mean: in all likelihood,
if one takes a random permutation, the number of its runs is going to be very close to
its mean. The effects of such quantitative laws are quite tangible. It suffices to draw a
sample of one elementfor n = 30 to get something like

13, 22, 29|12, 15, 23|8, 28|18|6, 26|4, 10, 16|1, 27|3, 14, 17, 20|2, 21, 30|25|11, 19|9|7, 24.

For n = 30, the mean is15 1
2 , and this sample comes rather close as it has 13 runs.

We shall furthermore see in Chapter IX that even for moderately large permutations
of size 10,000 and beyond, the probability for the number of observed runs to deviate
by more than 10% from the mean is less than10−65. As witnessed by this example,
much regularity accompanies properties of large combinatorial structures.

More refined methods combine the observation of singularities with analytic re-
sults from probability theory (e.g., continuity theorems for characteristic functions).
In the case of runs in permutations, the quantityF (z, u) viewed as a function ofz



AN INVITATION TO ANALYTIC COMBINATORICS 9

z

1.40 10.8

0.8

0.2 1.20.4

0.4

0.6

-0.4

0

0.4

0.2

0.3

0.1

0
10.60.4 0.80 0.2

FIGURE .4. Left: A partial plot of the real values of the inverse1/F (z, u)
for u = 0.1 . . 2, with F the bivariate generating function of Eulerian numbers,
illustrates the presence of a movable pole forF . Right: A diagram showing the
distribution of the number of runs in permutations forn = 6 . . 60.

whenu is fixed appears to have a pole: this fact is apparent on Figure4 [left] since
1/F has a zero at somez = ρ(u) whereρ(1) = 1. Then we are confronted with
a fairly regulardeformationof the generating function of all permutations. A pa-
rameterized version (with parameteru) of singularity analysis then gives access to a
description of the asymptotic behaviour of the Eulerian numbersAn,k. This enables
us to describe very precisely what goes on: In a random permutation of large sizen,
once centred by its mean and scaled by its standard deviation, the distribution of the
number of runs is asymptotically gaussian; see Figure 4 [right].

A somewhat similar type of situation prevails for binary trees, despite the fact
that the counting sequences and the counting generating functions look rather differ-
ent from their permutation counterparts. Say we are interested in leaves (also some-
times known as “cherries”) in trees: these are binary nodes that are attached to two
external nodes (2). Let Cn,k be the number of trees of sizen havingk leaves. The
bivariate generating functionC(z, u) :=

∑
n,k Cn,kz

nuk encodes all the information
relative to leaf statistics in random binary trees. A modification of previously seen
symbolic arguments shows thatC(z, u) still satisfies a quadratic equation resulting in
the explicit form,

C(z, u) =
1 −

√
1 − 4z + 4z2(1 − u)

2z
.

This reduces toC(z) for u = 1, as it should, and the bivariate generating func-
tion C(z, u) is a deformation ofC(z) asu varies. In fact, the network of curves
of Figure 5 for several fixed values ofu shows that there is a smoothly varying square-
root singularity. It is possible to analyse theperturbationinduced by varying values
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trees by size and number of leaves exhibits consistently a square-root singularity
as a function ofz for several values ofu. Right: a binary tree of size 300 drawn
uniformly at random has 69 leaves or “cherries”.

of u, to the effect thatC(z, u) is of the global analytic type

λ(u) ·
√

1 − z

ρ(u)
,

for some analyticλ(u) andρ(u). The already evoked process of singularity analysis
then shows that the probability generating function of the number of leaves in a tree
of sizen satisfies an approximation of the form

(
λ(u)

λ(1)

)
·
(
ρ(1)

ρ(u)

)n

(1 + o(1)) .

This “quasi-powers” approximation thus resembles very much the probability
generating function of a sum ofn independent random variables, a situation that re-
sorts to the classical Central Limit Theorem of probabilitytheory. Accordingly,the
limit distribution of the number of leaves in a large tree is Gaussian. In abstract terms,
the deformation induced by the secondary parameter (here, the number of leaves, pre-
viously, the number of runs) is susceptible to aperturbation analysis, to the effect that
a singularity gets smoothly displaced without changing itsnature (here, a square root
singularity, earlier a pole) and a limit law systematicallyresults. Again some of the
conclusions can be verified even by very small samples: the single tree of size 300
drawn at random and displayed in Figure 5 has 69 cherries while the expected value
of this number is

.
= 75.375 and the standard deviation is a little over 4. In a large

number of cases of which this one is typical, we findmetric lawsof combinatorial
structures that govern large structures with high probability and eventually make them
highly predictable.

Such randomness properties form the subject of Part C of thisbook dedicated to
random structures. As our earlier description implies, there is an extreme degree of
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FIGURE .6. The logical structure ofAnalytic Combinatorics.

generality in this analytic approach to combinatorial parameters, and after reading this
book, the reader will be able to recognize by herself dozens of such cases at sight, and
effortlessly establish the corresponding theorems.

A RATHER ABSTRACT VIEWof combinatorics emerges from the previous discus-
sion; see Figure 6. A combinatorial class, as regards its enumerative properties, can
be viewed as asurface in four-dimensional real space: this is the graph of its gener-
ating function, considered as a function from the setC ∼= R2 of complex numbers to
itself, and is otherwise known as a Riemann surface. This surface has “cracks”, that
is, singularities, which determine the asymptotic behaviour of the counting sequence.
A combinatorial construction (like forming freely sequences, sets, and so on) can then
be examined based on the effect it has on singularities. In this way, seemingly differ-
ent types of combinatorial structures appear to be subject to common lawsgoverning
not only counting but also finer characteristics of combinatorial structures. For the
already discussed case of universality in tree enumerations, additional universal laws
valid across many tree varieties constrain for instance height (which, with high prob-
ability, is proportional to the square-root of size) and thenumber of leaves (which is
invariably normal in the asymptotic limit).

Next, the probabilistic behaviour of a parameter of a combinatorial class is fully
determined by a bivariate generating function, which is a deformation of the basic
counting generating function of the class. (In the sense that setting the secondary
variableu to 1 erases the information relative to the parameter and leads back to
the univariate counting generating function.) Then, theasymptotic distributionof a
parameter of interest is characterized by a collection of surfaces, each having its own
singularities. The way the singularities’ locations move or their nature changes under
deformation encodes all the necessary information regarding the distribution of the
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parameter under consideration. Limit laws for combinatorial parameters can then be
obtained and the corresponding phenomena can be organized into broad categories,
calledschemas. It would not be conceivable to attain such a far-reaching classification
of metric properties of combinatorial structures by elementary real analysis alone.

OBJECTS to which we are going to inflict the treatments just describedinclude
many of the most important ones of discrete mathematics, also the ones that surface
recurrently in several branches of the applied sciences. Weshall thus encounter words
and sequences, trees and lattice paths, graphs of various sorts, mappings, allocations,
permutations, integer partitions and compositions, and planar maps, to name a few.
In most cases, their principal characteristics will be finely quantified by the methods
of analytic combinatorics; see our concluding Chapter?? for a summary. This book
indeed develops a coherent theory of random combinatorial structures based on a pow-
erful analytic methodology. Literally dozens of quite diverse combinatorial types can
then be treated by a logically transparent chain. You will not find ready-made answers
to all questions in this book, but, hopefully,methodsthat can be successfully used to
address a greatmanyof them.
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Combinatorial Structures and
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Laplace discovered the remarkable correspondence between
set theoretic operations and operations on formal power series

and put it to great use to solve a variety of combinatorial problems.
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This chapter and the next are devoted to enumeration, where the problem is to deter-
mine the number of combinatorial configurations described by finite rules, and do so
for all possible sizes. For instance, how many different words are there of length 17?
of lengthn, for generaln? These questions are easy, but what if some constraints
are imposed, e.g., no four identical elements in a row? The counting sequences are
exactly encoded bygenerating functions, and, as we shall see,generating functions
are the central mathematical objectof combinatorial analysis. We examine here a
framework that, contrary to traditional treatments based on recurrences, explains the
surprising efficiency of generating functions in the solution of combinatorial enumer-
ation problems.

This chapter serves to introduce thesymbolicapproach to combinatorial enumer-
ations. The principle is that many general set-theoreticconstructionsadmit a direct
translation as operations over generating functions. Thisprinciple is made concrete
by means of a dictionary that includes a collection of core constructions, namely the
operations of union, cartesian product, sequence, set, multiset, and cycle. Supple-
mentary operations like pointing and substitution can be also be similarly translated.
In this way, alanguagedescribing elementary combinatorial classes is defined. The
problem of enumerating a class of combinatorial structuresthen simply reduces to
finding a properspecification, a sort of program for the class expressed in terms of the
basic constructions. The translation into generating functions then becomes a purely
mechanical symbolic process.

We show here how to describe integer partitions and compositions in such a con-
text, as well as several basic string and tree enumeration problems. A parallel ap-
proach, developed in Chapter II, applies to labelled objects and exponential generating

15
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functions—in contrast the plain structures considered in this chapter are calledunla-
belled. The methodology is susceptible to multivariate extensions with which many
characteristic parameters of combinatorial objects can also be analysed in a unified
manner: this is to be examined in Chapter III. The symbolic method also has the great
merit of connecting nicely with complex asymptotic methodsthat exploit analyticity
properties and singularities, to the effect that precise asymptotic estimates are usually
available whenever the symbolic method applies—a systematic treatment of these as-
pects forms the basis of Part B of this bookComplex Asymptotics(Chapters IV–VIII).

I. 1. Symbolic enumeration methods

First and foremost, combinatorics deals withdiscrete objects, that is, objects that
can be finitely described by construction rules. Examples are words, trees, graphs,
permutations, allocations, functions from a finite set intoitself, topological configu-
rations, and so on. A major question is toenumeratesuch objects according to some
characteristic parameter(s).

Definition I.1. A combinatorial class, or simply aclass, is a finite or denumerable set
on which asizefunction is defined, satisfying the following conditions:

(i) the size of an element is a nonnegative integer;
(ii) the number of elements of any given size is finite.

If A is a class, the size of an elementα ∈ A is denoted by|α|, or |α|A in the
few cases where the underlying class needs to be made explicit. Given a classA,
we consistently letAn be the set of objects inA that have sizen and use the same
group of letters for the countsAn = card(An) (alternatively, alsoan = card(An)).
An axiomatic presentation is then as follows: a combinatorial class is a pair(A, | · |)
whereA is at most denumerable and the mapping| · | ∈ (A 7→ N) is such that the
inverse image of any integer is finite.

Definition I.2. Thecounting sequenceof a combinatorial class is the sequence of
integers(An)n≥0 whereAn = card(An) is the number of objects in classA that
have sizen.

EXAMPLE I.1. Binary words.Consider first the setW of binary words, which are words over
the binary alphabetA = {0,1},

W := {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, . . . , 1001101, . . . },

with ε the empty word. Define size to be the number of letters a word comprises. There are
two possibilities for each letter and possibilities multiply, so that the counting sequence(Wn)
satisfies

Wn = 2n.

(This sequence has a well-known legend associated with the invention of the game of chess: the
inventor was promised by his king one grain of rice for the first square of the chessboard, two
for the second, four for the third, and so on. The king naturally could not deliver the promised
263 grains!) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . END OF EXAMPLE I.1. �
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EXAMPLE I.2. Permutations.The setP of permutations is

P = {. . . 12, 21, 123, 132, 213, 231, 312, 321, 1234,. . . , 532614, . . . },
since a permutation ofIn := [1 . . n] is a bijective mapping that is representable by an array,

“
1 2 n
σ1 σ2 · · · σn

”
,

or equivalently by the sequenceσ1σ2 · · ·σn of distinct elements fromIn. Let us define the
size of a permutation to be its length,n. For a permutation written as a sequence ofn distinct
numbers, there aren places where one can accommodaten, thenn − 1 remaining places for
n− 1, and so on. Therefore, the numberPn of permutations of sizen satisfies

Pn = n! = 1 · 2 · · ·n .
As indicated in our Invitation chapter, this formula has been known for a long time: Knuth [307,
p. 23] refers to the HebrewBook of Creation(c. A .D.. 400), and to theAnuyogadv ārasutra
(India, c.A .D. 500) for its discovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . END OF EXAMPLE I.2. �

EXAMPLE I.3. Triangulations. The classT of triangulations comprises triangulations of
convex polygonal domains which are decompositions into non-overlapping triangles (taken up
to continuous deformations of the plane). Let us define the size of a triangulation to be the
number of triangles it is composed of. For the purpose of the present discussion, the reader may
content herself with what is suggested by Figure 1; the formal specification of triangulations
appears on p. 33. It is a nontrivial combinatorial result dueto Euler and Segner around 1750
that the numberTn of triangulations is

(1) Tn =
1

n+ 1

 
2n

n

!
=

(2n)!

(n+ 1)!n!
.

Following Euler [156], the counting of triangulations (Tn) is best approached by generat-
ing functions: the modified binomial coefficients so obtained are known as Catalan num-
bers (see the discussion p. 33) and are central in combinatorial analysis (Section I. 5.3).
END OF EXAMPLE I.3. �

Although the previous three examples are simple enough, it is generally a good
idea, when confronted with a combinatorial enumeration problem, to determine the
initial values of counting sequences, either by hand or better with the help of a com-
puter, somehow. Here, we find:

(2)

n 0 1 2 3 4 5 6 7 8 9 10
Wn 1 2 4 8 16 32 64 128 256 512 1024
Pn 1 1 2 6 24 120 720 5040 40320 362880 3628800
Tn 1 1 2 5 14 42 132 429 1430 4862 16796

Such an experimental approach may greatly help identify sequences. For instance, had
we not known the formula (1) for triangulations, observing an unusual factorization
like

T40 = 22 · 5 · 72 · 11 · 23 · 43 · 47 · 53 · 59 · 61 · 67 · 71 · 73 · 79,

which contains all prime numbers from 43 to 79, would quicklyput us on the tracks
of the right formula. There even exists nowadays a hugeEncyclopedia of Integer
Sequencesdue to Sloane that is available in electronic form [439] (see also an earlier
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book by Sloane and Plouffe [440]). Indeed, the three sequences(Wn), (Pn), and(Tn)
are respectively identified1 asEISA000079, EISA000142, andEISA000108.
� I.1. Necklaces.How many different types of necklace designs can you form with n beads,
each having one of two colours,◦ and•? Here are the possibilities forn = 1, 2, 3,

and it is postulated that orientation matters. This is equivalent to enumerating circular arrange-
ments of two letters and an exhaustive listing program can bebased on the smallest lexicograph-
ical representation of each word, as suggested by (17) below. The counting sequence starts as
2, 3, 4, 6, 8, 14, 20, 36, 60, 108, 188, 352 and constitutesEIS A000031. [An explicit formula
appears later in this chapter (p. 60).] What if two necklace designs that are mirror images of
one another are identified? �

� I.2. Unimodal permutations.Such a permutation has exactly one local maximum. In other
words it is of the formσ1 · · ·σn with σ1 < σ2 < · · · < σk = n andσk = n > σk+1 > · · · >
σn, for somek ≥ 1. How many such permutations are there of sizen? Forn = 5, the number
is 16: the permutations are 12345, 12354, 12453, 12543, 13452, 13542, 14532 and 15432 and
their reversals. [Due to Jon Perry, seeEISA000079.] �

It is also of interest to note that words and permutations could be enumerated
using the most elementary counting principles, namely, forfinite setsB andC

(3)





card(B ∪ C) = card(B) + card(C) (providedB ∩ C = ∅)

card(B × C) = card(B) · card(C),

We shall see soon that these principles, which lie at the basis of our very concept of
number, admit a powerful generalization (Equation (16) below).

Next, for combinatorial enumeration purposes, it proves convenient to identify
combinatorial classes that are merely variant of one another.

Definition I.3. Two combinatorial classesA andB are said to be (combinatorially)
isomorphic, which is writtenA ∼= B, iff their counting sequences are identical. This
condition is equivalent to the existence of a bijection fromA to B that preserves size,
and one also says thatA andB are bijectively equivalent.

We normally identify isomorphic classes and accordingly employ a plain equality
sign (A = B). We then confine the notationA ∼= B to stress cases where combinato-
rial isomorphism results some nontrivial transformation.

Definition I.4. Theordinary generating function(OGF) of a sequence(An) is the
formal power series

(4) A(z) =

∞∑

n=0

Anz
n.

Theordinary generating function(OGF) of a combinatorial classA is the generating
function of the numbersAn = card(An). Equivalently, the OGF of classA admits

1Throughout this book, a reference likeEIS Axxx points to Sloane’sEncyclopedia of Integer Se-
quences[439]. The data base contains more than 100,000 entries.



I. 1. SYMBOLIC ENUMERATION METHODS 19

FIGURE I.1. The classT of all triangulations of regular polygons (with size definedas
the number of triangles) is a combinatorial class. The counting sequence starts as

T0 = 1, T1 = 1, T2 = 2, T3 = 5, T4 = 14, T5 = 42.

Euler determined the OGFT (z) =
P

n Tnz
n asT (z) =

1−√1− 4z

2z
, from which there

results thatTn = 1
n+1

`
2n
n

´
. These numbers are known as theCatalan numbers(p. 33).

thecombinatorial form

(5) A(z) =
∑

α∈A
z|α|.

It is also said that the variablez markssize in the generating function.

The combinatorial form of an OGF in (5) results straightforwardly from observing
that the termzn occurs as many times as there are objects inA having sizen.

Naming convention.We adhere to a systematicnaming convention: classes, their
counting sequences, and their generating functions are systematically denoted by the
same groups of letters: for instance,A for a class,{An} (or {an}) for the counting
sequence, andA(z) (or a(z)) for its OGF.

Coefficient extraction.We let generally[zn]f(z) denote the operation of extract-
ing the coefficient ofzn in the formal power seriesf(z) =

∑
fnz

n, so that

(6) [zn]



∑

n≥0

fnz
n


 = fn.

(The coefficient extractor[zn]f(z) reads as “coefficient ofzn in f(z)”.)
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FIGURE I.2. A molecule, methylpyrrolidinyl-pyridine (nicotine), is acomplex assem-
bly whose description can be reduced to a single formula corresponding here to a total of
26 atoms.

The OGFs corresponding to our three examplesW ,P , T are then

(7)






W (z) =
∞∑

n=0

2nzn =
1

1 − 2z

P (z) =

∞∑

n=0

n! zn

T (z) =

∞∑

n=0

1

n+ 1

(
2n

n

)
zn =

1 −
√

1 − 4z

2z
.

The first expression relative toW (z) is immediate as it is the sum of a geometric pro-
gression; The second generating functionP (z) is not related to simple functions of
analysis. (Note that the expression makes sense within the strict framewok of formal
power series; see APPENDIX A: Formal power series, p. 676.) The third expression
relative toT (z) is equivalent to the explicit form ofTn via Netwon’s expansion of
(1 + x)1/2 (p. 33). The OGFsW (z) andT (z) can then also be interpreted as stan-
dard analytic objects, upon assigning to the formal variable z values in the complex
domainC. In effect, the seriesW (z) andT (z) converge in a neighbourhood of0
and represent complex functions that are well defined near the origin, namely when
|z| < 1

2 for W (z) and |z| < 1
4 for T (z). The OGFP (z) is a purely formal power

series (its radius of convergence is 0) that can nonethelessbe subjected to the usual
algebraic operations of power series. As a matter of fact, with very few exceptions,
permutation enumeration is most conveniently approached by exponential generating
functions developed in Chapter II.

Combinatorial form of GFs. The combinatorial form (5) shows that generating
functions are nothing but a reduced representation of the combinatorial class, where
internal structures are destroyed and elements contributing to size (atoms) are replaced
by the variablez. In a sense, this is analogous to what chemists do by writing linear
reduced formulae for complex molecules (Figure 2). Great use of this observation was
made by Schützenberger as early as the 1950’s and 1960’s. Itexplains in many ways
why so many formal similarities are to be found between combinatorial structures and
generating functions.
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H =

zzzz zz zzz zzzz z zzzz zzz

+ z4 + z2 + z3 + z4 + z + z4 + z3

H(z) = z + z2 + 2z3 + 3z4

FIGURE I.3. A finite family of graphs and its eventual reduction to a generating function.

Figure 3 provides a combinatorial illustration: start witha (finite) family of graphs
H, with size taken as the number of vertices. Each vertex in each graph is replaced
by the variablez and the graph structure is “forgotten”; then the monomials corre-
sponding to each graph are formed and the generating function is finally obtained
by gathering all the monomials. For instance, there are 3 graphs of size4 in H,
in agreement with the fact that[z4]H(z) = 3. If size had been instead defined by
number of edges, another generating function would have resulted, namely, withy
marking the new size:1 + y + y2 + 2y3 + y4 + y6. If both number of vertices
and number of edges are of interest, then a bivariate generating function,H(z, y) =
z+ z2y+ z3y2 + z3y3 + z4y3 + z4y4 + z4y6; such multivariate generating functions
are developed systematically in Chapter III.

A path often taken in the literature is to decompose the structures to be enu-
merated into smaller structures either of the same type or ofsimpler types, and then
extract from such a decompositionrecurrence relationssatisfied by the{An}. In this
context, the recurrence relations are either solved directly—whenever they are simple
enough—or by means ofad hocgenerating functions, introduced as a mere technical
artifice.

By contrast, in the framework to be described, classes of combinatorial structures
are builtdirectly in terms of simpler classes by means of a collection of elementary
combinatorialconstructions. (This closely resembles the description of formal lan-
guages by means of grammars, as well as the construction of structured data types in
programming languages.) The approach developed here has been termedsymbolic, as
it relies on a formal specification language for combinatorial structures. Specifically,
it is based on so–calledadmissible constructionsthat admit direct translations into
generating functions.

Definition I.5. Assume thatΦ is a construction that associates to a finite collection
of classesB, C, · · · a new class

A := Φ[B, C, . . .],

in a finitary way: eachAn depends on finitely many of the{Bj}, {Cj}, . . .. Then
Φ is admissibleiff the counting sequence{An} of A only depends on the counting
sequences{Bj}, {Cj}, . . . ofB, C, . . ., and for some operatorΞ on sequences:

{An} = Ξ[{Bj}, {Cj}, . . .].
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In that case, since generating functions are determined by their coefficient se-
quences, there exists a well defined operatorΨ translatingΞ on the associated ordinary
generating functions

A(z) = Ψ[B(z), C(z), . . .].

As an introductory example, take the construction of cartesian product.

Definition I.6. The cartesian product construction of two classesB andC forms or-
dered pairs,

(8) A = B × C iff A = {α = (β, γ) | β ∈ B, γ ∈ C },
with the size of a pairα = (β, γ) being defined by

(9) |α|A = |β|B + |γ|C .
By considering all possibilities, it is immediately seen that the counting sequences

corresponding toA,B, C are related by the convolution relation

(10) An =

n∑

k=0

BkCn−k.

We recognize here the formula for a product of two power series. Therefore,

(11) A(z) = B(z) · C(z).

Thus, the cartesian product is admissible:A cartesian product translates as a product
of OGFs.

Similarly, letA,B, C be combinatorial classes satisfying

(12) A = B ∪ C, with B ∩ C = ∅,
with size defined in a consistent manner: forω ∈ A,

(13) |ω|A =





|ω|B if ω ∈ B
|ω|C if ω ∈ C.

One has

(14) An = Bn + Cn,

which, at generating function level, means

(15) A(z) = B(z) + C(z).

Thus,a union of sets translates as a sum of generating functions provided the sets are
disjoint.

The correspondences provided by (8)–(11) and (12)–(15) aresummarized by the
dictionary

(16)





A = B ∪ C =⇒ A(z) = B(z) + C(z) (providedB ∩ C = ∅)

A = B × C =⇒ A(z) = B(z) · C(z)

(Compare with the plain arithmetic case of (3).) Their meritis that they can be stated
as general-purpose translation rules that only need to be established once and for all.
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As soon as the problem of counting elements of a union of disjoint sets or a cartesian
product is recognized, it becomes possible to dispense altogether with the intermediate
stages of writing explicitly coefficient relations or recurrences like in (10) or (14). This
is the spirit of the symbolic method for combinatorial enumerations. Its interest lies
in the fact that several powerful set-theoretic constructions are amenable to such a
treatment.

I. 2. Admissible constructions and specifications

The main goal of this section is to introduce formally the basic constructionsthat
constitute the core of a specification language for combinatorial structures. This core
is based on disjoint unions, also known as combinatorial sums, and on Cartesian prod-
ucts that we have just discussed. We shall augment it by the constructions of sequence,
cycle, multiset, and powerset. A class isconstructibleor specifiableif it can be de-
fined from primal elements by means of these constructions. The generating function
of any such class satisfies functional equations that can be transcribed systematically
from a specification; see Theorems I.1 and I.2, as well as Figure 14 at the end of this
chapter for a summary.

I. 2.1. Basic constructions.First, we assume given a classE called theneutral
classthat consists of a single object of size 0; any such object of size 0 is called a
neutral objectand is usually denoted by symbols likeǫ or 1. The reason for this
terminology becomes clear if one considers the combinatorial isomorphism

A ∼= E × A ∼= A× E .
We also assume as given anatomic classZ comprising a single element of size 1;

any such element is called an atom; an atom may be used to describe a generic node
in a tree or graph, in which case it may be represented by a circle (• or ◦), but also a
generic letter in a word, in which case it may be instantiatedasa, b, c, . . . . Distinct
copies of the neutral or atomic class may also be subscriptedby indices in various
ways. Thus, for instance we use the classesZa = {a}, Zb = {b} (with a, b of size 1)
to build up binary words over the alphabet{a, b}, orZ• = {•}, Z◦ = {◦} (with •, ◦
taken to be of size 1) to build trees with nodes of two colours.Similarly, we introduce
E2, E1, E2 to denote a class comprising the neutral objects2, ǫ1, ǫ2 respectively.

Clearly, the generating functions of a neutral classE and an atomic classZ are

E(z) = 1, Z(z) = z,

corresponding to the unit1, and the variablez, of generating functions.
Combinatorial sum (disjoint union).First considercombinatorial sumalso known

asdisjoint union. The intent is to capture the union of disjoint sets, but without the
constraint of any extraneous condition of disjointness. Weformalize the (combina-
torial) sum of two classesB andC as the union (in the standard set–theoretic sense)
of two disjoint copies, sayB2 andC3, of B andC. A picturesque way to view the
construction is as follows: first choose two distinct colours and repaint the elements of
B with the2-colour and the elements ofC with the3-colour. This is made precise by
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introducing two distinct “markers”2 and3, each a neutral object (i.e., of size zero);
the disjoint unionB + C of B, C is then defined as the standard set-theoretic union,

B + C := ({2} × B) ∪ ({3} × C) .

The size of an object in a disjoint unionA = B + C is by definition inherited from its
size in its class of origin, like in Equation (13). One good reason behind the defini-
tion adopted here is that the combinatorial sum of two classes isalwayswell-defined.
Furthermore, disjoint union is equivalent to a standard union whenever it is applied to
disjoint sets.

Because of disjointness, one has the implication

A = B + C =⇒ An = Bn + Cn =⇒ A(z) = B(z) + C(z),

so that disjoint union is admissible. Note that, in contrast, standard set-theoretic union
is not an admissible construction since

card(Bn ∪ Cn) = card(Bn) + card(Cn) − card(Bn ∩ Cn),

and information on the internal structure ofB andC (i.e., the nature of this intersec-
tion) is needed in order to be able to enumerate the elements of their union.

Cartesian product.This constructionA = B×C forms all possible ordered pairs
in accordance with Definition I.6. The size of a pair is obtained additively from the
size of components in accordance with (9).

Next, we introduce a few fundamental constructions that build upon set-theoretic
union and product, and form sequences, sets, and cycles. These powerful construc-
tions suffice to define a broad variety of combinatorial structures.

Sequence construction.If C is a class then thesequenceclass SEQ(C) is defined
as the infinite sum

SEQ(C) = {ǫ} + C + (C × C) + (C × C × C) + · · ·
with ǫ being a neutral structure (of size 0). (The neutral structure in this context
plays a rôle similar to that of the “empty” word in formal language theory, while
the sequence construction is somewhat analogous to the Kleene star operation (‘⋆’);
see APPENDIX A: Regular languages, p. 678.) It is then readily checked that the
constructionA = SEQ(C) defines a proper class satisfying the finiteness condition for
sizes if and only ifC contains no object of size0. From the definition of size for sums
and products, there results that the size of a sequence is to be taken as the sum of the
sizes of its components:

γ = (α1, . . . , αℓ) =⇒ |γ| = |α1| + · · · + |αℓ|.
Cycle construction.Sequences taken up to a circular shift of their components

define cycles, the notation being CYC(B). Precisely, one has

CYC(B) := SEQ(B)/S,

whereS is the equivalence relation between sequences defined by

(α1, . . . , αr)S (β1, . . . , βr)

iff there exists somecircular shift τ of [1 . . r] such that for allj, βj = ατ(j); in other
words, for somed, one hasβj = α1+(j+d) mod r. Here is for instance a depiction of
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the cycles formed from the 8 and 16 sequences of lengths 3 and 4over two types of
objects (a, b): the number of cycles is 4 (forn = 3) and 6 (forn = 4). Sequences are
grouped into equivalence classes according to the relationS.

(17)
aaa

aab aba baa
abb bba bab

bbb

aaaa
aaab aaba abaa baaa
aabb abba bbaa baab

abab baba
abbb bbba bbab babb

bbbb

According to the definition, this construction correspondsto the formation of directed
cycles. We make only a limited use of it for unlabelled objects; however, its counter-
part plays a rather important rôle in the context of labelled structures and exponential
generating functions.

Multiset construction. Following common mathematical terminology,multisets
are like finite sets (that is the order between element does not count), but arbitrary
repetitions of elements are allowed. The notation isA = MSET(B) whenA is ob-
tained by forming allfinitemultisets of elements fromB. The precise way of defining
MSET(B) is as a quotient:

MSET(B) := SEQ(B)/R with R,

the equivalence relation of sequences being defined by(α1, . . . , αr)R (β1, . . . , βr)
iff there exists somearbitrary permutationσ of [1 . . r] such that for allj, βj = ασ(j).

Powerset construction.The powersetclass (or set class)A = PSET(B) is de-
fined as the class consisting of allfinitesubsets of classB, or equivalently, as the class
PSET(B) ⊂ MSET(B) formed of multisets that involve no repetitions.

We again need to make explicit the way the size function is defined when such
constructions are performed: like for products and sequences, the size of a composite
object—set, multiset, or cycle—is defined as the sum of the sizes of its components.
� I.3. The semi-ring of combinatorial classes.Under the convention of identifying isomor-
phic classes, sum and product acquire pleasant algebraic properties: combinatorial sums and
cartesian products become commutative and associative operations, e.g.,

(A+ B) + C = A+ (B + C), A× (B × C) = (A× B)× C,
while distributivity holds,(A+B)×C = (A×C)+(B×C). The proofs are simple verifications
from the definitions. �

� I.4. Natural numbers.Let Z := {•} with • an atom (of size 1). ThenI = SEQ(Z) \
{ǫ} is a way of describing natural integers in unary notation:I = {•, • •, •••, . . .}. The
corresponding OGF isI(z) = z/(1− z) = z + z2 + z3 + · · · . �

� I.5. Interval coverings. Let Z := {•} be as before. ThenA = Z + (Z × Z) is a set of
two elements,• and(•, •), which we choose to draw as{•, •–•}. ThenC = SEQ(A) contains
elements like

•, • •, •–•, • •–•, •–• •, •–• •–•, • • • • .
With the notion of size adopted, the objects of sizen in C = SEQ(Z + (Z × Z)) are (isomor-
phic to) thecoveringsof the interval[0, n] by intervals (matches) of length either 1 or 2. The
generating function,

C(z) = 1 + z + 2 z2 + 3 z3 + 5 z4 + 8 z5 + 13 z6 + 21 z7 + 34 z8 + 55 z9 + · · · ,
is, as we shall see shortly (p. 40), the OGF of Fibonacci numbers. �
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I. 2.2. The admissibility theorem for ordinary generating functions. This sec-
tion is a formal treatment of admissibility proofs for the constructions we have consid-
ered. The final implication is that any specification of a constructible class translates
directly into generating function equations. The cycle construction involves the Eu-
ler totient functionϕ(k) defined as the number of integers in[1, k] that are relatively
prime tok (APPENDIX A: Arithmetical functions, p. 667).

Theorem I.1 (Admissible unlabelled constructions). The constructions of union, carte-
sian product, sequence, multiset, powerset, and cycle are all admissible. The associ-
ated operators are

Sum: A = B + C =⇒ A(z) = B(z) + C(z)

Product: A = B × C =⇒ A(z) = B(z) · C(z)

Sequence: A = SEQ(B) =⇒ A(z) =
1

1 −B(z)

Cycle: A = CYC(B) =⇒ A(z) =
∞∑

k=1

ϕ(k)

k
log

1

1 −B(zk)
.

Multiset: A = MSET(B) =⇒ A(z) =





∏

n≥1

(1 − zn)−Bn

exp

( ∞∑

k=1

1

k
B(zk)

)

Powerset: A = PSET(B) =⇒ A(z) =






∏

n≥1

(1 + zn)Bn

exp

( ∞∑

k=1

(−1)k−1

k
B(zk)

)

The sequence, cycle, and set translations necessitate thatB0 = ∅.

The classE = {ǫ} consisting of the neutral object only, and the classZ consisting of
a single “atomic” object (node, letter) of size1 have OGFs

E(z) = 1 and Z(z) = z.

PROOF. The proof proceeds by cases, building upon what we have justseen regarding
unions and products.

Combinatorial sum (disjoint union).LetA = B+C. Since the union isdisjoint,
and the size of anA–element coincides with its size inB orC, one hasAn = Bn +Cn

andA(z) = B(z) + C(z), as discussed earlier. The rule also follows directly from
the combinatorial form of generating functions as expressed by (5):

A(z) =
∑

α∈A
z|α| =

∑

α∈B
z|α| +

∑

α∈C
z|α| = B(z) + C(z).

Cartesian Product.The admissibility result forA = B × C was considered as
an example for Definition I.6, the convolution equation (10)leading to the relation
A(z) = B(z) ·C(z). We can offer a direct derivation based on the combinatorialform
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of generating functions (5),

A(z) =
∑

α∈A
z|α| =

∑

(β,γ)∈(B×C)

z|β|+|γ| =



∑

β∈B
z|β|


×



∑

γ∈C
z|γ|


 = B(z)·C(z),

as follows from distributing products over sums. This derivation readily extends to an
arbitrary number of factors.

Sequence construction.Admissibility for A = SEQ(B) (with B0 = ∅) follows
from the union and product relations. One has

A = {ǫ} + B + (B × B) + (B × B × B) + · · · ,
so that

A(z) = 1 +B(z) +B(z)2 +B(z)3 + · · · =
1

1 −B(z)
,

where the geometric sum converges in the sense of formal power series since[z0]B(z) =
0, by assumption.

Powerset construction.LetA = PSET(B) and first takeB to be finite. Then, the
classA of all the finite subsets ofB is isomorphic to a product,

PSET(B) ∼=
∏

β∈B
({ǫ} + {β})

with ǫ a neutral structure of size0. Indeed, distributing the products in all possible
ways forms all the possible combinations, i.e., sets, of elements ofB with no repetition
allowed, by reasoning similar to what leads to such an identity as

(1 + a)(1 + b)(1 + c) = 1 + [a+ b+ c] + [ab+ bc+ ac] + abc,

where all combinations of variables appear. Then, directlyfrom the combinatorial
form of generating functions and the sum and product rules, we find

A(z) =
∏

β∈B
(1 + z|β|) =

∏

n

(1 + zn)Bn .

Theexp-log transformationA(z) = exp(logA(z)) then yields

(18)

A(z) = exp

( ∞∑

n=1

Bn log(1 + zn)

)

= exp

( ∞∑

n=1

Bn ·
∞∑

k=1

(−1)k−1 z
nk

k

)

= exp

(
B(z)

1
− B(z2)

2
+
B(z3)

3
− · · ·

)
,

where the second line results from expanding the logarithm,

log(1 + u) =
u

1
− u2

2
+
u3

3
− · · · ,

and the third line results from exchanging the order of summation.
The proof finally extends to the case ofB being infinite by noting that eachAn

depends only on thoseBj for which j ≤ n, to which the relations given above for
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the finite case apply. Precisely, letB(≤m) =
∑m

k=1 Bj andA(≤m) = PSET(B(≤m)).
Then, withO(zm+1) denoting any series that has no term of degree≤ m, one has

A(z) = A(≤m)(z) +O(zm+1) and B(z) = B(≤m)(z) +O(zm+1).

On the other hand,A(≤m)(z) andB(≤m)(z) are connected by the fundamental expo-
nential relation (18) , sinceB(≤m) is finite. Lettingm tend to infinity, there follows in
the limit

A(z) = exp

(
B(z)

1
− B(z2)

2
+
B(z3)

3
− · · ·

)
.

(See APPENDIX A: Formal power series, p. 676 for the definition of formal conver-
gence.)

Multiset construction. First for finiteB (with B0 = ∅), the multiset classA =
MSET(B) is definable by

MSET(B) ∼=
∏

β∈B
SEQ({β}).

In words, any multiset can be sorted, in which case it can be viewed as formed of a
sequence of repeated elementsβ1, followed by a sequence of repeated elementsβ2,
whereβ1, β2, . . . is a canonical listing of the elements ofB. The relation translates
into generating functions by the product and sequence rules,

A(z) =
∏

β∈B
(1 − z|β|)−1 =

∞∏

n=1

(1 − zn)−Bn

= exp

( ∞∑

n=1

Bn log(1 − zn)−1

)

= exp

(
B(z)

1
+
B(z2)

2
+
B(z3)

3
+ · · ·

)
,

where the exponential form results from the exp-log transformation. The case of an
infinite classB follows by a continuity argument analogous the one used for powersets.

Cycle construction.The translation of the cycle relationA = CYC(B) turns out
to be

A(z) =

∞∑

k=1

ϕ(k)

k
log

1

1 −B(zk)
,

whereϕ(k) is the Euler totient function. The first terms, withLk(z) := log(1 −
B(zk))−1 are

A(z) =
1

1
L1(z) +

1

2
L2(z) +

2

3
L3(z) +

2

4
L4(z) +

4

5
L5(z) +

2

6
L6(z) + · · · .

We defer the proof to APPENDIX A: Cycle construction, p. 674, since it relies in part
on multivariate generating functions to be officially introduced in Chapter III. �

The results for sets, multisets, and cycles are particular cases of the well known
Pólya theorythat deals more generally with the enumeration of objects under group
symmetry actions [395, 397]. This theory is exposed in many textbooks, see for in-
stance [98, 259]. The approach adopted here consists in considering simultaneously
all possible values of the number of components by means of bivariate generating



I. 2. ADMISSIBLE CONSTRUCTIONS AND SPECIFICATIONS 29

functions. Powerful generalizations within the theory of species are presented in the
book by Bergeron, Labelle, and Leroux [39].
� I.6. Vallée’s identity. Let M = MSET(C), P = PSET(C). Separating elements ofC
according to the parity of the number of times they appear in amultiset gives rise to the identity

M(z) = P (z)M(z2).

(Hint: a multiset contains elements of either odd or even multiplicity.) Accordingly, one can
deduce the translation of powersets from the formula for multisets. Iterating the relation above
yieldsM(z) = P (z)P (z2)P (z4)P (z8) · · · , that is closely related to the binary representation
of numbers and to Euler’s identity (p. 46). It is used for instance in Note 56 p. 83. �

Restricted constructions.In order to increase the descriptive power of the frame-
work of constructions, we also want to allow restrictions onthe number of components
in sequences, sets, multisets, and cycles. LetK be a metasymbol representing any of
SEQ,CYC,MSET,PSET and letΩ be a predicate over the integers, thenKΩ(A) will
represent the class of objects constructed byK but with a number of components con-
strained to satisfyΩ. Then, the notations

SEQ=k (or simply SEQk), SEQ>k, SEQ1 . . k

refer to sequences whose number of components are exactlyk, larger thank, or in the
interval1 . . k respectively and the same holds for other constructions. Inparticular,

SEQk(B) :=

k times︷ ︸︸ ︷
B × · · · × B ≡ Bk, SEQ≥k(B) =

∑

j≥k

Bj ∼= Bk × SEQ(B),

MSETk(B) := SEQk(B)/R.

Similarly, SEQodd,SEQeven will denote sequences with an odd or even number of
components, and so on.

Translations for such restricted constructions are available, as shown generally in
Subsection I. 6.1. Suffice it to note for the moment that the constructionA = SEQk(B)
is really an abbreviation for ak-fold product, hence it admits the translation into OGFs

(19) A = SEQk(B) =⇒ A(z) = B(z)k.

I. 2.3. Constructibility and combinatorial specifications. By composing basic
constructions, we can build compact descriptions (specifications) of a broad variety of
combinatorial classes. Since we restrict attention toadmissibleconstructions, we can
immediately derive OGFs for these classes. Put differently, the task of enumerating a
combinatorial class is reduced toprogramminga specification for it in the language of
admissible constructions. In this subsection, we first discuss the expressive power of
the language of constructions, then summarize the symbolicmethod (for unlabelled
classes and OGFs) by Theorem I.2.

First, in the framework just introduced, the class of all binary words is described
by

W = SEQ(A) where A = {a, b} ∼= Z + Z,
the ground alphabet, comprises two elements (letters) of size1. The size of a binary
word then coincides with its length (the number of letters itcontains). In other words,
we start from basic atomic elements and build up words by forming freely all the
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objects determined by the sequence construction. Such a combinatorial description of
a class that only involves a composition of basic constructions applied to initial classes
E ,Z is said to be aniterative(or nonrecursive) specification. Other examples already
encountered include binary necklaces (Note 1, p. 18) and thenatural integers (Note 4,
p. 25) respectively defined by

N = CYC(Z + Z) and I = SEQ≥1(Z).

From there, one can construct ever more complicated objects. For instance,

P = MSET(I) ≡ MSET(SEQ≥1(Z))

means the class of multisets of natural integers, which is isomorphic to the class of
integer partitions (see Section I. 3 below for a detailed discussion). As such examples
demonstrate, a specification that is iterative can be represented as a single term built on
E ,Z and the constructions+,×,SEQ,CYC,MSET,PSET. An iterative specification
can be equivalently listed by naming some of the subterms (for instance partitions in
terms of natural integers themselves defined as sequences ofatoms).

Semantics of recursion.We next turn our attention to recursive specifications,
starting with trees (cf also APPENDIX A: Tree concepts, p. 681 for basic definitions).
In graph theory, a tree is classically defined as an undirected graph that is connected
and acyclic. Additionally, a tree isrooted if a particular vertex is distinguished to be
the root. Computer scientists commonly make use of trees calledplanethat are rooted
but also embedded in the plane, so that the ordering of subtrees attached to any node
matters. Here, we will give the name ofgeneral plane treesto such rooted plane trees
and callG their class, where size is the number of vertices; see, e.g.,[434]. (The term
“general” refers to the fact that all nodes degrees are allowed.) For instance, a general
tree of size 16, drawn with the root on top, is:

τ =

As a consequence of the definition, if one interchanges, say,the second and third
root subtrees, then a different tree results—the original tree and its variant are not
equivalent under a smooth dformation of the plane. (Generaltrees are thus comparable
to graphical renderings of genealogies where children are ordered by age.). Although
we have introduced plane trees as 2-dimensional diagrams, it is obvious that any tree
also admits a linear representation: a treeτ with root ζ and root subtreesτ1, . . . , τr
(in that order) can be seen as the objectζ τ1, . . . , τr , where the box encloses similar

representations of subtrees. Typographically, a box· may be reduced to a matching
pair of parentheses, ‘(·)’, and one gets in this way a linear description that illustrates
the correspondence between trees viewed as plane diagrams and functional terms of
mathematical logic and computer science.

Trees are best described recursively. A tree is a root to which is attached a (possi-
bly empty) sequence of trees. In other words, the classG of general trees is definable



I. 2. ADMISSIBLE CONSTRUCTIONS AND SPECIFICATIONS 31

by the recursive equation

(20) G = Z × SEQ(G),

whereZ comprises a single atom written “•” and denoting a generic node.
Although such recursive definitions are familiar to computer scientists, the speci-

fication (20) may look dangerously circular to some. One way of making good sense
of it is via an adaptation of the numerical technique of iteration. Start withG[0] = ∅,
the empty set, and define successively the classes

G[j+1] = Z × SEQ(G[j]).

For instance,G[1] = Z × SEQ(∅) = {(•, ǫ)} ∼= {•} describes the tree of size 1, and

G[2] =
{
• , • • , • • • , • • • • , . . .

}

G[3] =

{
• , • • , • • • , • • • • , . . . ,

• • • , • • • • , • • • • , • • • • • • , . . .

}
.

First, eachG[j] is well-defined since it corresponds to a purely iterative specification.
Next, we have the inclusionG[j] ⊂ G[j+1], (G[j] admits of a simple interpretation as
the class of all trees of height< j). We can therefore regard the complete classG as
defined by the limit of theG[j], that is,G :=

⋃
j G[j].

� I.7. Limes superior of classes.Let {A[j]} be any increasing sequence of combinatorial
classes, in the sense thatA[j] ⊂ A[j+1], and the notions of size are compatible. IfA[∞] =S

j A[j] is a combinatorial class (i.e., there are finitely many elements of sizen, for eachn),

then the corresponding OGFs satisfyA[∞](z) = limj→∞A[j](z) in the formal topology (AP-
PENDIX A: Formal power series, p. 676). �

Definition I.7. A specificationfor an r–tuple ~A = (A(1), . . . ,A(r)) of classes is a
collection ofr equations,

(21)





A(1) = Ξ1(A(1), . . . ,A(r))
A(2) = Ξ2(A(1), . . . ,A(r))

· · ·
A(r) = Ξr(A(1), . . . ,A(r))

where eachΞi denotes a term built from theA’s using the constructions of disjoint
union, cartesian product, sequence, set, multiset, and cycle, as well as the initial
classesE (neutral) andZ (atomic).

We also say that the system is a specification ofA(1). A specification for a class of
combinatorial structures is thus a sort of formal grammar defining that class. Formally,
the system (21) is aniterative specification if it is strictly upper-triangular, that is,
A(r) is defined solely in terms of initial classesZ, E ; the definition ofA(r−1) only
involvesA(r), and so on; in that case, by back substitutions, it is apparent that for an
iterative specification,A(1) can be equivalently described by a single term involving
only the initial classes and the basic constructors. Otherwise, the system is said to
be recursive. In the latter case, the semantics of recursion is identicalto the one
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introduced in the case of trees: start with the “empty” vector of classes,~A[0] :=

(∅, . . . , ∅), iterate ~A[j+1] = ~Ξ
[
~A[j]
]
, and finally take the limit.

Definition I.8. A class of combinatorial structures is said to beconstructibleor speci-
fiable iff it admits a (possibly recursive) specification in terms of sum, product, se-
quence, set, multiset, and cycle constructions.

At this stage, we have therefore defined a specification language for combina-
torial structures which is some fragment of set theory with recursion added. Each
constructible class has by virtue of Theorem I.1 an ordinarygenerating function for
which defining equations can be produced systematically. Infact, it is even possible
to use computer algebra systems in order to compute itautomatically! See the article
of Flajolet, Salvy, and Zimmermann [206] for the description of such a system.

Theorem I.2 (Symbolic method, unlabelled case). The generating function of a con-
structible class is a component of a system of generating function equations whose
terms are built from

1, z, + , × , Q , Exp , Exp ,Log,

where



Q[f ] =
1

1 − f
, Log[f ] =

∞∑

k=1

ϕ(k)

k
log

1

1 − f(zk)
,

Exp = exp

( ∞∑

k=1

f(zk)

k

)
, Exp[f ] = exp

( ∞∑

k=1

(−1)k−1 f(zk)

k

)
.

Pólya operators.The operatorQ translating sequences (SEQ) is classically known
as thequasi-inverse. The operatorExp (multisets, MSET) is called thePólya exponen-
tial2 andExp (powersets, PSET) is themodified Ṕolya exponential. The operatorLog
is thePólya logarithm. They are named after Pólya who first developed the general
enumerative theory of objects under permutation groups [39, 395, 397].

The statement of Theorem I.2 signifies that iterative classes have explicit generat-
ing functions involving compositions of the basic operators only, while recursive struc-
tures have OGFs that are accessible indirectly via systems of functional equations. As
we see at various places in this chapter, the following classes are constructible: binary
words, binary trees, general trees, integer partitions, integer compositions, nonplane
trees, polynomials over finite fields, necklaces, and wheels. We conclude this section
with a few examples.

Binary words. The OGF of binary words, as seen already, can be obtained di-
rectly from the iterative specification,

W = SEQ(Z + Z) =⇒ W (z) =
1

1 − 2z
,

whence the expected result,Wn = 2n.

2It is a notable fact that, though the Pólya operators look algebraically “difficult” to compute with,
their treatment by complex asymptotic methods, as regards coefficient asymptotics, is comparatively “easy”.
We shall see many examples in Chapters IV–VII (e.g., pp. 239,453).
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General trees.The recursive specification of general trees leads to an implicit
definition of their OGF,

G = Z × SEQ(G) =⇒ G(z) =
z

1 −G(z)
.

From this point on, basic algebra does the rest. First the original equation is equivalent
(in the ring of formal power series) toG−G2 − z = 0. Next, the quadratic equation
is solvable by radicals, and one finds

G(z) = 1
2

(
1 −

√
1 − 4z

)

= z + z2 + 2 z3 + 5 z4 + 14 z5 + 42 z6 + 132 z7 + 429 z8 + · · ·

=
∑

n≥1

1

n

(
2n− 2

n− 1

)
zn.

(The conjugate root is to be discarded since it involves a term z−1 as well as negative
coefficients.) The expansion then results from Newton’s binomial expansion,

(1 + x)α = 1 +
α

1
x+

α(α − 1)

2!
x2 + · · · ,

applied withα = 1
2 andx = −4z.

The numbers

(22) Cn =
1

n+ 1

(
2n

n

)
=

(2n)!

(n+ 1)!n!
with OGF C(z) =

1 −
√

1 − 4z

2z

are known as the Catalan numbers (EISA000108) in the honour of Eugène Catalan
(1814-1894), a French and Belgian mathematician who developed many of their prop-
erties. These numbers are so common in combinatorics that wehave decided to use
a roman font for denoting them (like “log”, “ sin”, and so on). In summary,general
trees are enumerated by Catalan numbers:

Gn = Cn−1 ≡ 1

n

(
2n− 2

n− 1

)
.

For this reason the termCatalan treeis often employed as synonymous to “general
(rooted unlabelled plane) tree”.

Triangulations. Fix n+ 2 points arranged in anticlockwise order on a circle and
conventionally numbered from 0 ton+ 1 (for instance then+ 2nd roots of unity). A
triangulation is defined as a maximal decomposition of the convexn+ 2-gon defined
by the points inton triangles. Triangulations are taken here as abstract topological
configurations defined up to continuous deformations of the plane. The size of the
triangulation is the number of triangles, that is,n. Given a triangulation, we define
its “root” as a triangle chosen in some conventional and unambiguous manner (e.g., at
the start, the triangle that contains the two smallest labels). Then, a triangulation de-
composes into its root triangle and two subtriangulations (that may well be “empty”)
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appearing on the left and right sides of the root triangle; the decomposition is illus-
trated by the following diagram:

= +

The classT of all triangulations can be specified recursively as

T = {ǫ} + (T ×∇× T ) ,

provided that we consider a 2-gon (a diameter) as giving riseto an empty triangulation.
Consequently, the OGF satisfies the equationT = 1 + zT 2 and

T (z) =
1

2z

(
1 −

√
1 − 4z

)
.

As a result,triangulations are enumerated by Catalan numbers:

Tn = Cn ≡ 1

n+ 1

(
2n

n

)
.

This particular result goes back to Euler and Segner (1753),a century before Catalan;
see Figure 1 for first values and p. 69 for related bijections.

� I.8. A bijection. Since both general trees and triangulations are enumeratedby Catalan
numbers, there must exist a size-preserving bijection between the two classes. Find one such
bijection. [Hint: the construction of triangulations is evocative of binary trees, and binary trees
are themselves in bijective correspondence with general trees; see APPENDIXA: Tree concepts,
p. 681.] �

� I.9. A variant specification of triangulations.Consider the classU of “nonempty” triangula-
tions of then-gon, that is, we exclude the 2-gon and the corresponding “empty” triangulation
of size 0. Then,U = T \ {ǫ} admits the specification

U = ∇+ (∇×U) + (U ×∇) + (U ×∇× U)

which also leads to the Catalan numbers viaU = z(1 + U)2 and U(z) = (1 − 2z −√
1− 4z)/(2z), so thatU(z) = T (z)− 1. �

I. 2.4. Exploiting generating functions and counting sequences. In this book
we are going to see altogether more than a hundred applications of the symbolic
method. Before engaging in technical developments, it is worth inserting a few com-
ments on the way generating functions and counting sequences can be put to good use
in order to solve combinatorial problems.
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Explicit enumeration formulae. In a number of situations, generating functions
are explicit and can be expanded in such a way that explicit formulae result for their
coefficients. A prime example is the counting of general trees and of triangulations
above, where the quadratic equation satisfied by an OGF is amenable to an explicit
solution—the resulting OGF could then be expanded by means of Newton’s binomial
theorem. Similarly, we derive later in this Chapter an explicit form for the number of
integer compositions by means of the symbolic method and OGFs (the answer turns
out to be simply2n−1) and derive many explicit specializations. In this book, we
assume as known the elementary techniques from basic calculus by which the Taylor
expansion of an explicitly given function can be obtained. (Good references on such
elementary aspects are Wilf’sGeneratingfunctionology[496], Graham, Knuth, and
Patashnik’sConcrete Mathematics[248], and our book [434].)

Implicit enumeration formulae. In a number of cases, the generating functions
obtained by the symbolic method are still in a sense explicit, but their form is such that
their coefficients are not clearly reducible to a closed form. It is then still possible to
obtain initial values of the corresponding counting sequence by means of a symbolic
manipulation system. Also, from generating functions, it is possible to derive system-
atically recurrences3 that lead to a procedure for computing an arbitrary number of
terms of the counting sequence in a reasonably efficient manner. A typical example of
this situation is the OGF of integer partitions,

P (z) =

∞∏

m=1

1

1 − zm
,

for which recurrences obtained from the OGF and associated to fast algorithms are
given in Note 12 (p. 40) and Note 17 (p. 46).

Asymptotic formulae.Such forms are our eventual goal as they allow for an easy
interpretation and comparison of counting sequences. Froma quick glance at the
table of initial values ofWn, Pn, Tn given in Eq. (2), it is apparent thatWn grows
more slowly thanTn, which itself grows more slowly thanPn. The classification
of growth rates of counting sequences belongs properly to the asymptotic theory of
combinatorial structures which neatly relates to the symbolic method via complex
analysis. A thorough treatment of this part of the theory is presented in Chapters IV–
VIII. Given the methods exposed there, it becomes possible to estimate asymptotically
the coefficients of virtually any generating function, however complicated4, that is
provided by the symbolic method.

Here, we content ourselves with a few remarks based on elementary real analysis.
(The basic notations are described in APPENDIX A: Asymptotic Notation, p. 668.)
The sequenceWn = 2n grows exponentially and, in such an extreme simple case, the
exact form coincides with the asymptotic form. The sequencePn = n! must grow at a
faster asymptotic regime. But how fast? The answer is provided by Stirling’s formula,

3See [206, 216, 373] for such systematic approaches.
4In a number of cases, asymptotic analysis even applies to situations where the generating function

itself is not even explicit, but only accessible through a functional equation of sorts.
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FIGURE I.4. The growth
regimes of three sequences
f(n) = 2n, Tn, n! (from bottom
to top) rendered by a plot of
log10 f(n) versusn.

an approximation to the factorial numbers due to the Scottish mathematician James
Stirling (1692–1770):

(23) n! =
(n
e

)n √
2πn

(
1 +O(

1

n
)

)
(n → +∞).

The ratios of the exact values to Stirling’s approximations

n: 1 2 5 10 100 1,000
n!

nne−n
√

2πn
: 1.084437 1.042207 1.016783 1.008365 1.000833 1.000083

show anexcellent qualityof the asymptotic estimate: the error is only 8% forn = 1,
less than 1% forn = 10, and less than 1 per thousand for anyn greater than 100.

Stirling’s formula in turn gives access to the asymptotic form of the Catalan num-
bers, by means of a simple calculation:

Cn =
1

n+ 1

(2n)!

(n!)2
∼ 1

n

(2n)2ne−2n
√

4πn

n2ne−2n2πn
,

which simplifies to

(24) Cn ∼ 4n

√
πn3

.

Thus, the growth of Catalan numbers is roughly comparable toan exponential,4n,
modulated by a subexponential factor, here1/

√
πn3. A surprising consequence of this

asymptotic estimate to the area of boolean function complexity appears in Example 16
below.

Altogether, the asymptotic number of general trees and triangulations is well sum-
marized by a simple formula. Approximations become more andmore accurate asn
becomes large. Figure 4 illustrates the different growth regimes of our three reference
sequences while Figure 5 exemplifies the quality of the approximation with subtler
phenomena also apparent on the figures and well explained by asymptotic theory.
Such asymptotic formulae then make comparison between the growth rates of se-
quences easy.
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n Cn C⋆
n C⋆

n/Cn

1 1 2.25 2.25675 83341 91025 14779 23178

10 16796 18707.89 1.11383 05127 524458̇9437 89064

100 0.89651 · 1057 0.90661 · 1057 1.01126 32841 24540 52257 13957

1000 0.20461 · 10598 0.20484 · 10598 1.00112 51328 1542 41647 01282

10000 0.22453 · 106015 0.22456 · 106015 1.00011 25013 28127 92913 51406

100000 0.17805 · 1060199 0.17805 · 1060199 1.00001 12500 13281 25292 96322

1000000 0.55303 · 10602051 0.55303 · 10602051 1.00000 11250 00132 81250 29296

FIGURE I.5. The Catalan numbersCn, their Stirling approximationC⋆
n = 4n/

√
πn3,

and the ratioC⋆
n /Cn.

� I.10. The complexity of coding.A company specialized in computer aided design has sold
to you a scheme that (they claim) can encode any triangulation of sizen ≥ 100 using at most
1.5n bits of storage. After reading these pages, what do you do? [Hint: sue them!] See also
Note 22 for related coding arguments. �

� I.11. Experimental asymptotics.From the data of Figure 5, guess the value ofC⋆
107 /C107

and ofC⋆
5·106 /C5·106 to 25D. (See, e.g., [313] for related asymptotic expansions and [64] for

similar properties.) �

The interplay between combinatorial structure and asymptotic structure is indeed
the principal theme of this book. We shall see that a vast majority of the generating
functions provided by the symbolic method, however complicated, eventually lead to
similarly simple asymptotic estimates.

I. 3. Integer compositions and partitions

This section and the next ones provide examples of counting via specifications in
classical combinatorial domains. They illustrate the benefits of the symbolic method:
generating functions are obtained with hardly any computation, and at the same time,
many counting refinements follow from a basic combinatorialconstruction. The most
direct applications described here relate to the additive decomposition of integers
into summands with the classical combinatorial-arithmetic structures of partitions and
compositions. The specifications are iterative and simply combine two levels of con-
structions of type SEQ,MSET,CYC,PSET.

I. 3.1. Compositions and partitions. Our first examples have to do with decom-
posing integers into sums.

Definition I.9. A compositionof an integern is a sequence(x1, x2, . . . , xk) of inte-
gers (for somek) such that

n = x1 + x2 + · · · + xk, xj ≥ 1.

A partitionof an integern is a sequence(x1, x2, . . . , xk) of integers (for somek) such
that

n = x1 + x2 + · · · + xk and x1 ≥ x2 ≥ · · · ≥ xk.
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FIGURE I.6. Graphical representations of compositions and partitions: (left) the com-
position1 + 3 + 1 + 4 + 2 + 3 = 14 with its “ragged-landscape” and “balls-and-bars”
models; (right) the partition8+8 +6+5 +4+ 4+4+ 2+1+ 1 = 43 with its staircase
(Ferrers diagram) model.

In both cases, thexi’s are called the summands or the parts and the quantityn is
called the size of the composition or the partition.

By representing summands in unary using small discs (“•”), we can render graph-
ically a composition by drawing bars between some of the balls; if we arrange sum-
mands vertically, compositions appear as ragged-landscapes. In contrast, partitions
appear as staircases, also known as Ferrers diagrams [98, p. 100]; see Figure 6. We
let C andP denote the class of pacement all compositions and all partitions. Since a
set can always be presented in sorted order, the difference between compositions and
partitions lies in the fact that the order of summandsdoesor does notmatter. This is
reflected by the use of a sequence construction (forC) against a multiset construction
(for P). In this perspective, it proves convenient to regard0 as obtained by the empty
sequence of summands (k = 0), and we shall do so from now on.

First, letI = {1, 2, . . .} denote the combinatorial class of all integers at least 1
(the summands), and let the size of each integer be its value.Then, the OGF ofI is,
as we know,

(25) I(z) =
∑

n≥1

zn =
z

1 − z
,

sinceIn = 1 for n ≥ 1, corresponding to the fact that there is exactly one object in I
for each sizen ≥ 1. If integers are represented in unary, say by small balls, one has,

(26) I = {1, 2, 3, . . .} = {•, • •, • • •, . . .} ∼= SEQ≥1{•},
which is another way to view the equalityI(z) = z/(1 − z).

Compositions.First, the specification of compositions as sequences admits, by
Theorem I.1, a direct translation into OGF:

(27) C = SEQ(I) =⇒ C(z) =
1

1 − I(z)
.

The collection of equations (25), (27) thus fully determinesC(z):

C(z) =
1

1 − z
1−z

=
1 − z

1 − 2z

= 1 + z + 2z2 + 4z3 + 8z4 + 16z5 + 32z6 + · · · .
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0 1 1
10 512 42
20 524288 627
30 536870912 5604
40 549755813888 37338
50 562949953421312 204226
60 576460752303423488 966467
70 590295810358705651712 4087968
80 604462909807314587353088 15796476
90 618970019642690137449562112 56634173
100 633825300114114700748351602688 190569292
110 649037107316853453566312041152512 607163746
120 664613997892457936451903530140172288 1844349560
130 680564733841876926926749214863536422912 5371315400
140 696898287454081973172991196020261297061888 15065878135
150 713623846352979940529142984724747568191373312 40853235313
160 730750818665451459101842416358141509827966271488 107438159466
170 748288838313422294120286634350736906063837462003712 274768617130
180 766247770432944429179173513575154591809369561091801088 684957390936
190 784637716923335095479473677900958302012794430558004314112 1667727404093
200 803469022129495137770981046170581301261101496891396417650688 3972999029388
210 822752278660603021077484591278675252491367932816789931674304512 9275102575355
220 842498333348457493583344221469363458551160763204392890034487820288 21248279009367
230 862718293348820473429344482784628181556388621521298319395315527974912 47826239745920
240 883423532389192164791648750371459257913741948437809479060803100646309888 105882246722733
250 904625697166532776746648320380374280103671755200316906558262375061821325312 230793554364681

FIGURE I.7. Forn = 0, 10, 20, . . . , 250 (left), the number of compositionsCn (middle)
and the number of partitions (right). The figure illustratesthe difference in growth between
Cn = 2n−1 andPn = eO(

√
n).

From there, the counting problem for compositions is solvedby a straightforward
expansion of the OGF: one has

C(z) =




∑

n≥0

2nzn



−




∑

n≥0

2nzn+1



 ,

implying
Cn = 2n−1, n ≥ 1; C0 = 1.

This agrees with basic combinatorics since a composition ofn can be viewed as the
placement of separation bars at a subset of then − 1 existing places inbetweenn
aligned balls (the “balls and bars” model of Figure 6), of which there are clearly2n−1

possibilities.

Partitions. For partitions specified as multisets, the general translation mecha-
nism provides

(28) P = MSET(I) =⇒ P (z) = exp

(
I(z) +

1

2
I(z2) +

1

3
I(z3) + · · ·

)
,

with product form

(29)

P (z) =

∞∏

m=1

1

1 − zm

=
(
1 + z + z2 + · · ·

) (
1 + z2 + z4 + · · ·

) (
1 + z3 + z6 + · · ·

)
· · ·

= 1 + z + 2z2 + 3z3 + 5z4 + 7z5 + 11z6 + 15z7 + 22z8 + · · · .
where the counting sequence isEIS A000041. Contrary to compositions that are
counted by the explicit formula2n−1, no simple form exists forPn. Asymptotic
analysis of the OGF (28) based on the saddle point method (Chapter VIII) shows that
Pn = eO(

√
n). In fact a very famous theorem of Hardy and Ramanujan later improved
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by Rademacher (see Andrew’s book [10] and Chapter VIII) provides a full expansion
of which the asymptotically dominant term is

Pn ∼ 1

4n
√

3
exp

(
π

√
2n

3

)
.

There are consequently appreciably fewer partitions than compositions (Figure 7).
� I.12. A recurrence for the partition numbers.Logarithmic differentiation gives

z
P ′(z)

P (z)
=

∞X

n=1

nzn

1− zn
implying nPn =

nX

j=1

σ(j)Pn−j ,

whereσ(n) is the sum of the divisors ofn (e.g.,σ(6) = 1 + 2 + 3 + 6 = 12). Consequently,
P1, . . . , PN can be computed inO(N2) integer-arithmetic operations. (The technique is gener-
ally applicable to powersets and multisets; see Note 40 for another application. Note 17 further
lowers the bound in the case of partitions toO(N

√
N).) �

By varying (27) and (28), we can use the symbolic method to derive a number of
counting results in a straightforward manner. First, we state:

Proposition I.1. Let T ⊆ I be a subset of the positive integers. The OGF of the
classesCT := SEQ(SEQT (Z)) andPT := MSET(SEQT (Z)) of compositions and
partitions having summands restricted toT is given by

CT (z) =
1

1 −∑n∈T z
n

=
1

1 − T (z)
, P T (z) =

∏

n∈T

1

1 − zn
.

PROOF. The statement results directly from Theorem I.1. �

This proposition permits us to enumerate compositions and partitions with re-
stricted summands, as well as with a fixed number of parts.

EXAMPLE I.4. Compositions with restricted summands.In order to enumerate the classC{1,2}

of compositions ofn whose parts are only allowed to be taken from the set{1, 2}, simply write

C{1,2} = SEQ(I{1,2}) with I{1,2} = {1, 2}.
Thus, in terms of generating functions, one has

C{1,2}(z) =
1

1− I{1,2}(z)
with I{1,2}(z) = z + z2.

This formula implies

C{1,2}(z) =
1

1− z − z2
= 1 + z + 2z2 + 3z3 + 5z4 + 8z5 + 13z6 + · · · ,

and the number of compositions ofn in this class is expressed by a Fibonacci number,

C{1,2}
n = Fn+1 whereFn =

1√
5

»„
1 +
√

5

2

«n

−
„

1−
√

5

2

«n–
.

In particular, the rate of growth is of the exponential typeϕn, whereϕ :=
1 +
√

5

2
is the golden

ratio.
Similarly, compositions such that all their summands lie inthe set{1, 2, . . . , r} have gen-

erating function

C{1,...,r}(z) =
1

1− z − z2 − · · · zr
=

1

1− z 1−zr

1−z

=
1− z

1− 2z + zr+1
,
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and the corresponding counts are given by generalized Fibonacci numbers. A double combina-
torial sum expresses these counts

(30) C{1,...,r}
n = [zn]

X

j

„
z(1− zr)

(1− z)

«j

=
X

j,k

(−1)k

 
j

k

! 
n− rk − 1

j − 1

!
.

This result is perhaps not too useful for grasping the rate ofgrowth of the sequence whenn gets
large, so that asymptotic analysis is called for. Asymptotically, for any fixedr ≥ 2, there is a
unique rootρr of the denominator1 − 2z + zr+1 in ( 1

2
, 1), this root dominates all the other

roots and is simple. Methods amply developed in Chapter IV, imply that, for some constant
cr > 0,

(31) C{1,...,r}
n ∼ crρ−n

r for fixedr asn→∞.

The quantityρr plays a rôle similar to that of the golden ratio whenr = 2. END OF EXAMPLE I.4. �

� I.13. Compositions into primes.The additive decomposition of integers into primes is still
surrounded with mystery. For instance, it is not known whether every even number is the sum
of two primes (Goldbach’s conjecture). However, the numberof compositions ofn into prime
summands (anynumber of summands is permitted) isBn = [zn]B(z) where

B(z) =

0
@1−

X

p prime

zp

1
A

−1

=
`
1− z2 − z3 − z5 − z7 − z11 − · · ·

´−1

= 1 + z2 + z3 + z4 + 3 z5 + 2 z6 + 6 z7 + 6 z8 + 10 z9 + 16 z10 + · · ·
(EIS A023360) and complex asymptotic methods make iteasyfrom there to determine the
asymptotic formBn ∼ 0.30365 · 1.47622n ; see Chapter IV. �

EXAMPLE I.5. Partitions with restricted summands (denumerants).Whenever summands are
restricted to a finite set, the special partitions that result are called denumerants. A popular
denumerant problem consists in finding the number of ways of giving change of 99 cents using
coins that are pennies (1¢), nickels (5¢), dimes (10¢) and quarters (25¢). (The order in which
the coins are taken does not matter and repetitions are allowed.) For the case of a finiteT , we
predict from Proposition I.1 thatP T (z) is always arational function with poles that are at roots
of unity; also theP T

n satisfy a linear recurrence related to the structure ofT . The solution to
the original coin change problem is found to be

[z99]
1

(1− z)(1− z5)(1− z10)(1− z25)
= 213.

In the same vein, one proves that

P {1,2}
n = ⌈2n+ 3

4
⌋ P {1,2,3}

n = ⌈ (n+ 3)2

12
⌋.

There⌈x⌋ ≡ ⌊x + 1
2
⌋ denotes the integer closest to the real numberx. Such results are

typically obtained by the two step process: (i) decompose the rational generating function into
simple fractions; (ii) compute the coefficients of each simple fraction and combine them to get
the final result [98, p. 108].

The general argument also gives the generating function of partitions whose summands lie
in the set{1, 2, . . . , r} as

(32) P {1,...,r}(z) =

rY

m=1

1

1− zm
.
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In other words, we are enumerating partitions according to the value of the largest summand.
One then finds by looking at the poles (Chapter IV):

(33) P {1,...,r}
n ∼ crnr−1 with cr =

1

r!(r − 1)!
.

A similar argument provides the asymptotic form ofP T
n whenT is an arbitrary finite set:

P T
n ∼

1

τ

nr−1

(r − 1)!
with τ :=

Y

n∈T
n, r := card(T ).

This result originally due to Schur is discussed in Chapter IV. . . . . END OF EXAMPLE I.5. �

We next examine compositions and partitions with a fixed number of summands.

EXAMPLE I.6. Compositions with a fixed number of parts.Let C(k) denote the class of
compositions made ofk summands,k a fixed integer≥ 1. One has

C(k)(z) = SEQk(I) ≡ I × I × · · · × I,
where the number of terms in the cartesian product isk. From there, the corresponding gener-
ating function is found to be

C(k) =
`
I(z)

´k
with I(z) =

z

1− z .

The number of compositions ofn havingk parts is thus

C(k)
n = [zn]

zk

(1− z)k
=

 
n− 1

k − 1

!
,

a result which constitutes a combinatorial refinement ofCn = 2n−1. (Note that the formula
C

(k)
n =

`
n−1
k−1

´
also results easily from the balls-and-bars model of compositions (Figure 6)).

In such a case, the asymptotic estimateC
(k)
n ∼ nk−1/(k − 1)! results immediately from the

polynomial form of the binomial coefficient
`

n−1
k−1

´
. . . . . . . . . . . . . . . END OF EXAMPLE I.6. �

EXAMPLE I.7. Partitions with a fixed number of parts.Let P(≤k) be the class of integer
partitions with at mostk summands. With our notation for restricted constructions (p. 29), this
class is specified as

P(≤k) = MSET≤k(I).
It would be possible to appeal to the admissibility of such restricted compositions as developed
in Section I. 6.1, but the following direct argument suffices.

Geometrically, partitions, are represented as collections of points: this is the staircase
model of Figure 6). A symmetry around the main diagonal (alsoknown in the specialized
literature as conjugation) exchanges number of summands and value of largest summand: one
has (with previous notations)

P(≤k) ∼= P{1, . . k} =⇒ P (≤k)(z) = P {1, . . k}(z),

so that, by (32),

(34) P (≤k)(z) ≡ P {1,...,k} =

kY

m=1

1

1− zm
.
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As a consequence, the OGF of partitions withexactlyk summands,P (k)(z) = P (≤k)(z) −
P (≤k−1)(z), evaluates to

P (k)(z) =
zk

(1− z)(1− z2) · · · (1− zk)
.

Given the equivalence between number of parts and largest part in partitions, the asymptotic
estimate (33) applies verbatim here. . . . . . . . . . . . . . . . . . . .. . . . . . . . . END OF EXAMPLE I.7. �

� I.14. Compositions with summands bounded in number and size.The number of composi-
tions of sizen with k summands each at mostr is

[zn]

„
z
1− zr

1− z

«k

,

and is expressible as a simple binomial convolution. �

� I.15. Partitions with summands bounded in number and size.The number of partitions of
sizen with at mostk summands each at mostℓ is

[zn]
(1− z)(1− z2) · · · (1− zk+ℓ)

((1− z)(1− z2) · · · (1− zk)) · ((1− z)(1− z2) · · · (1− zℓ))
.

(The verification by recurrence is easy.) The GF reduces to the binomial coefficient
`

k+ℓ
k

´
as

z → 1; it is known as a Gaussian binomial coefficient, denoted
`

k+ℓ
k

´
z
, or a “q–analogue” of

the binomial coefficient [10, 98]. �

The last example of this section illustrates the close interplay between combi-
natorial decompositions and special function identities,which constitutes a recurrent
theme of classical combinatorial analysis.

EXAMPLE I.8. The Durfee square of partitions and stack polyominoes.The diagram of any
partition contains a uniquely determined square (known as the Durfee square) that is maximal,
as exemplified by the following diagram:

=

This decomposition is expressed in terms of partition GFs as

P ∼=
[

k≥0

“
Zk2 ×P(≤k) × P{1,...,k}

”
,

It gives, via (32) and (34), the non-trivial identity
∞Y

n=1

1

1− zn
=
X

k≥0

zk2

((1− z) · · · (1− zk))2

(k is the size of the Durfee square), which is nothing but a formal rewriting of the geometric
decomposition.

Here is a similar case illustrating the direct correspondence between geometric diagrams
and generating functions, as afforded by the symbolic method.
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Spec. OGF coeff. asympt.

Composition SEQ(SEQ≥1(Z))
1− z
1− 2z

2n−1 1

2
2n

—, sum.≤ r SEQ(SEQ1 . . r(Z))
1− z

1− 2z + zr+2
Eq. (30) crρ

−n
r

—, k sum. SEQk(SEQ≥1(Z))
zk

(1− z)k

 
n− 1

k − 1

!
nk−1

(k − 1)!

Partitions MSET(SEQ≥1(Z))
∞Y

m=1

(1− zm)−1 —
1

4n
√

3
eπ
√

2n
3

—, sum.≤ r MSET(SEQ1 . . r(Z))

rY

m=1

(1− zm)−1 —
nr−1

r!(r − 1)!

—,≤ k sum. ∼= MSET(SEQ1 . . k(Z))

kY

m=1

(1− zm)−1 —
nk−1

k!(k − 1)!

Cyclic comp. CYC(SEQ≥1(Z)) Eq. (35) Eq. (36)
2n

n

Part., distinct sum.PSET(SEQ≥1(Z))
∞Y

m=1

(1 + zm) —
33/4

12n3/4
eπ
√

n
3

FIGURE I.8. Partitions and compositions: specifications, generating functions, counting
sequences, and asymptotic approximation.

Stack polyominoesare diagrams of compositions such that for somej, ℓ, one has1 ≤ x1 ≤
x2 ≤ · · · ≤ xj ≥ xj+1 ≥ · · · ≥ xℓ ≥ 1 (see [447, §2.5] for further properties). The diagram
representation of stack polyominoes,

k ←→ P{1,...,k−1} ×Zk × P {1,...,k}

translates immediately into the OGF

S(z) =
X

k≥1

zk

1− zk

1

((1− z)(1− z2) · · · (1− zk−1))2
,

once use is made of the partition GFsP {1,...,k}(z) of (32). This last relation provides abona fide
algorithm for computing the initial values of the number of stack polyominoes (EISA001523):

S(z) = z + 2 z2 + 4 z3 + 8 z4 + 15 z5 + 27 z6 + 47 z7 + 79 z8 + · · · .

The book of van Rensburg [482] describes many such constructions and their relation to certain
models of statistical physics. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . END OF EXAMPLE I.8. �

Figure 8 summarizes what has been learnt regarding compositions and parti-
tions. The way several combinatorial problems are solved effortlessly by the symbolic
method is worth noting.
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I. 3.2. Related constructions.It is also natural to consider the two constructions
of cycle and powerset that we have not yet applied toI.

Cyclic compositions (wheels).The classD = CYC(I) comprises compositions
defined up to circular shift of the summands; so, for instance2 + 3 + 1 + 2 + 5,
3 + 1 + 2 + 5 + 2, etc, are identified. Alternatively, we may view elements ofD
as “wheels” composed of circular arrangements of rows of balls (taken up to circular
symmetry).

A “wheel” (cyclic composition):

By the cycle construction, the OGF is

(35)
D(z) =

∞∑

k=1

ϕ(k)

k
log

(
1 − zk

1 − zk

)−1

= z + 2 z2 + 3 z3 + 5 z4 + 7 z5 + 13 z6 + 19 z7 + 35 z8 + · · · .
The coefficients are thus (EISA008965)

(36) Dn =
1

n

∑

k | n

ϕ(k)(2n/k − 1) ≡ −1 +
1

n

∑

k | n

ϕ(k)2n/k ∼ 2n

n
.

Notice thatDn is of the same asymptotic order as1
nCn, which is suggested by circular

symmetry of wheels, butDn ∼ 2Cn/n.
Partitions into distinct summands.The classQ = PSET(I) is the subclass

of P = MSET(I) corresponding to partitions determined like in Definition I.9, but
with the strict inequalitiesxk > · · · > x1, so that the OGF is

Q(z) =
∏

n≥1

(1 + zn) = 1 + z + z2 + 2z3 + 2z4 + 3z5 + 4z6 + 5z7 + 6z8 + · · · .

The coefficients (EISA000009) are not amenable to closed from. However the saddle
point method (Chapter VIII) yields the approximation:

(37) Qn ∼ 33/4

12n3/4
exp

(
π

√
n

3

)
,

which has a shape similar to that ofPn.
� I.16. Odd versus distinct summands.The partitions ofn into odd summands(On) and into
distinct summands(Qn) are equinumerous. Indeed, one has

Q(z) =
∞Y

m=1

(1 + zm), O(z) =
∞Y

j=0

(1− z2j+1)−1.

Equality results from substituting(1 + a) = (1− a2)/(1− a) with a = zm,

Q(z) =
1− z2

1− z
1− z4

1− z2

1− z6

1− z3

1− z8

1− z4

1− z10

1− z5
· · · = 1

1− z
1

1− z3

1

1− z5
· · · ,
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and simplification of the numerators with half of the denominators (in boldface). �

Partitions into powers.Let Ipow = {1, 2, 4, 8, . . .} be the set of powers of 2.
The correspondingP andQ partitions have OGFs

P pow(z) =
∞∏

j=0

1

1 − z2j

= 1 + z + 2z2 + 2z3 + 4z4 + 4z5 + 6z6 + 6z7 + 10z8 + + · · ·

Qpow(z) =
∞∏

j=0

(1 + z2j

)

= 1 + z + z2 + z3 + z4 + z5 + · · · .
The first sequence1, 1, 2, 2, . . . is the “binary partition sequence” (EIS A018819);
the difficult asymptotic analysis was performed by de Bruijn[110] who obtained an
estimate that involves subtle fluctuations and is of the global form eO(log2 n). The
functionQpow(z) reduces to(1 − z)−1 since every number has a unique additive
decomposition into powers of 2. Accordingly, the identity

1

1 − z
=

∞∏

j=0

(1 + z2j

)

first observed by Euler is sometimes nicknamed the “computerscientist’s identity” as
it expresses the fact that every number admits a unique binary representation.

There exists a rich set of identities satisfied by partition generating functions—
this fact owes to deep connections with elliptic functions,modular forms, andq–
analogues of special functions on the one hand, basic combinatorics and number the-
ory on the other hand. See [10, 98] for an introduction to this fascinating subject.
� I.17. Euler’s pentagonal number theorem.This famous identity expresses1/P (z) as

Y

n≥1

(1− zn) =
X

k∈Z

(−1)kzk(3k+1)/2.

It is proved formally and combinatorially in [98, p. 105]. As a consequence, the numbers
{Pj}Nj=0 can be determined inO(N

√
N) arithmetic operations. �

� I.18. A digital surprise. Define the constant

ϕ :=
9

10

99

100

999

1000

9999

10000
· · · .

Is it a surprise that it evaluates numerically to

ϕ
.
= 0.8900100999989990000001000099999999899999000000000010 · · · ,

that is, its decimal representation involves only the digits0, 1, 8, 9? [This is suggested by a note
of S. Ramanujan, “Some definite integrals”,Messenger of Math.XLIV, 1915, pp. 10–18.] �

� I.19. Lattice points.The number of lattice points with integer coordinates that belong to the
closed ball of radiusn in d–dimensional Euclidean space is

[zn2

]
1

1− z (Θ(z))d where Θ(z) = 1 + 2
∞X

n=1

zn2

.

Such OGFs are useful in cryptography [321]. Estimates may be obtained from the saddle point
method; see Chapter VIII. �
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I. 4. Words and regular languages

Fix a finite alphabetA whose elements are calledletters. Each letter is taken
to have size 1,i.e., it is an atom. Aword is then any finite sequence of letters,
usually written without separators. So, for us, with the choice of the latin alphabet
(A = {a,. . . ,z}), sequences written asygololihp , philology , zgrmblglps
are words. We denote the set of all words (often written asA⋆ in formal linguistics)
byW . Following a well-established tradition in theoretical computer science and for-
mal linguistics, any subset ofW is called alanguage(or formal language, when the
distinction with natural languages has to be made).

From the definition of the set of wordsW , one has

(38) W ∼= SEQ(A) =⇒ W (z) =
1

1 −mz
,

wherem is the cardinality of the alphabet,i.e., the number of letters. The generating
function gives us the counting result

Wn = mn.

This result is elementary, but, as is usual with symbolic methods, many enumerative
consequences result from a given construction. It is precisely the purpose of this
section to examine some of them.

We shall introduce separately two frameworks that each havegreat expressive
power to describe languages. The first one is iterative (i.e., nonrecursive) and it bases
itself on “regular specifications” that only involve sums, products, and sequences; the
other one that is recursive (but of a very simple form) is bestconceived of in terms
of finite automata and is equivalent to linear systems of equations. Both frameworks
turn out to be logically equivalent in the sense that they determine the same family
of languages, theregular languages, though the equivalence5 is nontrivial and each
particular problem usually admits a preferred representation. The resulting OGFs are
invariably rational functions, a fact to be systematicallyexploited from an asymptotic
standpoint in Chapters IV and V.

I. 4.1. Regular specifications.Consider words (or strings) over the binary al-
phabetA = {a, b}. There is an alternative way to construct binary strings. Itis
based on the observation that (with a minor adjustment at thebeginning) a string de-
composes into a succession of “blocks” each formed with a single b followed by an
arbitrary (possibly empty) sequence ofa’s. For instanceaaabaababaabbabbaaa de-
composes as

aaa || baa | ba | baa | b | ba | b | baaa.
Omitting redundant6 symbols, we have the alternative decomposition:

(39) W ∼= SEQ(a) × SEQ(b SEQ(a)) =⇒ W (z) =
1

1 − z

1

1 − z 1
1−z

.

5APPENDIXA: Regular languages, p. 678 provides a basis for this equivalence.
6As usual, when dealing with words, we freely omit redundant braces ‘{, }’ and cartesian products

‘×’. For instance, SEQ(a + b) anda b are shorthand notations for SEQ({a} + {b}) and{{a} × {b}}.
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This last expression reduces to(1 − 2z)−1 as it should.
Longest runs. The interest of the construction just seen is to take into account

various meaningful properties, for example longest runs. Denote bya<k := SEQ<k(a)
the collection of all words formed with the lettera only and whose length is between
0 andk − 1; the corresponding OGF is1 + z + · · · + zk−1 = (1 − zk)/(1 − z).
The collectionW〈k〉 of words which do not havek consecutivea’s is described by an
amended form of (39), and

W〈k〉 = a<k SEQ(ba<k) =⇒ W 〈k〉(z) =
1 − zk

1 − z
· 1

1 − z 1−zk

1−z

=
1 − zk

1 − 2z + zk+1
.

The OGF is in principle amenable to expansion, but the resulting coefficients expres-
sions are complicated and, in such a case, asymptotic estimates tend to be more usable.
From an analysis developed in Chapter V, it can indeed be deduced that the longest
run ofa’s in a random binary string of lengthn is asymptotic tolog2 n.
� I.20. Runs in arbitrary alphabets.For an alphabet of cardinalitym, the quantity

1− zk

1−mz + (m− 1)zk+1

is the OGF of words withoutk consecutive occurrences of a designated letter. �

The case of longest runs exemplifies the usefulness of nestedconstructions in-
volving sequences. We set:

Definition I.10. An iterative specification that only involves atoms (e.g., letters of a
finite alphabetA) together with combinatorial sums, cartesian products, and sequence
constructions is said to be aregular specification.

A languageL is said to beS-regular(specification-regular) if there exists a class
M described by a regular specificationR such thatL andM are combinatorially
isomorphic:L ∼= M.

An equivalent way of expressing the definition is as follows:a language isS-
regular if it can be describedunambiguouslyby a regular expression (APPENDIX A:
Regular languages, p. 678). The definition of a regular specification and the basic
admissibility theorem imply immediately:

Proposition I.2. AnyS-regular language has an OGF that is arational function. This
OGF is obtained from a regular specification of the language by translating each letter
into the variablez, disjoint unions into sums, cartesian products into products, and
sequences into quasi-inverses,(1 − ·)−1.

This result is technically shallow but its importance derives from the fact that
regular languages have great expressive power devolving from their rich closure prop-
erties (APPENDIX A: Regular languages, p. 678) as well as their relation to finite
automata discussed in the next subsection. Examples 9 and 10make use of Proposi-
tion I.2 and treat two problems closely related to longest runs.

EXAMPLE I.9. Combinations and spacings.A regular specification describes the setL of
words that contain exactlyk occurrences of the letterb, from which the OGF automatically
derives:

(40) L = SEQ(a) (b SEQ(a))k =⇒ L(z) = zk/(1− z)k+1.
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Hence the number of words in the language satisfiesLn =
`

n
k

´
. This is otherwise combinato-

rially evident, since each word of lengthn is characterized by the positions of its lettersb, that
is, the choice ofk positions amongstn possible ones. Symbolic methods thus give us back the
well-known count of combinations by binomial coefficients.

Let
`

n
k

´
<d

be the number of combinations ofk elements amongst[1, n] with constrained
spacings: no element can be at distanced or more from its successor. The refinement of (40)

L[d] = SEQ(a) (b SEQ<d(a))
k−1 (bSEQ(a)) =⇒

X

n≥0

 
n

k

!

<d

zn =
zk(1− zd)k−1

(1− z)k+1
,

leads to a binomial convolution expression,
 
n

k

!

<d

=
X

j

(−1)j

 
k − 1

j

! 
n− dj
k

!
.

(This problem is analogous to compositions with bounded summands.) What we have just
analysed in thelargest spacing (constrained to be< d) in subsets; a parallel analysis yields
information regarding thesmallestspacing. . . . . . . . . . . . . . . . . . . . . . END OF EXAMPLE I.9. �

EXAMPLE I.10. Double run statistics.By forming maximal groups of equal letters in words,
one finds easily that, for a binary alphabet,

W = SEQ(b) SEQ(aSEQ(a) b SEQ(b)) SEQ(a).

Let W〈α,β〉 be the class of all words that have at mostα consecutivea’s and at mostβ
consecutiveb’s. The specification ofW produces a specification ofW〈α,β〉, upon replacing
SEQ(a),SEQ(b) by SEQ<α(a),SEQ<β(b) internally, and by SEQ≤α(a),SEQ≤β(b) externally.
In particular, the OGF of binary words that never have more thanr consecutive equal letters is
found to be (setα = β = r)

(41) W 〈r,r〉 =
1− zr+1

1− 2z + zr+1
=

1 + z + · · ·+ zr

1− z − · · · − zr
,

after simplification.
Révész in [410] tells the following amusing story attributed to T. Varga: “A class of high

school children is divided into two sections. In one of the sections, each child is given a coin
which he throws two hundred times, recording the resulting head and tail sequence on a piece
of paper. In the other section, the children do not receive coins, but are told instead that they
should try to write down a ‘random’ head and tail sequence of length two hundred. Collecting
these slips of paper, [a statistician] then tries to subdivide them into their original groups. Most
of the time, he succeeds quite well.”

The statistician’s secret is to determine the probability distribution of the maximum length
of runs of consecutive letters in a random binary word of length n (heren = 200). The
probability of this parameter to equalk is

1

2n

“
W 〈k,k〉

n −W 〈k−1,k−1〉
n

”

and is fully determined by (41). The probabilities are then easily computed using any symbolic
package: Forn = 200, the values found are

k 3 4 5 6 7 8 9 10 11 12

P: 6.54 10−8 7.07 10−4 0.0339 0.1660 0.2574 0.2235 0.1459 0.0829 0.0440 0.0226
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Thus, in a randomly produced sequence of length 200, there are usually runs of length 7 or
more: the probability of the event turns out to be close to 80%(and there is still a probability
of about 8% to have a run of length 11 or more). On the other handmost children (and adults)
are usually afraid of writing down runs longer than 4 or 5 as this is felt as strongly “non-
random”. The statistician simply selects the slips that contain runs of length 6 or more. Et
voilà! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . END OF EXAMPLE I.10. �

� I.21. Alice and Bob.Alice wants to communicaten bits of information to Bob over a channel
(a wire, an optic fiber) that transmits0,1–bits but is such that any occurrence of11 terminates
the transmission. Thus, she can only send on the channel an encoded version of her message
(where the code is of some lengthℓ ≥ n) that does not contain the pattern11.

Here is a first coding scheme: given the messagem = m1m2 · · ·mn, wheremj ∈ {0, 1},
apply the substitution:0 7→ 00 and1 7→ 10; terminate the transmission by sending11. This
scheme hasℓ = 2n+O(1), and we say its rate is 2. Can one design codes with rate arbitrarily
close to 1, asymptotically?

Let C be the class of allowed code words. A code of length at mostL is achievable only
if there is a one-to-one mapping from{0, 1}n into

SL
j=0 Cj , i.e.,2n ≤PL

j=0 Cj . Working out
the OGF ofC, one finds that necessarily

L ≥ λn+O(1), λ =
1

log2 ϕ
.
= 1.440420, ϕ =

1 +
√

5

2
.

Thus no code can achieve a rate better than1.44; i.e., a loss of at least 44% is unavoidable. (For
this and the next note, see, e.g., MacKay [349, Ch. 17].) �

� I.22. Coding without long runs.Because of hysteresis in magnetic heads, certain storage
devices cannot store binary sequences that have more than 4 consecutive0’s or more than
4 consecutive1’s. A coding scheme that transforms an arbitrary binary string into a string
obeying this constraint is sought.

From the OGF, one finds[z11]W 〈4,4〉(z) = 1546 > 210 = 1024. Consequently, a
substitution can be built that translates an original 10 bitblock into an 11 bit block without
five consecutive equal letters. When substituted blocks areconcatenated, this may give rise to
unwanted sequences of consecutive letters that are longer than acceptable. It then suffices to use
“separators” and replace a substituted block of the formα · · ·β by the longer blockαα · · ·ββ,
where0 = 1 and1 = 0. The resulting code has rate13

10
.

Extensions of this method show that the rate 1.057 is achievable (theoretically). On the
other hand, by the previous note, any acceptable code must use asymptotically at least 1.056n
bits to encode strings ofn bits. (Hint: letα be the root near1

2
of 1− 2α+ α5 = 0, which is a

pole ofW 〈4,4〉. One has1/ log2(1/α) = 1.05621.) �

Patterns. There are many situations in the sciences where it is of interest to de-
termine whether the appearance of a certainpatternin long sequences of observations
is significant. In a genomic sequence of length 100,000 (the alphabet isA,G,C,T ),
is it or not meaningful to detect three occurrences of the pattern TAGATAA, where
the letters appear consecutively and in the prescribed order? In computer network
security, certain attacks can be detected by some well defined alarming sequences of
events, though these events may be separated by perfectly legitimate actions. On an-
other register, data mining aims at broadly categorizing electronic documents in an
automatic way, and in this context the observation of well chosen patterns can provide
highly discriminating criteria. These various applications require determining which
patterns are, with high probability, bound to occur (these arenotsignificant) and which
are very unlikely to arise, so that actually observing them carries useful information.
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Quantifying the corresponding probabilistic phenomena reduces to an enumerative
problem—the case of double runs in Example 10 is in this respect typical.

The notion of pattern can be formalized in several ways. In this book, we shall
consider two of them:

(a) Subsequence pattern: such a pattern is defined by the fact that its letter must
appear in the right order, but not necessarily contiguously[215]. Subse-
quence patterns are also known as “hidden patterns”.

(b) Factor pattern: such a pattern is defined by the fact that its letter must appear
in the right orderandcontiguously [254, 458]. Factor patterns are also called
“block patterns” or simply “patterns” when the context is clear.

For a given notion of pattern, there are then two related categories of problems. First,
one may aim at determining the probability that a random wordcontains (or dually,
excludes) a pattern; this problem is equivalently formulated as an existence problem—
enumerate all words in which the pattern exists (i.e., occurs) independently of the
number of occurrences. Second, one may aim at determining the expectation (or even
the distribution) of the number of occurrences of a pattern in a random text; this prob-
lem involves enumerating enriched words, each with one occurrence of the pattern
distinguished.

Such questions are amenable to methods of analytic combinatorics and in partic-
ular to the theory of regular specifications and automata: see Example 11 below for a
first analysis of hidden patterns (to be continued in ChapterV) and Example 12 for an
analysis of factor patterns (to be further extended in Chapters III, IV, and IX).

EXAMPLE I.11. Subsequence (hidden) patterns in a text.A sequence of letters that occurs
in the right order, but not necessarily contiguously in a text is said to be a “hidden pattern”.
For instance the pattern “combinatorics” is to be found hidden in Shakespeare’s Hamlet (Act I,
Scene 1)

Dared to the comb at; in which our v a lian t Hamlet–

F or so th i s side of our known world esteem’d him–
Did slay this Fortinbras; who by a seal’d compact,

Well ratified by law and heraldry,
Did forfeit, with his life, all those his lands

Whi c h he s tood seized of, to the conqueror. . .

Take a fixed finite alphabetA comprisingm letters (m = 26 for English). First, let
us examine the languageL of all words, also called “texts”, that contain a given wordp =
p1p2 · · · pk of length k as a subsequence. These words can be described unambigouslyas
starting with a sequence of letters not containingp1 followed by the letterp1 followed by a
sequence not containingp2, and so on:

L = SEQ(A \ p1)p1 SEQ(A \ p2)p2 · · ·SEQ(A \ pk)pk SEQ(A).

This is in a sense equivalent to parsing words unambiguouslyaccording to the leftmost occur-
rence ofp as a subsequence. The OGF is accordingly

L(z) =
zk

(1− (m− 1)z)k

1

1−mz .
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An easy analysis of the dominant simple pole atz = 1/m shows that

L(z) ∼
z→1/m

1

1−mz , so that Ln ∼
n→∞

mn.

Thus, a proportion tending to 1 of all the words of lengthn do containp as a subsequecne.
� I.23. A refined analysis.Further consideration of the subdominant pole atz = 1/(m − 1)
yields, by the methods of Chapter IV, the refined estimate:

1− Ln

mn
= O

„
nk−1

„
1− 1

m

«n«
.

Thus, the probability ofnot containing a given subsequence pattern is exponentialy small. �

A census (Note 24) shows that there are in fact1.63 1039 occurrences of “combinatorics”
as a subsequence hidden somewhere in the text of Hamlet, whose length is 120,057 (this is the
number of letters that constitute the text). Is this the signof a secret encouragement passed to
us by the author of Hamlet?

Here is an analysis of the expected number of hidden patternsbased on enumerating en-
riched words, where an enriched word is a word together with adistinguished occurrence of the
pattern as a subsequence. Consider the regular specification

O = SEQ(A) p1 SEQ(A) p2 SEQ(A) · · ·SEQ(A) pk−1 SEQ(A) pk SEQ(A).

An element ofO is a(2k+ 1)-tuple whose first component is an arbitrary word, whose second
component is the letterp1, and so on, with letters of the pattern and free blocks alternating . In
other terms, anyω ∈ O represents precisely one possible occurrence of the hiddenpatternp in
a text built over the alphabetA. The associated OGF is simply

O(z) =
zk

(1−mz)k+1
.

The ratio between the number of occurrences and the number ofwords of lengthn then equals

(42) Ωn =
[zn]O(z)

mn
= m−k

 
n

k

!
,

and this quantity represents the expected number of occurrences of the hidden pattern in a
random word of lengthn, assuming all such words to be equally likely. For the parameters
corresponding to the text of Hamlet (n = 120, 057) and the pattern “combinatorics” (k = 13),
the quantityΩn evaluates to6.96 1037. The number of hidden occurrences observed is thus 23
times higher than what the uniform model predicts! However,similar methods make it possible
to take into account nonuniform letter probabilities (Chapter III): based on the frequencies of
letters in the English text itself, the expected number of occurrences is found to be1.71 1039—
this is now only within 5% of what is observed. Thus, Shakespeare did not (probably) conceal
in his text any message relative to combinatorics. . . . . . . . .. . . . . . END OF EXAMPLE I.11. �

� I.24. Dynamic programming.The number of occurrences of a subsequence pattern in a text
can be determined efficiently by scanning the text from left to right and maintaining a running
count of the number of occurrences of the pattern as well as all its prefixes. �

I. 4.2. Finite automata. We begin with a simple device, thefinite automaton,
that is widely used in models of computation [149] and has wide descriptive power as
regards structural properties of words7.

7A far reaching treatment of automata and paths in graphs, involving both algebraic and asymptotic
aspects, is given in Part B, Section V. 5, p. 320.
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a b b

a, bb a

a

0 1 2 3

FIGURE I.9. Words that contain the patternabb are recognized by a4–state automaton
with initial stateq0 and final stateq3.

Definition I.11. A finite automatonis a directed multigraph whg31ose edges are la-
belled by letters of the alphabetA. It is customary to refer to vertices asstatesand to
denote byQ the set of states. An initial stateq0 ∈ Q and a set of final statesQf ⊆ Q
are designated.

The automaton is said to bedeterministicif for each pair(q, α) with q ∈ Q and
α ∈ A there exists at most one edge (one also says a transition) starting fromq that is
labelled by the letterα.

A finite automaton is able to process words, as we now explain.A word w =
w1 . . . wn is acceptedby the automaton if there exists a path in the multigraph con-
necting the initial stateq0 to one of the final states ofQf and whose sequence of edge
labels is preciselyw1, . . . , wn. For a deterministic finite automaton, it suffices to start
from the initial stateq0, scan the letters of the word from left to right, and follow at
each stage the only transition permitted; the word is accepted if the state reached in
this way after scanning the last letter ofw is a final state. Schematically:

a b a b b a

Q

A finite automaton thus keeps only a finite memory of the past (hence its name) and
is in a sense a combinatorial counterpart of the notion of Markov chain in probability
theory. In this book, we shall only consider deterministic automata.

As an illustration, consider the classL of all wordsw that contain the pattern
abb as a factor (the letters of the pattern should appear contiguously). Such words
are recognized by a finite automaton with4 states,q0, q1, q2, q3. The construction is
classical: stateqj is interpreted as meaning “the firstj characters of the pattern have
just been scanned”, and the corresponding automaton appears in Figure 9. The initial
state isq0, and there is a unique final stateq3.
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Definition I.12. A language is said to beA–regular(automaton regular) if it coincides
with the set of words accepted by a deterministic finite automaton. A classM is A–
regular if for some regular languageL, one hasM ∼= L.
� I.25. Congruence languages.The language of binary representations of numbers that are
congruent to 2 to modulo 7 isA-regular. A similar property holds for any numeration base and
any boolean combination of basic congruence conditions. �

� I.26. Binary representation of primes.The language of binary representations of prime
numbers is neitherA-regular norS-regular. [Hint: this requires the Prime Number Theorem
and asymptotic methods of Chapter IV.] �

The following equivalence theorem is briefly discussed in the Appendix (see AP-
PENDIX A: Regular languages, p. 678).

Equivalence theorem (Kleene–Rabin–Scott). A language isS–regular
(specification regular) if and only if it isA–regular (automaton regular).

These two equivalent notions also coincide with the notion of regularity in formal
language theory (defined there by means of regular expressions and nondeterministic
finite automata [3, 149]). As already pointed out, the equivalence is non-trivial:it
is given by an algorithm that transforms one formalism into the other, but does not
transparently preserve combinatorial structure (e.g., insome cases, an exponential
blow up in the size of descriptions is involved). For this reason, we have opted to
develop both notions ofS-regularity andA-regularity in an independent way.

We next examine the way generating functions can be obtainedfrom a determin-
istic automaton. The process was first discovered in the late1950’s by Chomsky and
Schützenberger [89].

Proposition I.3. LetG be a deterministic finite automaton with state setQ = {q0, . . . , qs},
initial stateq0, and set of final statesQ = {qi1 , . . . , qif

}. The generating function of
the languageL of all words accepted by the automaton is a rational functionthat is
determined under matrix form as

L(z) = u(I − zT )−1v.

There the transition matrixT is defined by

Ti,j = card {α ∈ A such that an edge(qi, qj) is labelled byα} ;

the row vectoru is the vector(1, 0, 0, . . . , 0) and the column vectorv = (v0, . . . , vs)
t

is such that8 vj = [[qj ∈ Q]].

In particular, by Cramer’s rule, the OGF of a regular language is the quotient of two
sparse determinants whose structure directly reflects the automaton transitions.
PROOF. For j ∈ {0, . . . , s}, introduce the class (language)Lj of all wordsw such
that the automaton, when started in stateqj , terminates in one of the final states after
having readw. The following relation holds for anyj:

(43) Lj
∼= ∆j +

(
∑

α∈A
{α}L(qj◦α)

)
;

8It proves convenient at this stage to introduce Iverson’s bracket notation: for a predicateP , the
variable[[P ]] has value 1 ifP is true and 0 otherwise.
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there∆j is the class{ǫ} formed of the word of length 0 ifqj is final and the empty
set (∅) otherwise; the notation(qj ◦ α) designates the state reached in one step from
stateqj upon reading letterα. The justification is simple: a languageLj contains the
word of length 0 only if the corresponding stateqj is final; a word of length≥ 1 that
is accepted starting from stateqj has a first letterα followed by a word that must lead
to an accepting state when starting from stateqj ◦ α.

The translation of (43) is then immediate:

(44) Lj(z) = [[qj ∈ Q]] + z
∑

α∈A
L(qj◦α)(z).

The collection of all the equations asj varies forms a linear system: with L(z) the
column vector(L0(z), . . . , Ls(z)), one has

L(z) = v + zT L(z),

where v andT are as described in the statement. The result follows by matrix inversion
upon observing thatL(z) ≡ L0(z). �

The patternabb. Consider the automaton recognizing the patternabb as given in
Figure 9. The languagesLj (whereLj is the set of accepted words when starting from
stateqj) are connected by the system of equations

L0 = aL1 + bL0L1 = aL1 + bL2L2 = aL1 + bL3L3 = aL3 + bL3 + ǫ,

which directly reflects the graph structure of the automaton. This gives rise to a set of
equations for the associated OGFs

L0 = zL1 + zL0
L1 = zL1 + zL2
L2 = zL1 + zL3
L3 = zL3 + zL3 + 1.

Solving the system, we find the OGF of all words containing thepatternabb: it is
L0(z) since the initial state of the automaton isq0, and

(45) L0(z) =
z3

(1 − z)(1 − 2z)(1 − z − z2)
.

The partial fraction decomposition

L0(z) =
1

1 − 2z
− 2 + z

1 − z − z2
+

1

1 − z
,

then yields
L0,n = 2n − Fn+3 +1,

with Fn a Fibonacci number. In particular the number of words of length n that do
not containabb is Fn+3 −1, a quantity that grows at an exponential rate ofϕn, with
ϕ = (1 +

√
5)/2 the golden ratio. Thus, all but an exponentially vanishing proportion

of the strings of lengthn contain the given patternabb, a fact that was otherwise to
be expected on probabilistic grounds. (For instance, from Note 29, a random word
contains a large number, about∼ n/8, of occurrences of the patternabb.)
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� I.27. Regular specification for patternabb. The patternabb is simple enough that one can
come up with an equivalent regular expression describingL0, whose existence is otherwise
predicted by the Kleene-Rabin-Scott Theorem. An acceptingpath in the automaton of Figure 9
loops around state 0 with a sequence ofb, then reads ana, loops around state 1 with a sequence
of a’s and moves to state 2 upon reading ab; then there should be letters making the automaton
passs through states 1-2-1-2-· · · -1-2 and finally ab followed by an arbitrary sequence ofa’s
andb’s at state 3. This corresponds to the specification

L0 = SEQ(b) aSEQ(a)b SEQ(aSEQ(a)b) b SEQ(a+ b)

=⇒ L0(z) = z3

(1−z)2(1− z2

1−z
)(1−2z)

,

which gives back a form equivalent to (45). �

EXAMPLE I.12. Words containing or excluding a pattern.Fix an arbitrary patternp =
p1p2 · · · pk and letL be the language of words containingat leastone occurrence ofp as a
factor. Automata theory implies that the set of words containing a pattern as a factor isA–
regular, hence admits a rational generating function. Indeed, the construction given forp = abb
generalizes in an easy manner: there exists a deterministicfinite automaton withk + 1 states
that recognizesL, the states memorizing at each stage the largest prefix of thepatternp just
seen. As a consequence:The OGF of the language of words containing a given factor pattern
of lengthk is a rational function of degree at mostk + 1. (The corresponding automaton is in
fact known as a Knuth–Morris–Pratt automaton [310].) The automaton construction however
provides the OGFL(z) in determinantal form, so that the relation between this rational form
and the structure of the pattern is not transparent.

Autocorrelations. An explicit construction due to Guibas and Odlyzko [253] nicely cir-
cumvents this problem. It is based on an “equational” specification that yields an alternative
linear system. The fundamental notion is that of anautocorrelation vector. For a givenp, this
vector of bitsc = (c0, . . . , ck−1) is most conveniently defined in terms of Iverson’s bracket as

ci = [[pi+1pi+2 · · · pk = p1p2 · · · pk−i]].

In other words, the bitci is determined by shiftingp right by i positions and putting a 1 if
the remaining letters match the originalp. Graphically,ci = 1 if the two framed factors ofp
coincide in

p ≡ p1 · · · pi pi+1 · · · pk

p1 · · · pk−i pk−i+1 · · · pk ≡ p.

For instance, withp = aabbaa, one has
a a b b a a_______________________
a a b b a a 1

a a b b a a 0
a a b b a a 0

a a b b a a 0
a a b b a a 1

a a b b a a 1

The autocorrelation is thenc = (1, 0, 0, 0, 1, 1). Theautocorrelation polynomialis defined as

c(z) :=

k−1X

j=0

cjz
j .

For the example pattern, this givesc(z) = 1 + z4 + z5.
Let S be the language of words withno occurrence ofp andT the language of words that

end withp but have no other occurrence ofp. First, by appending a letter to a word ofS , one
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finds a nonempty word either inS or T , so that

(46) S + T = {ǫ}+ S × A.
Next, appending a copy of the wordp to a word inS may only give words that containp at or
“near” the end. Precisely, the decomposition based on the leftmost occurrence ofp in Sp is

(47) S × {p} = T ×
X

ci 6=0

{pk−i+1pk−i+2 · · · pk},

corresponding to the configurations

S ///////p//////
=

//////p//////
| {z }

T

pk−i+1 · · · pk

The translation of the system (46), (47) into OGFs then givesa system of two equations in the
two unknownS, T ,

S + T = 1 +mzS, S · zk = Tc(z),

which is then readily solved.

Proposition I.4. The OGF of wordsnot containing the patternp as a factor is

(48) S(z) =
c(z)

zk + (1−mz)c(z) ,

wherem is the alphabet cardinality,k = |p| the pattern length, andc(z) the autocorrelation
polynomial ofp.

A bivariate generating function based on the autocorrelation polynomial is derived in
Chapter III, from which is deduced the existence of a limiting Gaussian law for the number
of occurrences of any pattern in Chapter IX. . . . . . . . . . . . . . .. . . . . END OF EXAMPLE I.12. �

� I.28. At least once.The GFs of words containing at least once the pattern (anywhere) and
containing it only once at the end are

L(z) =
zk

(1−mz)(zk + (1−mz)c(z)) , T (z) =
zk

zk + (1−mz)c(z) ,

respectively. �

� I.29. Expected number of occurrences of a pattern.For themeannumber of occurrences
of a factor pattern, calculations similar to those employedfor the number of occurrences of
a subsequence (even simpler) can be based on regular specifications. All the occurrences
p = p1p2 · · · pk as a factor are described by

bO = SEQ(A) (p1p2 · · · pk) SEQ(A), =⇒ bO(z) =
zk

(1−mz)2 .

Consequently, the expected number of such contiguous occurrences satisfies

(49) bΩn = m−k(n− k + 1) ∼ n

mk
.

Thus, the mean number of occurrences is proportional ton. �

� I.30. Waiting times in strings.LetL ⊂ SEQ{a, b} be a language andS = {a, b}∞ be the set
of infinite strings with the product probability induced byP(a) = P(b) = 1

2
. The probability

that a random stringω ∈ S starts with a word ofL is bL(1/2), wherebL(z) is the OGF of the
“prefix language” ofL, that is, the set of wordsw ∈ L that have no strict prefix belonging toL.
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The GFbL(z) serves to express the expected time at which a word inL is first encountered: this
is 1

2
bL′( 1

2
). For a regular language, this quantity must be a rational number. �

� I.31.A probabilistic paradox on strings.In a random infinite sequence, a patternp of lengthk
first occurs on average at time2kc(1/2), wherec(z) is the autocorrelation polynomial. For
instance, the patternp = abb tends to occur “sooner” (at average position8) thanp′ = aaa (at
average position14). See [253] for a thorough discussion. Here are for instance the epochsat
whichp andp′ are first found in a sample of 20 runs

p : 3, 4, 5, 5, 6, 6, 7, 8, 8, 8, 8, 9, 9, 10, 11, 14, 15, 15, 16, 21

p′ : 3, 4, 8, 8, 9, 10, 11, 11, 11, 12, 17, 22, 23, 27, 27, 27, 44, 47, 52, 52.

On the other hand, patterns of the same length have the same expected number of occurrences,
which is puzzling. The catch is that, due to overlaps ofp′ with itself, occurrences ofp′ tend to
occur in clusters, but, then, clusters tend to be separated by wider gaps than forp; eventually,
there is no contradiction. �

� I.32. Borges’s Theorem.Take any fixed setΠ of finite patterns. A random text of lengthn
contains all the patterns of the setΠ (as factors) with probability tending to 1 exponentially
fast asn → ∞. (Reason: the rational functionsS(z/2) with S(z) as in (48) have no pole
in |z| ≤ 1; see also Chapters IV, V.)

Note: similar properties hold for many random combinatorial structures. They are some-
times called “Borges’s Theorem” as a tribute to the famous Argentinian writer Jorge Luis Borges
(1899–1986) who, in his essay“The Library of Babel”, describes a library so huge as to contain:
“Everything: the minutely detailed history of the future, the archangels’ autobiographies, the
faithful catalogues of the Library, thousands and thousands of false catalogues, the demonstra-
tion of the fallacy of those catalogues, the demonstration of the fallacy of the true catalogue, the
Gnostic gospel of Basilides, the commentary on that gospel,the commentary on the commen-
tary on that gospel, the true story of your death, the translation of every book in all languages,
the interpolations of every book in all books.” �

In general, automata are useful in establishinga priori the rational character of
generating functions. They are also surrounded by interesting analytic properties
(e.g., Perron-Frobenius theory, Chapter IV, that characterizes the dominant poles)
and by asymptotic probability distributions of associatedparameters that are normally
Gaussian. They are most conveniently used for proving existence theorems, then sup-
plemented when possible by regular specifications, which are likely to lead to more
tractable expressions.
� I.33. Variable length codes.A finite setF ⊂ W, whereW = SEQ(A) is called acodeif
any word ofW decomposes in at most one manner into factors that belong toF (with repeti-
tions allowed). For instanceF = {a, ab, bb} is a code andaaabbb = a|a|ab|bb has a unique
decomposition;F ′ = {a, aa, b} is not a code sinceaaa = a|aa = aa|a = a|a|a. The OGF of
the setSF of all words that admit a decomposition into factors all inF is a computable rational
function, irrespective of whetherF is a code. (Hint: use an “Aho–Corasick” automaton [4].) A
finite setF is a code iffSF (z) = (1 − F (z))−1. Consequently, the property of being a code
can be decided in polynomial time using linear algebra. The book by Berstel and Perrin [46]
develops systematically the theory of such variable-length codes. �

I. 4.3. Related constructions.Words can, at least in principle, encode any com-
binatorial structure. We detail here one example that demonstrates the usefulness of
such encodings: it is relative to set partitions and Stirling numbers. The point to be
made is that some amount of “combinatorial preprocessing” is sometimes necessary
in order to bring combinatorial structures into the framework of symbolic methods.
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αβ γ δ

αβ | γ δ

α γ | β δ

α δ |β γ

α | β γ δ

β |αγ δ

γ |αβ δ

δ |αβ γ

α | β | γ δ

α | γ |β δ

α |δ | β γ

β | γ |α δ

β | δ |αγ

γ | δ |αβ

α | β | γ | δ

FIGURE I.10. The 15 ways of partitioning a four-element domain into blocks corre-
spond toS(1)

4 = 1, S
(2)
4 = 7, S

(3)
4 = 6, S

(4)
4 = 1.

Set partitions and Stirling partition numbers.A set partitionis a partition of a
finite domain into a certain number of nonempty sets, also called blocks. For instance,
if the domain isD = {α, β, γ, δ}, there are 15 ways to partition it (Figure 10). Let

S(r)
n denote the collection of all partitions of the set[1 . . n] into r non–empty blocks

andS(r)
n = card(S(r)

n ) the corresponding cardinality. The basic object under consid-
eration here is aset partition(not to be confused with integer partitions considered
earlier).

It is possible to find an encoding of partitions inS(r)
n of ann–set intor blocks by

words over ar letter alphabet,B = {b1, b2, . . . , br} as follows. Consider a set partition
̟ that is formed ofr blocks. Identify each block by its smallest element called the
block leader; then sort the block leaders into increasing order. Define the index of
a block as the rank of its leader amongst all ther leaders, with ranks conventionally
starting at1. Scan the elements1 ton in order and produce sequentiallyn letters from
the alphabetB: for an element belonging to the block of indexj, produce the letterbj.

For instance ton = 6, r = 3, the set partition̟ = {{6, 4}, {5, 1, 2}, {3, 7, 8}},
is reorganized by putting leaders in first position of the blocks and sorting them,

̟ = {
b1︷ ︸︸ ︷

{1, 2, 5},
b2︷ ︸︸ ︷

{3, 7, 8},
b3︷ ︸︸ ︷

{4, 6}},

so that the encoding is
(

1 2 3 4 5 6 7 8
b1 b1 b2 b3 b1 b3 b2 b2

)
.

In this way, a partition is encoded as a word of lengthn overB with the additional
properties that: (i) allr letters occur; (ii) the first occurrence ofb1 precedes the first
occurrence ofb2 which itself precedes the first occurrence ofb3, etc. ThusS(r)

n is
mapped into words of lengthn in the language

b1 SEQ(b1) · b2 SEQ(b1 + b2) · b3 SEQ(b1 + b2 + b3) · · · br SEQ(b1 + b2 + · · ·+ br).
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Graphically, this correspondence can be rendered by an “irregular staircase” represen-
tation, like

4 − 6 − −
3 − − − 7 8

1 2 − − 5 − − −
where the staircase has lengthn and heightr, each column contains exactly one ele-
ment, each row corresponds to a class in the partition.

The language specification immediately gives the OGF

S(r)(z) =
zr

(1 − z)(1 − 2z)(1 − 3z) · · · (1 − rz)
.

The partial fraction expansion ofS(r)(z) is readily computed,

S(r)(z) =
1

r!

r∑

j=0

(
r

j

)
(−1)r−j

1 − jz
, so that S(r)

n =
1

r!

r∑

j=1

(−1)r−j

(
r

j

)
jn.

In particular, one has

S(1)
n = 1; S(2)

n =
1

2!
(2n − 2); S(3)

n =
1

3!
(3n − 3 · 2n + 3).

These numbers are known as the Stirling numbers of the secondkind, or better, as
the Stirling partition numbers, and theS(r)

n are nowadays usually denoted by
{

n
r

}
;

see APPENDIX A: Stirling numbers, p. 680.
The counting of set partitions could eventually be done successfully thanks to an

encoding into words, and the corresponding language forms aconstructible class of
combinatorial structures (actually a regular language). In the next chapter, we shall
examine another approach to the counting of set partitions that is based on labelled
structures and exponential generating functions.

Circular words (necklaces).Let A be a binary alphabet, viewed as comprised
of beads of two distinct colours. The class ofcircular wordsor necklaces(p. 18 and
Equation (17)) is defined by a CYC composition:

N = CYC(A) =⇒ N(z) =
∞∑

k=1

ϕ(k)

k
log

1

1 − 2zk
.

The series starts as (EISA000031)

N(z) = 2z + 3z2 + 4z3 + 6z4 + 8z5 + 14z6 + 20z7 + 36z8 + 60z9 + · · · ,
and the OGF can be expanded:

(50) Nn =
1

n

∑

k | n

ϕ(k)2n/k.

It turns out thatNn = Dn + 1 whereDn is the wheel count, p. 45. [The connection is
easily explained combinatorially: start from a wheel and repaint in white all the nodes
that are not on the basic circle; then fold them onto the circle.] The same argument
proves that the number of necklaces over anm-ary alphabet is obtained by replacing2
bym in (50).
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� I.34. Finite languages.Viewed as a combinatorial object, afinite languageλ is a set of
distinct words, with size being the total number of letters of all words in λ. For a binary
alphabet, the class of all finite languages is thus

FL = PSET(SEQ≥1(A)) =⇒ FL(z) = exp

0
@X

k≥1

(−1)k−1

k

2zk

1− 2zk

1
A .

The series is (EISA102866) 1 + 2z + 5z2 + 16z3 + 42z4 + 116z5 + 310z6 + · · · . �

I. 5. Tree structures

This section is concerned with basic tree enumerations. Trees are, as we saw
already, the prototypical recursive structure. The corresponding specifications nor-
mally lead to nonlinear equations (and systems of such equations) over generating
functions. The Lagrange inversion theorem is useful in solving the simplest category
of problems. The functional equations furnished by the symbolic method are then
conveniently exploited by the asymptotic theory of Chapters VI and VII. A certain
type of analytic behaviour appears to be universal in trees,namely a√ –singularity;
accordingly, as we shall see, most trees families occurringin the combinatorial world
have counting sequences obeying an asymptotic formC Ann−3/2 that widely extends
what we know already for Catalan numbers (p. 36).

I. 5.1. Plane trees.Trees are commonly defined as undirected acyclic connected
graphs. In additions, the trees considered in this book are,unless specified otherwise,
rooted. In this subsection, we focus attention onplane trees, also sometimes called
ordered trees, where subtrees dangling from a node are ordered between themselves.
Alternatively, these trees may be viewed as abstract graph structures accompanied by
an embedding into the plane (see APPENDIXA: Tree concepts, p. 681 and[306, §2.3]).
They are precisely described in terms of a sequence construction.

First, consider the classG of general plane trees where all node degrees are al-
lowed (this repeats p. 33): we have

(51) G = Z × SEQ(G) =⇒ G(z) =
z

1 −G(z)
,

and, accordingly,G(z) =
1 −

√
1 − 4z

2
, so that the number of general trees of sizen

is a Catalan number:

Gn = Cn−1 =
1

n

(
2n− 2

n− 1

)
=

(2n− 2)!

n! (n− 1)!
.

Many classes of trees defined by all sorts of constraints on properties of nodes
appear to be of interest in combinatorics and in related areas like logic and computer
science. LetΩ be a subset of the integers that contains 0. Define the classT Ω of
Ω-restricted trees as formed of trees such that the outdegrees of nodes are constrained
to lie in Ω. In what follows, an essential rôle is played by a characteristic function that
encapsulatesΩ,

φ(u) :=
∑

ω∈Ω

uω.
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Thus,Ω = {0, 2} determines binary trees, where each node has either 0 or 2 de-
scendants, andφ(u) = 1 + u2; the choicesΩ = {0, 1, 2} andΩ = {0, 3} determine
respectively unary-binary trees (φ(u) = 1+u+u2) and ternary trees (φ(u) = 1+u3);
the case of general trees corresponds toΩ = Z≥0 andφ(u) = (1 − u)−1.

Proposition I.5. The ordinary generating functionTΩ(z) of the classT Ω of Ω-
restricted trees is determined implicitly by the equation

TΩ(z) = z φ(TΩ(z)),

whereφ is the characteristic ofΩ, namelyφ(u) :=
∑

ω∈Ω u
ω. The tree counts are

given by

(52) TΩ
n ≡ [zn]TΩ(z) =

1

n
[un−1]φ(u)n.

PROOF. Clearly, forΩ-restricted sequences, we have

A = SEQΩ(B) A(z) = φ(B(z)),

so

T Ω = Z × SEQΩ(T Ω) =⇒ TΩ(z) = zφ(TΩ(z)).

This shows thatT ≡ TΩ is related toz by functional inversion:

z =
T

φ(T )
.

The Lagrange Inversion Theorem precisely provides expressions for such a case (see AP-
PENDIX A: Lagrange Inversion, p. 677):

Lagrange Inversion Theorem.The coefficients of an inverse function and
of all its powers are determined by coefficients of powers of the direct func-
tion: if z = T/φ(T ), then

[zn]T (z) =
1

n
[wn−1]φ(w)n, [zn]T (z)k =

k

n
[wn−k]φ(w)n.

The theorem immediately implies (52). �

The statement extends trivially to the case whereΩ is a multiset of integers, that
is, a set of integers with repetitions allowed. For instance, Ω = {0, 1, 1, 3} corre-
sponds to unary-ternary trees with two types of unary nodes,say, having one of two
colours; in this case, the characteristic isφ(u) = u0 + 2u1 + u3. The theorem gives
back the enumeration of general trees, whereφ(u) = (1 − u)−1, by way of the bino-
mial theorem applied to(1−u)−n. In general, it implies that, wheneverΩ comprisesr
elements,Ω = {ω1, . . . , ωr}, the tree counts are expressed as an(r− 1)-fold summa-
tion of binomial coefficients (use the multinomial expansion). An important special
case detailed below is whenΩ has only two elements.
� I.35. Forests. Consider orderedk-forests of trees defined byF = SEQk{T }. The Bürmann
form of Lagrange inversion implies

[zn]F (z) ≡ [zn]T (z)k =
k

n
[un−k] φ(u)n.
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In particular, one has for forests of general trees (φ(u) = (1− u)−1):

[zn]

„
1−√1− 4z

2

«k

=
k

n

 
2n− k − 1

n− 1

!
;

the coefficients are also known as “ballot numbers”. �

EXAMPLE I.13. “Regular” ( t-ary) trees. A tree is said to bet-regular ort-ary if Ω consists
only of the elements{0, t}. In other words, all internal nodes have degreet exactly, hence the
name (Figure 11). LetA := T {0,t}. In an element ofA, a node is either terminal or it has
exactlyt children. In this case, the characteristic isφ(u) = 1 + ut and the binomial theorem
combined with the Lagrange inversion formula gives

An =
1

n
[un−1] (1 + ut)n

=
1

n

 
n

n−1
t

!
providedn ≡ 1 mod t.

As the formula shows, only trees of total size of the formn = tν + 1 exist (a well-known fact
otherwise easily checked by induction), and

(53) Atν+1 =
1

tν + 1

 
tν + 1

ν

!
=

1

(t− 1)ν + 1

 
tν

ν

!
.

A particular rôle is played by 2-regular trees known asbinary trees. Then a form equivalent
to (53) reads:

The number of plane binary trees having a total of2ν+1 nodes (i.e.,ν binary nodes
andν + 1 external nodes) is the Catalan numberCν = 1

ν+1

`
2ν
ν

´
.

In this book, we shall useB to denote the class of binary trees. Size will be freely measured,
depending on context and convenience, by recording internal, external, or all nodes.

There is a variant of the determination of (53) that avoids congruence restrictions. LetA
be the class oft-ary trees and define the classbA of “pruned” trees as trees ofA deprived of
all their external nodes. The trees inbA now have nodes that are of degree at mostt. In order
to make bA bijectively equivalent toA , it suffices to regard trees ofbA as having

`
t
j

´
possible

types of nodes of degreej for anyj ∈ [0, t]: each node type inbA plainly encodes which of the
original t − j subtrees have been pruned. The equations above immediatelygeneralize to the
case of anΩ with multiplicities. One findsbφ(u) = (1 + u)t and bA(z) = zbφ( bA(z)), so that, by
Lagrange inversion,

bAν =
1

ν

 
tν

ν − 1

!
,

yet another equivalent form of (53), since, by basic combinatorics, bAν = Atν+1. END OF EXAMPLE I.13.�

� I.36. Motzkin numbers.Let M(z) be the generating function for unary-binary trees (Ω =
{0, 1, 2}):

M(z) = z(1 +M(z) +M(z)2) =⇒ M(z) =
1− z −

√
1− 2z − 3z2

2z
.

One hasM(z) = z + z2 + 2 z3 + 4 z4 + 9 z5 + 21 z6 + 51 z7 + · · · . The coefficients
Mn = [zn]M(z) are given in Lagrange form as

Mn =
1

n

X

k

 
n

k

! 
n− k
k − 1

!
,
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FIGURE I.11. A general tree ofG51 (left) and a binary tree ofT {0,2}
51 (right) drawn

uniformly at random amongst theC50 andC25 possible trees respectively, withCn =
1

n+1

`
2n
n

´
thenth Catalan number.

and called Motzkin numbers (EISA001006). �

� I.37. Yet another variant oft-ary trees.Let eA be the class oft-ary trees, but with size now
defined as the number of external nodes (leaves). Then, one has

eA = Z + SEQt( eA).

The binomial form ofeAn follows from Lagrange inversion, sinceeA = z/(1− eAt−1). �

EXAMPLE I.14. Hipparchus of Rhodes and Schröder.In 1870, the German mathematician
Ernst Schröder (1841–1902) published a paper entitledVier combinatorische Probleme. The
paper had to do with the number of terms that can be built out ofn variables using nonasso-
ciative operations. In particular, the second of his four problems asks for the number of ways
a string ofn identical letters, sayx, can be “bracketted”. The rule is best stated recursively:
x itself is a bracketting and ifσ1, σ2, . . . , σk with k ≥ 2 are bracketted expressions, then the
k-ary product(σ1)(σ2) · · · (σk) is a bracketting.

Let S denote the class of all brackettings, where size is the number of variables. Then, the
recursive definition is readily translated into the formal specification

(54) S = Z + SEQ≥2(S), Z = {x}.
To each bracketting of sizen is associated a tree whose external nodes contain the variable x
(and determine size), with internal nodes corresponding tobrackettings and having degree at
least 2 (while not contributing to size). The functional equation satisfied by the OGF is then

(55) S(z) = z +
S(z)2

1− S(z)
.

This is nota priori of the type corresponding to Proposition I.5 becausenotall nodes contribute
to size in this particular application. However, the quadratic equation induced by (55) can be
solved, giving

S(z) =
1

4

“
1 + z −

p
1− 6z + z2

”

= z + z2 + 3z3 + 11z4 + 45z5 + 197z6 + 903z7 + 4279z8 + 20793z9

+ 103049z10 + 518859z11 + · · · ,
where the coefficients areEISA001003. (These numbers also count series-parallel networks of
a specified type (e.g., serial in Figure 12, bottom), where placement in the plane matters.)

In an instructive paper, Stanley [448] discusses a page of Plutarch’sMoralia where there
appears the following statement:
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(x1) ∧ (x2 ∨ (x3 ∧ x4 ∧ x5) ∨ x6) ∧ ((x7 ∧ x8) ∨ (x9 ∧ x10))

∧

x1 ∨ ∨

x2 ∧ x6

x3 x4 x5

∧ ∧

x7 x8 x9 x10

- x1 x3 x4 x5

x2

x6

x7 x8

x9 x10

-

FIGURE I.12. An and–or positive proposition of the conjunctive type (top), its associ-
ated tree (middle), and an equivalent planar series-parallel network of the serial type (bot-
tom).

“Chrysippus says that the number of compound propositions that can be made from
only ten simple propositions exceeds a million. (Hipparchus, to be sure, refuted this
by showing that on the affirmative side there are 103,049compound statements, and
on the negative side 310,952.)”

It is notable that the tenth number of Hipparchus of Rhodes9 (c. 190–120B.C.) is precisely
S10 = 103, 049. This is, for instance, the number of logical formulae that can be formed from
ten boolean variablesx1, . . . , x10 (used once each and in this order) using and–or connectives
in alternation (no “negation”), upon starting from the top in some conventional fashion (e.g,
with an and-clause); see Figure 1210. Hipparchus was naturally not cognizant of generating
functions, but with the technology of the time (and a rather remarkable mind!), he would still
be able to discover a recurrence equivalent to (55),

(56) Sn = [[n ≥ 2]]

0
@ X

n1+···+nk=n

Sn1Sn2 · · ·Snk

1
A+ [[n = 1]],

where the sum has only 42 essentially different terms forn = 10 (see [448] for a discussion),
and finally determineS10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . END OF EXAMPLE I.14. �

� I.38. The Lagrangean form of Schröder’s GF.The generating functionS(z) admits the form

S(z) = zφ(S(z)) where φ(y) =
1− y
1− 2y

9This was first observed by David Hough in 1994; see [448]. In [256], Habsiegeret al. further note
that 1

2
(S10 + S11) = 310, 954, and suggest a related interpretation (based on negated variables) for the

other count given by Hipparchus.
10Any functional term admits a unique tree representation. Here, as soon as the root type has been

fixed (e.g., an∧ connective), the others are determined by level parity. Theconstraint of node degrees≥ 2
in the tree means that no superfluous connectives are used. Finally, any monotone boolean expression can
be represented by a series-parallel network: thexj are viewed as switches with thetrue and falsevalues
being associated with closed and open circuits, respectively.
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Tree variety 1 2 3 4 5 6 7 8 n +∞

Plane gen. G = Z × SEQ(G) 1 1 2 5 14 42 132 4291
n

`
2n−2
n−1

´
∼ 4n−1/

√
πn3

Plane bin. T = Z + SEQ2(T ) 1 1 2 5 14 42 132 4291
n

`
2n−2
n−1

´
∼ 4n−1/

√
πn3

Unord. gen. H = Z × MSET(H) 1 1 2 4 9 20 48 115 − ∼ λ · βn/n3/2

Unord. bin. U = Z + MSET2(U) 1 1 1 2 3 6 11 23 − λ2 · βn
2 /n

3/2

FIGURE I.13. The number of rooted trees of type plane/unordered and general/binary
for n = 1 . . 8 and the corresponding asymptotic forms. There,λ

.
= 0.43992, β

.
=

2.95576 for unordered general (EIS A000081); λ2
.
= 0.31877, β2

.
= 2.48325 for un-

ordered binary. For binary trees (EISA001190), size is, by convention here, the number of
external nodes.

is the OGF of compositions. Consequently, one has

Sn =
1

n
[un−1]

„
1− u
1− 2u

«n

=
(−1)n−1

n

X

k

(−2)k

 
n

k + 1

! 
n+ k − 1

k

!

=
1

n

n−2X

k=0

 
2n− k − 2

n− 1

! 
n− 2

k

!
.

Is there a direct combinatorial relation to compositions? �

� I.39. Faster determination of Schröder numbers.By forming a differential equation satisfied
by S(z) and extracting coefficients, one obtains a recurrence

(n+ 2)Sn+2 − 3(2n+ 1)Sn+1 + (n− 1)Sn = 0, n ≥ 1,

that entails a fast determination (in linear time) of theSn. In contrast, Hipparchus’s recurrence
implies an algorithm of complexityeO(

√
n) in the number of arithmetic operations involved.�

I. 5.2. Nonplane trees.An unordered tree, also callednonplanetree, is a tree
in the general graph–theoretic sense, so that there is no order distinction between
subtrees emanating from a common node. The unordered trees considered here are
furthermore rooted, meaning that one of the nodes is distinguished as the root. Ac-
cordingly, in the language of constructible structures, a rootedunorderedtree is a root
node linked to amultisetof trees. Thus, the classH of all unordered trees, admits the
recursive specification:

H = Z × MSET(H) =⇒





H(z) = z
∞∏

m=1

(1 − zm)−Hm

= z exp
(
H(z) +

1

2
H(z2) +

1

3
H(z3) + · · ·

)
.

The first form of the OGF was given by Cayley in 1857 [54, p. 43]; it does not ad-
mit a closed form solution, though the equation permits one to determine all theHn

recursively (EISA000081)

H(z) = z + z2 + 2z3 + 4z4 + 9z5 + 20z6 + 48z7 + 115z8 + 286z9 + · · · .



I. 5. TREE STRUCTURES 67

In addition, the local analysis of the singularities ofH(z) yields abona fideasymptotic
expansion forHn, a fact first discovered by Pólya [397] who proved that

(57) Hn ∼ λ · βn

n3/2
,

for some positive constantsλ
.
= 0.43992 andβ

.
= 2.95576. The “universality” in tree

enumerations of such estimates, of the formAnn−3/2 is a major theme of Chapter VII.
� I.40. Fast determination of the Cayley–Pólya numbers.Logarithmic differentiation of the
equation satisfied byH(z) provides for theHn a recurrence that permits one to computeHn

in time polynomial inn. (Note: a similar technique applies to the partition numbers Pn; see
p. 40.) �

The enumeration of the class of trees defined by an arbitrary setΩ of node degrees
immediately results from the translation of sets of fixed cardinality.

Proposition I.6. LetΩ ⊂ N be a finite set of integers containing 0. The OGFU(z) of
nonplane trees with degrees constrained to lie inΩ satisfies a functional equation of
the form

(58) U(z) = zΦ(U(z), U(z2), U(z3), . . .),

for some computable polynomialΦ.

PROOF. The class of trees satisfies the combinatorial equation,

U = Z × MSETΩ(U)

(
MSETΩ(U) ≡

∑

ω∈Ω

MSETω(U)

)
,

where the multiset construction reflects non-planarity, since subtrees stemming from
a node can be freely rearranged between themselves and may appear repeated. Theo-
rem I.3 (p. 78) provides the translation of MSETk(U):

Φ(U(z), U(z2), U(z3), . . .) =
∑

ω∈Ω

[uω] exp

(
u

1
U(z) +

u2

2
U(z2) + · · ·

)
.

The result follows. �

Once more, there are no explicit formulae but only functional equations implicitly
determining the generating functions. However, as we shallsee in Chapter VII, the
equations may be used to analyse the dominant singularity ofU(z). It is found that a
“universal” law governs the singularities of simple tree generating functions that are
of the type

√
1 − z/ρ, corresponding to a general asymptotic scheme (see Figure 13),

(59) UΩ
n ∼ λΩ

(βΩ)n

√
n3

.

Many of these questions have their origin in combinatorial chemistry, starting with
Cayley in the 19th century [54, Ch. 4]. Pólya reexamined these questions, and in
his important paper published in 1937 [395] he developed at the same time a general
theory of combinatorial enumerations under group actions and of asymptotics methods
giving rise to estimates like (59). See the book by Harary andPalmer [259] for more
on this topic or Read’s edition of Pólya’s paper [397].
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� I.41. Binary nonplane trees.Unordered binary trees with size measured by the number of
external nodes are described by the equationU = Z + MSET2(U). The functional equation
determiningU(z) is

(60) U(z) = z +
1

2
U(z)2 +

1

2
U(z2); U(z) = z + z2 + z3 + 2z4 + 3z5 + · · · .

The asymptotic analysis of the coefficients (EISA001190) was carried out by Otter [382] who
established an estimate of type (59). (The values of the constants are summarized in Figure 13.)
The quantityUn is also the number of structurally distinct products ofn elements under a
commutative nonassociative binary operation. �

� I.42. Hierarchies.Define the classK of hierarchies to be trees without nodes of outdegree 1
and size determined by the number of external nodes. The corresponding OGF satisfies (Cayley
1857, see [54, p.43])

K(z) =
1

2
z +

1

2

»
exp

„
K(z) +

1

2
K(z2) + · · ·

«
− 1

–
,

from which the first values are found (EISA000669)

K(z) = z + z2 + 2z3 + 5z4 + 12z5 + 33z6 + 90z7 + 261z8 + 766z9 + 2312z10 + · · · .
These numbers also enumerate hierarchies in statistical classification theory [475]. They are the
non-planar analogues of the Hipparchus–Schröder’s numbers on p. 64. �

� I.43. Nonplane series-parallel networks.Consider the classSP of series-parallel networks
as previously considered in relation to Hipparchus of Rhodes’ example, p. 65, but ignoring
planar embeddings. Thus, all parallel arrangements of the (serial) networkss1, . . . , sk are con-
sidered equivalent, while the linear arrangement in each serial network matters. For instance,
for n = 2, 3:

-o--o- |-o-| -o--o--o- |-o-| |-o-o-| -o--|-o-|- -|-o-|--o -
|-o-| |-o-| |--o--| |-o-| |-o-|

|-o-|

Thus,SP2 = 2 andSP3 = 5. This is modelled by the grammar:

S = Z + SEQ≥2(P), P = Z + MSET≥2(S),

and, to avoid counting networks of one element twice,

SP (z) = S(z)+P (z)−z = z+2z2+5z3 +15z4 +48z5 +167z6 +602z7 +2256z8 + · · · .
This isEISA003430. The objects are usually described as networks of electric resistors. �

I. 5.3. Related constructions.Trees underlie recursive structures of all sorts. A
first illustration is provided by the fact that the Catalan numbers,Cn = 1

n+1

(
2n
n

)

count general trees (G) of sizen + 1, binary trees (B) of sizen (if size is defined as
the number of internal nodes), as well as triangulations (T ) comprised ofn triangles.
The combinatorialist John Riordan even coined the nameCatalan domainfor the area
within combinatorics that deals with objects enumerated byCatalan numbers, and
Stanley’s book contains an exercise [449, Ex. 6.19] whose statement alone spans ten
full pages, with a list of 66 types of objects(!) belonging tothe Catalan domain. We
shall illustrate the importance of Catalan numbers by describing a few fundamental
correspondences that explain the occurrence of Catalan numbers in several areas of
combinatorics.
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Rotation of trees.The combinatorial isomorphism relatingG andB (albeit with
a shift in size) coincides with a classical technique of computer science [306, §2.3.2].
To wit, a general tree can be represented in such a way that every node has two types
of links, one pointing to the leftmost child, the other to thenext sibling in left-to-right
order. Under this representation, if the root of the generaltree is left aside, then every
node is linked to two other (possibly empty) subtrees. In other words, general trees
with n nodes are equinumerous with pruned binary trees withn− 1 nodes:

Gn
∼= Bn−1.

Graphically, this is illustrated as follows:

The rightmost tree is a binary tree drawn in a conventional manner, following a 45◦

tilt. This justifies the name of “rotation correspondence” often given to this transfor-
mation.

Tree decomposition of triangulations.The relation betwen binary treesB and
triangulationsT is equally simple: draw a triangulation; define the root triangle as
the one that contains the edge connecting two designated vertices (for instance, the
vertices numbered 0 and 1); associate to the root triangle the root of a binary tree;
next, associate recursively to the subtriangulation on theleft of the root triangle a left
subtree; do similarly for the right subtriangulation giving rise to a right subtree.

Under this correspondence, tree nodes correspond to triangle faces, while edges con-
nect adjacent triangles. What this correspondence proves is the combinatorial isomor-
phism

Tn
∼= Bn.
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We turn next to another type of objects that are in correspondence with trees.
These can be interpreted as words encoding tree traversals and, geometrically, as paths
in the discrete planeZ × Z.

Tree codes and Łukasiewicz words.. Any tree can be traversed starting from
the root, proceeding depth-first (and left-to-right), and backtracking upwards once a
subtree has been completely traversed. For instance, in thetree

(61) τ =

a

b c

d e f g

h i j

the first visits to nodes take place in the following order

a, b, d, h, e, f, c, g, i, j .

(Note: the tagsa, b, . . . added for convenience in order to distinguish nodes have no
special meaning; only the abstract tree shape matters here.) This order is known as
preorderor prefix ordersince a node is preferentially visited before its children.

Given a tree, the listing of the outdegrees of nodes in prefix order will be called
the preorder degree sequence. For the tree of (61), this is

σ = (2, 3, 1, 0, 0, 0, 1, 2, 0, 0).

It is a fact that the degree sequence determines the tree unambiguously. Indeed, given
the degree sequence, the tree is reconstructed step by step,adding nodes one after the
other at the leftmost available place. Forσ, the first steps are then

+2 +3 +1 +0 +0

Next, if one represents degreej by a “symbol”fj, then the degree sequence becomes
aword over the infinite alphabetF = {f0, f1, . . .}, for instance,

σ ; f2f3f1f0f0f0f1f2f0f0.

This can be interpreted in logical language as a denotation for a functional term built
out symbols fromF , wherefj represents a function of degree (or “arity”)j. The
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correspondence even becomes obvious if superfluous parentheses are added at appro-
priate place to delimitate scope:

σ ; f2(f3(f1(f0), f0, f0), f1(f2(f0, f0))).

Such codes are known as Łukasiewicz codes11, in recognition of the work of the
Polish logician with that name. Jan Łukasiewicz (1878–1956) introduced them in
order to completely specify thesyntaxof terms in various logical calculi; they prove
nowadays basic in the development of parsers and compilers in computer science.

Finally, a tree code can be rendered as a walk over the discrete latticeZ × Z.
Associate to anyfj (i.e., any node of outdegreej) the displacement(1, j−1) ∈ Z×Z,
and plot the sequence of moves starting from the origin. On the example one finds:

f2 f3 f1 f0 f0 f0 f1 f2 f0 f0

1 2 0 −1 −1 −1 0 1 −1 −1

There, the last line represents the vertical displacements. The resulting paths are
known as Łukasiewicz paths. Such a walk is then characterized by two conditions:
the vertical displacements are in the set{−1, 0, 1, 2, . . .}; all its points, except for the
very last step, lie in the upper half-plane.

By this correspondence, the number of Łukasiewicz paths with n steps is the
shifted Catalan number,1n

(
2n−2
n−1

)
.

� I.44. Conjugacy principle and cycle lemma.Let L be the class of all Łukasiewicz paths.
Define a “relaxed” path as one that starts at level 0, ends at level −1 but is otherwise allowed
arbitrary negative steps; letM be the corresponding class. Then, each relaxed path can be
cut-and-pasted uniquely after its leftmost minimum as described here:

This associates to every relaxed path of lengthν a unique standard path. A bit of combinatorial
reasoning shows that correspondence is 1-to-ν (each element ofL hasexactlyν preimages.)
One thus hasMν = νLν . This correspondence preserves the number of steps of each type
(f0, f1, . . .), so that the number of Łukasiewicz paths withνj steps of typefj is

1

ν
[x−1uν0

0 uν1
1 · · · ]

`
x−1u0 + u1 + xu2 + x2u3 + · · ·

´ν
=

1

ν

 
ν

ν0, ν1, . . .

!
,

11A less dignified name is “Polish prefix notation”. The “reverse Polish notation” is a variant based
on postorder that has been used in some calculators since the1970’s.
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under the necessary condition(−1)ν0 +0ν1 +1ν2 +2ν3 + · · · = −1. This combinatorial way
of obtaining refined Catalan statistics is known as theconjugacy principle[407] or the cycle
lemma[98, 121, 145]. Raney has derived from it a purely combinatorial proof of the Lagrange
inversion formula [407] while Dvoretzky & Motzkin [145] have employed this technique to
solve a number of counting problems related to circular arrangements. �

EXAMPLE I.15. Binary tree codes and Dyck paths. Walks associated with binary trees have
a very special form since the vertical displacements can only be +1 or −1. The resulting
paths of Łukasiewicz type are then equivalently characterized as sequences of numbersx =
(x0, x1, . . . , x2n, x2n+1) satisfying the conditions

(62) x0 = 0; xj ≥ 0 for 1 ≤ j ≤ 2n; |xj+1 − xj | = 1; x2n+1 = −1.

These coincide with “gambler ruin sequences”, a familiar object from probability theory: a
player plays head and tails. He starts with no capital (x0 = 0) at time 0; his total gain isxj at
timej; he is allowed no credit (xj ≥ 0) and loses at the very end of the gamex2n+1 = −1; his
gains are±1 depending on the outcome of the coin tosses (|xj+1 − xj | = 1).

It is customary to drop the final step and consider “excursions’ that take place in the upper
half-plane. The resulting objects defined as sequences(x0 = 0, x1, . . . , x2n = 0) satisfying
the first three conditions of (62) are known in combinatoricsasDyck paths12. By construc-
tion, Dyck paths of length2n correspond bijectively to binary trees withn internal nodes and
are consequently enumerated by Catalan numbers. LetD be the combinatorial class of Dyck
paths, with size defined as length. This property can also be checked directly: the quadratic
decomposition

(63)
= +

(ε)
D D

D

D = {ǫ} + (ր D ց)×D
=⇒ D(z) = 1 + (zD(z)z)D(z).

From this OGF, the Catalan numbers are found (as expected):D2n = 1
n+1

`
2n
n

´
. The decom-

position (63) is known as the “first passage” decomposition as it is based on the first time the
cumulated gains in the coin-tossing game pass through the value zero.

Dyck paths also arise in connection will well-parenthetized expressions. These are rec-
ognized by keeping a counter that records at each stage the excess of the number of opening
brackets ‘(’ over closing brackets ‘)’. Finally, one of the origins of Dyck path is the famous
ballot problem, which goes back to the nineteenth century [346]: there are two candidatesA
andB that stand for election,2n voters, and the election eventually results in a tie; what isthe
probability thatA is always ahead of or tied withB when the ballots are counted? The answer
is

D2n`
2n
n

´ =
1

n+ 1
,

since there are
`
2n
n

´
possibilities in total, of which the number of favorable cases isD2n, a

Catalan number. The central rôle of Dyck paths and Catalan numbers in problems coming from
such diverse areas is quite remarkable. Section V. 3, p. 295 presents refined counting results
regarding lattice paths (e.g., the analysis of height) and Subsection VII. 8.1, p. 482 introduces

12Dyck paths are closely associated with free groups on one generator and are named after the German
mathematician Walther (von) Dyck (1856–1934) who introduced free groups around 1880.
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exact and asymptotic results in the harder case of an arbitrary finite collection of step types (not
just±1).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . END OF EXAMPLE I.15. �

� I.45. Dyck paths, parenthesis systems, and general trees.The class of Dyck paths admits an
alternative sequence decomposition

(64)
=

D D
DD

D = SEQ(Z ×D × Z),

which again leads to the Catalan GF. The decomposition (64) is known as the “arch decom-
position” (see Subsection V. 3.1, p. 296, for more). It can also be directly related to traversal
sequences of general trees, but with the directions ofedgetraversals being recorded (instead of
traversals based on node degrees): fo a general treeτ , define its encodingκ(τ ) over the binary
alphabet{ր,ց} recursively by the rules:

κ(τ ) = ǫ, κ(•(τ1, . . . , τr)) =ր κ(τ1) · · ·κ(τr)ց .

This is the classical representation of trees by a parenthesis system (interpret ‘ր’ and ‘ց’ as
‘(’ and ‘)’, respectively), which associates to a tree ofn nodes a path of length2n− 2. �

� I.46. Random generation of Dyck paths.Dyck paths of length2n can be generated uniformly
at random in time linear inn. (Hint: By Note 44, it suffices to generate uniformly a sequence
of n a’s andn+ 1 b’s, then reorganize it according to the conjugacy principle.) �

� I.47. Excursions, bridges, and meanders.Adapting a terminology from probability theory,
one sets the following definitions:(i) a meander(M) is a word over{−1,+1}, such that the
sum of the values of any of its prefixes is always a nonnegativeinteger;(ii) a bridge (B) is a
word whose values of letters sum to 0. Thus a meander represents a walk that wanders in the
first quadrant; a bridge, regarded as a walk, may wander aboveand below the horizontal line,
but its final altitude is constrained to be 0; an excursion is both a meander and a bridge. Simple
decompositions provide

M(z) =
D(z)

1− zD(z)
, B(z) =

1

1− 2z2D(z)
,

implyingMn =
`

n
⌊n/2⌋

´
[EISA001405] andB2n =

`
2n
n

´
[EISA000984]. �

� I.48. Motzkin paths and unary-binary trees.Motzkin paths are defined by changing the
third condition of (62) defining Dyck paths into|xj+1 − xj | ≤ 1. They appear as codes for
unary-binary trees and are enumerated by the Motzkin numbers of Note 36. �

EXAMPLE I.16. The complexity of boolean functions.Complexity theory provides many
surprising applications of enumerative combinatorics andasymptotic estimates. In general, one
starts with a finite set of mathematical objectsΩ and a combinatorial classD of descriptions.
By assumption, to every object ofδ ∈ D is associated an elementµ(δ) ∈ Ω, its “meaning”;
conversely any object ofΩ admits at least one description inD, that is, the functionµ is surjec-
tive. It is then of interest to quantify properties of the shortest description function defined for
ω ∈ Ω as

σ(ω) := min
˘
|δ|D

˛̨
µ(δ) = ω

¯
,

and called thecomplexityof element ofΩ (with respect toD).
We take hereΩ to be the class of all boolean functions onm variables. Their number is

||Ω|| = 22m

. As descriptions, we adopt the class of logical expressionsinvolving the logical
connectives∨,∧ and pure or negated variables. Equivalently,D is the class of binary trees,
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where internal nodes are tagged by a logical disjunction (‘∨’) or a conjunction (‘∧’), and each
external node is tagged by either a boolean variable of{x1, . . . , xm} or a negated variable of
{¬x1, . . . ,¬xm}. Define the size of a tree description as the number of internal nodes, that is,
the number of logical operators. Then, one has

(65) Dn =

 
1

n+ 1

 
2n

n

!!
· 2n · (2m)n+1,

as seen by counting tree shapes and possibilities for internal as well as external node tags.
The crux of the matter is that if the inequality

(66)
νX

j=0

Dj < ||Ω||,

holds, then there are not enough descriptions of size≤ ν to exhaustΩ. In other terms, there
must exist at least one object inΩ whose complexity exceedsν. If the left side of (66) is
much smaller than the right side, then, it must even be the case that “most”Ω-objects have a
complexity that exceedsν.

In the case of boolean functions and tree descriptions, the asymptotic form (24) is available.
There results from (65) that, forn, ν getting large, one has

Dn = O(16nmnn−3/2),

νX

j=0

Dj = O(16νmνν−3/2).

Chooseν such that the second expression iso(||Ω||). This is ensured for instance by taking for
ν the value

ν(m) :=
2m

4 + log2m
,

as verified by a simple asymptotic calculation. With this choice, one has the following sugges-
tive statement:

A fraction tending to 1 (asm → ∞) of boolean functions inm variables have tree
complexity at least2m/ log2m.

Regarding upper bounds on boolean function complexity, a function always has a tree
complexity that is at most2m+1 − 3. To see it, note that form = 1, the 4 functions are

0 ≡ (x1 ∧ ¬x1), 1 ≡ (x1 ∨ ¬x1), x1, ¬x1.

Next, a function ofm variables is representable by a technique known as the binary decision
tree (BDT),

f(x1, . . . , xm−1, xm) = (¬xm ∧ f(x1, . . . , xm−1, 0)) ∨ (xm ∧ f(x1, . . . , xm−1, 1)) ,

which provides the basis of the induction as it reduces the representation of anm-ary func-
tion to the representation of two(m − 1)-ary functions, consuming on the way three logical
connectives.

Altogether, basic counting arguments have shown that “most” boolean functions have
a tree-complexity that is “close” to the maximum possible, namely,O(2m). A similar re-
sult has been established by Shannon for the measure called circuit complexity: circuits are
more powerful than trees, but Shannon’s result states thatalmost all boolean functions ofm
variables have circuit complexityO(2m/m). See [481], especially the chapter by Li and
Vitányi, for a discussion of such counting techniques within the framework of complexity the-
ory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . END OF EXAMPLE I.16. �



I. 5. TREE STRUCTURES 75

I. 5.4. Context-free specifications and languages.Many of the combinatorial
examples encountered so far in this section can be organizedinto a common frame-
work, which is fundamental in formal linguistics and theoretical computer science.

Definition I.13. A classC is said to becontext-freeif it coincides with the first com-
ponent (T = S1) of a system of equations

(67)





S1 = Φ1(Z,S1, . . . ,Sr)
...

...
...

Sr = Φr(Z,S1, . . . ,Sr),

where eachΦj is a constructor that only involves the operations of combinatorial sum
(+) and cartesian product (×), as well as the neutral class,E = {ǫ}.

A languageL is said to be anunambiguous context-freelanguage if it is combi-
natorially isomorphic to a context-free variety of trees:C ∼= T .

The classes of general trees (G) and binary trees (B) are context-free, since they
are specifiable as





G = Z × F
F = {ǫ} + (G × F)

, B = Z + (B × B).

(F designates ordered forests of general trees.) Context-free specifications may be
used to describe all sorts of combinatorial objects. For instance, the classT of trian-
gulations of convex polygons is specified symbolically by

(68) T = ∇ + (∇× T ) + (T ×∇) + (T ×∇× T ),

where∇ represents a generic triangle. The Łukasiewicz language and the set of Dyck
paths are context-free classes since they are bijectively equivalent toG andT .

The term “context-free” comes from linguistics: it stresses the fact that objects
can be “freely” generated by the rules of (67), this without any constraints imposed
by an outside context13. There, one clasically defines a context-free language as the
language formed with words that are obtained as sequences ofleaf tags (read in left-
to-right order) of a context-free variety of trees. In formal linguistics, the one-to-one
mapping between trees and words is not generally imposed; when it is satisfied, the
context-free language is said to beunambiguous; then, words and trees determine each
other uniquely, cf Note 50 below.

An immediate consequence of admissibility theorems is the following proposition
first encountered by Chomsky and Schützenberger [89] in the course of their research
relating formal languages and formal power series:

13Formal language theory also defines context-sensitive grammars where each rule (called a produc-
tion) is applied only if it is enabled by some external context. Context-sensitive grammars have greater
expressive power than context-free ones, but they depart significantly from decomposability and are sur-
rounded by strong undecidability properties. Accordinglycontext-sensitive grammars cannot be associated
to any global generating function formalism.
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Proposition I.7. A combinatorial classC that iscontext-freeadmits an OGF that is
an algebraic function.In other words, there exists a (non-null) bivariate polynomial
P (z, y) ∈ C[z, y] such that

P (z, C(z)) = 0.

PROOF. By the basic sum and product rules, the context-free system(67) translates
into a system of OGF equations,





S1(z) = Ψ1(z, S1(z), . . . , Sr(z))
...

...
...

Sr(z) = Ψr(z, S1(z), . . . , Sr(z)),

where theΨj are the polynomials translating the constructionsΦj .
It is then well-known that algebraic elimination is possible in polynomials sys-

tems. Here, it is possible to eliminate the auxiliary variablesS2, . . . , Sr, one by one,
preserving the polynomial character of the system at each stage. The end result is
then a single polynomial equation satisfied byC(z) ≡ S1(z). (Methods for effec-
tively performing polynomial elimination include a repeated use of resultants as well
as Groebner basis algorithms; see APPENDIX B: Algebraic elimination, p. 685 for a
brief discussion and references.) �

Proposition I.7 is a counterpart of Proposition I.3 (54) according to which rational
generating functions arise from finite state devices, and itexplains the importance of
algebraic functions in enumerative theory. We shall develop a general asymptotic the-
ory of coefficients of algebraic functions in Chapter VII, based on singularity theory.
� I.49.“Tree-like” structures.A context-free specification can always be regarded as defining a
class of trees. Indeed, if thejth term in the constructionΦi is “coloured” with the pair(i, j), it is
seen that a context-free system yields a class of trees whosenodes are tagged by pairs(i, j) in a
way consistent with the system’s rules (I.13). However, despite this correspondence, it is often
convenient to preserve the possibility of operating directly with objects when the tree aspect
is unnatural. (Some authors have developed a parallel notion of “object grammars”; see for
instance [144] itself inspired by techniques of polyomino surgery in [116].) By a terminology
borrowed from the theory of syntax analysis in computer science, such trees are referred to as
“parse trees” or “syntax trees”. �

� I.50. Context-free languages. LetA be a fixed finite alphabet whose elements are called
letters. AgrammarG is a collection of equations

(69) G :

8
>><
>>:

L1 = Ψ1(~a,L1, . . . ,Lm)
...

...

Lm = Ψm(~a,L1, . . . ,Lm),

where eachΨj involves only the operations of union (∪) and catenation product( · ) with ~a the
vector of letters inA. For instance,

Ψ1(~a,L1,L2,L3) = a2 · L2 · L3 ∪ a3 ∪ L3 · a2 · L1.

A solution to (69) is anm-tuple of languages over the alphabetA that satisfies the system. By
convention, one declares that the grammarG defines the first component,L1.

To each grammar (69), one can associate a context-free specification (51) by transforming
unions into disjoint union, ‘∪’ 7→ ‘+’, and catenation into cartesian products, ‘·’ 7→ ‘×’. Let
bG be the specification associated in this way to the grammarG. The objects described bybG
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appear in this perspective to be trees (see the discussion above regarding parse trees). Leth
be the transformation from trees ofbG to languages ofG that lists letters in infix (i.e., left-to-
right) order: we call such anh the erasing transformation since it “forgets” all the structural
information contained in the parse tree and only preserves the succession of letters. Clearly,
application ofh to the combinatorial specifications determined bybG yields languages that obey
the grammarG. For a grammarG and a wordw ∈ A⋆, the number of parse treest ∈ bG
such thath(t) = w is called theambiguity coefficientof w with respect to the grammarG; this
quantity is denoted byκG(w).

A grammarG is unambiguous if all the corresponding ambiguity coefficients are either 0
or 1. This means that there is a bijection between parse treesof bG and words of the language
described byG: each word generated is uniquely “parsable” according to the grammar. In such
a case, the OGFs of languages satisfy a polynomial system of the form (52). �

� I.51.Extended context-free specifications.If A,B are context-free specifications then:(i) the
sequence classC = SEQ(A) is context-free;(ii) the substitution classD = A[b 7→ B] is also
context-free. �

I. 6. Additional constructions

This section is devoted to the constructions of sequences, sets, and cycles in the
presence of restrictions on the number of components as wellas to mechanisms that
enrich the framework of core constructions, namely, pointing, substitution, and the
use of implicit combinatorial definitions.

I. 6.1. Restricted constructions.An immediate formula for OGFs is that of the
diagonal∆ of a cartesian productB × B defined as

A ≡ ∆(B × B) := {(β, β) | β ∈ B}.
Then, clearlyA2n = Bn so that

A(z) = B(z2).

The diagonal construction permits us to access the class of all unordered pairs of
(distinct) elements ofB, which isA = PSET2(B). A direct argument then runs as
follows: the unordered pair{α, β} is associated to the two ordered pairs(α, β) and
(β, α) except whenα = β, where an element of the diagonal is obtained. In other
words, one has the combinatorial isomorphism,

PSET2(B) + PSET2(B) + ∆(B × B) ∼= B × B,
meaning that

2A(z) +B(z2) = B(z)2.

The resulting translation into OGFs is thus

A = PSET2(B) =⇒ A(z) =
1

2
B(z)2 − 1

2
B(z2).

Similarly, for multisets, we find

A = MSET2(B) =⇒ A(z) =
1

2
B(z)2 +

1

2
B(z2),
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while for cycles one has CYC2
∼= MSET2, and

A = CYC2(B) =⇒ A(z) =
1

2
B(z)2 +

1

2
B(z2).

This type of direct reasoning could be extended to treat triples, and so on, but the
computations (if not the reasoning) tend to grow out of control. An approach based
on multivariate generating functions generatessimultaneouslyall cardinality restricted
constructions.

Theorem I.3 (Component-restricted constructions). The OGF of sequences withk
componentsA = SEQk(B) satisfies

A(z) = B(z)k.

The OGF of sets,A = PSETk(B), is a polynomial in the quantitiesB(z), . . . , B(zk),

A(z) = [uk] exp

(
u

1
B(z) − u2

2
B(z2) +

u3

3
B(z3) − · · ·

)
.

The OGF of multisets,A = MSETk(B), is

A(z) = [uk] exp

(
u

1
B(z) +

u2

2
B(z2) +

u3

3
B(z3) + · · ·

)
.

The OGF of cycles,A = CYCk(B), is

A(z) = [uk]

∞∑

ℓ=1

ϕ(ℓ)

ℓ
log

1

1 − uℓB(zℓ)
.

The explicit forms for small values ofk are summarized in Figure 14.
PROOF. The result for sequences is obvious since SEQk(B) meansB × · · · × B (k
times). For the other constructions, the proof makes use of the techniques of Theo-
rem I.1, but it is best based on bivariate generating functions that are otherwise devel-
oped fully in Chapter III to which we refer for details. The idea consists in describing
all composite objects and introducing a supplementary marking variable to keep track
of the number of components.

TakeK to be a construction amongst SEQ,CYC,MSET,PSET, setA = K(B),
and letχ(α) for α ∈ A be the parameter “number ofB–components”. Define the
multivariate quantities

An,k := card
{
α ∈ A

∣∣ |α| = n, χ(α) = k
}

A(z, u) :=
∑

n,k

An,ku
kzn =

∑

α∈A
z|α|uχ(α).

For instance, a direct calculation shows that, for sequences, there holds

A(z, u) =
∑

k≥0

ukB(z)k

=
1

1 − uB(z)
.
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For multisets and powersets, a simple adaptation of the already seen argument gives
A(z, u) as

A(z, u) =
∏

n

(1 − uzn)−Bn , A(z, u) =
∏

n

(1 + uzn)Bn ,

respectively. The result follows from there by the exp-log transformation upon ex-
tracting[uk]A(z, u). The case of cycles results from the bivariate generating function
for cycles derived in APPENDIX A: Cycle construction, p. 674. �

� I.52. Sets with distinct component sizes.LetA be the class of the finite sets of elements from
B, with the additional constraint that no two elements in a sethave the same size. One has

A(z) =
∞Y

n=1

(1 +Bnz
n).

Similar identities serve in the analysis of polynomial factorization algorithms [186]. �

� I.53. Sequences without repeated components.The generating function is formally:

Z ∞

0

exp

0
@X

j≥1

(−1)j−1 u
j

j
A(zj)

1
A e−u du.

(This form is based on the Eulerian integral:k! =
R∞
0
e−uuk du.) �

I. 6.2. Pointing and substitution. Two more constructions, namely pointing and
substitution, translate agreeably into generating functions. Combinatorial structures
are viewed here as formed of “atoms” (words are composed of letters, graphs of nodes,
etc) which determine their sizes. In this context, pointingmeans “pointing at a distin-
guished atom”; substitution, writtenB ◦ C or B[C], means “substitute elements ofC
for atoms ofB”.

Definition I.14. Let {ǫ1, ǫ2, . . .} be a fixed collection of distinct neutral objects of
size 0. Thepointingof a classB, notedA = ΘB, is formally defined by

ΘB :=
∑

n≥0

Bn × {ǫ1, . . . , ǫn}.

Thesubstitutionof C intoB (also known as composition ofB andC), notedB ◦ C
or B[C], is formally defined as

B ◦ C ≡ B[C] :=
∑

k≥0

Bk × SEQk(C).

If Bn is the number ofB structures of sizen, thennBn can be interpreted as
counting pointed structures whereoneof then atoms composing aB-structure has
been distinguished (here by a special “pointer” of size0 attached to it). Elements of
B ◦ C may also be viewed as obtained by selecting in all possible ways an element
β ∈ B and replacing each of its atoms by an arbitrary element ofC.
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The interpretations above rely (silently) on the fact that atoms in an object can
be eventually distinguished from each other. This can be obtained by “canonicaliz-
ing”14 the representations of objects: first define inductively thelexicographic order-
ing for products and sequences; next represent powersets and multisets as increasing
sequences with the induced lexicographic ordering (more complicated rules can also
canonicalize cycles). In this way, any constructible object admits a unique “rigid”
representation in which each particular atom is determinedby its place. Such a canon-
icalization thus reconciles the abstract definition, Definition I.14, and the intuitive
interpretation of pointing and substitution.

Theorem I.4 (Pointing and substitution). The constructions of pointing and substitu-
tion are admissible15:

A = ΘB =⇒ A(z) = z∂zB(z) ∂z :=
d

dz

A = B ◦ C =⇒ A(z) = B(C(z))

PROOF. By the definition of pointing, one has

An = n · Bn and A(z) = z
d

dz
B(z).

From the definition of substitution,A = B[C] implies, by the sum and product rules,

A(z) =
∑

k≥0

Bk · (C(z))k = B(C(z)),

and the proof is completed. �

Permutations as pointed objects.As an example of pointing, consider the classP
of all permutations written as words over integers startingfrom 1. One can go from a
permutation of sizen−1 to a permutation of sizen by selecting a “gap” and inserting
the valuen. When this is done in all possible ways, it gives rise to the combinatorial
relation

P = E + Θ(Z × P), E = {ǫ}, =⇒ P (z) = 1 + z
d

dz
(zP (z)).

This means that the OGF satisfies an ordinary differential equation whose formal so-
lution isP (z) =

∑
n≥0 n!zn.

Unary-binary trees as substituted objects.As an example of substitution, con-
sider the classB of (plane rooted) binary trees, where all nodes contribute to size. If
at each node there is substituted a linear chain of nodes (linked by edges placed on top
of the node), one forms an element of the classM of unary-binary trees; in symbols:

M = B ◦ SEQ≥1(Z) =⇒ M(z) = B

(
z

1 − z

)
.

14Such canonicalization techniques also serve to develop fast algorithms for the exhaustive listing
of objects of a given size as well as for the range of problems known as “ranking” and “unranking”, with
implications in fast random generation. See, e.g., [352, 373, 495] for the general theory as well as [405, 510]
for particular cases like necklaces and trees.

15In this book, we borrow from differential algebra the convenient notation∂z := d
dz

to represent
derivatives.
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Thus from the known OGF,B(z) = (1 −
√

1 − 4z2)/(2z), one derives

M(z) =
1 −

√
1 − 4z2(1 − z)−2

2z(1 − z)−1
=

1 − z −
√

1 − 2z − 3z2

2z
,

which matches the direct derivation on p. 63 (Motzkin numbers).
� I.54. Combinatorics of derivatives.The combinatorial operationD of “eraser–pointing”
points to an atom in an object and replaces it by a neutral object, otherwise preserving the
overall structure of the object. The translation ofD on OGFs is then simply∂ ≡ ∂z . Classical
identities of analysis then receive simple combinatorial interpretations, for instance,

∂(A×B) = (A× ∂B) + (∂A)×B) ;

Leibniz’s identity,∂m(f ·g) =
P

j

`
m
j

´
(∂jf)·(∂m−jg), also follows from basic combinatorics.

Similarly, for the “chain rule”∂(f ◦ g) = ((∂f) ◦ g) · ∂g. �

I. 6.3. Implicit structures. There are many cases where a combinatorial classX
is determined by a relationA = B + X , whereA andB are known. In terms of
generating functions, one hasA(z) = B(z) +X(z), so that

A = B + X =⇒ X(z) = A(z) − B(z).

For instance, the autocorrelation technique of Section I. 4.2 makes it possible to de-
scribe the classS of all words inW that donot contain a given patternp, whereas
the language of words containing the pattern is determined as the solution inX of the
equationW = S + X ; see p. 56. Similarly, for products, basic algebra gives

A = B × X =⇒ X(z) =
A(z)

B(z)
.

Here are the corresponding solutions for two of the composite constructions.

Theorem I.5 (Implicit specifications). The generating functions associated to the im-
plicit equations inX

A = SEQ(X ), A = MSET(X )

are respectively

X(z) = 1 − 1

A(z)
, X(z) =

∑

k≥1

µ(k)

k
logA(zk),

whereµ(k) is the M̈obius function.

PROOF. For sequences, the relationA(z) = (1 − X(z))−1 is readily inverted. For
multisets, start from the fundamental relation of Theorem I.1 and take logarithms:

log(A(z)) =

∞∑

k=1

1

k
X(zk).

LetL = logA andLn = [zn]L(z). One has

nLn =
∑

d |n
(dXd),

to which it suffices to apply Möbius inversion; see APPENDIX A: Arithmetical func-
tions, p. 667. �
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EXAMPLE I.17. Indecomposable permutations.A permutationσ = σ1 · · ·σn (written
here as a word of distinct letters) is said to bedecomposableif, for somek < n, σ1 · · ·σk is
a permutation of{σ1, . . . , σk}, i.e., a strict prefix of the permutation is itself a permutation.
Any permutation decomposes uniquely as a catenation of indecomposable permutations; for
instance, here is the decomposition ofσ = 25 4 1 3 6 8 7 10 9:

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9
10

σ = 2 5 4 1 3 6 8 10 7 9

Thus the classP of all permutations and the classI of indecomposable ones are related by

P = SEQ(I).
This determinesI(z) implicitly, and Theorem I.5 gives:

I(z) = 1− 1

P (z)
where P (z) =

X

n≥0

n! zn .

This example illustrates the implicit structure theorem, but also the possibility ofbona fide
algebraic calculations with power series even in cases where they are divergent (APPENDIXA:
Formal power series, p. 676). One finds

I(z) = z + z2 + 3 z3 + 13 z4 + 71 z5 + 461 z6 + 3447 z7 + · · · ,
where the coefficients areEISA003319and

In = n!−
X

n1+n2=n
n1,n2≥1

(n1!n2!) +
X

n1+n2+n3=n
n1,n2,n3≥1

(n1!n2!n3!) − · · · .

From there, simple majorizations of the terms imply thatIn ∼ n!, so thatalmost all permuta-
tions are indecomposable; see [98, p. 262]. . . . . . . . . . . . . . . . . . . . . END OF EXAMPLE I.17. �

� I.55. 2-dimensional wanderings.A drunkard starts from the origin in theZ × Z plane and,
at each second, he makes a step in either one of the four directions, NW, NE, SW, SE. The steps
are thusտ,ր,ւ,ց. Consider the classL of “primitive loops” defined as walks that start and
end at the origin, but do not otherwise touch the origin. The GF ofL is (EISA002894)

L(z) = 1− 1
P∞

n=0

`
2n
n

´2
z2n

= 4 z2 + 20 z4 + 176 z6 + 1876 z8 + · · · .

(Hint: a walk is determined by its projections on the horizontal and vertical axes; 1-dimensional
walks that return to the origin in2n steps are enumerated by

`
2n
n

´
.) In particular[zn]L(z/4) is

the probability that the random walk first returns to the origin in n steps.
Such problems largely originate with Pólya and the implicit structure technique above

was most likely known to him [396]. See [69] for similar multidimensional extensions. The
first return problem is analysed asymptotically in Chapter VI, based on singularity theory and
Hadamard closure properties. �
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EXAMPLE I.18. Irreducible polynomials over finite fields. Objects not obviously of a
combinatorial nature can sometimes be enumerated by symbolic methods. Here is an indirect
construction relative to polynomials over finite fields. We fix a prime numberp and consider the
base fieldFp of integers taken modulop. The polynomial ringFp[X] is the ring of polynomials
in X with coefficients taken inFp. For all practical purposes, one may restrict attention to
polynomials that are monic, that is, whose leading coefficient is 1.

First, letP be the class of all monic polynomials, with the size of a polynomial being its
degree. Since a monic polynomial of degreen is described by a choice ofn coefficients, one
has

P ∼= SEQ(Fp) =⇒ P (z) =
1

1− pz and Pn = pn.

A polynomial is said to beirreducible if it does not decompose as a product of two polynomials
of smaller degrees. By unique factorization, each monic polynomial decomposes uniquely into
a product (with repetitions being possible) of monic irreducible polynomials. For instance, over
F3, one has

X10 +X8 + 1 = (X + 1)2(X + 2)2(X6 + 2X2 + 1).

Let I be the set of monic irreducible polynomials. The combinatorial isomorphism

P ∼= MSET(I)
expresses precisely the unique factorization property. Thus, the irreducibles are determined
implicitly from the class of all polynomials whose OGF is known. Theorem I.5 implies the
identity

I(z) =
X

k≥1

µ(k)

k
log

1

1− pzk
,

and, upon extracting coefficients,

In =
1

n

X

k | n

µ(k)pn/k.

In particular,In is asymptotic topn/n. This estimate constitutes the density theorem for irre-
ducible polynomials:

The fraction of irreducible polynomials amongst all polynomials of degreen over
the finite fieldFp is asymptotic to1

n
.

This property is analogous to the Prime Number Theorem of number theory (which is tech-
nically muchharder [107]), according to which the proportion of prime numbers in theinter-
val [1, n] is asymptotic to 1

log n
. (The result was known to due to Gauß. See Knopfmacher’s

book [297] for an abstract discussion of statistical properties of arithmetical semigroups.)
END OF EXAMPLE I.18. �

� I.56. Square-free polynomials.Let Q be the class of monic square-free polynomials (i.e.,
polynomials not divisible by the square of a polynomial). One has by “Vallée’s identity” (p. 29)
Q(z) = P (z)/P (z2), hence

Q(z) =
1− pz2

1− pz and Qn = pn − pn−1 (n ≥ 2).

Berlekamp’s book [41] discusses such facts together with relations to error correcting codes.�

� I.57. Balanced trees.The classE of balanced 2-3 trees contains all the (rooted planar) trees
whose internal nodes have degree 2 or 3 and such that all leaves are at the same distance from
the root. Only leaves contribute to size. Such trees, which are particular cases ofB-trees, are a
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useful data structure for implementing dynamic dictionaries [307, 433]. Balanced trees satisfy
an implicit equation based on combinatorial substitution:

E = Z + E [(Z × Z) + (Z × Z × Z)] =⇒ E(z) = z + E(z2 + z3).

The expansion starts as (EISA014535) E(z) = z+ z2 + z3 + z4 +2 z5 +2 z6 +3 z7 +4 z8 +
5 z9+8 z10 + · · · .Odlyzko [375] has determined the growth ofEn to be roughlyϕn/n, where
ϕ = (1 +

√
5)/2 is the golden ratio. Cf Section IV. 7.2, p. 267 for a partial analysis. �

I. 7. Perspective

This chapter and the next amount to a survey of elementary combinatorial enu-
merations, organized in a coherent manner and summarized inFigure 14. We refer to
the process of specifying combinatorial classes using these constructions and then au-
tomatically having access to the corresponding generatingfunctions as thesymbolic
method. The symbolic method is the “combinatorics” in analytic combinatorics: it
allows us to organize classical results in combinatorics with a unifying overall ap-
proach, to derive new results that generalize and extend classical problems, and to
address new classes of problems that are arising in computerscience, computational
biology, statistical physics, and other scientific disciplines.

More important, the symbolic method leaves us with generating functions that we
can handle with the “analytic” part of analytic combinatorics. A full treatment of this
feature of the approach is premature, but a brief discussionmay help place the rest of
the book in context.

For a given class of problems, the symbolic method typicallyleads to a unified
treatment that reveals a natural class of functions in whichgenerating functions lie.
Even though the symbolic method is completely formal, we canoften successfully
proceed by using classical techniques from complex and asymptotic analysis. For
example, denumerants with a finite set of coin denominationsalways lead to ratio-
nal generating functions with poles on the unit circle. Suchan observation is useful
since then a common strategy for coefficient extraction can be applied (partial fraction
expansion, in the case of denumerants with fixed coin denominations). In the same
vein, the run statistics constitute a particular case of thegeneral theorem of Chomsky
and Schützenberger to the effect that the generating function of a regular language
is necessarily a rational function. Theorems of this sort establish a bridge between
combinatorial analysis and special functions.

Not all applications of the symbolic method are automatic (though that is certainly
a goal underlying the approach). The example of counting setpartitions shows that
application of the symbolic method may require finding an adequate presentation of
the combinatorial structures to be counted. In this way, bijective combinatorics enters
the game in a nontrivial fashion.

Our introductory examples of compositions and partitions correspond to classes
of combinatorial structures withexplicit “iterative” definitions, a fact leading in turn to
explicit generating function expressions. The tree examples then introducerecursively
definedstructures. In that case, the recursive definition translates into afunctional
equationthat only determines the generating function implicitly. In simpler situations
(like binary or general trees), the equation can be solved and explicit counting results
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1. The main constructions of disjoint union (combinatorial sum), product, sequence,
set, multiset, and cycle and their translation into generating functions (Theorem I.1).

Construction OGF

Union A = B + C A(z) = B(z) + C(z)

Product A = B × C A(z) = B(z) · C(z)

Sequence A = SEQ(B) A(z) =
1

1 −B(z)

Powerset A = SET(B) A(z) = exp

(
B(z) − 1

2
B(z2) + · · ·

)

Multiset A = MSET(B) A(z) = exp

(
B(z) +

1

2
B(z2) + · · ·

)

Cycle A = CYC(B) A(z) = log
1

1 −B(z)
+

1

2
log

1

1 −B(z2)
+ · · ·

2. The translation for sets, multisets, and cycles constrained by the number of compo-
nents (Theorem I.3, p. 78).

SEQk(B) : B(z)k

PSET2(B) : B(z)2

2
− B(z2)

2

MSET2(B) : B(z)2

2
+ B(z2)

2

CYC2(B) : B(z)2

2
+ B(z2)

2

PSET3(B) : B(z)3

6
− B(z) B(z2)

2
+ B(z3)

3

MSET3(B) : B(z)3

6
+ B(z) B(z2)

2
+ B(z3)

3

CYC3(B) : B(z)3

3
+ 2B(z3)

3

PSET4(B) : B(z)4

24
− B(z)2B(z2)

4
+ B(z)B(z3)

3
+ B(z2)2

8
− B(z4)

4

MSET4(B) : B(z)4

24
+ B(z)2B(z2)

4
+ B(z)B(z3)

3
+ B(z2)2

8
+ B(z4)

4

CYC4(B) : B(z)4

4
+ B(z2)2

4
+ B(z4)

2
.

3. The additional constructions of pointing and substitution(Section I. 6).

Construction OGF

Pointing A = ΘB A(z) = z d
dzB(z)

Substitution A = B ◦ C A(z) = B(C(z))

FIGURE I.14. A dictionary of constructions applicable tounlabelledstructures, together
with their translation into ordinary generating functions(OGFs). (The labelled counterpart
of this table appears in Figure 16 of Chapter II, p. 137.)
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still follow. In other cases (like non-planar trees) one canusually proceed with com-
plex asymptotic analysis directly from the functional equation and obtain very precise
asymptotic estimates; see Chapters IV–VII.

Analytic combinatorics is characterized by the focus on constructions that leave
us with generating functions that yield to classical techniques in complex analysis and
asymptotic analysis. For some combinatorial classes, as weshall see, we have the-
orems that carry us all the way from purely combinatorial constructions through to
asymptotic estimates for counting sequences, under general assumptions. For others,
the general theorems are yet to be proved, but the symbolic method lays the ground-
work for analysis that leads to the results that we seek.

Modern presentations of combinatorial analysis appear in the books of Comtet [98] (a
beautiful book largely example-driven), Stanley [447, 449] (a rich set with an algebraic orienta-
tion), Wilf [ 496] (generating functions oriented), and Lando [326] (a neat modern introduction).
An elementary but insightful presentation of the basic techniques appears in Graham, Knuth,
and Patashnik’s classic [248], a popular book with a highly original design. An encyclope-
dic reference is the book of Goulden & Jackson [244] whose descriptive approach very much
parallels ours.

The sources of the modern approaches to combinatorial analysis are hard to trace since they
are usually based on earlier traditions and informally stated mechanisms that were well mastered
by practicing combinatorial analysts. (See for instance MacMahon’s book [350] Combinatory
Analysisfirst published in 1917, the introduction of denumerant generating functions by Pólya
as exposed in [398], or the “domino theory” in [248, Sec. 7.1].) One source in recent times is
the Chomsky–Schützenberger theory of formal languages and enumerations [89]. Rota [414]
and Stanley [445, 449] developed an approach which is largely based on partially ordered sets.
Bender and Goldman developed a theory of “prefabs” [34] whose purposes are similar to the
theory developed here. Joyal [286] proposed an especially elegant framework, the “theory of
species”, that addresses foundational issues in combinatorial theory and constitutes the starting
point of the superb exposition by Bergeron, Labelle, and Leroux [39]. Parallel (but independent)
developments by the “Russian School” are nicely synthetized in the books by Sachkov [420,
421].

One of the reasons for the revival of interest in combinatorial enumerations and proper-
ties of random structures is the analysis of algorithms (a subject founded in modern times by
Knuth [309]), where the goal is to predict the performance characteristics of computer pro-
grams. The symbolic ideas exposed here have been applied to the analysis of algorithms in
surveys [175, 486] and are further exposed in our book [434]. Flajolet, Salvy, and Zimmer-
mann [206] have shown how to use them in order to automate the analysis of some well charac-
terized classes of combinatorial structures. Even more recently, several researches in statistical
physics, computational biology, and other scientific disciplines have been drawn towards the
study of the sorts of discrete models that can be specified by the sorts of combinatorial construc-
tions that we have described, and therefore are candidates for study via analytic combinatorics.
Research in these fields are the driving force in the study of new kinds of constructions on the
combinatorics side that lead to new methods on the analytic side.
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Many objects of classical combinatorics present themselves naturally as labelled struc-
tures where atoms of an object (typically nodes in a graph or atree) are distinguishable
from one another by the fact that they bear distinctlabels. Without loss of generality,
we may take the set from which labels are drawn to be the set of positive integers.
For instance, a permutation can be viewed as a linear arrangement of distinct labels;
its cycle decomposition represents it as an unordered collection of circular directed
graphs whose nodes are labelled by integers.

Operations on labelled structures are based on a special product: thelabelled
productthat distributes labels between components. This operation is a natural ana-
logue of the cartesian product for plain unlabelled objects. The labelled product in
turn leads to labelled analogues of the sequence, set, and cycle constructions.

Labelled constructions translate overexponential generating functions. The trans-
lation schemes turn out to be analytically even simpler thanin the unlabelled case
considered in the previous chapter. At the same time, labelled constructions enable
us to take into account structures that are in many ways combinatorially richer than
their unlabelled counterparts, in particular as regards order properties. They constitute
another facet, with powerful descriptive powers, of the symbolic method for combi-
natorial enumeration.

In this chapter, we examine some of the most important classes of labelled objects,
including surjections, set partitions, permutations, labelled graphs and labelled trees,
as well as graphs and mappings from a finite set into itself. Certain aspects of words

1“This approach eliminates virtually all calculations.”

87
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can also be treated by this theory, a fact which has numerous consequences not only
in combinatorics itself but also in probability and statistics. In particular, labelled
constructions of words can be put to use in order to elegantlysolve two classical
problems, the birthday problem and the coupon collector problem, as well as several
of their variants that have numerous applications in other fields, including the analysis
of hashing algorithms in computer science.

II. 1. Labelled classes

Throughout this chapter, we consider combinatorial classes in the sense of Chap-
ter I: we deal exclusively with finite objects; a combinatorial classA is a set of objects,
with a notion of size attached, so that the number of objects of each size inA is finite.
To these basic concepts, we now add the idea that the objects are labelled, by which
we mean that each atom carries with it a distinctive colour, or equivalently an integer
label, in such a way that all the labels occurring in an objectare distinct. Precisely:

Definition II.1. A weakly labelled objectof sizen is a graph whose set of vertices
is a subset of the integers. Equivalently, we say that the vertices bear labels, with
the implied condition that labels are distinct integers from Z. An object of sizen is
said to bewell-labelled, or simplylabelled, if it is weakly labelled and, in addition,
its collection of labels is the complete integer interval[1 . . n]. A labelled classis a
combinatorial class comprised of well-labelled objects.

The graphs considered may be directed or undirected. In fact, when the need
arises, we shall take “object” to mean any kind of discrete structure enriched by in-
teger labels. Virtually all labelled classes considered inthis book can eventually be
encoded as graphs of sorts, so that this extended use of the notion of a labelled class
is a harmless convenience. (See Section II. 7 for a brief discussion of alternative but
logically equivalent frameworks for the notion of a labelled class.)

EXAMPLE II.1. Labelled graphs. A labelled graph is by definition an undirected graph
such that distinct integer labels forming an interval of theform {1, 2, . . . , n} are supported by
vertices. A particular labelled graph of size 4 is then

g =

4 2

31
,

which represents a graph whose vertices bear the labels{1, 2, 3, 4} and whose set of edges is

{ {1, 3}, {2, 3}, {2, 4}, {1, 4} } .
Only the graph structure (as defined by its set of edges) counts, so that this is the same abstract
graph as in the alternative visual representations

g =

3 2

41
,

1 4

23
.

However, this graph is different from either of

h =

3 2

14
, j =

4 2

13
,
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There are altogetherG4 = 64 = 26 labelled graphs of size 4, i.e., comprising 4 nodes, in
agreement with the general formula (see p. 97 for details):Gn = 2n(n−1)/2. The labelled
graphs can be grouped into equivalence classes up to arbitrary permutation of the labels, which
determines thebG4 = 11 unlabelled graphs of size 4. Each unlabelled graph corresponds to a
variable number of labelled graphs: for instance, the totally disconnected graph (bottom, left)
and the complete graph (top, right) correspond to 1 labelling only, while the line graph admits
1
2

4! = 12 possible labellings.

FIGURE II.1. Labelled versus unlabelled graphs for sizen = 4.

since, for instance, 1 and 2 are adjacent inh andj, but not ing. Altogether, there are 3 different
labelled graphs (namely,g, h, j), that have the same “shape”, corresponding to the unlabelled
quadrangle graph

Q =

• •

••
.

Figure 1 lists all the 64 labelled graphs of size 4 as well as their 11 unlabelled counterparts
viewed as equivalence classes of labelled graphs when labels are ignored. END OF EXAMPLE II.1. �

In order to count labelled objects, we appeal to exponentialgenerating functions.

Definition II.2. Theexponential generating function(EGF) of a sequence{An} is
the formal power series

(1) A(z) =
∑

n≥0

An
zn

n !
.

Theexponential generating function(EGF) of a classA is the exponential generating
function of the numbersAn = card(An). Equivalently, the EGF of classA is

A(z) =
∑

n≥0

An
zn

n !
=
∑

α∈A

z|α|

|α| ! .
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It is also said that the variablez markssize in the generating function.

With the standard notation for coefficients of series, the coefficientAn in an exponen-
tial generating function is then recovered by2

An = n ! · [zn]A(z),

since[zn]A(z) = An/n! by the definition of EGFs and in accordance with the coeffi-
cient extractor notation, Eq. (6) of Chapter I.

Note that, like in the previous chapter, we adhere to a systematic naming con-
vention for generating functions of combinatorial structures. A labelled classA, its
counting sequence(An) (or (an)) and its exponential generating functionA(z) (or
a(z)) are all denoted by the same group of letters.

Neutral and atomic classes.Like in the unlabelled universe, it proves useful to
introduce a neutral (empty, null) objectǫ that has size0 and bears no label at all, and
consider it as a special labelled object; aneutral classE is then by definitionE = {ǫ}.
The (labelled)atomic classZ = { 1} is formed of a unique object of size 1 that, being
well-labelled, bears the integer label1 . The EGFs of the neutral class and the atomic
class are respectively

E(z) = 1, Z(z) = z.

EXAMPLE II.2. Permutations. The classP of all permutations is prototypical of labelled
classes. Under the linear representation of permutations,where

σ =

0
@ 1 2 · · · n

σ1 σ2 · · · σn

1
A

is represented as the sequence(σ1, σ2, . . . , σn), the classP is schematically

P =

8
>>>>><
>>>>>:

ǫ , 1 , 1− 2

2− 1
,

1− 2− 3

2− 3− 1

3− 1− 2

2− 1− 3

1− 3− 2

3− 2− 1

, . . .

9
>>>>>=
>>>>>;

,

so thatP0 = 1, P1 = 1, P2 = 2, P3 = 6, etc. There, by definition, all the possible orderings
of the distinct labels are taken into account, so that the classP can be equivalently viewed as
the class of all labelled linear digraphs (with an implicit direction, from left to right, say, in the
representation). Accordingly, the classP of permutations has the counting sequencePn = n!
(argument: there aren positions where to place the element1, then(n− 1) possible positions
for 2, and so on). Thus the EGF ofP is

P (z) =
X

n≥0

n!
zn

n!
=
X

n≥0

zn =
1

1− z .

Permutations, as they contain information relative to the order of their elements are essential in
many applications related to order statistics. . . . . . . . . . .. . . . . . . . . END OF EXAMPLE II.2. �

2Some authors prefer the notation[ zn

n!
]A(z) to n![zn]A(z), which we avoid in this book. Indeed,

Knuth [305] argues convincingly that the variant notation is not consistent with many desirable properties
of a “good” coefficient operator (e.g., bilinearity).
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EXAMPLE II.3. Urns. The classU of totally disconnected graphs starts as

U =

8
><
>:
ǫ , 1 , 1 2 ,

1 2

3

,
1 2

3 4

,
1 2

5

3 4

, . . .

9
>=
>;
.

Order between the labelled atoms doesnot count, so that for eachn, there is onlyonepossible
arrangement andUn = 1. The classU can be regarded as the class of “urns”, where an
urn of sizen containsn distinguishable balls in an unspecified (and irrelevant) order. The
corresponding EGF is

U(z) =
X

n≥0

1
zn

n!
= exp(z) = ez.

(The fact that the EGF of the constant sequence(1)n≥0 is the exponential function explains the
term “exponential generating function”.) It also proves convenient, in several applications, to
represent elements of an urn in a sorted sequence, which leads to an equivalent representation
of urns asincreasing linear graphs; for instance,

1− 2− 3− 4− 5

may be equivalently used to represent the urn of size 5. Though urns look trivial at first glance,
they are of particular importance as building blocks of complex labelled structures (e.g., alloca-
tions of various sorts), as we shall see shortly. . . . . . . . . . .. . . . . . . . END OF EXAMPLE II.3. �

EXAMPLE II.4. Circular graphs. Finally, the class of circular graphs, where cycles are
oriented in some conventional manner (say, positively here) is

C =

(
1 , 6

1

2

, 6

1

2 3

, 6

1

3 2

, . . .

)
.

Cyclic graphs correspond bijectively tocyclic permutations. One hasCn = (n − 1)! (argu-
ment: a directed cycle is determined by the succession of elements that “follow” 1, hence by a
permutation ofn− 1 elements). Thus, one has

C(z) =
X

n≥1

(n− 1)!
zn

n!
=
X

n≥1

zn

n
= log

1

1− z .

As we shall see in the next section, the logarithm is characteristic of circular arrangements of
labelled objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . END OF EXAMPLE II.4. �

� II.1. Labelled trees.Let Un be now the number of labelled graphs withn vertices that are
connected and acyclic; equivalently,Un is the number of labelled unrooted nonplane trees. Let
Tn be the number of labelled rooted nonplane trees. The identity Tn = nUn is elementary,
since all vertices in a labelled tree are distinguishable (by their labels) and a root can be chosen
in n possible ways. In Section II. 5, we shall prove thatUn = nn−2 andTn = nn−1. �

II. 2. Admissible labelled constructions

We now describe a toolkit of constructions that make it possible to build complex
labelled classes from simpler ones. Combinatorial sum or disjoint union is defined
exactly as in Chapter I: it is the union of disjoint copies. Todefine a product that is
adapted to labelled structures, we cannot use the cartesianproduct, since an ordered
pair of two labelled objects is not well-labelled (for instance the label 1 would invari-
ably appear repeated twice). Instead, we define a new operation, thelabelled product,
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which translates naturally into exponential generating functions. From there, simple
translation rules follow for labelled sequences, sets, andcycles.

Binomial convolutions. As a preparation to the translation of labelled construc-
tions, we first briefly review the effect of products over EGFs. Let a(z), b(z), c(z) be
EGFs, witha(z) =

∑
n anz

n/n!, and so on. Thebinomial convolutionformula is:

(2) if a(z) = b(z) · c(z), thenan =

n∑

k=0

(
n

k

)
bkcn−k.

This formula results from the usual product of formal power series,

an

n!
=

n∑

k=0

bk
k!

· cn−k

(n− k)!
and

(
n

k

)
=

n!

k! (n− k)!
.

In the same vein, ifa(z) = a(1)(z) a(2)(z) · · ·a(r)(z), then

(3) an =
∑

n1+n2+···+nr=n

(
n

n1, n2, . . . , nr

)
a(1)

n1
a(2)

n2
· · · a(r)

nr
.

In Equation (3) there occurs the multinomial coefficient
(

n

n1, n2, . . . , nr

)
=

n!

n1!n2! · · ·nr!
,

which counts the number of ways of splittingn elements intor distinguished classes
of cardinalitiesn1, . . . , nr. This property lies at the very heart of enumerative appli-
cations of binomial convolutions and EGFs.

II. 2.1. Labelled constructions. A labelled object may be relabelled.We only
considerconsistentrelabellings defined by the fact that they preserve the orderrela-
tions among labels.Then two dual modes of relabellings prove important:

— Reduction: For a weakly labelled structure of sizen, this operation reduces
its labels to the standard interval[1 . . n] while preserving the relative order
of labels. For instance, the sequence〈7, 3, 9, 2〉 reduces to〈3, 2, 4, 1〉. We
useρ(α) to denote the canonical reduction of the structureα.

— Expansion: This operation is defined relative to a relabelling function e ∈
[1 . . n] 7→ Z that is assumed to be strictly increasing. For instance,〈3, 2, 4, 1〉
may expand as〈33, 22, 44, 11〉, 〈7, 3, 9, 2〉, and so on. We usee(α) to denote
the result of relabellingα by e.

These notions enable us to devise a product suited to labelled objects.

The labelled product, (or simplyproduct), of objects and classes was originally
formalized under the name of “partitional product” by Foata[217]. Given two labelled
structuresβ ∈ B andγ ∈ C, this product noted asβ ⋆ γ is a set comprised of the
collection of well-labelled ordered pairs(β′, γ′) that reduce to(β, γ):

(4) β ⋆ γ := { (β′, γ′)
∣∣ (β′, γ′) is well–labelled, ρ(β′) = β, ρ(γ′) = γ }.

An equivalent form is via expansion of labels:

(5) β⋆γ = { (e(β), f(γ)
∣∣ Im(e)∩ Im(f) = ∅, Im(e)∪ Im(f) = [ 1 . . |β| + |γ| ] },
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FIGURE II.2. The10 ≡
`
5
2

´
elements in the labelled product of a triangle and a segment.

wheree, f are relabelling functions with ranges Im(e), Im(f), respectively. Note that
elements of a labelled product are, by construction, well-labelled. Figure 2 displays
the labelled product of a particular object of size 3 with another object of size 2.

The labelled productβ ⋆ γ of two elementsβ, γ of respective sizesn1, n2 is a set
whose cardinality is, withn = n1 + n2, expressed as

(
n1 + n2

n1, n2

)
≡
(
n

n1

)
,

since this quantity is the number of legal relabellings by expansion of the pair(β, γ).
(The example of Figure 2 verifies that the number of relabellings is indeed

(
5
2

)
= 10.)

If B andC are two labelled classes of combinatorial structures, the labelled prod-
uctA = B ⋆ C is defined by the usual extension of operations to sets:

(6) B ⋆ C =
⋃

β∈B, γ∈C
(β ⋆ γ).

In summary:

Definition II.3. Thelabelled productofB andC, denotedB⋆C, is obtained by forming
ordered pairs fromB × C and performing all possible order-consistent relabellings,
ensuring that the resulting pairs are well labelled, as described by (4) or (5), and (6).

Equipped with this notion, we can build sequences, sets, andcycles, in a way
much similar to the unlabelled case. We proceed to do so and, at the same time,
establishadmissibility3 of the constructions.

Labelled product.WhenA = B ⋆ C, the corresponding counting sequences sat-
isfy the relation,

(7) An =
∑

|β|+|γ|=n

(|β| + |γ|
|β|, |γ|

) ∑

n1+n2=n

(
n

n1, n2

)
Bn1Cn2 .

The productBn1Cn2 keeps track of all the possibilities for theB andC components
and the binomial coefficient accounts for the number of possible relabellings, in accor-
dance with our earlier discussion. The binomial convolution property (7) then implies

3We recall that a construction is admissible (Chapter I) if the counting sequence of the result only
depends on the counting sequences of the operands. An admissible construction therefore induces a well-
defined transformation over exponential generating functions.



94 II. LABELLED STRUCTURES AND EGFS

admissibility,

A = B ⋆ C =⇒ A(z) = B(z) · C(z),

with the labelled product simply translating into the product operation on EGFs.
� II.2. Multiple labelled products.The (binary) labelled product satisfies the associativity
property,

B ⋆ (C ⋆D) ∼= (B ⋆ C) ⋆D,
which may serve to defineB ⋆C ⋆D. The corresponding EGF is the productA(z) ·B(z) ·C(z).
This product rule generalizes tor factors with coefficients given by a multinomial convolu-
tion (3). �

k-sequences and sequences.The kth (labelled)powerof B is defined as(B ⋆
B · · · B), with k factors equal toB. It is denoted SEQk{B} as it corresponds to forming
k–sequences and performing all consistent relabellings. The (labelled)sequenceclass
of B is denoted by SEQ{B} and is defined by

SEQ{B} := {ǫ} + B + (B ⋆ B) + (B ⋆ B ⋆ B) + · · · =
⋃

k≥0

SEQk{B}.

The product relation for EGFs extends to arbitrary products(Note 2), so that

A = SEQk(B) =⇒ A(z) = B(z)k

A = SEQ(B) =⇒ A(z) =
∞∑

k=0

B(z)k =
1

1 −B(z)
,

where the last equation requiresB0 = ∅.

k–sets and sets.We denote by SETk{B} the class ofk–sets formed fromB. The
set class is defined formally, like in the case of the unlabelled multiset: it is the quotient
SETk{B} := SEQk{B}/R where the equivalence relationR identifies two sequences
when the components of one are a permutation of the components of the other (p. 25).
A “set” is like a sequence, but the order between components is immaterial. The
(labelled)setconstruction applied toB, denoted SET{B}, is then defined by

SET{B} def
= {ǫ} + B + SET2{B} + · · · =

⋃

k≥0

SETk{B}.

A labelledk–set is associated with exactlyk! different sequences. (In the unlabelled
case, formulæ are more complex.) Thus in terms of EGFs, one has (assumingB0 = ∅)

A = SETk(B) =⇒ A(z) =
1

k!
B(z)k

A = SET(B) =⇒ A(z) =

∞∑

k=0

1

k!
B(z)k = exp(B(z)).

Note that the distinction between multisets and powersets that is meaningful for unla-
belled structures is here immaterial: by definition components of a labelled set all have
distinct labels so that, relative to the labelled universe,we have the correspondence:
MSET,PSET ; SET.
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k–cycles and cycles.We also introduce the class ofk–cycles, CYCk{B} and the
cycle class. The cycle class is defined formally, like in the unlabelled case, as the
quotient CYCk{B} := SEQk{B}/S where the equivalence relationS identifies two
sequences when the components of one are a cyclic permutation of the components
of the other (p. 24). A cycle is like a sequence whose components can be circularly
shifted. In terms of EGFs, we have (assumingB0 = ∅)

A = CYCk(B) =⇒ A(z) =
1

k
B(z)k

A = CYC(B) =⇒ A(z) =

∞∑

k=1

1

k
B(z)k = log

1

1 −B(z)
,

since each cycle admits exactlyk representations as a sequence.

In summary:

Theorem II.1. The constructions of combinatorial sum (disjoint union), labelled
product, sequence, cycle and set are all admissible. The associated operators on
EGFs are:

Sum: A = B + C =⇒ A(z) = B(z) + C(z)

Product: A = B ⋆ C =⇒ A(z) = B(z) · C(z)

Sequence: A = SEQ(B) =⇒ A(z) =
1

1 −B(z)

—k comp.: A = SEQk(B) ≡ (B)⋆k =⇒ A(z) = B(z)k

Set: A = SET(B) =⇒ A(z) = exp(B(z))

—k comp.: A = SETk(B) =⇒ A(z) =
1

k!
B(z)k

Cycle: A = CYC(B) =⇒ A(z) = log
1

1 −B(z)

—k comp.: A = CYCk(B) =⇒ A(z) =
1

k
B(z)k

Constructible classes.As in the previous chapter, we say that a class of labelled
objects is constructible if it admits a specification in terms of sums (disjoint unions),
the labelled constructions of product, sequence, set, cycle, and the initial classes de-
fined by the neutral structure of size0 and the atomic classZ = { 1 }. Regarding the
elementary classes discussed in Section II. 1, it is immediately recognized that

P = SEQ{Z}, U = SET{Z}, C = CYC{Z},

specify permutations, urns, and circular graphs respectively. These constructions are
basic building blocks out of which more complex objects can be constructed. In partic-
ular, as we shall explain shortly (Section II. 3 and Section II. 4), set partitions (S), sur-
jections (R), permutations under their cycle decomposition (P), and alignments(O)
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are constructible classes corresponding to

Surjections: R ≃ SEQ{SET≥1{Z}} (sequences-of-sets),

Set partititions: S ≃ SET{SET≥1{Z}} (sets-of-sets),

Alignments: O ≃ SEQ{CYC{Z}} (sequences-of-cycles).

Permutations: P ≃ SET{CYC{Z}}, (sets-of-cycles),

An immediate consequence of Theorem II.1 is the fact that theEGF of a con-
structible labelled class can be computed automatically.

Theorem II.2. The exponential generating function of a constructible class of la-
belled objects is a component of a system of generating function equations whose
terms are built from1 andz using the operators

+ , × , Q(f) =
1

1 − f
, E(f) = ef , L(f) = log

1

1 − f
.

If we further allow cardinality restrictions in composite constructions, the operators
fk (for SEQk), fk/k! (for SETk), andfk/k (for CYCk) are to be added to the list.

II. 2.2. Labelled versus unlabelled enumeration.Any labelled classA has an
unlabelled counterpart̂A: objects inÂ are obtained from objects ofA by ignoring
the labels. This idea is formalized by identifying two labelled objects if there is an
arbitrary relabelling (not just an order-consistent one, as has been used so far) that
transforms one into the other. For an object of sizen, each equivalence class contains
a priori between 1 andn! elements. Thus:

Proposition II.1. The counts of a labelled classA and its unlabelled counterpart̂A
are related by

(8) Ân ≤ An ≤ n! Ân or equivalently 1 ≤ An

Ân

≤ n!.

EXAMPLE II.5. Labelled and Unlabelled graphs. This phenomenon has been already
encountered in our discussion of graphs (Figure 1). Let generally Gn and bGn be the number of
graphs of sizen in the labelled and unlabelled case respectively. One finds for n = 1 . . 15

bGn (unlabelled) Gn (labelled)
1 1
2 2
4 8

11 64
34 1024

156 32768
1044 2097152

12346 268435456
274668 68719476736

12005168 35184372088832
1018997864 36028797018963968

165091172592 73786976294838206464
50502031367952 302231454903657293676544

29054155657235488 2475880078570760549798248448
31426485969804308768 40564819207303340847894502572032
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The sequence{ bGn} constitutesEISA000088, which can be obtained by an extension of meth-
ods of Chapter I; see [259, Ch. 4]. The sequence{Gn} is determined directly by the fact that a
graph ofn vertices can have each of the

`
n
2

´
possible edges either present or not, so that

Gn = 2(
n
2) = 2n(n−1)/2.

The sequence of labelled counts obviously grows much fasterthan its unlabelled counterpart.
We may then verify the inequality (8) in this particular case. The normalized ratios,

ρn := Gn/ bGn, σn := Gn/(n! bGn),

are observed to be

n ρn = Gn/ bGn σn = Gn/(n! bGn)
1 1.000000000 1.0000000000
2 1.000000000 0.5000000000
3 2.000000000 0.3333333333
4 5.818181818 0.2424242424
5 30.11764706 0.2509803922
6 210.0512821 0.2917378918
8 21742.70663 0.5392536367
10 2930768.823 0.8076413203
12 446946830.2 0.9330800361
14 0.8521603960· 1011 0.9774915111
16 0.2076885783· 1014 0.9926428522

From these data, it is natural to conjecture thatσn tends (fast) to 1 asn tends to infinity. This is
indeed a nontrivial fact originally established by Pólya (see Chapter 9 of Harary and Palmer’s
book [259] dedicated to asymptotics of graph enumerations):

bGn ∼ 1

n!
2(

n
2) =

Gn

n!
.

In other words, “almost all” graphs of sizen should admit a number of labellings close ton!.
(Combinatorially, this corresponds to the fact that in a random unlabelled graph, with high
probability, all of the nodes can be distinguished based on the adjacency structure of the graph;
in such a case, the graph has no nontrivial automorphism and the number of distinct labellings
isn! exactly.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . END OF EXAMPLE II.5. �

The case of urns and totally disconnected graphs resorts to the other extreme
situation where

Ûn = Un = 1.

The examples of graphs and urns illustrate the fact that, beyond the general bounds of
Proposition II.1, there is no automatic way to translate between labelled and unlabelled
enumerations. At least, if the classA is constructible, its unlabelled counterpartÂ can
be obtained by interpreting all the intervening constructions as unlabelled ones in the
sense of Chapter I (with SET 7→ MSET), both generating functions are computable,
and their coefficients can be compared.
� II.3. Permutations and their unlabelled counterparts.The labelled class of permutations can
be specified byP = SEQ(Z); the unlabelled counterpart is the setbP of integers in unary nota-
tion, andbPn ≡ 1, so thatPn = n!· bPn exactly. The specificationP ′ = SET(CYC(Z)) describes
sets of cycles and, in the labelled universe, one hasP ′ ∼= P ; however the unlabelled counter-
part ofP ′ is the classcP ′ 6= bP of integer partitions examined in Chapter I. [In the unlabelled
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universe, there are special combinatorial isomorphisms like: SEQ≥1(Z) ∼= MSET≥1(Z) ∼=
CYC(Z). In the labelled universe, the identity SET◦CYC ≡ SEQ holds.] �

II. 3. Surjections, set partitions, and words

This section and the next are devoted to what could be termed level-two nonrecur-
sive structures defined by the fact that they combine two constructions. In this section,
we discuss surjections and set partitions (Section II. 3.1), which constitute labelled
analogues of integer compositions and integer partitions in the unlabelled universe.
The symbolic method then extends naturally to words over a finite alphabet, where
it opens access to an analysis of the frequencies of letters composing words. This
in turn has useful consequences for the study of some classical random allocation
problems, of which the birthday paradox and the coupon collector problem stand out
(Section II. 3.2).

II. 3.1. Surjections and set partitions. We examine classes

R = SEQ{SET≥1{Z}} and S = SET{SET≥1{Z}},
corresponding to sequences-of-sets (R) and sets-of-sets (S), or equivalently, sequences
of urns and sets of urns, respectively. Such abstract specifications model very classical
objects of discrete mathematics, namely surjections (R) and set partitions (S)

Surjections withr images. In elementary mathematics, a surjection from a setA
to a setB is a function fromA to B that assumes each valueat least once(an onto
mapping). Fix some integerr ≥ 1 and letR(r)

n denote the class of all surjections from
the set[1 . . n] onto [1 . . r] whose elements are also calledr–surjections. Here is a

particular objectφ ∈ R(5)
9 :

(9) φ :

1 2 3 4 5 6 7 8 9

1 2 3 4 5

(Note that, ifφ(9) were 3, thenφ would not be a surjection.) We setR(r) =
⋃

n R(r)
n

and proceed to compute the corresponding EGF,R(r)(z). First, let us observe that an

r–surjectionφ ∈ R(r)
n is determined by theorderedr–tupleformed with the collection

of all preimage sets,
(
φ−1(1), φ−1(2), . . . , φ−1(r)

)
, themselves disjoint nonempty

sets of integers that cover the interval[1 . . n]. In the case of the surjectionφ of (9),
this alternative representation is

φ : ( {2}, {1, 3}, {4, 6, 8}, {9}, {5, 7} ) .

One has the combinatorial specification and EGF relation:

(10) R(r) = SEQr{V}, V = SET≥1{Z} =⇒ R(r)(z) = (ez − 1)r.

ThereV ≡ U \ {ǫ} designates the class of urns (U) that are nonempty, with EGF
V (z) = ez − 1, in view of our earlier discussion of urns. In words: “a surjection is a
sequence of nonempty sets”. See Figure II. 3.1 for an illustration.
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FIGURE II.3. The decomposition of surjections as sequences-of-sets: a surjection given
by its graph (top), its table (second line), and its sequenceof preimages (bottom lines).

Equation (10) does solve the counting problem for surjections. For smallr, one
finds

R(2)(z) = e2z − 2ez + 1, R(3)(z) = e3z − 3e2z + 3ez − 1,

whence, by expanding,

R(2)
n = 2n − 2, R(3)

n = 3n − 3 · 2n + 3 .

The general formula follows similarly from expanding therth power in (10) by the
binomial theorem, and then extracting coefficients:

(11) R(r)
n = n! [zn]

r∑

j=0

(
r

j

)
(−1)je(r−j)z =

r∑

j=0

(
r

j

)
(−1)j(r − j)n.

� II.4. A direct derivation of the surjection EGF.One can verify the result provided by the
symbolic method by returning to first principles. The preimage of valuej by a surjection is a
nonempty set of some cardinalitynj ≥ 1, so that

(12) R(r)
n =

X

(n1,n2,...,nr)

 
n

n1, n2, . . . , nr

!
,

the sum being taken overnj ≥ 1, n1 + n2 + · · · + nr = n. Introduce the numbersVn :=
[[n ≥ 1]]. The formula (12) then assumes the simpler form

(13) R(r)
n ≡

X

n1,n2,...,nr

 
n

n1, n2, . . . , nr

!
Vn1Vn2 · · ·Vnr ,

where the summation now extends toall tuples(n1, n2, . . . , nr). The EGF of theVn isV (z) =P
Vnz

n/n! = ez − 1. Thus the convolution relation (13) leads again to (10). �
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Set partitions intor blocks. Let S(r)
n denote the number of ways of partitioning

the set[1 . . n] into r disjoint and nonempty equivalence classes also known asblocks.

We setS(r) =
⋃

n S(r)
n ; the corresponding objects are calledset partitions(the latter

not to be confused with integer partitions examined in Section I. 3). The enumeration
problem for set partitions is closely related to that of surjections. Symbolically, a
partition is determined as a labelledsetof classes (blocks), each of which is a non-
empty urn. Thus, one has

(14) S(r) = SETr{V}, V = SET≥1{Z} =⇒ S(r)(z) =
1

r!
(ez − 1)

r
.

The basic formula connecting the two counting sequences is,in accordance with (10)
and (14),

S(r)
n =

1

r!
R(r)

n

This can be interpreted directly along the lines of the proofof Theorem II.1: anr–
partition is associated with a group of exactlyr! distinctr–surjections, two surjections
belonging to the same group iff one obtains from the other by permuting the range
values,[1 . . r].

The numbersS(r)
n = n![zn]S(r)(z) are known as the Stirling numbers of the sec-

ond kind, or better, the Stirling “partition” numbers. Theywere briefly encountered
in the previous chapter and discussed in connection with encodings by words (Chap-
ter I, p. 59). Knuth, following Karamata, advocated for theS(r)

n the notation
{

n
r

}
.

From (11), an explicit form also exists:

(15) S(r)
n ≡

{
n

r

}
=

1

r!

r∑

j=0

(
r

j

)
(−1)j(r − j)n.

The books by Graham, Knuth, and Patashnik [248] and Comtet [98] contain a thor-
ough discussion of these numbers; see also APPENDIX A: Stirling numbers, p. 680.

All surjections and set partitions.Define now the collection of all surjections
and all set partitions by

R =
⋃

r

R(r), S =
⋃

r

S(r).

ThusRn is the class of all surjections of[1 . . n] ontoany initial segment of the inte-
gers, andSn is the class of all partitions of the set[1 . . n] into anynumber of blocks
(Figure 4). Symbolically, one has

(16)
R = SEQ(SET≥1{Z}) =⇒ R(z) =

1

2 − ez

S = SET(SET≥1{Z}) =⇒ S(z) = eez−1.

The numbersRn = n! [zn]R(z) andSn = n![zn]S(z) are calledsurjection num-
bers (also, “preferential arrangements” numbers,EIS A000670) and Bell numbers
(EIS A000110) respectively. These numbers are well determined by expanding the
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FIGURE II.4. A complete listing of all set partitions for sizesn = 1, 2, 3, 4. The
corresponding sequence1, 1, 2, 5, 15, . . . is formed of Bell numbers,EISA000110.

EGFs:

R(z) = 1 + z + 3
z2

2!
+ 13

z3

3!
+ 75

z4

4!
+ 541

z5

5!
+ 4683

z6

6!
+ 47293

z7

7!
+ · · ·

S(z) = 1 + z + 2
z2

2!
+ 5

z3

3!
+ 15

z4

4!
+ 52

z5

5!
+ 203

z6

6!
+ 877

z7

7!
+ · · · .

Explicit expressions as finite double sums result from summing Stirling numbers,

Rn =
∑

r≥0

r!

{
n

r

}
, and Sn =

∑

r≥0

{
n

r

}
,

where each Stirling number is itself a sum given by (15). Alternatively, single (though
infinite) sums result from the expansions





R(z) =
1

2

1

1 − 1
2e

z

=
∞∑

ℓ=0

1

2ℓ+1
eℓz

and





S(z) = eez−1 =
1

e
eez

=
1

e

∞∑

ℓ=0

1

ℓ!
eℓz,

from which coefficient extraction yields

Rn =
1

2

∞∑

ℓ=0

ℓn

2ℓ and Sn =
1

e

∞∑

ℓ=0

ℓn

ℓ!
.

The formula for Bell numbers was found by Dobinski in 1877.
The asymptotic analysis of the surjection numbers (Rn) will be performed in

Chapter IV as one of the very first illustrations of complex asymptotic methods (the
meromorphic case); that of Bell’s partition numbers is bestdone by means of the
saddle point method exposed in Chapter IX. The asymptotic forms found are

(17) Rn ∼ n!

2

1

(log 2)n+1
and Sn ∼ n!

eer(n)−1

r(n)
n+1√

2π exp(r(n))
,
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wherer(n) is the positive root of the equationrer = n. One hasr(n) ∼ logn −
log logn, so that

logSn = n (logn− log logn− 1 + o(1)) .

Elementary derivations (i.e., based solely on real analysis) of these asymptotic forms
are also possible as discussed briefly in APPENDIX B: Laplace’s method, p. 700.

The line of reasoning adopted for the enumeration of surjections viewed as sequences-
of-sets and partitions viewed as sets-of-sets yields a general result that is applicable to
a wide variety of constrained objects.

Proposition II.2. Let R(A,B) be the class of surjections where the cardinalities of
the preimages lie inA ⊆ Z≥1 and the cardinality of the range belongs toB. The
corresponding EGF is

R(A,B)(z) = β(α(z)) where α(z) =
∑

a∈A

za

a!
, β(z) =

∑

b∈B

zb.

Let S(A,B) be the class of set partitions with part sizes inA ⊆ Z≥1 and with a
number of blocks that belongs toB. The corresponding EGF is

S(A,B)(z) = β(α(z)) where α(z) =
∑

a∈A

za

a!
, β(z) =

∑

b∈B

zb

b!
.

PROOF. One has

R(A,B) = SEQB{SETA{Z}} and S(A,B) = SETB{SETA{Z}},
where, as usual, the subscriptX specifies a construction with a number of components
restricted to the integer setX . �

EXAMPLE II.6. Smallest and largest blocks in set partitions.Let eb(z) denote the truncated
exponential function,

eb(z) := 1 +
z

1!
+
z2

2!
+ · · ·+ zb

b!
.

The EGFsS〈≤b〉(z) = exp(eb(z)− 1) andS〈>b〉(z) = exp(ez − eb(z)), correspond to parti-
tions with all blocks of size≤ b and all blocks of size> b, respectively. END OF EXAMPLE II.6. �

� II.5. No singletons.The EGF of partitions without singleton parts iseez−1−z . The EGF of
“double surjections” (each preimage contains at least two elements) is(2 + z − ez)−1. �

EXAMPLE II.7. Comtet’s square.An exercise in Comtet’s book [98, Ex. 13, p. 225] serves
beautifully to illustrate the power of the symbolic method.The question is to enumerate set
partitions such that a parity constraint is satisfied by the number of blocks and/or the number of
elements in each block. Then, the EGFs are tabulated as follows:

Set partitions Any # of blocks Odd # of blocks Even # of blocks

Any block sizes eez−1 sinh(ez − 1) cosh(ez − 1)

Odd block sizes esinh z sinh(sinh z) cosh(sinh z)

Even block sizes ecosh z−1 sinh(cosh z − 1) cosh(cosh z − 1)
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The proof is a direct application of Proposition II.2, upon noting that

ez, sinh z, cosh z

are the characteristic EGFs ofZ≥0, 2Z≥0 + 1, and2Z≥0 respectively. The sought EGFs are
then obtained by forming the compositions

(
exp
sinh
cosh

)
◦
( −1 + exp

sinh
−1 + cosh

)
,

in accordance with general principles. . . . . . . . . . . . . . . . . .. . . . . . . . END OF EXAMPLE II.7. �

II. 3.2. Applications to words and random allocations. Numerous enumera-
tive problems present themselves when analysing statistics on letters in words. They
find applications in the study ofrandom allocationsand the design ofhashing algo-
rithms of computer science [434]. Fix an alphabet

X = {a1, a2, . . . , ar}
of cardinalityr, and letW be the class of all words over the alphabetX , the size
of a word being its length. A word of lengthn, w ∈ Wn, is an unconstrained
function from [1 . . n] to [1 . . r], the function associating to each position the value
of the corresponding letter in the word (canonically numbered from 1 to r). For
instance, letX = {a, b, c, d, r} and take the letters ofX canonically numbered as
a1 = a, . . . , a5 = r; for the wordw = ‘abracadabra’, the table giving the position-
to-letter mapping is

(
a b r a c a d a b r a
1 2 3 4 5 6 7 8 9 10 11
1 2 5 1 3 1 4 1 2 5 1

)
,

which is itself determined by its sequence of preimages:

a=a1︷ ︸︸ ︷
{1, 4, 6, 8, 11},

b=a2︷ ︸︸ ︷
{2, 9},

c=a3︷︸︸︷
{5} ,

d=a4︷︸︸︷
{7} ,

r=a5︷ ︸︸ ︷
{3, 10} .

(In this particular case, all preimages are nonempty, but this need not always the case.)
The decomposition based on preimages then gives, withU the class of all urns

(18) W ≃ Ur ≡ SEQr{U} =⇒ W (z) = (ez)r = erz,

which yields backWn = rn, as was to be expected. In summary: words over anr-ary
alphabet are equivalent to functions into a set of cardinality r and are described by an
r-fold labelled product.

For the situation where restrictions are imposed on the number of occurrences of
letters, the decomposition (18) generalizes as follows.

Proposition II.3. Let W(A) denote the family of words such that the number of oc-
currences of each letter lies in a setA. Then

(19) W (A)(z) = α(z)r where α(z) =
∑

a∈A

za

a!
.
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The proof is a one-liner:W(A) ∼= SEQr(SETA(Z)). Though this result is tech-
nically a shallow consequence of the symbolic method, it hasseveral important appli-
cations in discrete probability; see [434, Ch. 8] for a discussion along the lines of the
symbolic method.

EXAMPLE II.8. Restricted words.The EGF of words containingat mostb times each letter,
and that of words containingmorethanb times each letter are

(20) W〈≤b〉(z) = (eb(z))
r , W〈>b〉(z) = (ez − eb(z))

r ,

respectively. (Observe the analogy with Example 6.) Takingb = 1 in the first formula gives the
number ofn–arrangements ofr elements (i.e., of ordered combinations ofn elements amongstr
possibilities),

(21) n! [zn](1 + z)r = n!

 
r

n

!
= r(r − 1) · · · (r − n+ 1),

as anticipated; takingb = 0, but now in the second formula, gives back the number ofr-
surjections. For generalb, the generating functions of (20) contain valuable information on the
least frequent and most frequent letter in random words. . . .. . . . . END OF EXAMPLE II.8. �

EXAMPLE II.9. Random allocations (balls-in-bins model).Throw at randomn distinguishable
balls intom distinguishable bins. A particular realization is described by a word of lengthn
(balls are distinguishable, say, as numbers from 1 ton) over an alphabet of cardinalitym (rep-
resenting the bins chosen). Let Min and Max represent the size of the least filled and most filled
bins, respectively. Then4,

(22)
P{Max ≤ b} = n! [zn]eb

“ z
m

”m

P{Max > b} = n! [zn]
“
ez/m − eb

“ z
m

””m

.

The justification of this formula relies on the easy identity

(23)
1

mn
[zn]f(z) ≡ [zn]f(

z

m
),

and on the fact that a probability is determined as the ratio between the number of favourable
cases (given by (20)) and the total number of cases (mn). The formulæ of (22) lend themselves
to evaluation using symbolic manipulations systems; for instance, withm = 100 andn = 200,
one finds forP(Max = k), wherek = 2, 4, 5, . . ., the values:

2 4 5 6 7 8 9 12 15 20
10−55 1.4 · 10−3 0.17 0.46 0.26 0.07 0.01 9.2 · 10−5 2.3 · 10−7 4.7 · 10−10

The valuesk = 5, 6, 7, 8 concentrate about 99% of the probability mass.
An especially interesting case is whenm andn are asymptotically proportional, that is,

n/m = α andα lies in a compact subinterval of(0,+∞). In that case, with probability
tending to 1 asn tends to infinity, one has

Min = 0, Max∼ log n

log log n
.

In other words, there are almost surely empty urns (in fact many of them, see Example 9 in
Chapter III) and the most filled urn grows logarithmically insize. Such probabilistic prop-
erties are best established by complex analytic methods (especially the saddle point method

4We letP(E) represent the probability of an eventE andE(X) the expectation of the random vari-
ableX; cf APPENDIXC: Random variables, p. 717.
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detailed in Chapter VIII) based on exact generating representations like (20) and (22). They
form the core of the reference book [316] by Kolchin, Sevastyanov, and Chistyakov. The re-
sulting estimates are in turn invaluable in the analysis of hashing algorithms [242, 307, 434]
to which the balls-in-bins model has been recognized to apply with great accuracy [347].
END OF EXAMPLE II.9. �

� II.6. Number of different letters in words.The probability that a random word of lengthn
over an alphabet of cardinalityr containsk different letters is

p
(r)
n,k :=

1

rn

 
r

k

!(
n

k

)
k!

(Choosek letters amongstr, then split then positions intok distinguished nonempty classes.)
The quantityp(r)

n,k is also the probability that a random mapping from[1 . . n] to [1 . . r] has an
image of cardinalityk. �

� II.7. Arrangements.An arrangementof sizen is an ordered combination of (some) elements
of [1 . . n]. LetA be the class of all arrangements. Grouping together all the possible elements
not present in the arrangement into an urn shows that a specification and its companion EGF
are

A ≃ U ⋆ P , U = SET{Z}, P = SEQ{Z} =⇒ A(z) =
ez

1− z .

The counting sequenceAn =
Pn

k=0
n!
k!

starts as1, 2, 5, 16, 65, 326, 1957 (EISA000522); see
also Comtet [98, p. 75]. �

Birthday paradox and coupon collector problem.The next two examples illus-
trate applications of EGFs to two classical problems of probability theory, thebirthday
paradoxand thecoupon collector problem. Assume that there is a very long line of
persons ready to enter a very large room one by one. Each person is let in and de-
clares her birthday upon entering the room. How many people must enter in order
to find two that have the same birthday? The birthday paradox is the counterintuitive
fact that on average a birthday collision takes place as early asn

.
= 24. Dually, the

coupon collector problem asks for the average number of persons that must enter in
order to exhaust all the possible days in the year as birthdates. In this case, the an-
swer is the rather large numbern′ .

= 2364. The term “coupon collection” alludes
to the situation where images or coupons of various sorts areinserted in sales items
and some premium is given to those who succeed in gathering a complete collection.
The birthday problem and the coupon collector problem are relative to a potentially
infinite sequence of events; however, the fact that the first birthday collision or the
first complete collection occurs at any fixed timen only involves finite events. The
following diagram illustrates the events of interest:

-

INJECTIVE SURJECTIVE

B (1st collision) C (complete collection)n = 0

n→ +∞/////////////////////////////////

In other words, we seek the time at which injectivityceasesto hold (the first birthday
collision, B) and the time at which surjectivitybeginsto be satisfied (a complete
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collection,C). In what follows, we consider a year withr days (readers from earth
may taker = 365) and letX represent an alphabet withr letters (the days in the year).

EXAMPLE II.10. Birthday paradox.LetB be the time of the first collision, which is a random
variable ranging between 2 andr+ 1 (where the upperbound derives from the pigeonhole prin-
ciple). A collision has not yet occurred at timen, if the sequence of birthdatesβ1, . . . , βn has
no repetition. In other words, the functionβ from [1 . . n] toX must be injective; equivalently,
β1, . . . , βn is ann-arrangement ofr objects. Thus, we have the fundamental relation

(24)

P {B > n} =
r(r − 1) · · · (r − n+ 1)

rn

=
n!

rn
[zn](1 + z)r

= n! [zn]
“
1 +

z

r

”r

,

where the second line repeats (21) and the third results fromthe series transformation (23).
The expectation of the random variableB is elementarily

(25) E(B) =
∞X

n=0

P {B > n} ,

this by virtue of a general formula valid for all discrete random variables (APPENDIX C: Ran-
dom variables, p. 717). From (24), line 1, this gives us a sum expressing theexpectation,
namely,

E(B) = 1 +
rX

n=1

r(r − 1) · · · (r − n+ 1)

rn
.

For instance, withr = 365, one finds that the expectation is the rational number,

E(B) =
12681 · · · 06674
51517 · · · 40625

.
= 24.61658,

where the denominator comprises as much as 864 digits.
An alternative form of the expectation derives from the generating function involved in (24),

line 3. Letf(z) =
P

n fnz
n be an entire function with nonnegative coefficients. Then the for-

mula

(26)
∞X

n=0

fnn! =

Z ∞

0

e−tf(t) dt,

is valid provided either the sum or the integral on the right converges. The reason is the usual
Eulerian representation of factorials,

n! =

Z ∞

0

e−ttn dt.

Applying this principle to (25) with the probabilities given by (24) (third line), one finds

(27) E(B) =

Z ∞

0

e−t

„
1 +

t

r

«r

dt.

This last form is easily amenable to asymptotic analysis andthe Laplace method5 (see APPEN-
DIX B: Laplace’s method, p. 700) provides the estimation

(28) E(B) =

r
πr

2
+

2

3
+O(r−1/2),

5Knuth [306, Sec. 1.2.11.3] uses this calculation as a pilot example for(real) asymptotic analysis; the
quantityE(B) is related to Ramanujan’sQ-function (see also Eq. (45) below) byE(B) = 1 +Q(r).



II. 3. SURJECTIONS, SET PARTITIONS, AND WORDS 107

0

5

10

15

20

20 40 60 80

(letter chosen)

(time of arrival)

FIGURE II.5. A sample realization of the “birthday paradox” and “coupon collection”
with an alphabet ofr = 20 letters. The first collision occurs at timeB = 6 while the
collection becomes complete at timeC = 87.

asr tends to infinity. For instance, the asymptotic approximation given by the first two terms
of (28) is24.61119, which represents a relative error of only2 · 10−4.

The interest of such integral representations based on generating function is that they are
robust: they adjust naturally to many kinds of combinatorial conditions. For instance, the ex-
pected time necessary for the first occurrence of the event “b persons have the same birthday”
is found to have expectation given by the integral

(29) I(r, b) :=

Z ∞

0

e−teb−1

„
t

r

«r

dt.

(The basic birthday paradox corresponds tob = 2.) The formula (29) was first derived by
Klamkin and Newman in 1967; their paper [293] shows in addition that

I(r, b) ∼
r→∞

b
√
b! Γ

„
1 +

1

b

«
r1−1/b,

where the asymptotic form evaluates to 82.87 forr = 365 and b = 3, while the exact
value of the expectation is 88.73891. Thus three-way collisions also tend to occur much
sooner than one might think, with about 89 persons on average. Globally, such develop-
ments illustrate the versatility of the symbolic approach to many basic probabilistic problems.
END OF EXAMPLE II.10. �

� II.8. The probability distribution of time till a birthday collision. Elementary approximations
show that, for larger, and in the “central” regimen = t

√
r, one has

P(B > t
√
r) ∼ e−t2/2, P(B = t

√
r) ∼ 1√

r
te−t2/2.

The continuous probability distribution with densityte−t2/2 is called aRayleigh distribution.
Saddle point methods (Chapter VIII) may be used to show that for the first occurrence of a

b-fold birthday collision:P(B > tr1−1/b) ∼ e−tb/b!. �



108 II. LABELLED STRUCTURES AND EGFS

EXAMPLE II.11. Coupon collector problem.This problem is dual to the birthday paradox.
We ask for the first timeC whenβ1, . . . , βC contains all the elements ofX , that is, all the
possible birthdates have been “collected”. In other words,the event{C ≤ n} means the
equality between sets,{β1, . . . , βn} = X . Thus, the probabilities satisfy

(30)

P {C ≤ n} =
R

(r)
n

rn
=

r!
˘

n
r

¯

rn

=
n!

rn
[zn] (ez − 1)r

= n![zn]
“
ez/r − 1

”r

,

by our earlier enumeration of surjections. The complementary probabilities are then

P {C > n} = 1− P {C ≤ n} = n![zn]
“
ez −

“
ez/r − 1

”r”
.

An application of the Eulerian integral trick of (27) then provides a representation of the expec-
tation of the time needed for a full collection as

(31) E(C) =

Z ∞

0

“
1− (1− e−t/r)r

”
dt.

A simple calculation (expand by the binomial theorem and integrate termwise) shows that

E(C) = r
rX

j=1

 
r

j

!
(−1)j−1

j
,

which constitutes a first answer to the coupon collector problem in the form of an alternating
sum. Alternatively, in (31), perform the change of variables v = 1 − e−t/r, then expand and
integrate termwise; this process provides the more tractable form

(32) E(C) = rHr,

whereHr is the harmonic number:

Hr = 1 +
1

2
+

1

3
+ · · ·+ 1

r
.

Formula (32) is by the way easy to interpret directly6: one needs on average1 = r/r trials to
get the first day, thenr/(r − 1) to get a different day, etc.

Regarding (32), one has available the well-known formula (by comparing sums with inte-
grals or by Euler-Maclaurin summation),

Hr = log r + γ +
1

2r
+O(r−2), γ

.
= 0.57721 56649,

whereγ is known as Euler’s constant. Thus, the expected time for a full collection satisfies

(33) E(C) = r log r + γr +
1

2
+O(r−1).

Here the “surprise” lies in the nonlinear growth of the expected time for a full collection. For
a year on earth,r = 365, the exact expected value is

.
= 2364.64602 while the approximation

provided by the first three terms of (33) yields2364.64625, representing a relative error of only
one in ten millions.

6Such elementary derivations are very much problem specific:contrary to the symbolic method, they
do not usually generalize to more complex situations.
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As usual, the symbolic treatment adapts to a variety of situations, for instance, to multiple
collections. The expected time till each item (birthday or coupon) is obtainedb times (the
standard case corresponds tob = 1) equals the quantity

J(r, b) =

Z ∞

0

“
1−

“
1− eb−1(t/r)e

−t/r
”r”

dt,

an expression that vastly generalizes (31). From there, onefinds [372]

J(r, b) = r (log r + (b− 1) log log r + γ − log(b− 1)! + o(1)) ,

so that only a few more trials are needed in order to obtain additional collections. END OF EXAMPLE II.11. �

� II.9. The little sister.The coupon collector has a little sister to whom he gives his duplicates.
Foata, Lass, and Han [218] show that the little sister misses on averageHr coupons when her
big brother first obtains a complete collection. �

� II.10. The probability distribution of time till a complete collection. The saddle point method
(Chapter VIII) may be used to prove that, in the regimen = r log r + tr:

lim
t→∞

P(C ≤ r log r + tr) = e−e−t

.

This continuous probability distribution is known adouble exponential distribution. For the
timeC(b) till a collection of multiplicity b, one has

lim
t→∞

P (C(b) < r log r + (b− 1)r log log r + tr) = exp(−e−t/(b− 1)!),

a property known as the Erdős-Rényi law, which finds applications in the study of random
graphs [154]. �

Words as both labelled and unlabelled objects.What distinguishes a labelled
structure from an unlabelled one? There is nothing intrinsic there, and everything is in
the eye of the beholder—or rather in the type of constructionadopted when modelling
a specific problem. Take the class of wordsW over an alphabet of cardinalityr. The
two generating functions (an OGF and an EGF respectively),

Ŵ (z) ≡
∑

n

Wnz
n =

1

1 − rz
and W (z) ≡

∑

n

Wn
zn

n!
= erz,

leading in both cases toWn = rn, correspond to two different ways of constructing
words: the first one directly as an unlabelled sequence, the other one as a labelled
power of letter positions. A similar situation arises forr–partitions, for which we
found as OGF and EGF,

Ŝ(r)(z) =
zr

(1 − z)(1 − 2z) · · · (1 − rz)
and S(r)(z) =

(ez − 1)r

r!
,

by viewing these either as unlabelled structures (an encoding via words of a regular
language, see Section I.4.3) or directly as labelled structures.
� II.11. Balls switching chambers: the Ehrenfest2 model. Consider a system of two chambers
A andB (also classically called “urns”). There areN distinguishable balls, and, initially,
chamberA contains them all. At any instant1

2
, 3

2
, . . ., one ball is allowed to change from one

chamber to the other. LetE[ℓ]
n be the number of possible evolutions that lead to chamberA

containingℓ balls at instantn andE[ℓ](z) the corresponding EGF. Then

E[ℓ](z) =

 
N

ℓ

!
(cosh z)ℓ(sinh z)N−ℓ, E[N](z) = (cosh z)N ≡ 2−N (ez + e−z)N .
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[Hint: the EGFE[N] enumerates mappings where each preimage has an even cardinality.] In
particular the probability that urnA is again full at time2n is

1

2NN2n

NX

k=0

 
N

k

!
(N − 2k)2n.

This famous model was introduced by Paul and Tatiana Ehrenfest [148] in 1907, as a simplified
model of heat transfer. It helped resolve the apparent contradiction between irreversibility in
thermodynamics (the caseN →∞) and recurrence of systems undergoing ergodic transforma-
tions (the caseN < ∞). See especially Mark Kac’s discussion [288]. The analysis can also
be carried out by combinatorial methods akin to those of weighted lattice paths: see Note V.22,
p. 313 and [245]. �

II. 4. Alignments, permutations, and related structures

In this section, we start by considering specifications built by piling up two con-
structions, sequences-of-cycles and sets-of-cycles respectively. They define a new
class of objects, alignments, while serving to specify permutations in a novel way
as detailed below. (These specifications otherwise parallel surjections and set parti-
tions.) Permutations are in this context examined under their cycle decomposition,
the corresponding enumerative results being the most important ones combinatorially
(Subsection II. 4.1). In Subsection II. 4.2, we recapitulate the meaning of classes that
can be defined iteratively by a combination of any two nested labelled constructions.

II. 4.1. Alignments and Permutations. The two specifications under consider-
ation here are

(34) O = SEQ{CYC{Z}}, and P = SET{CYC{Z}},
defining new objects called alignments (O) and an important decomposition of per-
mutations (P).

Alignments. An alignment is a well-labelled sequence of cycles. LetO be the
class of all alignments. Schematically, one can visualize an alignment as a collection
of directed cycles arranged in a linear order, somewhat likeslices of a sausage fastened
on a skewer:

The symbolic method provides,

O = SEQ{CYC{Z}} =⇒ O(z) =
1

1 − log(1 − z)−1
,

and the expansion starts as

O(z) = 1 + z + 3
z2

2!
+ 14

z3

3!
+ 88

z4

4!
+ 694

z5

5!
+ · · · ,
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A permutation may be viewed as asetof cycles that are labelled circular digraphs. The diagram
shows the decomposition of the permutation

σ =

„
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
11 12 13 17 10 15 14 9 3 4 6 2 7 8 1 5 16

«
.

(Cycles read here clockwise andi is connected toσi by an edge in the graph.)

FIGURE II.6. The cycle decomposition of permutations.

but the coefficients (EIS A007840: “ordered factorizations of permutations into cy-
cles”) appear to admit of no simple form.

Permutations and cycles.From elementary mathematics, it is known that a per-
mutation admits a unique decomposition into cycles. Letσ = σ1 . . . σn be a permu-
tation. Start with any element, say1, and draw a directed edge from 1 toσ(1), then
continue connecting toσ2(1), σ3(1), and so on; a cycle containing 1 is obtained after
at mostn steps. If one repeats the construction, taking at each stagean element not yet
connected to earlier ones, the cycle decomposition of the permutationσ is obtained.
This argument shows that the class of sets-of-cycles (corresponding toP in (34)) is
isomorphic to the class of permutations as defined in SectionII. 1:

P = SET{CYC{Z}} ∼= SEQ{Z}.
This combinatorial isomorphism is reflected by the obvious series identity

P (z) = exp

(
log

1

1 − z

)
=

1

1 − z
.

The property that exp and log are inverse of one another is an analytic reflex of the
combinatorial fact that permutations uniquely decompose into cycles!

As regards combinatorial applications, what is especiallyfruitful is the variety of
specializations of the construction of permutations from cycles. We state:

Proposition II.4. LetP(A,B) be the class of permutations with cycle lengths inA ⊆
Z>0 and with a number of cycles that belongs toB ⊆ Z≥0. The corresponding EGF
is

P (A,B)(z) = β(α(z)) where α(z) =
∑

a∈A

za

a
, β(z) =

∑

b∈B

zb

b!
.

EXAMPLE II.12. Stirling cycle numbers.The number of permutations of sizen comprised
of r cycles is determined by the explicit generating function, to the effect that

(35) P (r)
n =

n!

r!
[zn]

„
log

1

1− z

«r

.
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These numbers are fundamental quantities of combinatorialanalysis. They are known as the
Stirling numbers of the first kind, or better, according to a proposal of Knuth, theStirling cycle
numbers. Together with the Stirling partition numbers, the properties of the Stirling cycle num-
bers are explored in the book by Graham, Knuth, and Patashnik[248] where they are denoted
by
ˆ
n
r

˜
. See APPENDIX A: Stirling numbers, p. 680. (Note that the number of alignments

formed withr cycles isr!
ˆ
n
r

˜
.) As we shall see shortly (p. 130) Stirling numbers also surface in

the enumeration of permutations by their number of records.
It is also of interest to determine what happens regarding cycles in a random permutation of

sizen. Clearly, when the uniform distribution is placed over all elements ofPn, each particular
permutation has probability exactly1/n!. Since the probability of an event is the quotient of
the number of favourable cases over the total number of cases, the quantity

pn,k :=
1

n!

"
n

k

#

is the probability that a random element ofPn hask cycles. This probabilities can be effectively
determined for moderate values ofn from (35) by means of a computer algebra system. Here
are for instance selected values forn = 100:

k : 1 2 3 4 5 6 7 8 9 10
pn,k : 0.01 0.05 0.12 0.19 0.21 0.17 0.11 0.06 0.03 0.01

.

For this valuen = 100, we expect in a vast majority of cases the number of cycles to be in the
interval [1, 10]. (The residual probability is only about0.005.) Under this probabilistic model,
the mean is found to be about5.18. Thus:A random permutation of size 100 has on average a
little more than 5 cycles; it rarely has more than 10 cycles.

Such procedures demonstrate a direct exploitation of symbolic methods. They do not
however tell us how the number of cycles could depend onn asn varies. Such questions are to
be examined systematically in Chapter III. Here, we shall content ourselves with a brief sketch.
First, form the bivariate generating function,

P (z, u) :=

∞X

r=0

P (r)(z)ur,

and observe that

P (z, u) =
∞X

r=0

ur

r!

„
log

1

1− z

«r

= exp

„
u log

1

1− z

«

= (1− z)−u.

Newton’s binomial theorem then provides

[zn](1− z)−u = (−1)n

 
−u
n

!
.

In other words, a simple formula

(36)
nX

k=0

"
n

k

#
uk = u(u+ 1)(u+ 2) · · · (u+ n− 1)

encodes precisely all the Stirling cycle numbers corresponding to a fixed value ofn. From there,
the expected number of cycles,µn :=

P
k kpn,k is easily found (use logarithmic differentiation

of (36)),

µn = Hn = 1 +
1

2
+ · · ·+ 1

n
.
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In particular, one hasµ100 ≡ H100
.
= 5.18738. In general:The mean number of cycles in a ran-

dom permutation of sizen grows logarithmically withn,µn ∼ log n. END OF EXAMPLE II.12. �

EXAMPLE II.13. Involutions and permutations without long cycles.A permutationσ is an
involution if σ2 = Id with Id the identity permutation. Clearly, an involution can have only
cycles of sizes1 and2. The classI of all involutions thus satisfies

(37) I = SET{CYC1,2{Z}} =⇒ I(z) = exp

„
z +

z2

2

«
.

The explicit form of the EGF lends itself to expansion,

In =

⌊n/2⌋X

k=0

n!

(n− 2k)!2kk!
,

which solves the counting problem explicitly. Apairing is an involution without fixed point.
In other words, only cycles of length 2 are allowed, so that

J = SET(CYC2(Z)) =⇒ J(z) = ez2/2, J2n = 1 · 3 · 5 · · · (2n− 1).

(The formula forJn, hence that ofIn, can be checked by a direct reasoning.)
Generally, the EGF of permutations, all of whose cycles (in particular the largest one) have

length at most equal tor satisfies

B(r)(z) = exp

 
rX

j=1

zj

j

!
.

The numbersb(r)
n = [zn]B(r)(z) satisfy the recurrence

(n+ 1)b
(r)
n+1 = (n+ 1)b(r)

n − b(r)
n−r,

by which they can be computed fast. This gives access to the statistics of the longest cycle in a
permutation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . END OF EXAMPLE II.13. �

EXAMPLE II.14. Derangements and permutations without short cycles.Classically, a de-
rangement is defined as a permutation without fixed points, i.e., σi 6= i for all i. Given an
integerr, anr–derangement is a permutation all of whose cycles (in particular the shortest one)
have length larger thanr. LetD(r) be the class of allr–derangements. A specification is

(38) D(r) = SET{CYC>r{Z}},
the corresponding EGF being then

(39) D(r)(z) = exp

 X

j>r

zj

j

!
=

exp(−Pr
j=1

zj

j
)

1− z .

For instance, whenr = 1, a direct expansion yields

D
(1)
n

n!
= 1− 1

1!
+

1

2!
− · · ·+ (−1)n

n!
,

a truncation of the series expansion ofexp(−1) that converges fast toe−1. Phrased differently,
the enumeration of derangements is a famous combinatorial problem with a pleasantly quaint
nineteenth century formulation [98]: “A number n of people go to opera, leave their hats on
hooks in the cloakroom and grab them at random when leaving; the probability that nobody gets
back his own hat is asymptotic to1/e, which is nearly 37%”. (The usual proof uses an inclusion-
exclusion argument. Also, it is a sign of changing times thatMotwani and Raghavan [370, p. 11]
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All perms Derangements
1

1− z
e−z

1− z

Involutions Pairings

ez+z2/2 ez2/2

Shortest cycle> r

exp
“
− z

1
− z2

2
− · · · − zr

r

”

1− z

Longest cycle≤ r
exp

“
z
1

+ z2

2
+ · · ·+ zr

r

”

FIGURE II.7. A summary of major EGFs related to permutations.

describe the problem as one of sailors that return in a state of inebriation and choose random
cabins to sleep in.) For the generalized derangement problem, there holds, for any fixedr,

(40)
D

(r)
n

n!
∼ e−Hr ,

as is proved easily by complex asymptotic methods (Chapter IV). END OF EXAMPLE II.14. �

Like several other structures that we have been consideringpreviously, permu-
tation allow for transparent connections between structural constraints and the forms
of generating functions. The major counting results encountered in this section are
summarized in Figure 7.
� II.12. Permutations such thatσf = Id. Such permutations are “roots of unity” in the
symmetric group. Their EGF is

exp

0
@X

d | f

zd

d

1
A ,

where the sum extends to all divisorsd of f . �

� II.13. Parity constraints in permutations.The EGFs of permutations having only even size
cycles (E(z)) or odd size cycles (O(z)) are

E(z) = exp

„
1

2
log

1

1− z2

«
=

1√
1− z2

, O(z) = exp

„
1

2
log

1 + z

1− z

«
=

r
1 + z

1− z .

From the EGFs, one findsE2n = (1 · 3 · 5 · · · (2n− 1))2, O2n = E2n, O2n+1 = (2n +
1)E2n.

The EGFs of permutations having an even number of cycles (E∗(z)) and an odd number
of cycles (O∗(z)) are

E∗(z) = cosh(log
1

1− z ) =
1

2

1

1− z+
1

2
−z

2
, O∗(z) = sinh(log

1

1− z ) =
1

2

1

1− z−
1

2
+
z

2
,

so that parity of the number of cycles is evenly distributed amongst permutations of sizen
as soon asn ≥ 2. The generating functions obtained in this way are analogous to the ones
appearing in the discussion of “Comtet’s square” in the previous section. �

� II.14. A hundred prisoners I.This puzzle originates with a paper of Gál and Miltersen [224,
499]. A hundred prisoners, each uniquely identified by a number between 1 and 100, have
been sentenced to death. The director of the prison gives them a last chance. He has a cabinet
with 100 drawers (numbered 1 to 100). In each, he’ll place at random a card with a prisoner’s
number (all numbers different). Prisoners will be allowed to enter the room one after the other
and open, then close again, 50 drawers of their own choosing,but will not in any way be allowed
to communicate with one another. The goal of each prisoner isto locate the drawer that contains
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his own number. Ifall prisoners succeed, then they will all be spared; if at least one fails, they
will all be executed.

There are two mathematicans amongst the prisoners. The firstone, a pessimist, declares
that their overall chances of success are only of the order of1/2100 .

= 8 · 10−31. The second
one, a combinatorialist, claims he has a strategy for the prisoners, which has more than 30%
chances of success. Who is right? [Note III.9, p. 165 provides a solution, but our gentle reader
is advised to reflect on the problem for a few moments, before she jumps there.] �

II. 4.2. Second level structures.Consider the three basic constructors of la-
belled sequence (SEQ), set (SET), and cycle (CYC). We can play the formal game
of examining what the various combinations produce as combinatorial objects. Re-
stricting attention to superpositions of two constructors(an external one applied to an
internal one) gives nine possibilities summarized by the following table:

ext.\int. SEQ≥1 SET≥1 CYC

SEQ

Labelled compositions (L)

SEQ◦SEQ

1− z
1− 2z

Surjections (R)

SEQ◦SET

1

2− ez

Alignments (O)

SEQ◦CYC

1

1− log(1− z)−1

SET

Fragmented permutations (F)

SET◦SEQ

ez/(1−z)

Set partitions (S)

SET◦SET

eez−1

Permutations (P)

SET◦CYC

1

1− z

CYC

Supernecklaces (SI)

CYC ◦SEQ

log
1− z
1− 2z

Supernecklaces (SII)

CYC ◦SET

log(2− ez)−1

Supernecklaces (SIII )

CYC ◦CYC

log
1

1− log(1− z)−1

The classes of surjections, alignments, set partitions, and permutations appear
naturally as SEQ◦ SET, SEQ◦ CYC, SET ◦ SET, and SET ◦ CYC (top right corner).
The other ones represent essentially nonclassical objects. The case ofL corresponding
to SEQ◦ SEQ describes objects that are (ordered) sequences of linear graphs; this can
be interpreted as permutations with separators inserted, e.g,53|264|1, or alternatively
as integer compositions with a labelling superimposed, so thatLn = n! 2n−1. The
classF = SET{SEQ≥1{Z}} corresponds to unordered collections of permutations;
in other words, “fragments” are obtained by breaking a permutation into pieces (pieces
must be nonempty for definiteness). The interesting EGF is

F (z) = ez/(1−z) = 1 + z + 3
z2

2!
+ 13

z3

3!
+ 73

z4

4!
+ · · · ,

(EISA000262: “sets of lists”). The corresponding asymptotic analysis serves to illus-
trate an important aspect of the saddle point method in Chapter VIII. What we termed
“supernecklaces” in the last row represents cyclic arrangements of composite objects
existing in three brands.
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All sorts of refinements, of which Figure 7 may give an idea, are clearly possible.
We leave to the reader’s imagination the task of determiningwhich amongst the level 3
structures may be of combinatorial interest. . .
� II.15. A meta-exercise: Counting specifications of leveln. The algebra of constructions
satisfies the combinatorial isomorphism SET{CYC{X}} ∼= SEQ{X} for all X . How many
different terms involvingn constructions can be built from three symbols CYC,SET,SEQ sat-
isfying a semi-group law (‘◦’) together with the relation SET◦CYC = SEQ? This determines
the number of specifications of leveln. [Hint: the OGF is rational as normal forms correspond
to words with an excluded pattern.] �

II. 5. Labelled trees, mappings, and graphs

In this section, we consider labelled trees as well as other important structures that
are naturally associated with them, namely mappings and functional graphs on one
side, graphs of small excess on the other side. Like in the unlabelled case considered
in Section I. 6, the corresponding combinatorial classes are inherently recursive, the
case of trees being typical since a tree is obtained by appending a root to a collection
(set, sequence) of subtrees. From there, it is possible to build the graphs associated
to mappings from a finite set to itself, as these decompose as sets of connected com-
ponents that are cycles of trees. Variations of these construction finally open access
to the enumeration of graphs having a fixed excess of the number of edges over the
number of vertices.

II. 5.1. Trees. The trees to be studied here are invariably labelled, so thatnodes
bear distinct integer labels. Unless otherwise specified, they are rooted, meaning as
usual that one node is distinguished as the root. Labelled trees, like their unlabelled
counterparts, exist in two varieties:(i) plane trees where an embedding in the plane
is understood (or, equivalently, subtrees dangling from a node are ordered, say, from
left to right);(ii) nonplane trees where no such embedding is imposed (such trees are
then nothing but connected undirected acyclic graphs with adistinguished root). Trees
may be further restricted by the additional constraint thatthe node outdegrees should
belong to a fixed setΩ ⊆ Z≥0 whereΩ ∋ 0.

&
1

2

3

4

5

67

( 3, 2, 5, 1, 7, 4, 6)

FIGURE II.8. A labelled plane tree is determined by an unlabelled tree (the “shape”)
and a permutation of the labels1, . . . , n.
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FIGURE II.9. There areT1 = 1, T2 = 2, T3 = 9, and in generalTn = nn−1 Cayley
trees of sizen.

Plane labelled trees.We first dispose of the plane variety of labelled trees. Let
A be the set of (rooted labelled) plane trees constrained byΩ. This family is specified
by

A = Z ⋆ SEQΩ{A},
whereZ represents the atomic class consisting of a single labellednode:Z = {1}.
The sequence construction appearing here reflects the planar embedding of trees, as
subtrees stemming from a common root are ordered between themselves. Accord-
ingly, the EGFA(z) satisfies

A(z) = zφ(A(z)) where φ(u) =
∑

ω∈Ω

uω.

This is exactly the same equation as the one satisfied by theordinary GF of Ω-
restrictedunlabelledplane trees (see Proposition I.5). Thus,1

n!An is the number
of unlabelled trees. In other words:in the plane rooted case, the number of labelled
trees equalsn! times the corresponding number of unlabelled trees.As illustrated by
Figure 8, this is easily understood combinatorially: each labelled tree can be defined
by its “shape” that is an unlabelled tree and by the sequence of node labels where
nodes are traversed in some fixed order (preorder, say). Finally, one has, by Lagrange
inversion,

An = n![zn]A(z) = (n− 1)![un−1]φ(u)n.

This simple analytic–combinatorial relation enables us totranspose all of the enumer-
ative results of Section I.5.1 to plane labelled trees (uponmultiplying the evaluations
byn!, of course). In particular, the total number of “general” plane labelled trees (with
no degree restriction imposed, i.e.,Ω = Z≥0) is

n! × 1

n

(
2n− 2

n− 1

)
=

(2n− 2)!

(n− 1)!
= 2n−1 (1 · 3 · · · (2n− 3)) .

The corresponding sequence starts as1, 2, 12, 120, 1680 and isEISA001813.

Nonplane labelled trees.We next turn to labelled nonplane trees (Figure 9) to
which the rest of this section will be devoted. The classT of all such trees is definable
by a symbolic equation, which provides an implicit equationsatisfies by the EGF:

(41) T = Z ⋆ SET{T } =⇒ T (z) = zeT (z).

There the set construction translates the fact that subtrees stemming from the root are
not ordered between themselves. From the specification (41), the EGFT (z) is defined
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implicitly by the “functional equation”

(42) T (z) = zeT (z).

The first few values are easily found, for instance by the method of indeterminate
coefficients,

T (z) = z + 2
z2

2!
+ 9

z3

3!
+ 64

z4

4!
+ 625

z5

5!
+ · · · .

As suggested by the first few coefficients(9 = 32, 64 = 43, 625 = 54), the general
formula is

(43) Tn = nn−1

which is established (like in the case of plane unlabelled trees, Chapter I) by the La-
grange Inversion Theorem (see APPENDIX A: Lagrange Inversion, p. 677).

The enumerative resultTn = nn−1 is a famous one, attributed to the prolific
British mathematician Arthur Cayley (1821–1895) who had keen interest in combina-
torial mathematics and published altogether over 900 papers and notes. Consequently,
formula (43) given by Cayley in 1889 is often referred to as “Cayley’s formula” and
unrestricted nonplane labelled trees are often called “Cayley trees”. See [54, p. 51] for
a historical discussion. The functionT (z) is also known as the (Cayley) “tree func-
tion”; it is a close relative of theW–function [100] defined implicitly byWeW = z,
which was introduced by the Swiss mathematician Johann Lambert (1728–1777) oth-
erwise famous for first proving the irrationality of the numberπ.

A similar process gives the number of (nonplane rooted) trees where all (out)degrees
of nodes are restricted to lie in a setΩ. This corresponds to the specification:

T (Ω) = Z ⋆ SETΩ{T (Ω)} =⇒ T (Ω)(z) = zφ(T (Ω)(z)) whereφ(u) =
∑

ω∈Ω

uω

ω!
.

What the last formula involves is the “exponential characteristic” of the degree se-
quence (as opposed to the ordinary characteristic, in the planar case). It is once more
amenable to Lagrange inversion. In summary:

Proposition II.5. The number of rooted nonplane trees, where all nodes have their
outdegree inΩ, is

T (Ω)
n = (n− 1)![un−1](φ(u))n where φ(u) =

∑

ω∈Ω

uω

ω!
.

In particular, when all node degrees are allowed (Ω ≡ Z≥0), the number of trees is
Tn = nn−1 and its EGF is the Cayley tree function satisfyingT (z) = zeT (z).

� II.16. Prüfer’s bijective proofs of Cayley’s formula.The simplicity of Cayley’s formula calls
for a combinatorial explanation. The most famous one is due to Prüfer (in 1918). It establishes
as follows a bijective correspondence between unrooted Cayley trees whose number isnn−2 for
sizen and sequences(a1, . . . , an−2) with 1 ≤ aj ≤ n for eachj. Given an unrooted treeτ ,
remove the endnode (and its incident edge) with the smallestlabel; leta1 denote the label of
the node that was joined to the removed node. Continue with the pruned treeτ ′ to geta2 in a
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similar way. Repeat the construction of the sequence until the tree obtained only consists of a
single edge. For instance:

1

3

7

4 8
2

5

6

−→ (4, 8, 4, 8, 8, 4).

It can be checked that the correspondence is bijective; see [54, p. 53] or [364, p. 5]. �

� II.17. Forests.The number of unorderedk–forests (i.e.,k–sets of trees) is

F (k)
n = n![zn]

T (z)k

k!
=

(n− 1)!

(k − 1)!
[un−k](eu)n =

 
n− 1

k − 1

!
nn−k,

as follows from Bürmann’s form of Lagrange inversion. �

� II.18. Labelled hierarchies. The classL of labelled hierarchies is formed of trees whose
internal nodes are unlabelled and are constrained to have outdegree larger than 1, while leaves
have labels attached to them. Like for other labelled structures, size is the number of labels (so
that internal nodes do not contribute). Hierarchies satisfy the specification

L = Z + SET≥2{L}, =⇒ L = z + eL − 1− L.
This happens to be solvable in terms of the Cayley function:L(z) = T ( 1

2
ez/2−1/2) + z

2
− 1

2
.

The first few values are0, 1, 4, 26, 236 (EISA000311): these numbers count phylogenetic trees
(used to describe the evolution of a genetically related group of organisms) and correspond to
Schröder’s “fourth problem”; see [98, p. 224] and Note I.42, p. 68, for unlabelled analogues.

The class of binary (labelled) hierarchies defined by the additional fact that internal nodes
can have degree 2 only is expressed by

M = Z + SET2{M} =⇒ M(z) = 1−
√

1− 2z and Mn = 1 · 3 · · · (2n− 3),

where the counting numbers are now the odd factorials. �

II. 5.2. Mappings and functional graphs. Let F be the class of mappings (or
“functions”) from [1 . . n] to itself. A mappingf ∈ [1 . . n] 7→ [1 . . n] can be repre-
sented by a directed graph over the set of vertices[1 . . n] with an edge connectingx
to f(x), for all x ∈ [1 . . n]. The graphs so obtained are calledfunctional graphsand
they have the characteristic property that the outdegree ofeach vertex is exactly equal
to 1.

Mappings and associated graphs.Given a mapping (or function)f , upon start-
ing from any pointx0, the succession of (directed) edges in the graph traverses the
vertices corresponding to iterated values of the mapping,

x0, f(x0), f(f(x0)), . . . .

Since the domain is finite, each such sequence must eventually loop on itself. When
the operation is repeated starting each time from an elementnot previously hit, the
vertices group themselves into components. This leads to another characterization
of functional graphs (Figure 10):A functional graph is a set of connected functional
graphs. A connected functional graph is a collection of rooted trees arranged in a
cycle.
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Thus, withT being as before the class of all Cayley trees, and withK the class of
all connected functional graphs, we have the specification:

(44)






F = SET{K}
K = CYC{T }
T = Z ⋆ SET{T }

=⇒






F (z) = eK(z)

K(z) = log
1

1 − T (z)

T (z) = zeT (z).

What is especially interesting here is a specification binding three types of related
structures. From Equation (44), the EGFF (z) is found to satisfyF = (1 − T )−1. It
can be checked from there, by Lagrange inversion once again,that we have

Fn = nn,

as was to be expected (!) from the origin of the problem. More interestingly, Lagrange
inversion also provides for the number of connected functional graphs (expandlog(1−
T )−1 and recover coefficients by Bürmann’s form):

(45) Kn = nn−1Q(n) where Q(n) := 1 +
n− 1

n
+

(n− 1)(n− 2)

n2
+ . . . .

The quantityQ(n) that appears in (45) is a famous one that surfaces in many prob-
lems of discrete mathematics (including the birthday paradox, Equation (27)). Knuth
has proposed to call it “Ramanujan’sQ–function” as it already appears in the first let-
ter of Ramanujan to Hardy in 1913. The asymptotic analysis can be done elementarily
by developing a continuous approximation of the general term and approximating the
resulting Riemann sum by an integral: this is an instance of the Laplace method for
sums briefly explained in APPENDIX B: Laplace’s method, p. 700. (See also [306,
Sec. 1.2.11.3] and [434, Sec. 4.7].) In fact, very precise estimates come out naturally
from an analysis of the singularities of the EGFK(z), as we shall see in Chapters VI
and VII. The net result is

Kn ∼ nn

√
π

2n
,

26

1

2

3

4

567

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

FIGURE II.10. A functional graph of sizen = 26 associated to the mappingϕ such
thatϕ(1) = 16, ϕ(2) = ϕ(3) = 11, ϕ(4) = 23, and so on.
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so that a fraction about1/
√
n of all the graphs consist of a single component.

Constrained mappings.As is customary with the symbolic method, the construc-
tions (44) also lead to a large number of related counting results. First, the mappings
without fixed points, ((∀x) f(x) 6= x) and those without1, 2–cycles, (additionally,
(∀x) f(f(x)) 6= x), have EGFs

e−T (z)

1 − T (z)
,

e−T (z)−T 2(z)/2

1 − T (z)
.

The first equation is consistent with what a direct count yields, namely(n − 1)n,
which is asymptotic toe−1nn, so that the fraction of mappings without fixed point is
asymptotic toe−1. The second one lends itself easily to complex-asymptotic methods
that give

n![zn]
e−T−T 2/2

1 − T
∼ e−3/2nn,

and the proportion is asymptotic toe−3/2. These two particular estimates are of the
same form as what has been found for permutations (the generalized derangements,
Eq. (40)). Such facts that are not quite obvious by elementary probabilistic arguments
are in fact neatly explained by the singular theory of combinatorial schemas developed
in Part B of this book.

Next, idempotent mappings satisfyingf(f(x)) = f(x) for all x correspond to
I ∼= SET{Z ⋆ SET{Z}}, so that

I(z) = ezez

and In =

n∑

k=0

(
n

k

)
kn−k.

(The specification translates the fact that idempotent mappings can have only cycles
of length 1 on which are grafted sets of direct antecedents.)The latter sequence
is EIS A000248, which starts as 1,1,3,10,41,196,1057. An asymptotic estimate can
be derived either from the Laplace method or, better, from the saddle point method
exposed in Chapter VIII.

Several analyses of this type are of relevance to cryptography and the study of
random number generators. For instance, the fact that a random mapping over[1 . . n]
tends to reach a cycle inO(

√
n) steps led Pollard to design a Monte Carlo integer

factorization algorithm, see [307, p. 371] and [434, Sec 8.8]. The algorithm once
suitably optimized first led to the factorization of the Fermat numberF8 = 228

+ 1
obtained by Brent in 1980.
� II.19. Binary mappings.The classBF of binary mappings, where each point has either 0
or 2 preimages, is specified by

BF = SET{K}, K = CYC{P}, P = Z ⋆ B, B = Z ⋆ SET0,2{B}
(planted treesP and binary treesB are needed), so that

BF (z) =
1√

1− 2z2
, BF2n =

((2n)!)2

2n(n!)2
.

The classBF is an approximate model of the behaviour of (modular) quadratic functions under
iteration. See [14, 198] for a general enumerative theory of random mappings including degree-
restricted ones. �
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All mappings
1

1− T

Partial

eT

1− T

Injective partial
1

1− z e
z/(1−z)

Surjection
1

2− ez

Bijection
1

1− z
Connected (K)

log
1

1− T

No fixed point

e−T

1− T

Involution

ez+z2/2

Idempotent

ezez

Binary
1√

1− 2z2

FIGURE II.11. A summary of various counting EGFs relative to mappings.

� II.20. Partial mappings.A partial mapping may be undefined at some points, where it can
be considered as taking a special value,⊥. The iterated preimages of⊥ form a forest, while
the remaining values organize themselves into a standard mapping. The classPF of partial
mappings is thus specified byPF = SET{T } ⋆ F , so that

PF (z) =
eT (z)

1− T (z)
and PFn = (n+ 1)n.

This construction lends itself to all sorts of variations. For instance, the classPFI of injective
partial maps is described as sets of chains of linear and circular graphs,PFI = SET{CYC{Z}+
SEQ≥1{Z}}, so that

PFI(z) =
1

1− z e
z/(1−z), PFIn =

nX

i=0

i!

 
n

i

!2

(This is a symbolic rewriting of part of the paper [62].) �

The symbolic method thus gives access to a wide variety of counting results rela-
tive to maps satisfying diverse constraints. A summary is offered in Figure 11.

II. 5.3. Labelled graphs. Random graphs form a major chapter of the theory of
random discrete structures [60, 283]. We examine here enumerative results concerning
graphs of low “complexity”, that is, graphs which are very nearly trees. (Such graphs
for instance play an essential rôle in the analysis of earlystages of the evolution of a
random graph, when edges are successively added, as shown in[193, 282].)

Unrooted trees and acyclic graphs.The simplest of all connected graphs are
certainly the ones that are acyclic. These are trees, but contrary to the case of Cayley
trees, no root is specified. LetU be the class of allunrootedtrees. Since a rooted tree
(rooted trees are, as we know, counted byTn = nn−1) is an unrooted tree combined
with a choice of a distinguished node (there aren possible such choices for trees of
sizen), one has

Tn = nUn implying Un = nn−2.

At generating function level, this combinatorial equalitytranslates into

U(z) =

∫ z

0

T (w)
dw

w
,

which integrates to give (takeT as the independent variable)

U(z) = T (z)− 1

2
T (z)2.



II. 5. LABELLED TREES, MAPPINGS, AND GRAPHS 123

SinceU(z) is the EGF of acyclic connected graphs, the quantity

A(z) = eU(z) = eT (z)−T (z)2/2,

is the EGF of all acyclic graphs. (Equivalently, these are unordered forests of un-
rooted trees.) Methods developed in Chapters VI and VII imply the estimateAn ∼
e1/2 nn−2. Surprisingly, perhaps, there are barely more acyclic graphs than unrooted
trees—such phenomena are easily explained by singularity analysis.

Unicyclic graphs. Theexcessof a graph is defined as the difference between the
number of edges and the number of vertices. For a connected graph, this quantity
must be at least−1, the minimal value−1 being precisely attained by unrooted trees.
The classWk is the class of connected graphs of excess equal tok; in particular
U = W−1. The successive classesW−1,W0,W1, . . ., may be viewed as describing
connected graphs of increasing complexity.

The classW0 comprises all connected graphs with the number of edges equal
to the number of vertices. Equivalently, a graph inW0 is a connected graph with
exactly one cycle (a sort of “eye”), and for that reason, elements ofW0 are sometimes
referred to as “unicyclic components” or “unicycles”. In a way, such a graph looks
very much like an undirected version of a connected functional graph. Precisely, a
graph ofW0 consists of a cycle of length at least 3 (by definition, graphshave neither
loops nor multiple edges) that is undirected (the orientation present in the usual cycle
construction is killed by identifying cycles isomorphic upto reflection) and on which
are grafted trees (these are implicitly rooted by the point at which they are attached
to the cycle). With UCYC representing the (new) undirected cycle construction, one
thus has

W0
∼= UCYC≥3{T }.

We claim that this construction is reflected by the EGF equation

(46) W0(z) =
1

2
log

1

1 − T (z)
− 1

2
T (z)− 1

4
T (z)2.

Indeed one has the isomorphism

W0 + W0
∼= CYC≥3{T },

since we may regard the two disjoint copies on the left as instantiating two possible
orientations of the undirected cycle. The result of (46) then follows from the usual
translation of the cycle construction. It is originally dueto the Hungarian probabilist
Rényi in 1959. Asymptotically, one finds (by methods of Chapter VI):

(47) n![zn]W0 ∼ 1

4

√
2πnn−1/2 − 5

3
nn−1 +

1

48

√
2πnn−3/2 + · · · .

Finally, the number of graphs made only of trees and unicyclic components is

eW−1(z)+W0(z) =
eT/2−3T 2/4

√
1 − T

,

and asymptotically:n![zn]eW−1+W0 ∼ Γ(3/4)2−1/4e−1/2π−1/2nn−1/4. Such graphs
stand just next to acyclic graphs in order of structural complexity. They are the undi-
rected counterparts of functional graphs encountered in the previous section.
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Unrooted trees U ≡ W−1 = T − T 2/2 Un = nn−2

Acyclic gr. (forests) A = eT−T2/2 An ∼ e1/2nn−2

Unicycles W0 = 1
2

log 1
1−T
− T

2
− T2

4
W0,n ∼ 1

4

√
2πnn−1/2

Trees + unicycles B =
eT/2−3T2/4

√
1− T Bn ∼ Γ(

3

4
)
2−1/4

√
πe

nn−1/4

Conn. excessk Wk =
Pk(T )

(1− T )3k
Wk,n ∼ Pk(1)

√
2π

23k/2Γ( 3
4
k)
nn+(3k−1)/2

FIGURE II.12. A summary of major enumeration results relative to labelledgraphs of
small excess.

� II.21. 2-Regular graphs.This is based on Comtet’s account [98, Sec. 7.3]. A 2–regular graph
is an undirected graph in which each vertex has degree exactly 2. Connected 2–regular graphs
are thus undirected cycles of lengthn ≥ 3, so that the EGF of all 2–regular graphs is

R(z) =
e−z/2−z2/4

√
1− z .

Givenn straight lines in general position, a cloud is defined to be a set ofn intersection points
no three being collinear. Clouds and 2–regular graphs are equinumerous. [Hint: Use duality.]
The asymptotic analysis will serve as a leading example of the singularity analysis process in
Chapter VI (Examples VI.1, p. 363 and VI.2, p. 378).

The general enumeration ofr–regular graphs becomes somewhat more difficult as soon
asr > 2. Algebraic aspects are discussed in [234, 244] while Bender and Canfield [31] have
determined the asymptotic formula (forrn even),

R(r)
n ∼

√
2e(r

2−1)/4 rr/2

er/2r!
nrn/2,

for the number ofr–regular graphs of sizen. �

Graphs of fixed excess.The previous discussion suggests considering more gen-
erally the enumeration of connected graphs according to excess. E. M. Wright made
important contributions in this area [507, 508, 509] that are revisited in the famous
“giant paper on the giant component” by Janson, Knuth, Łuczak, and Pittel [282].
Wright’s result are summarized by the following proposition.

Proposition II.6. The EGFWk(z) of connected graphs with excess (of edges over
vertices) equal tok is, for k ≥ 1, of the form

(48) Wk(z) =
Pk(T )

(1 − T )3k
, T ≡ T (z),

wherePk is a polynomial of degree3k + 2. For any fixedk, asn→ ∞, one has

(49) Wk,n = n![zn]Wk(z) =
Pk(1)

√
2π

23k/2Γ
(

3
2k
)nn+(3k−1)/2

(
1 +O(n−1/2)

)
.

The combinatorial part of the proof (see Note 22 below) is an interesting exercise
in graph surgeryand symbolic methods. The analytic part of the statement follows
straightforwardly from singularity analysis. The polynomialsP (T ) and the constants
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Pk(1) are determined by an explicit nonlinear recurrence; one finds for instance:

W1 =
1

24

T 4(6 − T )

(1 − T )3
, W2 =

1

48

T 4(2 + 28T − 23T 2 + 9T 3 − T 4)

(1 − T )6
.

� II.22. Wright’s surgery. The full proof of Proposition II.6 by symbolic methods requires
the notion of pointing in conjunction with multivariate generating function techniques of Chap-
ter III. It is convenient to definewk(z, y) := ykWk(zy), which is a bivariate generating
function withy marking the number of edges. Pick up an edge in a connected graph of excess
k + 1, then remove it. This results either in a connected graph of excessk with two pointed
vertices (and no edge in between) or in two connected components of respective excessh and
k − h, each with a pointed vertex. Graphically:

= +

This translates into the differential recurrence on thewk (∂x := ∂
∂x

),

2∂ywk+1 =
`
z2∂2

zwk − 2y∂ywk

´
+

k+1X

h=−1

(z∂zwh) · (z∂zwk−h) ,

and similarly forWk(z) = wk(z, 1). From there, it can be verified by induction that eachWk

is a rational function ofT ≡ W−1. (See Wright’s original papers [507, 508, 509] or [282] for
details.) �

As explained in the giant paper [282], such results combined with complex ana-
lytic techniques provide with great detail information on the aspect of a random graph
Γ(n,m) with n nodes andm edges. In the sparse case wherem is of the order ofn,
one finds the following properties to hold “with high probability” (w.h.p.)7, that is,
with probability tending to 1 asn→ ∞ .

• Form = µn, with µ < 1
2 , the random graphΓ(m,n) has w.h.p. only tree

and unicycle components; the largest component is w.h.p. ofsizeO(log n).
• For m = 1

2n + O(n2/3), w.h.p. there appear one or several semi-giant
components that have sizeO(n2/3).

• Form = µn, with µ > 1
2 , there is w.h.p. a unique giant component of size

proportional ton.

In each case, refined estimates follow from a detailed analysis of corresponding gen-
erating functions, which is a main theme of [193] and especially [282]. Raw forms
of these results were first obtained by Erdős and Rényi who launched the subject in a
famous series of papers dating from 1959–60; see the books [60, 283] for a probabilis-
tic context and the paper [32] for the finest counting estimates available. In contrast,
the enumeration ofall connected graphs (irrespective of the number of edges, thatis,
without excess being taken into account) is a relatively easy problem treated in the
next section. Many other classical aspects of the enumerative theory of graphs are
covered in the bookGraphical Enumerationby Harary and Palmer [259].

7Synonymous expressions are “asymptotically almost surely” (a.a.s) and “in probability”. The term
“almost surely” is sometimes used, though it lends itself toconfusion with properties of continuous
measures.
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II. 6. Additional constructions

Like in the unlabelled case, pointing and substitution are available in the world
of labelled structures (Section II. 6.1), and implicit definitions enlarge the scope of
the symbolic method (Section II. 6.2). The inversion process needed to enumerate
implicit structures is even simpler, since in the labelled universe sets and cycles have
more concise translations as operators over EGF. Finally, and this departs significantly
from Chapter I, the fact that integer labels are naturally ordered makes it possible to
take into account certain order properties of combinatorial structures (Section??).

II. 6.1. Pointing and substitution. The pointing operation is entirely similar to
its unlabelled counterpart since it consists in distinguishing one atom amongst all the
ones that compose an object of sizen. The definition of composition for labelled
structures is however a bit more subtle as it requires singling out “leaders” in sub-
stituends.

Pointing. Thepointingof a classB is defined by

A = ΘB iff An = [1 . . n]× Bn.

In other words, in order to generate an element ofA, select one of then labels and
point at it. Clearly

An = n · Bn =⇒ A(z) = z
d

dz
B(z).

Substitution (composition).The compositionor substitutioncan be defined so
that it correspondsa priori to composition of generating functions. It is formally
defined as

B ◦ C =

∞∑

k=0

Bk × SETk{C},

so that its EGF is
∞∑

k=0

Bk
(C(z))k

k!
= B(C(z)).

A combinatorial way of realizing this definition and form an arbitrary object ofB ◦ C,
is as follows. First select an element ofβ ∈ B called the “base” and letk = |β| be
its size; then pick up ak–set ofCk; the elements of thek–set are naturally ordered
by value of their “leader” (the leader of an object being by convention the value of
its smallest label); the element with leader of rankr is then substituted to the node
labelled by valuer of β.

Theorem II.3. The combinatorial constructions of pointing and substitution are ad-
missible.

A = ΘB =⇒ A(z) = z∂zB(z), ∂z ≡ d

dz

A = B ◦ C =⇒ A(z) = B(C(z)).

For instance, the EGF of (relabelled) pairings of elements drawn fromC is

eC(z)+C(z)2/2,

since the EGF of involutions isez+z2/2.
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� II.23. Standard constructions based on substitutions.The sequence class ofA may be de-
fined by composition asP ◦A whereP is the set of all permutations. The set class ofAmay be
defined asU ◦ A whereU is the class of all urns. Similarly, cycles are obtained by substitution
into circular graphs. Thus,

SEQ(A) ∼= P ◦ A, SET(A) ∼= U ◦ A, CYC(A) ∼= C ◦ A.
In this way, permutation, urns and circle graphs appear as archetypal classes in a development
of combinatorial analysis based on composition. (Joyal’s “theory of species” [286] and the
book by Bergeron, Labelle, and Leroux [39] make a great use of such ideas and show that an
extensive theory of combinatorial enumeration can be basedon the concept of substitution.)�

� II.24. Distinct component sizes.The EGFs of permutations with cycles of distinct lengths
and of set partitions with parts of distinct sizes are

∞Y

n=1

(1 +
zn

n
),

∞Y

n=1

(1 +
zn

n!
).

The probability that a permutation ofPn has distinct cycle sizes tends toe−γ ; see [249,
Sec. 4.1.6] for a Tauberian argument and [400] for precise asymptotics. The corresponding
analysis for set partitions is treated in the seven author paper [295]. �

II. 6.2. Implicit structures. Let X be a labelled class implicitly defined by ei-
ther of the equations

A = B + X , A = B ⋆ X .
Then, solving the corresponding EGF equations leads to

X(z) = A(z) −B(z), X(z) =
A(z)

B(z)
,

respectively. For the composite labelled constructions SEQ,SET,CYC, the algebra is
equally easy.

Theorem II.4 (Implicit specifications). The generating functions associated to the
implicit equations inX

A = SEQ(X ), A = SET(X ), A = CYC(X ),

are respectively

X(z) = 1 − 1

A(z)
, X(z) = logA(z), X(z) = 1 − e−A(z).

EXAMPLE II.15. Connected graphs.In the context of graphical enumerations, the labelled
set construction takes the form of an enumerative formula relating a class of graphsG and the
subclass of its connected graphsK ⊂ G:

G = SET(K) =⇒ G(z) = eK(z).

This basic formula is known in graph theory [259] as theexponential formula.
Consider the classG of all (undirected) labelled graphs, the size of a graph being the

number of its nodes. Since a graph is determined by the choiceof its set of edges, there are
`

n
2

´
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potential edges each of which may be taken in or out, so thatGn = 2(
n
2). LetK ⊂ G be the

subclass of all connected graphs. The exponential formula determinesK(z) implicitly,

K(z) = log

„
1 +

X

n≥1

2(
n
2) z

n

n!

«

= z +
z2

2!
+ 4

z3

3!
+ 38

z4

4!
+ 728

z5

5!
+ · · · ,

where the sequence isEIS A001187. The series is divergent, that is, it has radius of conver-
gence 0. It can nonetheless be manipulated as a formal series(APPENDIX A: Formal power
series, p. 676). Expanding by means oflog(1 + u) = u − u2/2 + · · · , yields a complicated
convolution expression forKn:

Kn = 2(
n
2) − 1

2

X 
n

n1, n2

!
2(

n1
2 )+(n2

2 ) +
1

3

X 
n

n1, n2, n3

!
2(

n1
2 )+(n2

2 )+(n3
2 ) − · · · .

(Thekth term is a sum overn1 + · · ·+nk = n, with 0 < nj < n.) Given the very fast increase
of Gn with n, for instance

2(
n+1

2 ) = 2n 2(
n
2),

a detailed analysis of the various terms of the expression ofKn shows predominance of the first
sum, and, in that sum itself, predominance of the extreme terms corresponding ton1 = n − 1
or n2 = n− 1, so that

(50) Kn = 2(
n
2)
`
1− 2n2−n + o(2−n)

´
.

Thus, almost all labelled graphs of sizen are connected. In addition, the error term decreases
very fast: for instance, forn = 18, an exact computation based on the generating function for-
mula reveals that a proportion only0.0001373291074 of all the graphs are not connected—this
is extremelyclose to the value0.0001373291016 predicted by the main terms in the asymptotic
formula (50). Notice that here good use could be made of a purely divergent generating function
for asymptotic enumeration purposes. . . . . . . . . . . . . . . . . . .. . . . . . END OF EXAMPLE II.15. �

� II.25. Bipartite graphs.A plane bipartite graph is a pair(G,ω) whereG is a labelled graph,
ω = (ωW , ωE) is a bipartition of the nodes (intoWestandEastcategories), and the edges are
such that they only connect nodes fromωW to nodes ofωE. A direct count shows that the EGF
of plane bipartite graphs is

Γ(z) =
X

n

γn
zn

n!
with γn =

X

k

 
n

k

!
2k(n−k).

The EGF of plane bipartite graphs that are connected islog Γ(z).
A bipartite graph is a labelled graph whose nodes can be partitioned into two groups so

that edges only connect nodes of different groups. The EGF ofbipartite graphs is

exp

„
1

2
log Γ(z)

«
=
p

Γ(z).

[Hint. The EGF of a connected bipartite graph is1
2

log Γ(z) as a factor of1
2

kills the East–
West orientation present in a connected plane bipartite graph. See Wilf’s book [496, p. 78] for
details.] �

� II.26. Do two permutations generate the symmetric group?To two permutationsσ, τ of the
same size, associate a graphΓσ,τ whose set vertices isV = [1 . . n], if n = |σ| = |τ |, and
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set of edges is formed of all the pairs(x, σ(x)), (x, τ (x)), for x ∈ V . The probability that a
randomΓσ,τ is connected is

πn =
1

n!
[zn] log

0
@X

n≥0

n!zn

1
A .

This represents the probability that two permutations generate a transitive group (that is for all
x, y ∈ [0 . . n], there exists a composition ofσ, σ−1, τ, τ−1 that mapsx to y). One has

(51) πn ∼ 1− 1

n
− 1

n2
− 4

n3
− 23

n4
− 171

n5
− 1542

n6
− · · · ,

Surprisingly, the coefficients1, 1, 4, 23, . . . [EIS A084357] in (51) enumerate a “third-level”
structure (cf Subsection II. 4.2): SET(SET≥1(SEQ≥1(Z))). Also, one hasn!2πn = (n−1)!In,
whereIn+1 is the number of indecomposable permutations (Example I.17, p. 82).

Let π⋆
n be the probability that two random permutations generate the whole symmetric

group. Then, by a result of Babai based on the classification of groups, the quantityπn − π⋆
n is

exponentially small, so that (51) also applies toπ⋆
n. [Based on Dixon [130].] �

� II.27. Graphs are not specifiable.The class of all graphs does not admit a specification start-
ing from single atoms and involving only sums, products, sets and cycles. Indeed, the growth
of Gn is such that the EGFG(z) has radius of convergence 0, whereas EGFs of constructible
classes must have a nonzero radius of convergence, as provedin Chapter IV. �

II. 6.3. Order constraints. A construction well suited to taking into account
many order properties of combinatorial structures is the modified labelled product,

A = (B2 ⋆ C).

This denotes the subset of the productB ⋆C formed with elements such that the small-
est label is constrained to lie in theB component. (To make this definition consistent,
it must be assumed thatB0 = 0.) We call this binary operation on structures theboxed
product.

Theorem II.5. The boxed product is admissible.

(52) A = (B2 ⋆ C) =⇒ A(z) =

∫ z

0

(∂tB(t)) · C(t) dt, ∂t ≡
d

dt
.

PROOF. The definition of boxed products implies the coefficient relation

An =

n∑

k=1

(
n− 1

k − 1

)
BkCn−k.

The binomial coefficient that appears in the standard labelled product is now modified
since onlyn − 1 labels need to be distributed between the two components,k − 1
going to theB component (that is constrained to contain the label1 already) andn−k
to theC component. From the equivalent form

An =
1

n

n∑

k=0

(
n

k

)
(kBk)Cn−k,

the result follows by taking EGFs. �

A useful special case is the min–rooting operation,

A = {1}2 ⋆ C,
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FIGURE II.13. A numerical sequence of size 100 with records marked by circles: there
are 7 records that occur at times1, 3, 5, 11, 60, 86, 88.

for which a variant definition goes as follows. Take in all possible ways elements
γ ∈ C, prepend an atom with a label smaller than the labels ofγ, for instance0, and
relabel in the canonical way over[1 . . (n+1)] by shifting all label values by 1. Clearly
An+1 = Cn which yields

A(z) =

∫ z

0

C(t) dt,

a result also consistent with the general formula of boxed products.
For some applications, it is easier to impose constraints onthe maximal label

rather than the minimum. The max-boxed product written

A = (B� ⋆ C),

is then defined by the fact the maximum is constrained to lie intheB-component of
the labelled product. Naturally, the translation by an integral in (52) remains valid for
this trivially modified boxed product.
� II.28. Combinatorics of integration.In the perspective of this book, integration by parts has
an immediate interpretation. Indeed, the equality,

Z z

0

A′(t) ·B(t) dt = A(z) ·B(z)−
Z z

0

A(t) ·B′(t) dt,

reads off as:“The smallest label in an ordered pair, if it appears on the left, cannot appear on
the right.” �

EXAMPLE II.16. Records in permutations.Given a sequence of numerical data,x =
(x1, . . . , xn) assumed all distinct, arecord in that sequence is defined to be an elementxj

such thatxk < xj for all k < j. (A record is an element “better” than its predecessors!) Fig-
ure 13 displays a numerical sequence of lengthn = 100 that has 7 records. Confronted to such
data, a statistician will typically want to determine whether the data obey purely random fluctu-
ations or there could be some indications of a “trend” or of a “bias” [108, Ch. 10]. (Think of the
data as reflecting share prices or athletic records, say.) Inparticular, if thexj are independently
drawn from a continuous distribution, then the number of records obeys the same laws as in a
random permutation of[1 . . n]. This statistical preamble then invites the question:How many
permutations ofn havek records?
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First, we start with a special brand of permutations, the ones that have theirmaximumat
the beginning. Such permutations are defined as (‘�’ indicates the boxed product based on the
maximum label)

Q = (Z� ⋆ P),

whereP is the class of all permutations. Observe that this gives theEGF

Q(z) =

Z z

0

„
d

dt
t

«
· 1

1− t dt = log
1

1− z ,

implying the obvious resultQn = (n− 1)! for all n ≥ 1. These are exactly the permutations
with onerecord. Next, consider the class

P(k) = SETk(Q).

The elements ofP(k) are unordered sets of cardinalityk with elements of typeQ. Define
the (max) leader of any component ofP(k) as the value of its maximal element. Then, if we
place the components in sequence, ordered by increasing values of their leaders, then read off
the whole sequence, we obtain a permutation withk records exactly. The correspondence8 is
clearly revertible. Here is an illustration, with leaders underlined:

{(7, 2, 6, 1), (4, 3), (9, 8, 5)} ∼= [(4, 3), (7, 2, 6, 1), (9, 8, 5))]

∼= 4, 3, 7, 2, 6, 1, 9, 8, 5.

Thus, the number of permutations withk records is determined by

P (k)(z) =
1

k!

„
log

1

1− z

«k

, P (k)
n =

"
n

k

#
,

where we recognize Stirling cycle numbers from Example 12. In other words:

The number of permutations of sizen havingk records is counted by the
Stirling “cycle” number

ˆ
n
k

˜
.

Returning to our statistical problem, the treatment of Example 12 p. 112 (to be revisited
in Chapter III) shows that the expected number of records in arandom permutation of sizen
equalsHn, the harmonic number. One hasH100

.
= 5.18, so that for 100 data items, a little

more than 5 records are expected on average. The probabilityof observing 7 records or more
is still about 23%, an altogether not especially rare event.In contrast, observing twice as many
records, that is, 14, would be a fairly strong indication of abias since, on random data, the
event has probability very close to10−4. Altogether, the present discussion is consistent with
the hypothesis for the data of Figure 13 to have been generated independently at random (and
indeed they were). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . END OF EXAMPLE II.16. �

It is possible to base a fair part of the theory of labelled constructions on sums and
products in conjunction with the boxed product. In effect, consider the three relations

F = SEQ{G} =⇒ f(z) =
1

1 − g(z)
, f = 1 + gf

F = SET{G} =⇒ f(z) = eg(z), f = 1 +

∫
g′f

F = CYC{G} =⇒ f(z) = log
1

1 − g(z)
, f =

∫
g′

1

1 − g

8This correspondence can also be viewed as a transformation on permutations that maps the number
of records to the number of cycles—it is known as Foata’s fundamental correspondence [337, Sec. 10.2].
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The last column is easily checked to provide an alternative form of the standard op-
erator corresponding to sequences, sets, and cycles. Each case is then itself deduced
directly from Theorem II.5 and the labelled product rule:

Sequences: they obey the recursive definition

F = SEQ{G} =⇒ F ∼= {ǫ} + (G ⋆ F).

Sets: we have

F = SET{G} =⇒ F ∼= {ǫ} + (G� ⋆ F),

which means that, in a set, one can always single out the component with
the largest label, the rest of the components forming a set. In other words,
when this construction is repeated, the elements of a set canbe canonically
arranged according to increasing values of their largest labels, the “leaders”.
(We recognize here a generalization of the construction used for records in
permutations.)
Cycles: The element of a cycle that contains the largest label can betaken
canonically as the cycle “starter”, which is then followed by an arbitrary
sequence of elements upon traversing the cycle in circular order. Thus

F = CYC{G} =⇒ F ∼= (G� ⋆ SEQ{G}).
Greene [251] has developed a complete framework of labelled grammars based

on standard and boxed labelled products. In its basic form, its expressive power is
essentially equivalent to ours, because of the above relations. More complicated order
constraints, dealing simultaneously with a collection of larger and smaller elements,
can be furthermore taken into account within this framework.
� II.29. Higher order constraints, after Greene.Let the symbols�, ⊡, � represent smallest,
second smallest, and largest labels respectively. One has the correspondences (with∂z = d

dz
)

A =
“
B2 ⋆ C�

”
∂2

zA(z) = (∂zB(z)) · (∂zC(z))

A =
“
B2 � ⋆ C

”
∂2

zA(z) =
`
∂2

zB(z)
´
· C(z)

A =
“
B2 ⋆ C⊡ ⋆D�

”
∂3

zA(z) = (∂zB(z)) · (∂zC(z)) · (∂zD(z)) ,

and so on. These can be transformed into (iterated) integralrepresentations. [See [251] for
more.] �

The next two examples demonstrate the usefulness of min-rooting used in con-
junction with recursion. In this way, trees satisfying someorder conditions can be
constructed and enumerated easily. This is in turn gives access to new characteristics
of permutations.

EXAMPLE II.17. Increasing binary trees and alternating permutations.To each permutation,
one can associate bijectively a binary tree of a special typecalled anincreasing binary treeand
sometimes a heap–ordered tree or a tournament tree. This is aplane rooted binary tree in which
internal nodes bear labels in the usual way, but with the additional constraint that node labels
increase along any branch stemming from the root. Such treesare closely related to classical
data structures of computer science, like heaps and binomial queues.

The correspondence (Figure 14) is as follows: Given a permutation of a set written as a
word,σ = σ1σ2 . . . σn, factor it in the formσ = σL ·min(σ) · σR, with min(σ) the smallest



II. 6. ADDITIONAL CONSTRUCTIONS 133

7

4

2

6

1

3

5

5 7 3 4 1 6 2

FIGURE II.14. A permutation of size 7 and its increasing binary tree lifting.

label value in the permutation, andσL, σR the factors left and right ofmin(σ). Then the binary
treeβ(σ) is defined recursively in the format〈root, left,right〉 by

β(σ) = 〈min(σ), β(σL), β(σR)〉, β(ǫ) = ǫ.

The empty tree (consisting of a unique external node of size0) goes with the empty permutation
ǫ. Conversely, reading the labels of the tree in symmetric (infix) order gives back the original
permutation. (The correspondence is described for instance in Stanley’s book [447, p. 23–25]
who says that “it has been primarily developed by the French”, pointing at [219].)

Thus, the familyI of binary increasing trees satisfies the recursive definition

I = {ǫ}+
`
Z2 ⋆ I ⋆ I

´
,

which implies the nonlinear integral equation for the EGF

I(z) = 1 +

Z z

0

I(t)2 dt.

This equation reduces toI ′(z) = I(z)2 and, under the initial conditionI(0) = 1, it admits the
solutionI(z) = (1 − z)−1. ThusIn = n!, which is consistent with the fact that there are as
many increasing binary trees as there are permutations.

The construction of increasing trees associated with permutations is instrumental in deriv-
ing EGFs relative to various local order patterns in permutations. We illustrate its use here by
counting the number ofup-and-down(or zig-zag) permutations, also known asalternatingper-
mutations. The result, already mentioned in ourInvitation chapter, was first derived by Désiré
André in 1881 by means of a direct recurrence argument.

A permutationσ = σ1σ2 . . . σn is an alternating permutation if

(53) σ1 > σ2 < σ3 > σ4 < · · · ,
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so that pairs of consecutive elements form a succession of ups and downs; for instance,

6

2
3

4

1

7

5

6 2 3 1 7 4 5

Consider first the case of an alternating permutation ofodd size. It can be checked that the
corresponding increasing trees have no one–way branching nodes, so that they consist solely of
binary nodes and leaves. Thus, the corresponding specification is

J = Z +
`
Z2 ⋆ J ⋆ J

´
,

so that

J(z) = z +

Z z

0

J(t)2 dt and
d

dz
J(z) = 1 + J(z)2.

The equation admits separation of variables, which implies(with J(0) = 0)

J(z) = tan(z) = z + 2
z3

3!
+ 16

z5

5!
+ 272

z7

7!
+ · · · .

The coefficientsJ2n+1 are known as thetangent numbersor theEuler numbersof odd index
(EISA000182).

Alternating permutations ofevensize defined by the constraint (53) and denoted byJ can
be determined from

J = {ǫ}+
`
Z2 ⋆ J ⋆ J

´
,

since now all internal nodes of the tree representation are binary, except for the rightmost one
that only branches on the left. Thus,J

′
(z) = tan(z)J(z), and the EGF is

J(z) =
1

cos(z)
= 1 + 1

z2

2!
+ 5

z4

4!
+ 61

z6

6!
+ 1385

z8

8!
+ · · · ,

where the coefficientsJ2n are thesecant numbersalso known as Euler numbers of even index
(EISA000364). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . END OF EXAMPLE II.17. �

Use will be made later in this book (Chapter III, p. 22) of thisimportant tree
representation of permutations as it opens access to parameters like the number of
descents, runs, and (once more!) records in permutations. Analyses of increasing trees
also inform us of crucial performance issues regarding binary search trees, quicksort,
and heap–like priority queue structures [351, 434, 486, 488].
� II.30. Combinatorics of trigonometrics.Interprettan z

1−z
, tan tan z, tan(ez−1) as EGFs

of combinatorial classes. �

EXAMPLE II.18. Increasing Cayley trees and regressive mappings.An increasing Cayley tree
is a Cayley tree (i.e., it is nonplane and rooted) whose labels along any branch stemming from
the root form an increasing sequence. In particular, the minimum must occur at the root, and
no plane embedding is implied. LetK be the class of such trees. The recursive specification is
now

K =
`
Z2 ⋆ SET{K}

´
.
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FIGURE II.15. An increasing Cayley tree (left) and its associated regressive mapping
(right).

The generating function thus satisfies the functional relations

K(z) =

Z z

0

eK(t) dt, K′(z) = eK(z),

withK(0) = 0. Integration ofK′e−K = 1 shows that

K(z) = log
1

1− z and Kn = (n− 1)!.

Thus the number of increasing Cayley trees is(n−1)!, which is also the number of permutations
of sizen − 1. These trees have been studied by Meir and Moon [356] under the name of
“recursive trees”, a terminology that we do not however retain here.

The simplicity of the formulaKn = (n−1)! certainly calls for a combinatorial interpreta-
tion. In fact, an increasing Cayley tree is fully determinedby its child parent relationship (Fig-
ure 15). Otherwise said, to each increasing Cayley treeτ , we associate a partial mapφ = φτ

such thatφ(i) = j iff the label of the parent ofi is j. Since the root of tree is an orphan,
the value ofφ(1) is undefined,φ(1) =⊥; since the tree is increasing, one hasφ(i) < i for
all i ≥ 2. A function satisfying these last two conditions is called aregressive mapping. The
correspondence between trees and regressive mappings is then easily seen to be a bijective one.

Thus regressive mappings on the domain[1 . . n] and increasing Cayley trees are equinu-
merous, so that we may as well useK to denote the class of regressive mappings. Now, a regres-
sive mapping of sizen is evidently determined by a single choice forφ(2) (sinceφ(2) = 1),
two possible choices forφ(3) (either of1, 2), and so on. Hence the formula

Kn = 1 · 2 · 3 · · · (n− 1)

receives a natural interpretation. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . END OF EXAMPLE II.18. �

� II.31. Regressive mappings and permutations.Regressive mappings can be related directly
to permutations. The construction that associates a regressive mapping to a permutation is
called the “inversion table” construction; see [307, 434]. Given a permutationσ = σ1, . . . , σn,
associate to it a functionψ = ψσ from [1 . . n] to [0 . . n− 1] by the rule

ψ(j) = card
˘
k < j

˛̨
σk > σj

¯
.

The functionψ is a trivial variant of a regressive mapping. �
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� II.32. Rotations and increasing trees.An increasing Cayley tree can be canonically drawn
by ordering descendants of each node from left to right according to their label values. The
rotation correspondence (p. 69) then gives rise to a binary increasing tree. Hence, increasing
Cayley trees and increasing binary trees are also directly related. Summarizing this note and
the previous one, we have a quadruple combinatorial connection,

Increasing Cayley tree∼= Regressive mappings∼= Permutations∼= Increasing binary trees,

that opens the way to yet more permutation enumerations. �

II. 7. Perspective

Together with the previous chapter and Figure I.14, this chapter and Figure 16
provide the basis for the symbolic method that is at the core of analytic combinatorics.
The translations of the basic constructions for labelled classes to EFGs could hardly
be simpler, but, as we have seen, they are sufficiently powerful to embrace numerous
classical results in combinatorics, ranging from the birthday and coupon collector
problems to graph enumeration.

The examples that we have considered for second-level structures, trees, map-
pings, and graphs lead to EGFs that are simple to express and natural to generalize.
(Often, the simple form is misleading—direct derivations of many of these EGFs that
do not appeal to the symbolic method can be rather intricate.) Indeed, the symbolic
method provides a framework that allows us to understand thenature of many of these
combinatorial classes. From there, numerous seemingly scattered counting problems
can be organized into broad structural categories and solved in an almost mechanical
manner.

Again, the symbolic method is only half of the story (the “combinatorics” in
analytic combinatorics), leading to EGFs for the counting sequences of numerous
interesting combinatorial classes. While some of these EGFs lead immediately to ex-
plicit counting results, others require the classical techniques in complex analysis and
asymptotic analysis that are covered in Part B (the “analytic” part of analytic combi-
natorics) to deliver asymptotic estimates. Together with these techniques, the basic
constructions, translations, and applications that we have discussed in this chapter re-
inforce the overall message that the symbolic method is a systematic approach that
is successful for addressing classical and new problems in combinatorics, generaliza-
tions, and applications.

We have been focussing onenumeration problems—counting the number of ob-
jects of a given size in a combinatorial class. In the next chapter, we consider how to
extend the symbolic method to help analyse other propertiesof combinatorial classes.

The labelled set construction and the exponential formula were recognized early by re-
searchers working in the area of graphical enumerations [259]. Foata [217] proposed a detailed
formalization in 1974 of labelled constructions, especially sequences and sets, under the names
of partitional complex; a brief account is also given by Stanley in his survey [445]. This is par-
allel to the concept of “prefab” due to Bender and Goldman [34]. The books by Comtet [98],
Wilf [ 496], Stanley [447], or Goulden and Jackson [244] have many examples of the use of
labelled constructions in combinatorial analysis.

Greene [251] has introduced a general framework of “labelled grammars”largely based
on the boxed product with implications for the random generation of combinatorial structures
in his 1983 dissertation. Joyal’s theory of species dating from 1981 (see [286] for the original
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1. The main constructions of union, and product, sequence, set, and cycle for labelled
structures together with their translation into exponential generating functions.

Construction EGF

Union A = B + C A(z) = B(z) + C(z)

Product A = B ⋆ C A(z) = B(z) · C(z)

Sequence A = SEQ{B} A(z) =
1

1 −B(z)

Set A = SET{B} A(z) = exp(B(z))

Cycle A = CYC{B} A(z) = log
1

1 −B(z)

2. The translation for sets, multisets, and cycles of fixed cardinality.

Construction EGF

Sequence A = SEQk{B} A(z) = B(z)k

Set A = SETk{B} A(z) =
1

k!
B(z)k

Cycle A = CYCk{B} A(z) =
1

k
B(z)k

3. The additional constructions of pointing and substitution.

Construction EGF

Pointing A = ΘB A(z) = z d
dzB(z)

Substitution A = B ◦ C A(z) = B(C(z))

4. The “boxed” product.

A = (B2 ⋆ C) =⇒ A(z) =

∫ z

0

(
d

dt
B(t)

)
· C(t) dt.

FIGURE II.16. A “dictionary” of labelledconstructions together with their translation
into exponentialgenerating functions (EGFs). The first constructions are counterparts of
the unlabelled constructions of the previous chapter (the multiset construction is not mean-
ingful here). The translation for composite constructionsof bounded cardinality appears
to be simple. Finally, the boxed product is specific to labelled structures. (Compare with
the unlabelled counterpart, Figure 14 of Chapter I, p. 14.)

article and the book by Bergeron, Labelle, and Leroux [39] for a rich exposition), is based on
category theory; it presents the advantage of uniting in a common theory the unlabelled and the
labelled worlds.
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Flajolet, Salvy, and Zimmermann have developed a specification language closely related
to the system exposed here. They show in [206] how to compile automatically specifications
into generating functions; this is complemented by a calculus that produces fast random gener-
ation algorithms [216].
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Combinatorial Parameters and
Multivariate Generating Functions

Generating functions find averages, etc.
— HERBERTWILF [496]

Je n’ai jamais été assez loin pour bien sentir l’application de l’algèbre à la géométrie. Je
n’aimais point cette manière d’opérer sans voir ce qu’on fait, et il me sembloit que résoudre un

problème de géométrie par les équations, c’étoit jouer un air en tournant une manivelle1.
— JEAN-JACQUESROUSSEAU, Les Confessions, Livre VI
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Many scientific endeavours demand precise quantitative information on probabilis-
tic properties ofparametersof combinatorial objects. For instance, when designing,
analysing, and optimizing a sorting algorithm, it is of interest to determine what the
typical disorder of data obeying a given model of randomnessis, and do so in the
mean, or even in distribution, either exactly or asymptotically. Similar situations arise
in a broad variety of fields, including probability theory and statistics, computer sci-
ence, information theory, statistical physics, and computational biology. The exact
problem is then a refined counting problem with two parameters, namely, size and
additional characteristic: this is the subject addressed in this chapter and treated by a
natural extension of the generating function framework. (The asymptotic problem can
be viewed as one of characterizing in the limit a family of probability laws indexed
by the values of the possible sizes: this is a topic to be discussed in Chapter IX.)
As demonstrated here, the symbolic methods initially developed for counting com-
binatorial objects adapt gracefully to the analysis of various sorts of parameters of
constructible classes, unlabelled and labelled alike.

1“I never went far enough to get a good feel for the applicationof algebra to geometry. I was not
pleased with this method of operating according to the ruleswithout seeing what one does; solving geomet-
rical problems by means of equations seemed like playing a tune by turning a crank.”

139
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Multivariate generating functions(MGFs)—ordinary or exponential—can keep
track of a collection of parameters defined over combinatorial objects. From the
knowledge of such generating functions, there result either explicit probability dis-
tributions or, at least, mean and variance evaluations. Forinherited parameters, all
the combinatorial classes discussed so far are amenable to such a treatment and tech-
nically, the translation schemes that relate combinatorial constructions and multivari-
ate generating functions present no major difficulty—they appear to be natural (no-
tational, even) refinements of the paradigm developed in Chapters I and II for the
univariate case. Typical applications from classical combinatorics are the number of
summands in a composition, the number of blocks in a set partition, the number of
cycles in a permutation, the root degree or path length of a tree, the number of fixed
points in a permutation, the number of singleton blocks in a set partition, the number
of leaves in trees of various sorts, and so on.

Beyond its technical aspects anchored in symbolic methods,this chapter also
serves as a first encounter with the general area of random combinatorial structures.
The general question is:What does a random object of large size look like?Multi-
variate generating functions first provide an easy access tomomentsof combinatorial
parameters—typically the mean and variance. In addition, when combined with basic
probabilistic inequalities, moment estimates often lead to precise characterizations of
properties of large random structures that hold with high probability. For instance, a
large integer partition conforms with high probability to adeterministic profile, a large
random permutation almost surely has at least one long cycleand a few short ones, and
so on. Such a highly constrained behaviour of large objects may in turn serve to design
dedicated algorithms and optimize data structures; or it may serve to build statistical
tests—when does one depart from randomness and detect a “signal” in large sets of
observed data? Randomness aspects form a recurrent theme ofthe book: they will be
developed much further in Chapter IX, where complex-asymptotic methods of Part B
are grafted on the exact modelling by multivariate generating functions presented in
this chapter.

This chapter is organized as follows. First a few pragmatic developments re-
lated to bivariate generating functions, the multivariateparadigm specialized to two
variables, are presented in Section III. 1. Section III. 2 then presents the notion of
bivariate enumeration and its relation to discrete probabilistic models, including the
determination of moments, as the language of elementary probability theory does pro-
vide an intuitively appealing way to conceive of bivariate counting data. The sym-
bolic methodper sedeclined in its general multivariate version is centrally developed
in Sections III. 3 and III. 4: with suitable multi-index notations, the extension of the
symbolic method to the multivariate case is almost immediate. Recursive parame-
ters that often arise in particular from tree statistics form the subject of Section III. 5,
while complete generating functions and associated combinatorial models are dis-
cussed in Section III. 6. Additional constructions like pointing, substitution, and or-
der constraints lead to interesting developments, in particular, an original treatment
of the inclusion-exclusion principle in Section III. 7. Thechapter concludes with Sec-
tion III. 8, which presents a brief abstract discussion of extremal parameters like height
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in trees or smallest and largest components in composite structures— such parameters
are best treated via families of univariate generating functions.

III. 1. An introduction to bivariate generating functions ( BGFs)

We have seen in Chapters I and II that a number sequence(fn) can be encoded
by means of a generating function in one variable, either ordinary or exponential:

(fn) ; f(z) =





∑

n

fnz
n ordinary GF

∑

n

fn
zn

n!
exponential GF.

This encoding is powerful, since many combinatorial constructions admit of a trans-
lation as operations over such generating functions. In this way, one gains access to
many useful counting formulæ.

Similarly, consider a sequence of numbers(fn,k) depending on two integer valued
indices,n andk. Usually, in this book,(fn,k) will be an array of number (often
a triangular array), wherefn,k is the number of objectsϕ in some classF , such
that |ϕ| = n and some parameterχ(ϕ) is equal tok. We can encode this sequence
by means of abivariate generating function (BGF), which involves two variables,z
attached ton andu attached tok.

Definition III.1. Thebivariate generating functions (BGFs), either of the ordinary
or exponential type, of an array(fn,k) are the formal power seriesf(z, u) in two
variables defined by

(fn,k) ; f(z, u) =






∑

n,k

fn,kz
nuk ordinary BGF

∑

n,k

fn,k
zn

n!
uk exponential BGF.

(The case of a “double exponential” GF corresponding tozn

n!
uk

k! is not used in the
book.)

As we shall see shortly, many parameters of constructible classes become acces-
sible through such BGFs. According to the point of view adopted momentarily here,
one starts with an array of numbers and forms a BGF by a double summation pro-
cess. We present here two examples related to binomial coefficients and Stirling cycle
numbers illustrating how such BGFs can be determined, then manipulated. In what
follows it is convenient to refer to thehorizontalandverticalgenerating functions that
are each a one-parameter family of GFs in a single variable defined by

horizontal GF: fn(u) :=
∑

k

fn,ku
k;

vertical GF: f 〈k〉(z) :=
∑

n

fn,kz
n (ordinary case)

f 〈k〉(z) :=
∑

n

fn,k
zn

n!
(exponential case).
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f00 −→ f0(u)

f10 f11 −→ f1(u)

f20 f21 f22 −→ f2(u)
...

...
...

↓ ↓ ↓
f 〈0〉(z) f 〈1〉(z) f 〈2〉(z)

FIGURE III.1. An array of numbers and its associated horizontal and vertical GFs.

The terminology is transparently explained if the elements(fn,k) are arranged as an
infinite matrix, withfn,k placed in rown and columnk, since the horizontal and verti-
cal GFs appear as the GFs of the rows and columns respectively(Figure 1). Naturally,
one has

f(z, u) =
∑

k

ukf 〈k〉(z) =






∑

n

fn(u)zn ordinary BGF

∑

n

fn(u)
zn

n!
exponential BGF.

EXAMPLE III.1. The BGF of binomial coefficients.The binomial coefficient
`

n
k

´
, counts the

binary words of lengthn havingk occurrences of a designated letter; see Figure 2. In order to
compose the bivariate GF, start from the simplest case of Newton’s binomial theorem and form
directly the horizontal GFs corresponding to a fixedn:

(1) Wn(u) :=
nX

k=0

 
n

k

!
uk = (1 + u)n,

Then a summation over all values ofn gives the ordinary BGF

(2) W (z, u) =
X

k,n≥0

 
n

k

!
ukzn =

X

n≥0

(1 + u)nzn =
1

1− z(1 + u)
.

Such calculations are typical of BGF manipulations. What wehave done amounts to starting
from a sequence of numbers, determining the horizontal GFsWn(u) in (1), then the bivariate
GFW (z, u) in (2), according to the scheme:

Wn,k ; Wn(u) ; W (z, u).

Observe that (2) reduces to the OGF(1 − 2z)−1 of binary words, as it should, upon setting
u = 1.

In addition, one can deduce from (2) the vertical GFs of the binomial coefficients corre-
sponding to a fixed value ofk,

W 〈k〉(z) =
X

n≥0

 
n

k

!
zn =

zk

(1− z)k+1
,



III. 1. AN INTRODUCTION TO BIVARIATE GENERATING FUNCTIONS (BGFS) 143

����� �����

����� �����

����� �����

����� �����

����� �����

����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� ����� ����� �����

(0) (1) (2) (3) (4) (5)

FIGURE III.2. The setW5 of the32 binary words over the alphabet{�,�} enumerated
according to the number of occurrences of the letter ‘�’ gives rise to the bivariate counting
sequence{W5,j} = 1, 5, 10, 10, 5, 1.

from an expansion of the BGF with respect tou,

(3) W (z, u) =
1

1− z
1

1− u z
1−z

=
X

k≥0

uk zk

(1− z)k+1
,

and the result naturally matches what a direct calculation would give. END OF EXAMPLE III.1. �

� III.1. The exponential BGF of binomial coefficients.It is

(4) fW (z, u) =
X

k,n

 
n

k

!
uk z

n

n!
=
X

(1 + u)n z
n

n!
= ez(1+u).

The vertical GFs areezzk/k!. The horizontal GFs are(1 + u)n, like in the ordinary case.�

EXAMPLE III.2. The BGF of Stirling cycle numbers.As seen in Chapter II Example 12,
the number of permutations of sizen havingk cycles is the Stirling cycle number

ˆ
n
k

˜
with a

vertical EGF being

P 〈k〉(z) :=
X

n

"
n

k

#
zn

n!
=
L(z)k

k!
, L(z) := log

1

1− z .

From there, the exponential BGF is formed as follows (this revisits some of the calculations on
p. 112):

(5)
P (z, u) :=

X

k

P 〈k〉(z)uk =
X

k

uk

k!
L(z)k = euL(z)

= (1− z)−u.

The simplification is quite remarkable but altogether quitetypical, as we shall see shortly, in the
context of a labelled set construction. The starting point is thus a collection of vertical EGFs
and the scheme is now

P 〈k〉
n ; P 〈k〉(z) ; P (z, u).

Observe that (5) reduces to the EGF of permutations atu = 1.
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Numbers Horizontal GFs 
n

k

!
(1 + u)n

Vertical OGFs Ordinary BGF

zk

(1− z)k+1

1

1− z(1 + u)

Numbers Horizontal GFs"
n

k

#
u(u+ 1) · · · (u+ n− 1)

Vertical EGFs Exponential BGF

1

k!

„
log

1

1− z

«k

(1− z)−u

FIGURE III.3. The various GFs associated to binomial coefficients (left) and Stirling
cycle numbers (right).

In addition, an expansion of the BGF according to the variable z provides a useful infor-
mation, namely, the horizontal GFs by virtue of Newton’s binomial theorem:

(6)
P (z, u) =

X

n≥0

 
n+ u− 1

n

!
zn =

X

n≥0

Pn(u)
zn

n!

where Pn(u) = u(u+ 1) · · · (u+ n− 1).

This last polynomial is called theStirling cycle polynomialof indexn and it describes com-
pletely the distribution of the number of cycles in all permutations of sizen. In addition, note
that the relation

Pn(u) = Pn−1(u)(u+ (n− 1)),

is equivalent to a recurrence
"
n

k

#
= (n− 1)

"
n− 1

k

#
+

"
n− 1

k − 1

#
,

by which Stirling numbers are often defined and easily evaluated numerically; see also AP-
PENDIX A: Stirling numbers, p. 680. (The recurrence is susceptible to a direct combinatorial
interpretation—addn either to an existing cycle or as a “new” singleton.) END OF EXAMPLE III.2. �

Concise expressions for BGFs like (2), (3), (5), or (17) summarized in Figure 3
are precious for deriving moments, variance, and even finer characteristics of distri-
butions, as we see next. The determination of such BGFs can becovered by a simple
extension of the symbolic method along the lines of what was done in Chapters I
and II, as detailed in Sections III. 3 and III. 4.

III. 2. Bivariate generating functions and probability dis tributions

Our purpose in this book is to analyse characteristics of combinatorial structures
of very diverse types. We shall be principally interested inenumeration according to
sizeand an auxiliary parameter, the corresponding problems being naturally treated
by means of BGFs. In order to avoid redundant definitions, it proves convenient to
introduce the sequence offundamental factors(ωn)n≥0, defined by

(7) ωn = 1 for ordinary GFs, ωn = n! for exponential GFs.
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Then, the OGF and EGF of a sequence(fn) are jointly represented as

f(z) =
∑

fn
zn

ωn
and fn = ωn [zn]f(z).

Definition III.2. Given a combinatorial classA, a (scalar) parameteris a function
from A to Z≥0 that associates to any objectα ∈ A an integer valueχ(α). The
sequence

An,k = card
(
{α ∈ A

∣∣ |α| = n, χ(α) = k}
)
,

is called thecounting sequenceof the pairA, χ. Thebivariate generating function
(BGF)ofA, χ is defined as

A(z, u) :=
∑

n,k≥0

An,k
zn

ωn
uk,

and is of ordinary typeif ωn ≡ 1 and of exponential typeif ωn ≡ n!. One says that
the variablez marks sizeand the variableu marks the parameterχ.

NaturallyA(z, 1) reduces to the usual counting generating functionA(z) associ-
ated toA, and the cardinality ofAn is expressible as

An = ωn[zn]A(z, 1).

III. 2.1. Distributions and moments. As indicated in the introduction to this
chapter, the eventual goal of multivariate enumeration is the quantification of prop-
erties present with high regularity in large random structures. Within this section,
we discuss the relationship between probabilistic models needed to interpret bivari-
ate counting sequences and bivariate generating functions. The elementary notions
needed are recalled in APPENDIX A: Combinatorial probability, p. 671.

Consider a combinatorial classA. Theuniform probability distributionoverAn

assigns to anyα ∈ An a probability equal to1/An. We shall use the symbolP to
denote probability and occasionally subscript it with an indication of the probabilistic
model used, whenever this model needs to be stressed: we shall then writePAn (or
simply Pn if A is understood) to indicate probability relative to the uniform distribu-
tion overAn.

Probability generating functions.Consider a parameterχ. It determines over
eachAn a discreterandom variabledefined over the discrete probability spaceAn:

(8) PAn{χ = k} =
An,k

An
=

An,k∑
k An,k

.

Given a discrete random variableX , we recall that itsprobability generating function
(PGF) is the quantity

(9) p(u) =
∑

k

P(X = k)uk,

a generating function whose coefficients are probabilities. From (8) and (9), one has
immediately:
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FIGURE III.4. Histograms of two combinatorial distributions. Left: the number of
occurrences of a designated letter in a random binary word oflength 50 (binomial distri-
bution). Right: the number of cycles in a random permutationof size 50 (Stirling cycle
distribution).

Proposition III.1 (PGFs from BGFs). LetA(z, u) be the bivariate generating func-
tion of a parameterχ defined over a combinatorial classA. The probability generat-
ing function ofχ overAn is given by

∑

k

PAn(χ = k)uk =
[zn]A(z, u)

[zn]A(z, 1)
,

and is thus a normalized version of a horizontal generating function.

The translation into the language of probability enables usto make use of which-
ever intuition might be available in any particular case, while allowing for a nat-
ural interpretation of data (Figure 4). Indeed, instead of noting that the quantity
381922055502195 represents the number of permutations of size 20 that have 10
cycles, it is perhaps more informative to state the probability of the event, which is
0.00015, i.e., about 1.5 per ten thousand. Discrete distributions are conveniently rep-
resented byhistogramsor “bar charts”, where the height of the bar at abscissak indi-
cates the value ofP{X = k}. Figure 4 displays in this way two classical combinatorial
distributions. Given the uniform probabilistic model thatwe have been adopting, such
histograms are eventually nothing but a condensed form of the “stacks” corresponding
to exhaustive listings, like the one displayed in Figure 2.

Moments. Important information is conveyed bymoments. Given a discrete ran-
dom variableX , theexpectationof f(X) is by definition the linear functional

E(f(X)) :=
∑

k

P{X = k} · f(k).

The (power)momentsare

E(Xr) :=
∑

k

P{X = k} · kr.

Then the expectation (or average, mean) ofX , its variance, and its standard deviation
are expressed as

E(X), V(X) = E(X2) − E(X)2, σ(X) =
√

V(X).
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The expectation corresponds to what is typically seen when forming the arithmetic
mean value of a large number of observations: this property is theweak law of large
numbers[161, Ch X]. The standard deviation then measures the dispersionof values
observed from the expectation and it does so in a mean-quadratic sense.

Thefactorial momentdefined for orderr as

E (X(X − 1) · · · (X − r + 1))

is also of interest for computational purposes, since it is obtained plainly by differen-
tiation of PGFs (APPENDIX A: Combinatorial probability, p. 671). Power moments
are then easily recovered as linear combinations of factorial moments, see Note 7 of
Appendix A. In summary:

Proposition III.2 (Moments from BGFs). The factorial moment of orderr of a pa-
rameterχ is determined from the BGFA(z, u) by r-fold differentiation followed by
specialization at 1:

EAn (χ(χ− 1) · · · (χ− r + 1)) =
[zn]∂r

uA(z, u)|u=1

[zn]A(z, 1)
.

In particular, the first two moments satisfy

EAn(χ) =
[zn]∂uA(z, u)|u=1

[zn]A(z, 1)
, EAn(χ2) =

[zn]∂2
uA(z, u)

∣∣
u=1

[zn]A(z, 1)
+

[zn]∂uA(z, u)|u=1

[zn]A(z, 1)
,

the variance and standard deviation being the determined by

V(χ) = σ(χ)2 = E(χ2) − E(χ)2.

PROOF. The PGFpn(u) of χ overAn is given by Proposition III.1. On the other hand,
factorial moments are on general grounds obtained from a PGFby differentiation and
specialization atu = 1 (APPENDIX A: Combinatorial probability, p. 671). The result
follows. �

In other words, the quantities

Ω(k)
n := ωn ·

(
[zn] ∂k

uA(z, u)
∣∣
u=1

)

give, after a simple normalization (byωn · [zn]A(z, 1)), the factorial moments:

E (χ(χ− 1) · · · (χ− k + 1)) =
1

An
Ω(k)

n .

Most notably,Ω(1)
n is thecumulated valueof χ over all objects ofAn:

Ω(1)
n ≡ ωn · [zn] ∂uA(z, u)|u=1 =

∑

α∈An

χ(α) ≡ An · EAn(χ).

Accordingly, the GF (ordinary or exponential) of theΩ
(1)
n is sometimes named thecu-

mulativegenerating function. It can be viewed as an unnormalized generating function
of the sequence of expected values. These considerations explain Wilf’s suggestive
motto quoted on p. 139:

“Generating functions find averages, etc.”

The “etc” is to be interpreted as a token for higher moments.
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� III.2. A combinatorial form of cumulative GFs.One has

Ω(1)(z) ≡
X

n

EAn(χ)An
zn

ωn
=
X

α∈A
χ(α)

z|α|

ω|α|
,

whereωn = 1 (ordinary case) orωn = n! (exponential case). �

EXAMPLE III.3. Moments of the binomial distribution.The binomial distribution of indexn
can be defined as the distribution of the number ofa’s in a random word of lengthn over the
binary alphabet{a, b}. The determination of moments results easily from the ordinary BGF,

W (z, u) =
1

1− z − zu .

By differentiation, one finds

∂r

∂ur
W (z, u)

˛̨
˛̨
u=1

=
r!zr

(1− 2z)r+1
.

Coefficient extraction then gives the form of the factorial moments of orders1, 2, 3, . . . , r as

n

2
,

n(n− 1)

4
,

n(n− 1)(n− 2)

8
, . . . ,

r!

2r

 
n

r

!
.

In particular, the mean and the variance are1
2
n and 1

4
n. The standard deviation is thus1

2

√
n

which is of an order much smaller than the mean: this indicates that the distribution is some-
how concentrated around its mean value, as suggested by Figure 4; see the next subsection for
quantitative estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . END OF EXAMPLE III.3. �

� III.3. De Moivre’s approximation of the Gaussian coefficients.The fact that the mean and
the standard deviation of the binomial distribution are respectively 1

2
n and 1

2

√
n suggests an

examination of what goes on at a distance ofx standard deviations from the mean. Consider for
simplicity the case ofn = 2ν even. From the ratio

r(ν, ℓ) :=

`
2ν

ν+ℓ

´
`
2ν
ν

´ =
(1− 1

ν
)(1− 2

ν
) · · · (1− k−1

ν
)

(1 + 1
ν
)(1 + 2

ν
) · · · (1 + k

ν
)

an estimate of the logarithm shows that for any fixedx ∈ R,

lim
n→∞, ℓ=ν+x

√
ν/2

`
2ν

ν+ℓ

´
`
2ν
ν

´ = e−x2/2.

(Alternatively, Stirling’s formula can be employed.) ThisGaussian approximation for the bi-
nomial distribution was first discovered in 1733 by Abraham de Moivre (1667–1754), a close
friend of Newton. Much more general methods for establishing such approximations form the
subject of Chapter IX. �

EXAMPLE III.4. Moments of the Stirling cycle distribution.Let us return to the example of
cycles in permutations which is of interest in connection with certain sorting algorithms like
bubble sort or insertion sort, maximum finding, andin situ rearrangement [301].

We are dealing with labelled objects, hence exponential generating functions. As seen
earlier on p. 143, the BGF of permutations counted accordingto cycles is

P (z, u) = (1− z)−u.

We havePn = n!, whileωn = n! since the BGF is exponential. (The number of permutations
of sizen beingn!, the combinatorial normalization happens to coincide withthe factor of1/n!
present in all exponential generating functions.)
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By differentiation of the BGF with respect tou, then settingu = 1, we next get the
expected number of cycles in a random permutation of sizen as a Taylor coefficient

(10) En(χ) = [zn]
1

1− z log
1

1− z = 1 +
1

2
+ · · ·+ 1

n
,

which is the harmonic numberHn. Thus, on average, a random permutation of sizen has about
log n+ γ cycles, a well known fact of discrete probability theory, derived on p. 112 by means
of horizontal generating functions.

For the variance, a further differentiation of the bivariate EGF gives

(11)
X

n≥0

En(χ(χ− 1))zn =
1

1− z

„
log

1

1− z

«2

.

From this expression and Note 4 (or directly from the Stirling polynomials), a calculation shows
that

(12) σ2
n =

 
nX

k=1

1

k

!
−
 

nX

k=1

1

k2

!
= log n+ γ − π2

6
+O

„
1

n

«
.

Thus, asymptotically,

σn ∼
p

log n.

The standard deviation is of an order smaller than the mean, and therefore deviations from the
mean have an asymptotically negligible probability of occurrence (see below the discussion of
moment inequalities). Furthermore, the distribution was proved to be asymptotically Gaussian
by V. Gončarov, around 1942, see [240] and Chapter IX. . . . . . . . END OF EXAMPLE III.4. �

� III.4. Stirling cycle numbers and harmonic numbers.By the “exp-log trick” of Chapter I,
the PGF of the Stirling cycle distribution satisfies

1

n!
u(u+ 1) · · · (u+ n− 1) = exp

„
vHn−v

2

2
H(2)

n +
v3

3
H(3)

n + · · ·
«
, u = 1 + v

whereH
(r)
n is the generalized harmonic number

Pn
j=1 j

−r. Consequently, any moment of
the distribution is a polynomial in generalized harmonic numbers, cf (10) and (12). Also, the
kth moment satisfiesEPn(χk) ∼ (log n)k. (The same technique expresses the Stirling cycle
number

ˆ
n
k

˜
as a polynomial in generalized harmonic numbersH

(r)
n−1.)

Alternatively, start from the expansion of(1 − z)−α and differentiate repeatedly with
respect toα; for instance, one has

(1− z)−α log
1

1− z =
X

n≥0

„
1

α
+

1

α+ 1
+ · · ·+ 1

n− 1 + α

« 
n+ α− 1

n

!
zn,

which provides (10) upon settingα = 1, while the next differentiation gives access to (12).�

The situation encountered with cycles in permutations is typical of iterative (non–
recursive) structures. In many other cases, especially when dealing with recursive
structures, the bivariate GF may satisfy complicated functional equations in two vari-
ables (see the example of path length in trees, Section III. 5below) that do not make
them available under an explicit form. Thus, exact expressions for the distributions
are not always available, but asymptotic laws can be determined in a large number of
cases (Chapter IX). In all cases, the BGFs are the central tool in obtaining mean and
variance estimates, since their derivatives instantiatedatu = 1 become univariate GFs
that usually satisfy much simpler relations than the BGFs themselves.
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III. 2.2. Moment inequalities and concentration of distributions. Qualitative-
ly speaking, families of distributions can be classified into two categories:(i) distri-
butions that are spread, i.e., the standard deviation is of order at least as large as the
mean (e.g.the uniform distributions over[0 . . n], which have totally flat histograms,
are spread);(ii) distributions such that the standard deviation is of an order smaller
than the mean. Figure 4 illustrates the phenomena at stake and suggests that both
the Stirling cycle distributions and the binomial distributions belong to the second
category and are somehow concentrated around their mean value. Such informal ob-
servations are indeed supported by the Markov-Chebyshev inequalities, which take
advantage of information provided by the first two moments. (A proof is found in
APPENDIX A: Combinatorial probability, p. 671.)

Markov-Chebyshev inequalities.LetX be a nonnegative random variable
andY an arbitrary real variable. One has for anyt > 0:

P {X ≥ tE(X)} ≤ 1

t
(Markov inequality)

P {|Y − E(Y )| ≥ tσ(Y )} ≤ 1

t2
(Chebyshev inequality).

This result informs us that the probability of being much larger than the mean must
decay (Markov) and that an upperbound on the decay is measured in units given by
the standard deviation (Chebyshev).

The next proposition formalizes a concentration property of distributions. It ap-
plies to afamilyof distributions indexed by the integers.

Proposition III.3 (Concentration of distribution). Consider a family of random vari-
ablesXn, typically, a scalar parameterχ on the subclassAn. Assume that the means
µn = E(Xn) and the standard deviationsσn = σ(Xn) satisfy the condition

lim
n→+∞

σn

µn
= 0.

Then the distribution ofXn is concentratedin the sense that, for anyǫ > 0, there
holds

(13) lim
n→+∞

P

{
1 − ǫ ≤ Xn

µn
≤ 1 + ǫ

}
= 1.

PROOF. It is a direct consequence of Chebyshev’s inequality. �

The concentration property (13) expresses the fact that values ofXn tend to be-
come closer and closer (in relative terms) to the meanµn asn increases. Another figu-
rative way to describe concentration, much used in random combinatorics, is by saying
that “Xn/µn tends to 1 in probability”. When this property is satisfied, the expected
value is in a strong sense a typical value. This fact is an extension of theweak law of
large numbersof probability theory. In that field, the concentration property (13) is
also known asconvergence in probabilityand is then written more concisely:

Xn

µn

P−→ 1.



III. 3. INHERITED PARAMETERS AND ORDINARY MGFS 151

0

0.05

0.1

0.15

0.2

0.25

0.3

0.2 0.4 0.6 0.8 1

FIGURE III.5. Plots of the binomial distributions forn = 5, . . . , 50. The horizon-
tal axis is normalized (by a factor of1/n) and rescaled to1, so that the curves display˘
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= x)
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Concentration properties of the binomial and Stirling cycle distributions. The
binomial distributionis concentrated, since the mean of the distribution isn/2 and
the standard deviation is

√
n/4, a much smaller quantity. Figure 5 illustrates con-

centration by displaying the graphs (as polygonal lines) associated to the binomial
distributions forn = 5, . . . , 50. Concentration is also quite perceptible on simula-
tions asn gets large: the table below describes the results of batchesof ten (sorted)
simulations from the binomial distribution

{
1
2n

(
n
k

)}n

k=0
:

n = 100 39, 42, 43, 49, 50, 52, 54, 55, 55, 57
n = 1000 487, 492, 494, 494, 506, 508, 512, 516, 527, 545
n = 10, 000 4972, 4988, 5000, 5004, 5012, 5017, 5023, 5025, 5034, 5065
n = 100, 000 49798, 49873, 49968, 49980, 49999, 50017, 50029, 50080, 50101, 50284;

the maximal deviations from the mean observed on such samples are 22% (n = 102),
9% (n = 103), 1.3% (n = 104), and 0.6% (n = 105).

Similarly, the mean and variance computations of (10) and (12) imply that the
number of cycles in a random permutation of large size is concentrated.

Finer estimates on distributions form the subject of our Chapter IX dedicated
to limit laws. The reader may get a feeling of some of the phenomena at stake
when re-examining Figure 5: the visible emergence of a continuous curve (the bell
shaped curve) corresponds to a common asymptotic shape for the whole family of
distributions—the Gaussian law.

III. 3. Inherited parameters and ordinary MGFs

We have seen so far basic manipulations of BGFs (Section III.1) as well as their
use in order to determine moments of combinatorial distributions (Section III. 2). In
this section and its labelled counterpart, Section III. 4, we address the question of de-
termining directly BGFs from combinatorial specifications. The answer is provided
by a simple extension of the symbolic method, which is formulated in terms ofmulti-
variate generating functions(MGFs). Such generating functions have the capability of
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taking into account a finite collection (equivalently, a vector) of combinatorial parame-
ters. On the one hand, the theory specializes immediately toBGFs, which correspond
to the particular case of a single (scalar) parameter. On theother hand, it provides
“complete” (multivariate) generating functions discussed in Section III. 6.

III. 3.1. Multivariate generating functions (MGFs). The theory is best devel-
oped in full generality for the joint analysis of a fixed finitecollection of parameters.

Definition III.3. Consider a combinatorial classA. A (multidimensional) parameter
χ = (χ1, . . . , χd) on the class is a function fromA to the setZd

≥0 ofd-tuples of natural
numbers. Thecounting sequenceofA with respect to size and the parameterχ is then
defined by

An,k1,...,kd
= card

{
α
∣∣ |α| = n, χ1(α) = k1, . . . , χd(α) = kd

}
.

We sometimes refer to such a parameter as a “multiparameter”whend > 1, and
a “simple” or “scalar” parameter otherwise. For instance, one may take the classP
of all permutationsσ, and forχj (j = 1, 2, 3) the number of cycles of lengthj in σ.
Alternatively, we may consider the classW of all wordsw over an alphabet with four
letters,{α1, . . . , α4} and take forχj (j = 1, . . . , 4) the number of occurrences of the
letterαj in w, and so on.

Themulti-index conventionemployed in various branches of mathematics greatly
simplifies notations: letu = (u1, . . . , ud) be a vector ofd formal variables andk =
(k1, . . . , kd) be a vector of integers of the same dimension; then, the multi-poweruk

is defined as the monomial

(14) uk := uk1
1 u

k2
2 · · ·ukd

d .

With this notation, we have:

Definition III.4. Let An,k be a multi-index sequence of numbers, wherek ∈ Nd.
The multivariate generating function (MGF)of the sequence of either ordinary or
exponential type is defined as the formal power series

(15)

A(z,u) =
∑

n,k

An,ku
kzn (ordinary MGF)

A(z,u) =
∑

n,k

An,ku
k
zn

n!
(exponential MGF).

Given a classA and a parameterχ, the multivariate generating function (MGF)
of the pair〈A, χ〉 is the MGF of the corresponding counting sequence. In particular,
one has thecombinatorial forms

(16)

A(z,u) =
∑

α∈A
u

χ(α)z|α| (ordinary MGF; unlabelled case)

A(z,u) =
∑

α∈A
u

χ(α) z
|α|

|α|! (exponential MGF; labelled case).

One also says thatA(z,u) is the MGF of the combinatorial class with the formal
variableuj markingthe parameterχj andz markingsize.



III. 3. INHERITED PARAMETERS AND ORDINARY MGFS 153

From the very definition,A(z,1) (with 1 a vector of all 1’s) coincides with the
counting generating function ofA, either ordinary or exponential as the case may be.
One can then view an MGF as a deformation of a univariate GF by way of a (vector)
parameteru, with the property for the multivariate GF to reduce to the univariate
counting GF atu = 1. If all but one of theuj are set to 1, then a BGF results.
Thus, the symbolic calculus that we are going to develop opens full access to BGFs
and hence moments. In fact, it has the capacity of determining the joint probability
distributionof a finite collection of parameters.
� III.5. Specializations of MGFs.The exponential MGF of permutations withu1, u2 marking
the number of 1-cycles and 2-cycles respectively turns out to be

(17) P (z, u1, u2) =
exp

“
(u1 − 1)z + (u2 − 1) z2

2

”

1− z .

(This is to be proved later in this chapter, p. 175.) The formula is checked to be consistent with
three already known specializations derived in Chapter II:(i) settingu1 = u2 = 1 gives back
the counting ofall permutations,P (z, 1, 1) = (1− z)−1, as it should;(ii) settingu1 = 0 and
u2 = 1 gives back the EGF of derangements, namelye−z/(1− z); (iii) settingu1 = u2 = 0
gives back the EGF of permutations with cycles all of length greater than 2,P (z, 0, 0) =

e−z−z2/2/(1− z), a generalized derangement GF. In addition, the specialized BGF

P (z, u, 1) =
e(u−1)z

1− z ,

enumerates permutations according to singleton cycles. This last BGF interpolates between the
EGF of derangements (u = 0) and the EGF of all permutations(u = 1). �

III. 3.2. Inheritance and MGFs. Parameters that areinherited from substruc-
tures can be taken into account by a direct extension of the symbolic method. With
a suitable use of the multi-index conventions, it is even thecase that the translation
rules previously established in Chapters I and II can be copied verbatim. This ap-
proach opens the way to a large quantity of multivariate enumeration results that then
follow automatically by the symbolic method.

Let us consider a pair〈A, χ〉, whereA is a combinatorial class endowed with its
usual size function| · | andχ = (χ1, . . . , χd) is a d-dimensional (multi)parameter.
Write χ0 for size andz0 for the variable marking size (previously denoted byz).
The key point for theoretical developments is to define an extended multiparameter
χ = (χ0, χ1, . . . , χd), that is, we treat size and parameters on an equal basis. Then
the ordinary MGF in (15) assumes an extremely simple and symmetrical form:

(18)

A(z) =
∑

k

Akz
k

=
∑

α∈A
z

χ(α).

There, the indeterminates are the vectorz = (z0, z1, . . . , zd), the indices arek =
(k0, k1, . . . , kd) (wherek0 indexes size, previously denoted byn), and the usual multi-
index convention introduced in (14) is in force,

(19) z
k := zk0

0 zk1
1 · · · zd

kd ,
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but it is now applied to(d+ 1)-dimensional vectors.
Next, we define inherited parameters.

Definition III.5. Let 〈A, χ〉, 〈B, ξ〉, 〈C, ζ〉 be three combinatorial classes endowed
with parameters of the same dimensiond. The parameterχ is said to beinheritedin
the following cases:

• Disjoint union: whenA = B + C, the parameterχ is inherited fromξ, ζ iff
its value is determined by cases fromξ, ζ:

χ(ω) =





ξ(ω) if ω ∈ B
ζ(ω) if ω ∈ C.

• Cartesian product: whenA = B×C, the parameterχ is inherited fromξ, ζ
iff its value is obtained additively from the values ofξ, ζ:

χ(〈β, γ〉) = ξ(β) + ζ(γ).

• Composite constructions: whenA = K{B}, whereK is a metasymbol
representing any ofSEQ,MSET,PSET,CYC, the parameterχ is inherited
fromξ iff its value is obtained additively from the values ofξ on components;
for instance, for sequences:

χ([β1, . . . , βr]) = ξ(β1) + · · · + ξ(βr).

With a natural extension of the notation used for constructions, one shall write

〈A, χ〉 = 〈B, ξ〉 + 〈C, ζ〉, 〈A, χ〉 = 〈B, ξ〉 × 〈C, ζ〉, 〈A, χ〉 = K {〈B, ξ〉} .
This definition of inheritance is seen to be a natural extension of the axioms that

size itself has to satisfy (Chapter I): size of a disjoint union is defined by cases, while
size of a pair, and similarly of a composite construction, isobtained by addition.

Theorem III.1 (Inherited parameters and ordinary MGFs). LetA be a combinatorial
class constructed fromB, C, and letχ be a parameter inherited fromξ defined on
B and (as the case may be) fromζ on C. Then the translation rules of admissible
constructions stated in Theorem I.1 apply provided the multi-index convention(18) is
used. The associated operators on ordinary MGFs are then:

Union: A = B + C =⇒ A(z) = B(z) + C(z)

Product: A = B × C =⇒ A(z) = B(z) · C(z)

Sequence: A = SEQ(B) =⇒ A(z) =
1

1 −B(z)

Cycle: A = CYC(B) =⇒ A(z) =

∞∑

ℓ=1

ϕ(ℓ)

ℓ
log

1

1 −B(zℓ)
.

Multiset: A = MSET(B) =⇒ A(z) = exp

( ∞∑

ℓ=1

1

ℓ
B(zℓ)

)

Powerset: A = PSET(B) =⇒ A(z) = exp

( ∞∑

ℓ=1

(−1)ℓ−1

ℓ
B(zℓ)

)
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PROOF. The verification for sums and products is immediate, given the combinatorial
forms of OGFs. For disjoint unions, one has

A(z) =
∑

α∈A
z

χ(α) =
∑

β∈B
z

ξ(β) +
∑

γ∈C
z

ζ(γ),

as results from the fact that inheritance is defined by cases on unions. For cartesian
products, one has

A(z) =
∑

α∈A
z

χ(α) =
∑

β∈B
z

ξ(β) ×
∑

γ∈C
z

ζ(γ),

as results from the fact that inheritance is defined additively on products.
The translation of composite constructions in the case of sequences, powersets,

and multisets are then built up from the union and product schemes, in exactly the
same manner as in the proof of Theorem I.1. Cycles are dealt with by the methods of
APPENDIX A: Cycle construction, p. 674. �

This theorem is a straightforward extension of the symbolicmethod, but it is im-
portant because it can be applied in a wide range of combinatorial applications. The
reader is especially encouraged to study carefully the treatment of integer composi-
tions below, as it illustrates in its bare bones version the power of the symbolic method
for taking into account combinatorial parameters.

The multi-index notation is a crucial ingredient for developing the general theory
of multivariate enumerations. However, in most cases, we work with only a small
number of parameters, typically one or two. In such cases, weoften use vectors of
variables like(z, u) or (z, u, v), the corresponding monomials being then written as
znuk or znukvℓ. This has the advantage of avoiding unnecessary subscripts.

Integer compositions and marks.The classC of all integer compositions (Chap-
ter I) is specified by

C = SEQ(I), I = SEQ≥1(Z),

whereI is the set of all positive numbers. The corresponding OGFS are

C(z) =
1

1 − I(z)
, I(z) =

z

1 − z
,

so thatCn = 2n−1 (n ≥ 1). Say we want to enumerate compositions according
to the numberχ of summands. One way to proceed, in accordance with the formal
definition of inheritance, is as follows. Letξ be the parameter that takes the constant
value 1 on all elements ofI. The parameterχ on compositions is inherited from the
(almost trivial) parameterξ ≡ 1 defined on summands. The ordinary MGF of〈I, ξ〉
is obviously

I(z, u) = zu+ z2u+ z3u+ · · · =
zu

1 − z
.

LetC(z, u) be the BGF of〈C, χ〉. By Theorem III.1, the schemes translating admis-
sible constructions in the univariate case carry over to themultivariate case, so that

(20) C(z, u) =
1

1 − I(z, u)
=

1

1 − u z
1−z

=
1 − z

1 − z(u+ 1)
.

Et voila!
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Here is an alternative way of arriving at (20), which is important and is of much
use in the sequel. One may regard the enumeration of compositions with respect to
the number of summands as the enumeration of compositions with respect to both
size (i.e., number of atoms) and number ofmarks, where each summand carries a
mark, say ‘µ’, which is an object of size 0. The number of marks is clearlyinherited
from summands to compositions. Then, one has an enriched specification, and its
translation into MGFs,

(21) C = SEQ
(
µSEQ≥1(Z)

)
=⇒ C(z, u) =

1

1 − uI(z)
.

as granted by Theorem III.1 and based on the correspondence:Z 7→ z, µ 7→ u.
This notion of mark when used in conjunction with Theorem III.1 provides access to
many joint parameters, as shown in Example 5 below.

EXAMPLE III.5. Summands in integer compositions.Consider the double parameterχ =
(χ1, χ2) whereχ1 is the number of parts equal to 1 andχ2 the number of parts equal to 2. One
can write down an extended specification, withµ1 a combinatorial mark for summands equal
to 1 andµ2 for summands equal to 2,

(22)
C = SEQ

„
µ1Z + µ2Z2 + SEQ≥3(Z)

«

=⇒ C(z, u1, u2) =
1

1− (u1z + u2z2 + z3(1− z)−1)
,

whereuj (j = 1, 2) records the number of marks of typeµj .
Similarly, letµ mark each summand andµ1 mark summands equal to 1. Then, one has,

(23) C = SEQ

„
µµ1Z+µSEQ≥2(Z)

«
=⇒ C(z, u1, u) =

1

1− (uu1z + uz2(1− z)−1)
,

whereu keeps track of the total number of summands andu1 records the number of summands
equal to 1.

MGFs obtained in this way via the multivariate extension of the symbolic method can then
provide explicit counts, after suitable series expansions. For instance, the number of composi-
tions ofn with k parts is, by (20),

[znuk]
1− z

1− (1 + u)z
=

 
n

k

!
−
 
n− 1

k

!
=

 
n− 1

k − 1

!
,

a result otherwise obtained in Chapter I by direct combinatorial reasoning (the balls-and-bars
model). The number of compositions ofn containingk parts equal to 1 is obtained from the
special caseu2 = 1 in (22),

[znuk]
1

1− uz − z2

(1−z)

= [zn−k]
(1− z)k+1

(1− z − z2)k+1
,

where the last OGF closely resembles a power of the OGF of Fibonacci numbers.
Following the discussion of Section III. 2, such MGFs also carry complete information on

moments. In particular, the cumulated value of the number ofparts in all compositions ofn has
OGF

∂uC(z, u)|u=1 =
z(1− z)
(1− 2z)2

,
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FIGURE III.6. A random composition ofn = 100 represented as a ragged landscape
(top); its associated profile120212310415171101, defined as the partition obtained by sort-
ing the summands (bottom).

as seen from Section III. 2.1, since cumulated values are obtained via differentiation of a BGF.
Therefore, the expected number of parts in a random composition of n is exactly (n ≥ 1)

1

2n−1
[zn]

z(1− z)
(1− 2z)2

=
1

2
(n+ 1).

A further differentiation will give access to the variance.The standard deviation is found to
be 1

2

√
n− 1, which is of an order (much) smaller than the mean. Thus, the distribution of the

number of summands in a random composition satisfies the concentration property asn→∞.

In the same vein, the number of parts equal to a fixed numberr in compositions is deter-
mined by

C = SEQ

„
µZr + SEQ6=r(Z)

«
=⇒ C(z, u) =

„
1−

„
z

1− z + (u− 1)zr

««−1

.

It is then easy to pull out the expected number ofr-summands in a random composition of
sizen. The differentiated form

∂uC(z, u)|u=1 =
zr(1− z)2
(1− 2z)2

gives by partial fraction expansion

∂uC(z, u)|u=1 =
2−r−2

(1− 2z)2
+

2−r−1 − r2−r−2

1− 2z
+ q(z),

for a polynomialq(z) that we do not need to make explicit. Extracting thenth coefficient of the
cumulative GFC′

u(z, 1) and dividing by2n−1 yields the mean number ofr-parts in a random
composition. Another differentiation gives access to the second moment. One finds:

Proposition III.4 (Summands in integer compositions). The total number of summands in a
random composition of sizen has mean1

2
(n+1) and a distribution that is concentrated around

the mean. The number ofr summands in a composition of sizen has mean
n

2r+1
+O(1);

and a standard deviation of order
√
n, which also ensures concentration of distribution.
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Clearly, suitable MGFs can keep track of any finite collection of summand types in compo-
sitions, and the method is extremely general. Much use of this way of envisioning multivariate
enumeration will be made throughout this book. . . . . . . . . . . .. . . . END OF EXAMPLE III.5. �

From the point of view of random structures, the example of summands shows
that random compositions of large size tend to conform to a global “profile”. With
high probability, a composition of sizen should have aboutn/4 parts equal to 1,n/8
parts equal to 2, and so on. Naturally, there are statistically unavoidable fluctuations,
and for any finiten, the regularity of this law cannot be perfect: it tends to fade
away especially as regards to largest summands that arelog2(n) + O(1) with high
probability. (In this region mean and standard deviation both become of the same order
and areO(1), so that concentration no longer holds.) However, such observationsdo
tell us a great deal about what a typical random composition must (probably) look
like—it should conform to a “logarithmic profile”,

1n/4 2n/8 3n/16 4n/32 · · · .

Here are for instance the profiles of two compositions of sizen = 1024 drawn uni-
formly at random:

1250 2138 370 429 515 610 74 80, 91, 1253 2136 368 431 513 68 73 81 91 102

to be compared to the “ideal” profile

1256 2128 364 432 516 68 74 82 91.

It is a striking fact that samples of a very few elements or even justoneelement (this
would be ridiculous by the usual standards of statistics) are often sufficient to illus-
trate asymptotic properties of large random structures. The reason is once more to be
attributed to concentration of distributions whose effectis manifest here. Profiles of a
similar nature present themselves amongst objects defined by the sequence construc-
tion, as we shall see throughout this book. (Establishing such general laws is often
not difficult but it requires the full power of complex-analytic methods developed in
Chapters IV–VIII.)

� III.6. Largest summands in compositions.For anyǫ > 0, with probability tending to 1 as
n→∞, the largest summand in a random integer composition of sizen is of size in the interval
[(1− ǫ) log2 n, (1 + ǫ) log2 n]. (Hint: use the first and second moment methods. More precise
estimates are given in Chapter V.) �

In the sequel, it proves convenient to adopt a simplifying notation, much in the
spirit of our basic convention, where the atomZ is systematically reflected by the
namez of the variable in GFs.

Simplified notation for marks.The same symbol (usuallyu, v, u1, u2 . . .)
is freely employed to designate a combinatorial mark (of size 0) and the
corresponding marking variable in MGFs.

For instance, we allow ourselves to write directly, for compositions,

C = SEQ(uSEQ≥1 Z)), C = SEQ(uu1Z + uSEQ≥2 Z)),
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whereu marks all summands andu1 marks summands equal to 1, giving rise to (21)
and (23). Note that the symbolic scheme of Theorem III.1 invariably applies to enu-
meration according to the number of zero-size marks inserted into specifications.

III. 3.3. Number of components in abstract unlabelled schemas. Consider a
constructionA = K(B), where the metasymbolK designates any standardunlabelled
constructor amongst SEQ,MSET,PSET,CYC. What is sought is the BGFA(z, u) of
classA, with u marking each component. The specification is then of the form

A = K(uB), K = SEQ,MSET,PSET,CYC .

Theorem III.1 applies and yields immediately the BGFA(z, u). In addition, differ-
entiating with respect tou then settingu = 1 provides the GF of cumulated values
(hence, in a non-normalized form, the OGF of the sequence of mean values of the
number of components):

Ω(z) =
∂

∂u
A(z, u)

∣∣∣∣
u=1

.

In summary:
Proposition III.5 (Components in unlabelled schemas). Given a construction,A =
K(B), the BGFA(z, u) and the cumulated GFΩ(z) associated to the number of com-
ponents are given by the following table:

K BGF (A(z, u)) Cumulative OGF(Ω(z))

SEQ :
1

1− uB(z)
A(z)2 · B(z) =

B(z)

(1−B(z))2

PSET :

8
>>><
>>>:

exp

 ∞X

k=1

(−1)k−1 u
k

k
B(zk)

!

∞Y

n=1

(1 + uzn)Bn

A(z) ·
∞X

k=1

(−1)k−1B(zk)

MSET :

8
>>><
>>>:

exp

 ∞X

k=1

uk

k
B(zk)

!

∞Y

n=1

(1− uzn)−Bn

A(z) ·
∞X

k=1

B(zk)

CYC :
∞X

k=1

ϕ(k)

k
log

1

1− ukB(zk)

∞X

k=1

ϕ(k)
B(zk)

1−B(zk)
.

Mean values are then recovered with the usual formula,

EAn(# components) =
[zn]Ω(z)

[zn]A(z)
.

A similar process applies to the number of components of a fixed sizer in anA-object.
� III.7. r-Components in abstract unlabelled schemas.Consider unlabelled structures. The
BGF of the number ofr-components inA = K{B} is given by

A(z, u) = (1−B(z)− (u− 1)Brz
r)−1 , A(z, u) = A(z) ·

„
1− zr

1− uzr

«Br

,

in the case of sequences (K = SEQ) and multisets (K = MSET), respectively. Similar formulæ
hold for the other basic constructions and the cumulative GFs. �
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FIGURE III.7. A random partition of sizen = 100 has an aspect rather different from
the profile of a random composition of the same size (Figure 6).

� III.8. Number of distinct components in a multiset.The specification and the BGF are

Y

β∈B

`
1 + uSEQ≥1(β)

´
=⇒

Y

n≥1

„
1 +

uzn

1− zn

«Bn

,

as follows from first principles. �

As an illustration, we discuss the profile of random partitions (Figure 7).

EXAMPLE III.6. The profile of partitions.Let P = MSET(I) be the class of all integer
partitions, whereI = SEQ≥1(Z) represents integers in unary notation. The BGF ofP with u
marking the numberχ of parts (or summands) is obtained from the specification

P = MSET(uI) =⇒ P (z, u) = exp

 ∞X

k=1

uk

k

zk

1− zk

!
.

Equivalently, from first principles,

P ∼=
∞Y

n=1

SEQ(uIn) =⇒
∞Y

n=1

1

1− uzn
.

The OGF of cumulated values then results from the second formof the BGF by logarithmic
differentiation:

(24) Ω(z) = P (z) ·
∞X

k=1

zk

1− zk
.

Now, the factor on the right in (24) can be expanded as
∞X

k=1

zk

1− zk
=

∞X

n=1

d(n)zn,

with d(n) the number of divisors ofn. Thus, the mean value ofχ is

(25) En(χ) =
1

Pn

nX

j=1

d(j)Pn−j .
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FIGURE III.8. The number of parts in random partitions of size1, . . . , 500: exact values
of the mean and simulations (circles, one for each value ofn).

The same technique applies to the number of parts equal tor. The form of the BGF is

eP ∼= SEQ(uIr)×
Y

n6=r

SEQ(In) =⇒ eP (z, u) =
1− zr

1− uzr
· P (z),

which implies that the mean value of the numbereχ of r-parts satisfies

En(eχ) =
1

Pn
[zn]

„
P (z) · zr

1− zr

«
=

1

Pn
(Pn−r + Pn−2r + Pn−3r + · · · ) .

From these formulæ and a decent symbolic manipulation package, the means are calculated
easily till values ofn well in the range of several thousand. . . . . . END OF EXAMPLE III.6. �

The comparison between Figures 6 and 7 together with the supporting analysis
shows that different combinatorial models may well lead to rather different types of
probabilistic behaviours. Figure 8 displays the exact value of the mean number of parts
in random partitions of sizen = 1, . . . , 500, (as calculated from (25)) accompanied

0

10

20

30

40

50

60

70

10 20 30 40 50 60 
0

10

20

30

40

50

60

20 40 60 80 

FIGURE III.9. Two partitions ofP1000 drawn at random, compared to the limiting shape
Ψ(x) defined by (26).
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with the observed values of one random sample for each value of n in the range. The
mean number of parts is known to be asymptotic to

√
n logn

π
√

2/3
,

and the distribution, though it admits a comparatively large standard deviation (O(
√
n)),

is still concentrated in the technical sense. We shall provesome of these assertions in
Chapter IX, p. 547 (see also [155]).

In recent years, Vershik and his collaborators [118, 484] have shown that most in-
teger partitions tend to conform to a definite profile given (after normalization by

√
n)

by the continuous plane curvey = Ψ(x) defined implicitly by

(26) y = Ψ(x) iff e−αx + e−αy = 1, α =
π√
6
.

This is illustrated in Figure 9 by two randomly drawn elements ofP1000 represented
together with the “most likely” limit shape. The theoretical result explains the huge
differences that are manifest on simulations between integer compositions and integer
partitions.

The last example demonstrates the application of BGFs to estimates regarding
the root degree of a tree drawn uniformly at random amongst the classGn of general
Catalan trees of sizen. Tree parameters such as number of leaves and path length
that are more global in nature and need a recursive definitionwill be discussed in
Section III. 5 below.

EXAMPLE III.7. Root degree in general Catalan trees.Consider the parameterχ equal to
the degree of the root in a tree, and take the classG of all plane unlabelled trees, i.e., general
Catalan trees. The specification is obtained by first definingtrees (G), then defining trees with a
mark for subtrees(G◦) dangling from the root:

8
<
:
G = Z × SEQ(G)
G◦ = Z × SEQ(uG)

=⇒

8
><
>:

G(z) =
z

1−G(z)

G(z, u) =
z

1− uG(z)
.

This set of equations reveals that the probability that the root degree equalsr is

Pn{χ = r} =
1

Gn
[zn−1]G(z)r =

r

n− 1

 
2n− 3− r
n− 2

!
∼ r

2r+1
,

this by Lagrange inversion and elementary asymptotics. Also, the cumulative GF is found to be

Ω(z) =
zG(z)

(1−G(z))2
.

The relation satisfied byG entails a further simplification,

Ω(z) =
1

z
G(z)3 =

„
1

z
− 1

«
G(z)− 1,

so that the mean root degree admits a closed form,

En(χ) =
1

Gn
(Gn+1 −Gn) = 3

n− 1

n+ 1
,

a quantity clearly asymptotic to3.
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A random plane tree is thus usually composed of a small numberof root subtrees, at least
one of which should accordingly be fairly large. . . . . . . . . . .. . . . . END OF EXAMPLE III.7. �

III. 4. Inherited parameters and exponential MGFs

The theory of inheritance developed in the last section applies almostverbatimto
labelled objects. The only difference is that the variable marking size must carry a fac-
torial coefficient dictated by the needs of relabellings. Once more, with a suitable use
of multi-index conventions, the translation mechanisms developed in the univariate
case (Chapter II) remain in vigour, this in a way that parallels the unlabelled case.

Let us consider a pair〈A, χ〉, whereA is a labelled combinatorial class endowed
with its size function| · | andχ = (χ1, . . . , χd) is ad-dimensional parameter. Like
before, the parameterχ is extended intoχ by inserting size as zeroth coordinate and
a vectorz = (z0, . . . , zd) of d+ 1 indeterminates is introduced, withz0 marking size
andzj markingχj . Once the multi-index convention of (19) definingzk has been
brought into the game, the exponential MGF of〈A, χ〉 (see Definition III.4) can be
rephrased as

(27)

A(z) =
∑

k

Ak

z
k

k0!

=
∑

α∈A

z
χ(α)

|α|! .

In a sense, this MGF is exponential inz (aliasz0) but ordinary in the other variables;
only the factorialk0! is needed to take into account relabelling induced by labelled
products.

We a priori restrict attention to parameters that do not depend on the absolute
values of labels (but may well depend on the relative order oflabels): a parameter is
said to becompatibleif, for anyα, it assumes the same value on any labelled objectα
and all the order-consistent relabellings ofα. A parameter is said to beinheritedif it is
compatible and it is defined by cases on disjoint unions and determined additively on
labelled products—this is Definition III.5 with labelled products replacing cartesian
products. In particular, for a compatible parameter,inheritance signifies additivity on
components of labelled sequences, sets, and cycles. We can then cut-and-paste (with
minor adjustments) the statement of Theorem III.1:

Theorem III.2 (Inherited parameters and exponential MGFs). Let A be a labelled
combinatorial class constructed fromB, C, and letχ be a parameter inherited from
ξ defined onB and (as the case may be) fromζ on C. Then the translation rules
of admissible constructions stated in Theorem II.1 apply. is used. The associated
operators on exponential MGFs are:



164 III. PARAMETERS AND MULTIVARIATE GFS

Union: A = B + C =⇒ A(z) = B(z) + C(z)

Product: A = B ⋆ C =⇒ A(z) = B(z) · C(z)

Sequence: A = SEQ(B) =⇒ A(z) =
1

1 −B(z)

Cycle: A = CYC(B) =⇒ A(z) = log
1

1 −B(z)
.

Set: A = SET(B) =⇒ A(z) = exp
(
B(z)

)
.

PROOF. Disjoint unions are treated like in the unlabelled multivariate case. Labelled
products result from

A(z) =
∑

α∈A

z
χ(α)

|α|! =
∑

β∈B,γ∈C

(|β| + |γ|
|β|, |γ|

)
z

ξ(β)
z

ζ(γ)

(|β| + |γ|)! ,

and the usual translation of binomial convolutions that reflect labellings by means of
products of exponential generating functions (like in the univariate case detailed in
Chapter II). The translation for composite constructions is then immediate. �

This theorem can be exploited to determine moments, in a way that entirely par-
allels its unlabelled counterpart.

EXAMPLE III.8. The profile of permutations.Let P be the class of all permutations andχ
the number of components. Using the concept of marking, the specification and the exponential
BGF are

P = SET (uCYC(Z)) =⇒ P (z, u) = exp

„
u log

1

1− z

«
= (1− z)−u,

as was already obtained by anad hoccalculation in (5). We also know (page 149) that the mean
number of cycles is the harmonic numberHn and that the distribution is concentrated since the
standard deviation is much smaller than the mean.

Regarding the numberχ of cycles of lengthr, the specification and the exponential BGF
are now

(28)
P = SET (CYC 6=r(Z) + uCYC=r(Z))

=⇒ P (z, u) = exp

„
log

1

1− z + (u− 1)
zr

r

«
=
e(u−1)zr/r

1− z .

The EGF of cumulated values is then

(29) Ω(z) =
zr

r

1

1− z .

The result is a remarkably simple one:In a random permutation of sizen, the mean number
of r-cycles is equal to1

r
for anyr ≤ n.

Thus, the profile of a random permutation, where profile is defined as the ordered sequence
of cycle lengths, departs significantly from what has been encountered for integer compositions
and partitions. Formula (29) also sheds a new light on the harmonic number formula for the
mean number of cycles—each term1

r
in the harmonic number expresses the mean number ofr

cycles.
Since formulæ are so simple, one can get more information. By(28) one has, as seen

above,

P{χ = k} =
1

k! rk
[zn−kr]

e−zr/r

1− z ,
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FIGURE III.10. The profile of permutations: a rendering of the cycle structure of six
random permutations of size 500, where circle areas are drawn in proportion to cycle
lengths. Permutations tend to have a few small cycles (of sizeO(1)), a few large ones (of
sizeΘ(n)), and altogether haveHn ∼ log n cycles on average.

where the last factor counts permutations without cycles oflengthr. From this (and the asymp-
totics of generalized derangement numbers in Chapter IV), one proves easily that the asymptotic
law of the number ofr-cycles is Poisson2 of rate 1

r
; in particular it is not concentrated. (This in-

teresting property to be established in later chapters constitutes the starting point of an important
study by Shepp and Lloyd [436].)

Also, the mean number of cycles whose size is betweenn/2 andn is Hn−H⌊n/2⌋ a
quantity that equals the probability ofexistenceof such a long cycle and is approximately
log 2

.
= 0.69314. In other words, we expect a random permutation of sizen to have one

or a few large cycles. (See the paper [436] for the original discussion of largest and smallest
cycles.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . END OF EXAMPLE III.8. �

� III.9. A hundred prisoners II.This is the solution to the prisoners’ problem of Note II.14,
p. 114 The better strategy goes as follows. Each prisoner will first open the drawer which
corresponds to his number. If his number is not there, he’ll use the number he just found to
access another drawer, then find a number there that points him to a third drawer, and so on,
hoping to return to his original drawer in at most 50 trials. (The last opened drawer will then
contain his number.) This strategy succeeds provided the initial permutationσ defined byσi

being the number contained in draweri hasall its cycles of length at most 50. The probability
of the event is

p = [z100] exp

„
z

1
+
z2

2
+ · · ·+ z50

50

«
= 1−

100X

j=51

1

j
.
= 0.31182 78206.

Do the prisoners stand a chance against a malicious directorwho would not place the numbers
in drawers at random? For instance, the director might organize the numbers in a cyclic per-
mutation. [Hint: randomize the problem by renumbering the drawers according to a randomly
chosen permutation.] �

EXAMPLE III.9. Allocations, balls-in-bins models, and the Poisson law.Random allocations
and the balls-in-bins model have been introduced in ChapterII in connection with the birthday
paradox and the coupon collector problem. Under this model,there aren balls thrown into

2 The Poisson distribution of rateλ > 0 is supported by the nonnegative integers and determined by

P{k} = e−λ λ
k

k!
.
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FIGURE III.11. Two random allocations withm = 12, n = 48. The rightmost dia-
grams display the bins sorted by decreasing order of occupancy.

m bins in all possible ways, the total number of allocations being thusmn. By the labelled
construction of words, the bivariate EGF withz marking the number of balls andu marking the
numberχ(s) of bins that contains balls (s a fixed parameter) is given by

A = SEQm (SET6=s(Z) + uSET=s(Z)) =⇒ A(s)(z, u) =

„
ez + (u− 1)

zs

s!

«m

.

In particular, the distribution of the number of empty bins (χ(0)) is expressible in terms of
Stirling partition numbers:

Pm,n(χ(0) = k) ≡ n!

mn
[ukzn]A(0)(z, u) =

(m− k)!
mn

 
m

k

!(
n

m− k

)
.

By differentiation of the BGF, there results an exact expression for the mean (anys ≥ 0):

(30)
1

m
Em,n(χ(s)) =

1

s!

„
1− 1

m

«n−s
n(n− 1) · · · (n− s+ 1)

ms
.

Letm andn tend to infinity in such a way thatn
m

= λ is a fixed constant. This regime is ex-
tremely important in many applications, some of which are listed below. The average proportion
of bins containings elements is1

m
Em,n(χ(s)), and from (30), one obtains by straightforward

calculations the asymptotic limit estimate,

(31) lim
n/m=λ, n→∞

1

m
Em,n(χ(s)) = e−λ λ

s

s!
.

In other words, a Poisson formula describes the average proportion of bins of a given size in a
large random allocation. (Equivalently, the occupancy of arandom bin in a random allocation
satisfies a Poisson law in the limit.)

The variance of eachχ(s) (with fixed s) is estimated similarly via a second derivative and
one finds:

Vm,n(χ(s)) ∼ me−2λλ
s

s!
E(λ), E(λ) :=

„
eλ − sλs−1

(s− 1)!
− (1− 2s)

λs

s!
− λs+1

s!

«
.

As a consequence, one has the convergence in probability,

1

m
χ(s) P−→e−λ λ

s

s!
,

valid for anyfixeds ≥ 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . END OF EXAMPLE III.9. �
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� III.10. Hashing and random allocations.Random allocations of balls into bins are cen-
tral in the understanding of a class of important algorithmsof computer science known as
hashing[208, 307, 433, 434, 486]: given a universeU of data, set up a function (called a hash-
ing function)h : U −→ [1 . .m] and arrange for an array ofm bins; an elementx ∈ U is
placed in bin numberh(x). If the hash function scrambles the data in a way that is suitably
(pseudo)uniform, then the process of hashing a file ofn records (keys, data items) intom bins
is adequately modelled by a random allocation scheme. Ifλ = n

m
, representing the “load”, is

kept reasonably bounded (say,λ ≤ 10), the previous analysis implies that hashing allows for
an almost direct access to data. �

Number of components in abstract labelled schemas.Like in the unlabelled uni-
verse, a general formula gives the distribution of the number of components for the
basic constructions.
Proposition III.6. Consider labelled structures and the parameterχ equal to the
number of components in a constructionA = K{B}, whereK is one ofSEQ,SET CYC.
The exponential BGFA(z, u) and the exponential GFΩ(z) of cumulated values are
given by the following table:

(32)

K exp. MGF(A(z, u)) Cumul. EGF(Ω(z))

SEQ :
1

1− uB(z)
A(z)2 ·B(z) =

B(z)

(1−B(z))2

SET : exp (uB(z)) A(z) ·B(z) = B(z)eB(z)

CYC : log
1

1− uB(z)

B(z)

1−B(z)
.

Mean values are then easily recovered, and one finds

En(χ) =
Ωn

An
=

[zn]Ω(z)

[zn]A(z)
,

by the same formula as in the unlabelled case.
� III.11. r-Components in abstract labelled schemas.The BGFA(z, u) and the cumulative
EGFΩ(z) are given by the following table,

SEQ :
1

1−
`
B(z) + (u− 1)Brzr

r!

´ 1

(1−B(z))2
· Brz

r

r!

SET : exp

„
B(z) + (u− 1)

Brz
r

r!

«
eB(z) · Brz

r

r!

CYC : log
1

1−
`
B(z) + (u− 1)Brzr

r!

´ 1

(1−B(z))
· Brz

r

r!
,

in the labelled case. �

EXAMPLE III.10. Set partitions. Set partitionsS are sets of blocks, themselves nonempty sets
of elements. The enumeration of set partitions according tothe number of blocks is then given
by

S = SET(uSET≥1(Z)) =⇒ S(z, u) = eu(ez−1).

Since set partitions are otherwise known to be enumerated bythe Stirling partition numbers,
one has the BGF and the vertical EGFs as a corollary,

X

n,k

(
n

k

)
uk z

n

n!
= eu(ez−1),

X

n

(
n

k

)
zn

n!
=

1

k!
(ez − 1)k,
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which is consistent with earlier calculations of Chapter II.
The EGF of cumulated values,Ω(z) is then

Ω(z) = (ez − 1)eez−1,

which is almost a derivative ofS(z):

Ω(z) =
d

dz
S(z)− S(z).

Thus, the mean number of blocks in a random partition of sizen is

Ωn

Sn
=
Sn+1

Sn
− 1,

a quantity directly expressible in terms of Bell numbers. A delicate computation based on
the asymptotic expansion of the Bell numbers reveals that the expected value and the standard
deviation are asymptotic to (Chapter VIII)

n

log n
,

√
n

log n
,

respectively. Similarly the exponential BGF of the number of blocks of sizek is

S = SET(uSET=k(Z) + SET6=0,k(Z)) =⇒ S(z, u) = eez−1+(u−1)zk/k!,

out of which mean and variance can be derived. . . . . . . . . . . . . .. END OF EXAMPLE III.10. �

EXAMPLE III.11. Root degree in Cayley trees.Consider the classT of Cayley trees (nonplane
labelled trees) and the parameter “root-degree”. The basicspecifications are

8
<
:
T = Z ⋆ SET(T )

T ◦ = Z ⋆ SET(uT )
=⇒

8
<
:

T (z) = zeT (z)

T (z, u) = zeuT (z).

The set construction reflects the non-planar character of Cayley trees and the specificationT ◦ is
enriched by a mark associated to subtrees dangling from the root. Lagrange inversion provides
the fraction of trees with root degreek,

1

(k − 1)!

n!

(n− 1− k)!
(n− 1)n−2−k

nn−1
∼ e−1

(k − 1)!
, k ≥ 1.

Similarly, the cumulative GF is found to beΩ(z) = T (z)2, so that the mean root degree satisfies

ETn(root degree) = 2

„
1− 1

n

«
∼ 2.

Thus the law of root degree is asymptotically a Poisson law ofrate1 (shifted by 1). Probabilistic
phenomena qualitatively similar to those encountered in plane trees are observed here as the
mean root degree is asymptotic to a constant. However a Poisson law eventually reflecting the
nonplanarity condition replaces the modified geometric law(known as a negative binomial law)
present in plane trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . END OF EXAMPLE III.11. �

� III.12. Numbers of components in alignments.Alignments (O) are sequences of cycles
(Chapter II). The expected number of components in a random alignment ofOn is

[zn] log(1− z)−1(1− log(1− z)−1)−2

[zn](1− log(1− z)−1)−1
.

Methods of Chapter V imply that the number of components in a random alignment has expec-
tation∼ n/(e− 1) and standard deviationΘ(

√
n). �
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Unlabelled structures

Integer partitions, MSET◦SEQ

exp

„
u

z

1− z +
u2

2

z2

1− z2
+ · · ·

«

∼
√
n log n

π
p

2/3
, Θ(

√
n)

Integer compositions, SEQ◦SEQ„
1− u z

1− z

«−1

∼ n

2
, Θ(

√
n)

Labelled structures

Set partitions, SET◦SET

exp (u (ez − 1))

∼ n

log n
∼
√
n

log n

Surjections, SEQ◦ SET

(1− u (ez − 1))−1

∼ n

2 log 2
, Θ(

√
n)

Permutations, SET◦CYC

exp
`
u log(1− z)−1

´

∼ log n, ∼ √log n

Alignments, SEQ◦CYC
`
1− u log(1− z)−1´−1

∼ n

e− 1
, Θ(

√
n)

FIGURE III.12. Major properties of the number of components in six level-two struc-
tures. For each class, from top to bottom:(i) specification type;(ii) BGF; (iii) mean and
variance of the number of components.

� III.13. Image cardinality of a random surjection.The expected cardinality of the image of a
random surjection inRn (see Chapter II) is

[zn]ez(2− ez)−2

[zn](2− ez)−1
.

The number of values whose preimages have cardinalityk is obtained by replacing the single
exponential factorez by zk/k!. Methods of Chapters IV and V imply that the image cardinality
of a random surjection has expectationn/(2 log 2) and standard deviationΘ(

√
n). �

� III.14. Distinct component sizes in set partitions.Take the number ofdistinct block sizes
and cycle sizes in set partitions and permutations. The bivariate EGFs are

∞Y

n=1

“
1− u+ uezn/n!

”
,

∞Y

n=1

“
1− u+ uezn/n

”
,

as follows from first principles. �

Postscript: Towards a theory of schemas.Let us look back and recapitulate
some of the information gathered in pages 156—169 regardingthe number of compo-
nents in composite structures. The classes considered in the table below are composi-
tions of two constructions, either in the unlabelled or the labelled universe. Each entry
contains the BGF for the number of components (e.g., cycles in permutations, parts
in integer partitions, and so on), and the asymptotic ordersof the mean and standard
deviation of the number of components for objects of sizen.

Some obvious facts stand out from the data and call for explanation. First the
outer construction appears to play the essential rôle: outer sequenceconstructs (cf
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integer compositions, surjections and alignments) tend todictate a number of compo-
nents that isΘ(n) on average, while outersetconstructs (cf integer partitions, set par-
titions, and permutations) are associated with a greater variety of asymptotic regimes.
Eventually, such facts can be organized into broad analyticschemas, as will be seen
in Chapters IV–IX.

� III.15. Singularity and probability.The differences in behaviour are to be assigned to the
rather different types of singularity involved: on the one hand sets corresponding algebraically
to an exp(·) operator induce an exponential blow up of singularities; onthe other hand se-
quences expressed algebraically by quasi-inverses(1 − ·)−1 are likely to induce polar singu-
larities. Recursive structures like trees lead to yet othertypes of phenomena with a number of
components, i.e., the root degree, that is bounded in probability. �

III. 5. Recursive parameters

In this section, we adapt the general methodology of previous sections in order to
treat parameters that are defined by recursive rules over structures that are themselves
recursively specified. Typical applications concern treesand tree-like structures.

Regarding the number of leaves, or more generally, the number of nodes of some
fixed degree, in a tree, the method of placing marks applies like in the non-recursive
case. It suffices to distinguish elements of interest and mark them by an auxiliary
variable. For instance, in order to mark composite objects made ofr components,
wherer is an integer andK designates any of SEQ, SET (or MSET,PSET), CYC, one
should split a constructionK(C) according to the identity

K(C) = K=r(C) + K6=r(C),

then introduce a mark (u) in front of the first term of the sum. This technique gives
rise to specifications decorated by marks to which Theorems III.1 and III.2 apply. For
a recursively defined structure, the outcome is a functionalequation defining the BGF
recursively. This technique is illustrated by Examples 12 and 13 below in the case of
Catalan trees and the parameter number of leaves.

EXAMPLE III.12. Leaves in general Catalan trees. How many leaves does a random
tree of some variety have? Can different varieties of trees be somehow distinguished by the
proportion of their leaves? Beyond the botany of combinatorics, such considerations are for
instance relevant to the analysis of algorithms since tree leaves, having no descendants, can be
stored more economically; see [306, Sec. 2.3] for an algorithmic motivation for such questions.

Consider once more the classG of plane unlabelled trees,G = Z × SEQ(G), enumerated
by the Catalan numbers:Gn = 1

n

`
2n−2
n−1

´
. The classG◦ where each leaf is marked is

G◦ = Zu+ Z × SEQ≥1(G◦) =⇒ G(z, u) = zu+
zG(z, u)

1−G(z, u)
.

The induced quadratic equation can be solved explicitly

G(z, u) =
1

2

“
1 + (u− 1)z −

p
1− 2(u+ 1)z + (u− 1)2z2

”
.
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It is however simpler to expand using the Lagrange inversiontheorem which provides

Gn,k = [uk] ([zn]G(z, u)) = [uk]

„
1

n
[yn−1]

„
u+

y

1− y

«n«

=
1

n

 
n

k

!
[yn−1]

yn−k

(1− y)n−k
=

1

n

 
n

k

! 
n− 2

k − 1

!
.

These numbers are known as Narayana numbers, seeEISA001263, and they surface repeatedly
in connexion with ballot problems. The mean number of leavesderives from the cumulative
GF, which is

Ω(z) = ∂uG(z, u)|u=1 =
1

2
z +

1

2

z√
1− 4z

,

so that the mean isn/2 exactly forn ≥ 2. The distribution is concentrated since the standard
deviation is easily calculated to beO(

√
n). . . . . . . . . . . . . . . . . . . END OF EXAMPLE III.12. �

EXAMPLE III.13. Leaves and node types in binary trees.The classB of binary plane trees,
also enumerated by Catalan numbers (Bn = 1

n+1

`
2n
n

´
) can be specified as

(33) B = Z + (B × Z) + (Z × B) + (B × Z × B),

which stresses the distinction between four types of nodes:leaves, left branching, right branch-
ing, and binary. Letu0, u1, u2 be variables that mark nodes of degree 0,1,2, respectively.Then
the root decomposition (33) provides for the MGFB = B(z, u0, u1, u2) the functional equa-
tion

B = zu0 + 2zu1B + zu2B
2,

which, by Lagrange inversion, gives

Bn,k0,k1,k2 =
2k1

n

 
n

k0, k1, k2

!
,

subject to the natural conditions:k0 + k1 + k2 = n andk0 = k2 + 1. Specializations and
moments can be easily calculated from such an approach [404]. In particular, the mean number
of nodes of each type is asymptotically:

leaves:∼ n

4
, 1-nodes :∼ n

2
, 2-nodes :∼ n

4
.

There is an equal asymptotic proportion of leaves, double nodes, left branching, and right
branching nodes. Also, the standard deviation is in each case O(

√
n), so that each of the

corresponding distributions is concentrated. . . . . . . . . . .. . . . . . . . END OF EXAMPLE III.13. �

� III.16. Leaves and node-degree profile in Cayley trees.For Cayley trees, the bivariate EGF
with u marking the number of leaves is the solution to

T (z, u) = uz + z(eT (z,u) − 1).

The distribution is expressed in terms of Stirling partition numbers. The mean number of leaves
in a random Cayley tree is asymptotic tone−1.

More generally, the mean number of nodes of outdegreek in a random Cayley tree of
sizen is asymptotic to

n · e−1 1

k!
.

Degrees of nodes are thus approximately given by a Poisson law of rate 1. �
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� III.17. Node-degree profile in simple varieties of trees.For a family of trees generated
by T (z) = zφ(T (z)) with φ a power series, the BGF of the number of nodes of degreek
satisfies

T (z, u) = z
“
φ(T (z, u)) + φk(u− 1)T (z, u)k

”
,

whereφk = [uk]φ(u). The cumulative GF is

Ω(z) = z
φkT (z)k

1− zφ′(T (z))
= φkz

2T (z)k−1T ′(z),

from which expectations can be determined. �

� III.18. Marking in functional graphs.Consider the classF of finite mappings discussed in
Chapter II:

F = SET(K), K = CYC(T ), T = Z ⋆ SET(T ).

The translation into EGFs is

F (z) = eK(z), K(z) = log
1

1− T (z)
, T (z) = zeT (z).

Here are bivariate EGFs for(i) the number of components,(ii) the number of maximal trees,
(iii) the number of leaves:

(i) euK(z), (ii)
1

1− uT (z)
,

(iii)
1

1− T (z, u)
with T (z, u) = (u− 1)z + zeT (z,u).

The trivariate EGFF (u1, u2, z) of functional graphs withu1 marking components andu2

marking trees is

F (z, u1, u2) = exp(u1 log(1− u2T (z))−1) =
1

(1− u2T (z))u1
.

An explicit expression for the coefficients involves the Stirling cycle numbers. �

We shall stop here these examples that could be multipliedad libitumsince such
calculations greatly simplify when interpreted in the light of asymptotic analysis. The
phenomena observed asymptotically are, for good reasons, especially close to what
the classical theory of branching processes provides (see the book by Harris [262]).

Linear transformations on parameters and path length in trees. We have so far
been dealing with a parameter defined directly by recursion.Next, we turn to other pa-
rameters such as path length. As a preamble, one needs a simple linear transformation
on combinatorial parameters. LetA be a class equipped with two scalar parameters,
χ andξ, related by

χ(α) = |α| + ξ(α).

Then, the combinatorial form of BGFs yields
∑

α∈A
z|α|uχ(α) =

∑

α∈A
z|α|u|α|+ξ(α) =

∑

α∈A
(zu)|α|uξ(α),

that is,

(34) Aχ(z, u) = Aξ(zu, u).

This is clearly a general mechanism:
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Linear transformations and MGFs: A linear transformation on param-
eters induces a monomial substitution on the correspondingmarking vari-
ables in MGFs.

We now put this mechanism to use in the recursive analysis of path length in trees.

EXAMPLE III.14. Path length in trees.The path length of a tree is defined as the sum of
distances of all nodes to the root of the tree, where distances are measured by the number
of edges on the minimal connecting path of a node to the root. Path length is an important
characteristic of trees. For instance, when a tree is used asa data structure with nodes containing
additional information, path length represents the total cost of accessing all data items when a
search is started from the root. For this reason, path lengthsurfaces, under various models, in
the analysis of algorithms like algorithms and data structures for searching and sorting (e.g.,
tree-sort, quicksort, radix-sort); see [306, 434].

The definition of path length as

λ(τ ) :=
X

ν∈τ

dist(ν, root(τ )),

transforms into an inductive definition:

(35) λ(τ ) =
X

υ root subtree of τ

(λ(υ) + |υ|) .

To establish this identity, distribute nodes in their corresponding subtrees; correct distances to
the subtree roots by 1, and regroup terms.

From this point on, we specialize the discussion to general Catalan trees (see Note 19 for
other cases):G = Z × SEQ(G). Introduce momentarily the parameterµ(τ ) = |τ | + λ(τ ).
Then, one has from the inductive definition (35) and the general transformation rule (34):

(36) Gλ(z, u) =
z

1−Gµ(z, u)
and Gµ(z, u) = Gλ(zu, u).

In other words,G(z, u) ≡ Gλ(z, u) satisfies a nonlinear functional equation of the difference
type:

G(z, u) =
z

1−G(uz, u)
.

(This functional equation will be encountered again in connection with area under Dyck paths:
see Chapter V, p. 307.) The generating functionΩ(z) of cumulated values ofλ then obtains
by differentiation with respect tou upon settingu = 1. We find in this way thatΩ(z) :=
∂uG(z, u)|u=1 satisfies

Ω(z) =
z

(1−G(z))2
`
zG′(z) + Ω(z)

´
,

which is a linear equation that solves to

Ω(z) = z2 G′(z)

(1−G(z))2 − z =
z

2(1− 4z)
− z

2
√

1− 4z
.

Consequently, one has (n ≥ 1)

Ωn = 22n−3 − 1

2

 
2n− 2

n− 1

!
,

where the sequence starting 1, 5, 22, 93, 386 forn ≥ 2 constitutesEIS A000346. By an
elementary asymptotic analysis, we get:
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FIGURE III.13. A random pruned binary tree of size 256 and its associated level profile:
the histogram on the left displays the number of nodes at eachlevel in the tree.

The mean path length of a random Catalan tree of sizen is asymptotic to
1
2

√
πn3; in short: a branch from the root to a random node in a random

Catalan tree of sizen has expected length of the order of
√
n.

Random Catalan trees thus tend to be somewhat imbalanced—bycomparison, a fully balanced
binary tree has all paths of length at mostlog2 n+O(1). . . . . . END OF EXAMPLE III.14. �

The imbalance in random Catalan trees is a general phenomenon—it holds for
binary Catalan and more generally for all simple varieties of trees. Note 19 below and
Example VII.9 (p. 442) imply that path length is invariably of ordern

√
n on average

in such cases. Height is of typical order
√
n as shown by Rényi and Szekeres [409], de

Bruijn, Knuth and Rice [113], Kolchin [314], as well as Flajolet and Odlyzko [197].
Figure 13 borrowed from [434] illustrates this on a simulation. (The contour of the
histogram of nodes by levels, once normalized, has been proved to converge to the
process known as Brownian excursion.)
� III.19. Path length in simple varieties of trees.The BGF of path length in a variety of trees
generated byT (z) = zφ(T (z)) satisfies

T (z, u) = zφ(T (zu, u)).

In particular, the cumulative GF is

Ω(z) ≡ ∂u (T (z, u))u=1 =
φ′(T (z))

φ(T (z))
(zT ′(z))2,

from which coefficients can be extracted. �

III. 6. Complete generating functions and discrete models

By acompletegenerating function, we mean, loosely speaking, a generating func-
tion in a (possibly large, and even infinite in the limit) number of variables that mark a
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homogeneous collection of characteristics of a combinatorial class3. For instance one
may be interested in the joint distribution ofall the different letters composing words,
the number of cycles ofall lengths in permutations, and so on. A complete MGF
naturally entails very detailed knowledge on the enumerative properties of structures
to which it is relative. Complete generating functions, given their expressive power,
also make weighted models accessible to calculation, a situation that covers in partic-
ular Bernoulli trials (p. 179) and branching processes fromclassical probability theory
(p. 185).

Complete GFs for words.As a basic example, consider the class of all words
W = SEQ{A} over some finite alphabetA = {a1, . . . , ar}. Let χ = (χ1, . . . , χr),
whereχj(w) is the number of occurrences of the letteraj in wordw. The MGF ofA
with respect toχ is

A = u1a1 + u2a2 + · · ·urar =⇒ A(z,u) = zu1 + zu2 + · · · + zur,

andχ onW is clearly inherited fromχ onA. Thus, by the sequence rule, one has

(37) W = SEQ(A) =⇒ W (z,u) =
1

1 − z(u1 + u2 + · · · + ur)
,

which describes all words according to their compositions into letters. In particular,
the number of words withnj occurrences of letteraj andn =

∑
nj is in this frame-

work obtained as

[un1
1 un2

2 · · ·unr
r ] (u1 + u2 + · · · + ur)

n
=

(
n

n1, n2, . . . , nr

)
=

n!

n1!n2! · · ·nr
.

We are back to the usual multinomial coefficients.
� III.20. After Bhaskara Acharya(circa 1150AD). Consider all the numbers formed in decimal
with digit 1 used once, with digit 2 used twice,. . . , with digit 9 used nine times. Such numbers
all have 45 digits. Compute their sumS and discover, much to your amazement thatS equals

45875559600006153219084769286399999999999999954124440399993846780915230713600000.

This number has a long run of nines (and further nines are hidden!). Is there a simple explana-
tion? This exercise is inspired by the Indian mathematicianBhaskara Acharya who discovered
multinomial coefficients near 1150AD; see [306, p. 23–24] for a brief historical note. �

Complete GFs for permutations and set partitions.Consider permutations and
the various lengths of their cycles. The MGF whereuk marks cycles of lengthk for
k = 1, 2, . . . can be written as an MGF ininfinitely manyvariables:

(38) P (z,u) = exp

(
u1
z

1
+ u2

z2

2
+ u3

z3

3
+ · · ·

)
.

This MGF expression has the neat feature that, upon specializing all but a finite num-
ber ofuj to 1, we derive all the particular cases of interest with respect to any finite
collection of cycles lengths. Observe also that one can calculate in the usual way any
coefficient[zn]P as it only involves the variablesu1, . . . , un.

3Complete GFs arenot new objects. They are simply an avatar of multivariate GFs. Thus the term is
only meant to be suggestive of a particular usage of MGFs, andessentially no new theory is needed in order
to cope with them.
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� III.21. The theory of formal power series in infinitely many variables. (This note is for
formalists.) Mathematically, an object likeP in (38) is perfectly well defined. LetU =
{u1, u2, . . .} be an infinite collection of indeterminates. First, the ringof polynomialsR =
C[U ] is well defined and a given element ofR involves only finitely many indeterminates.
Then, fromR, one can define the ring of formal power series inz, namelyR[[z]]. (Note that,
if f ∈ R[[z]], then each[zn]f involves only finitely many of the variablesuj .) The basic op-
erations and the notion of convergence, as described in APPENDIX A: Formal power series,
p. 676, apply in a standard way.

For instance, in the case of (38), the complete GFP (z,u) is obtainable as the formal limit

P (z,u) = lim
k→∞

exp

„
u1
z

1
+ · · ·+ uk

zk

k
+
zk+1

k + 1
+ · · ·

«

in R[[z]] equipped with the formal topology. (In contrast, the quantity evocative of a generating
function of words over an infinite alphabet

W
!
=

 
1− z

∞X

j=1

uj

!−1

cannot receive a sound definition as a element of the formal domainR[[z]].) �

Henceforth, we shall keep in mind that verifications of formal correctness regard-
ing power series in infinitely many indeterminates are always possible by returning to
basic definitions.

Complete generating functions are often surprisingly simple to expand. For in-
stance, the equivalent form of (38)

P (z,u) = eu1z/1 · eu2z2/2 · eu3z3/3 · · ·
implies immediately that the number of permutations withk1 cycles of size1, k2 of
size2, and so on, is

(39)
n!

k1! k2! · · ·kn! 1k1 2k2 · · ·nkn
,

provided
∑
jkj = n. This is a result originally due to Cauchy. Similarly, the EGF of

set partitions withuj marking the number of blocks of sizej is

S(z,u) = exp

(
u1
z

1!
+ u2

z2

2!
+ u3

z3

3!
+ · · ·

)
.

A formula analogous to (39) follows: the number of partitions with k1 blocks of size
1, k2 of size2, and so on, is

n!

k1! k2! · · · kn! 1!k1 2!k2 · · ·n!kn
.

Several examples of such complete generating functions arepresented in Comtet’s
book; see [98], pages 225 and 233.
� III.22. Complete GFs for compositions and surjections.The complete GFs of integer
compositions and surjections withuj marking the number of components of sizej are

1

1−P∞
j=1 ujzj

,
1

1−P∞
j=1 uj

zj

j!

.
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The associated counts withn =
P

j jkj are given by
 
k1 + k2 + · · ·
k1, k2, . . .

!
,

n!

1!k12!k2 · · ·

 
k1 + k2 + · · ·
k1, k2, . . .

!
.

These factored forms derive directly from the multinomial expansion. The symbolic form of
the multinomial expansion of powers of a generating function is sometimes expressed in terms
of Bell polynomials, themselves nothing but a rephrasing ofthe multinomial expansion; see
Comtet’s book [98, Sec. 3.3] for a fair treatment of such polynomials. �

� III.23. Faà di Bruno’s formula.The formulæ for the successive derivatives of a functional
compositionh(z) = f(g(z))

∂zh(z) = f ′(g(z))g′(z), ∂2
zh(z) = f ′′(g(z))g′(z)2 + f ′(z)g′′(z), . . . ,

are clearly equivalent to the expansion of a formal power series composition. Indeed, assume
without loss of generality thatz = 0 andg(0) = 0; setfn := ∂n

z f(0), and similarly forg, h.
Then:

h(z) ≡
X

n

hn
zn

n!
=
X

k

fk

k!

“
g1z +

g2
2!
z2 + · · ·

”k

.

Thus in one direct application of the multinomial expansion, one finds

hn

n!
=
X

k

fk

k!

X

C

 
k

ℓ1, ℓ2, . . . , ℓk

!“g1
1!

”ℓ1
“g2

2!

”ℓ2 · · ·
“gk

k!

”ℓk

where the summation conditionC is: 1ℓ1 + 2ℓ2 + · · · + kℓk = n, ℓ1 + ℓ2 + · · · + ℓk = k.
This shallow identity is known as Faà di Bruno’s formula [98, p. 137]. (Faà di Bruno (1825–
1888) was canonized by the Catholic Church in 1988, presumably for reasons not related to his
formula.) �

� III.24. Relations between symmetric functions.Symmetric functions may be manipulated
by mechanisms that are often reminiscent of the set and multiset construction. They appear
in many areas of combinatorial enumeration. LetX = {xi}ri=1 be a collection of formal
variables. Define the symmetric functions

Y

i

(1 + xiz) =
X

n

anz
n,

Y

i

1

1− xiz
=
X

n

bnz
n,

X

i

xiz

1− xiz
=
X

n

cnz
n.

Thean, bn, cn, called resp. elementary, monomial, and power symmetric functions are express-
ible as

an =
X

i1<i2<···<ir

xi1xi2 · · ·xir , bn =
X

i1≤i2≤···≤ir

xi1xi2 · · ·xir , cn =
rX

i=1

xr
i .

The following relations hold for the OGFsA(z), B(z), C(z) of an, bn, cn::

B(z) =
1

A(−z) , A(z) =
1

B(−z) ,

C(z) = z
d

dz
logB(z), B(z) = exp

Z z

0

C(t)
dt

t
.

Consequently, each ofan, bn, cn is polynomially expressible in terms of any of the other quan-
tities. (The connection coefficients, like in Note 23, involve multinomials.) �

� III.25. Regular graphs.A graph isr–regular iff each node has degree exactly equal tor.
The number ofr–regular graphs of sizen is

[xr
1x

r
2 · · ·xr

n]
Y

1≤i<j≤n

(1 + xixj).

[Gessel [234] has shown how to extract explicit expressions from such huge symmetric func-
tions.] �
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III. 6.1. Word models. The enumeration of words constitutes a rich chapter of
combinatorial analysis, and complete GFs serve to generalize many results to the case
of nonuniform letter probabilities, like the coupon collector problem and the birthday
paradox considered in Chapter II. Applications are to be found in classical probability
theory and statistics [108] (the so-called Bernoulli trial models), as well as in computer
science [458] and mathematical models of biology [491].

EXAMPLE III.15. Words and records.Fix an alphabetA = {a1, . . . , ar} and letW =
SEQ{A} be the class of all words overA, whereA is naturally ordered bya1 < a2 < · · · < ar.
Given a wordw = w1 · · ·wn, a (strict) record is an elementwj that is larger than all preceding
elements:wj > wi for all i < j. (Refer to Figure 13 of Chapter II for a graphical rendering of
records in the case of permutations.)

Consider first the subset ofW comprising all words that have the lettersai1 , . . . , aik as
successive records, wherei1 < · · · < ik. The symbolic description of this set is in the form of
a product ofk terms

(40)

„
ai1 SEQ(a1 + · · ·+ ai1)

«
· · ·

„
aik SEQ(a1 + · · ·+ aik)

«
.

Consider now MGFs of words wherez marks length,v marks the number of records, and each
uj marks the number of occurrences of letteraj . The MGF associated to the subset described
in (40) is then

„
zvui1(1− z(u1 + · · ·+ ui1))−1

«
· · ·

„
zvuik (1− z(u1 + · · ·+ uik ))−1

«
.

Summing over all values ofk and ofi1 < · · · < ik gives

(41) W (z, v,u) =
rY

s=1

`
1 + zvus (1− z(u1 + · · ·+ us))

−1
´
,

the rationale being that, for arbitrary quantitiesys, one has by distributivity:
rX

k=0

X

1≤i1<···<ik≤r

yi1yi2 · · · yik =
rY

s=1

(1 + ys).

We shall encounter more applications of (41) below. For the time being let us simply
examine the mean number of records in a word of lengthn over the alphabetA, when all such
words are taken equally likely. One should setuj 7→ 1 (the composition into specific letters is
forgotten), so thatW assumes the simpler form

W (z, v) =
rY

j=1

„
1 +

vz

1− jz

«
.

Logarithmic differentiation then gives access to the generating function of cumulated values,

Ω(z) ≡ ∂

∂v
W (z, v)

˛̨
˛̨
v=1

=
z

1− rz
rX

j=1

1

1− (j − 1)z
.

Thus, by partial fraction expansion, the mean number of records inWn (whose cardinality
is rn) has the exact value

(42) EWn(# records) = Hr −
r−1X

j=1

(j/r)n

r − j .
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There appears the harmonic numberHr, like in the permutation case, but now with a negative
correction term which, for fixedr, vanishes exponentially fast withn (this betrays the fact that
some letters from the alphabet might be missing). . . . . . . . . .. . . END OF EXAMPLE III.15. �

EXAMPLE III.16. Weighted word models and Bernoulli trials.LetA = {a1, . . . , ar} be an
alphabet of cardinalityr, and letΛ = {λ1, . . . , λr} be a system of numbers calledweights,
where weightλj is viewed as attached to letteraj . Weights may be extended from letters to
words multiplicatively by defining the weightπ(w) of wordw as

π(w) = λi1λi2 · · ·λin if w = ai1ai2 · · · ain

=

rY

j=1

λ
χj(w)

j ,

whereχj(w) is the number of occurrences of letteraj in w. Finally, the weight of a set is by
definition thesumof the weights of its elements.

Combinatorially, weights of sets are immediately obtainedonce the corresponding gener-
ating function is known. Indeed, letS ⊆ W = SEQ{A} have complete GF

S(z, u1, . . . , ur) =
X

w∈S

z|w|u
χ1(w)
1 · · ·uχr(w)

r ,

whereχj(w) is the number of occurrences of letteraj in w. Then one has

S(z, λ1, . . . , λr) =
X

w∈S

z|w|π(w),

so that extracting the coefficient ofzn gives the total weight ofSn = S ∩Wn under the weight
systemΛ. In other words,the GF of a weighted set is obtained by substitution of the numerical
values of the weights inside the associated complete MGF.

In probability theory, Bernoulli trials refer to sequencesof independent draws from a fixed
distribution with finitely many possible values. One may think of the succession of flippings of
a coin or castings of a die. If any trial hasr possible outcomes, then the various possibilities
can be described by letters of ther-ary alphabetA. If the probability of thejth outcome is
taken to beλj , then theΛ-weighted models on words becomes the usual probabilistic model
of independent trials. (In this situation, theλj ’s are often written aspj ’s.) Observe that, in the
probabilistic situation, one must haveλ1 + · · ·+ λr = 1 with eachλj satisfying0 ≤ λj ≤ 1.
The equiprobable case, where each outcome has probability1/r can be obtained by setting
λj = 1/r and it then becomes equivalent to the usual enumerative model. In terms of GFs,
the coefficient[zn]S(z, λ1, . . . , λr) then represents the probability that a random word ofWn

belongs toS . Multivariate generating functions and cumulative generating functions then obey
properties similar to their usual (ordinary, exponential)counterparts.

As an illustration, assume one has a biased coin with probability p for heads (H) andq =
1−p for tails (T ). Consider the event: “in n tosses of the coin, there never appearℓ contiguous
heads”. The alphabet isA = {H,T}. The construction describing the events of interest is, as
seen in Chapter I,

S = SEQ<ℓ{H}SEQ{T SEQ<ℓ{H}}.
Its GF withu marking heads andv marking tails is then

W (z, u, v) =
1− zℓuℓ

1− zu

„
1− zv 1− zℓuℓ

1− zu

«−1

.
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Thus, the probability of the absence ofℓ-runs amongst a sequence ofn random coin tosses is
obtained after the substitutionu→ p, v → q in the MGF,

[zn]
1− pℓzℓ

1− z + qpℓzℓ+1
,

leading to an expression which is amenable to numerical or asymptotic analysis. Feller’s
book [162, p. 322–326] offers for instance a classical discussion of the problem. END OF EXAMPLE III.16. �

EXAMPLE III.17. Records in Bernoulli trials.To conclude the discussion of probabilistic
models on words, we come back to the analysis of records. Assume now that the alphabet
A = {a1, . . . , ar} has in all generality the probabilitypj associated with the letteraj . The
mean number of records is analysed by a process entirely parallel to the derivation of (42): one
finds by logarithmic differentiation of (41)

(43) EWn(# records) = [zn]Ω(z) where Ω(z) =
z

1− z
rX

j=1

pj

1− z(p1 + · · ·+ pj−1)
.

The cumulative GFΩ(z) in (43) has simple poles at the points1, 1/Pr−1, 1/Pr−2, and so on,
wherePs = p1 + · · ·+ ps. For asymptotic purposes, only the dominant poles atz = 1 counts
(see Chapter IV for a systematic discussion), near which

Ω(z) ∼
z→1

1

1− z
rX

j=1

pj

1− Pj−1
.

Consequently, one has an elegant asymptotic formula generalizing the case of permutations that
has a harmonic mean (10):

The mean number of records in a random word of lengthn with nonuni-
form letter probabilitiespj satisfies asymptotically(n→ +∞)

EWn(# records) ∼
rX

j=1

pj

pj + pj+1 + · · ·+ pr
.

This relation and similar ones were obtained by Burge [74]; analogous ideas may serve to ana-
lyse the sorting algorithmQuicksortunder equal keys [432] as well as the hybrid data structures
of Bentley and Sedgewick; see [38, 93]. . . . . . . . . . . . . . . . . . . . . . END OF EXAMPLE III.17. �

Coupon collector problem and birthday paradox.Similar considerations apply
to weighted EGFs of words, as considered in Chapter II. For instance, the probability
of having attained a complete coupon collection at timen in case a company issues
couponj with probabilitypj , for 1 ≤ j ≤ r, is (coupon collector problem, Chapter II)

P(C ≤ n) = n![zn]

r∏

j=1

(epjz − 1) .

The probability that all coupons are different at timen is (birthday paradox, Chap-
ter II)

P(B > n) = n![zn]

r∏

j=1

(1 + pjz) ,
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which corresponds to the birthday problem in the case of nonuniform mating periods.
Integral representations comparable to the ones of ChapterII are also available:

E(C) =

∫ ∞

0


1 −

r∏

j=1

(1 − e−pit)


 dt, E(B) =

∫ ∞

0

r∏

j=1

(1 + pjt) e
−t dt.

See the study by Flajolet, Gardy, and Thimonier [181] for several variations on this
theme.

� III.26. Birthday paradox with leap years.Assume that the 29th of February exists precisely
once every fourth year. Estimate the effect on the expectation of the first birthday collision.�

EXAMPLE III.18. Rises in Bernoulli trials: Simon Newcomb’s problem.Simon Newcomb
(1835–1909), otherwise famous for his astronomical work, was reportedly fond of playing the
following patience game: one draws from a deck of 52 playing cards, stacking them in piles in
such a way that one new pile is started each time a card appearswhose number is smaller than
its predecessor. What is the probability of obtainingt piles? A solution to this famous problem
is found in MacMahon’s book [350] and a concise account by Andrews appears in [10, §4.4].

Simon Newcomb’s problem can be rephrased in terms of rises. Given a wordw =
w1 · · ·wn over the alphabetA ordered bya1 < a2 < · · · , a weak riseis a positionj < n
such thatwj ≤ wj+1. (The numbers of piles in Newcomb’s problem is the number of cards
minus 1 minus the number of rises.) LetW (z, v,u) be the MGF of all words wherez marks
length,v marks the number of weak rises, anduj marks the number of occurrences of letterj.
Setzj = zuj and letWj(z, v,u) be the MGF relative to those nonempty words that start with
letteraj , so that

W = 1 + (W1 + · · ·+Wr).

TheWj satisfy the set of equations (j = 1, . . . , r),

(44) Wj = zj + zj (W1 + · · ·+Wj−1) + vzj (Wj + · · ·+Wr) ,

as seen by considering the first letter of each word. The linear system (44) is easily solved upon
settingWj = zjXj . Indeed, by differencing, one finds that

(45) Xj+1 −Xj = zjXj(1− v), Xj+1 = Xj(1 + zj(1− v)),

In this way, eachXj can be determined in terms ofX1. Then transporting the resulting expres-
sions into the relation (44) instantiated atj = 1, and solving forX1 leads to an expression for
X1, hence for all theXj and finally forW itself:

(46) W =
v − 1

v − P−1
, P :=

rY

j=1

(1 + (1− v)zj).

Goulden and Jackson provide a similar looking expressions in [244] (pp. 72 and 236).
The result of (46) gives access to moments (e.g., mean and variance) of the number of

rises in a Bernoulli sequence as well as to counting results,once coefficients of the MGF are
extracted. (See also [234, 244] for some of the possible tools from the theory of symmetric
functions.) The OGF (46) can alternatively be derived by an inclusion-exclusion argument:
refer to the particular case of rises in permutations and Eulerian numbers which is discussed
below. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . END OF EXAMPLE III.18. �
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� III.27. The final solution to Simon Newcomb’s problem.Consider a deck of cards witha
suits andr distinct card values. SetN = ra. (The original problem hasr = 13, a = 4,
N = 52.) One has from (46):W = (v − 1)P/(1− vP ). The expansion of(1− y)−1 and the
collection of coefficients yields

[za
1 · · · za

r ]W = (1− v)
X

k≥1

vk−1[za
1 · · · za

r ]P k = (1− v)N+1
X

k≥1

 
k

a

!r

vk−1,

so that[za
1 · · · za

rv
t]W =

t+1X

k=0

(−1)t+1−k

 
N + 1

t+ 1− k

! 
k

a

!r

. �

III. 6.2. Tree models. We examine here two important GFs associated with tree
models; these provide valuable information concerning thedegree profileand thelevel
profileof trees, while being tightly coupled with an important class of stochastic pro-
cesses, namely thebranching processes.

The major classes of trees that we have encountered so far arethe unlabelled
plane trees and the labelled nonplane trees, prototypes being the general Catalan trees
(Chapter I) and the Cayley trees (Chapter II). In both cases,the counting generating
functions satisfy a relation of the form

(47) Y (z) = zφ(Y (z)),

where the GF is either ordinary (plane unlabelled trees) or exponential (nonplane la-
belled trees). Corresponding respectively to the two cases, the functionφ is deter-
mined by

(48) φ(w) =
∑

ω∈Ω

wω , φ(w) =
∑

ω∈Ω

wω

ω!
,

whereΩ ⊆ N is the set of allowed node degrees. Meir and Moon in an important pa-
per [356] have described some common properties of tree families that are determined
by the Axiom (47). (For instance mean path length is invariably of ordern

√
n, see

Chapter VII, and height isO(
√
n).) Following these authors, we callsimple variety of

treesany class whose counting GF is defined by an equation of type (47). For each
of the two cases of (48), we write

(49) φ(w) =
∞∑

j=0

φjw
j .

Degree profile of trees.First we examine thedegree profileof trees. Such a
profile is determined by the collection of parametersχj , whereχj(τ) is the number
of nodes of outdegreej in τ . The variableuj will be used to markχj , that is, nodes of
outdegreej. The discussion already conducted regarding recursive parameters shows
that the GFY (z,u) satisfies the equation

Y (z,u) = zΦ(Y (z,u)) where Φ(w) = u0φ0 + u1φ1w + u2φ2w
2 + · · · .

Formal Lagrange inversion can then be applied toY (z,u), to the effect that its coeffi-
cients are given by the coefficients of the powers ofΦ.
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Proposition III.7 (Degree profile of trees). The number of trees of sizen and degree
profile (n0, n1, n2, . . .) in a simple variety of trees defined by the “generator”(49) is

(50) Yn;n0,n1,n2,... = ωn · 1

n

(
n

n0, n1, n2, . . .

)
φn0

0 φn1
1 φn2

2 · · · .

There,ωn = 1 in the unlabelled case, whereasωn = n! in the labelled case. The
values of thenj are assumed to satisfy the two consistency conditions:

∑
j nj = n

and
∑

j jnj = n− 1.

PROOF. The consistency conditions translate the fact that the total number of nodes
should ben while the total number of edges should equaln−1 (each node of degreej
is the originator ofj edges). The result follows from Lagrange inversion

Yn;n0,n1,n2,... = ωn · [un0
0 un1

1 un2
2 · · · ]

(
1

n
[wn−1]Φ(w)n

)
,

to which a standard multinomial expansion applies, yielding (50).
For instance, for general Catalan trees (φj = 1) and for Cayley trees (φj = 1/j!)

these formulæ become

1

n

(
n

n0, n1, n2, . . .

)
and

(n− 1)!

0!n01!n12!n2 · · ·

(
n

n0, n1, n2, . . .

)
.

�

The proof above also reveals the logical equivalence between the general tree
counting result of Proposition III.7 and the most general case of Lagrange inversion.
(This results from the fact thatΦ can be specialized to any particular series.) Put
otherwise, any direct proof of (50) provides a combinatorial proof of the Lagrange
inversion theorem. Such direct derivations have been proposed by Raney [407] and
are based on simple but cunning surgery performed on latticepath representations of
trees (the “conjugation principle” of which a particular case is the “cycle lemma” of
Dvoretzky–Motzkin [145]).

Level profile of trees.The next example demonstrates the utility of complete
generating functions for investigating the level profile oftrees.

EXAMPLE III.19. Trees and level profile.Given a rooted treeτ , its level profileis defined as
the vector(n0, n1, n2, . . .) wherenj is the number of nodes present at levelj (i.e., at distancej
from the root) in treeτ . Continuing within the framework of a simple variety of trees, we now
define the quantityYn;n0,n1,n2 to be the number of trees with sizen and level profile given by
thenj . The corresponding complete GFY (z,u) with z marking size anduj marking nodes at
level j is expressible in terms of the fundamental “generator”φ:

(51) Y (z,u) = zu0φ (zu1φ (zu2φ (zu3φ(· · · )))) .
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We may call this a “continuedφ-form”. For instance general Catalan trees have generator
φ(w) = (1− w)−1, so that in this case the complete GF is the continued fraction:

(52) Y (z,u) =
u0z

1− u1z

1− u2z

1− u3z

. . .

.

(See Section V. 3 for complementary aspects.) In contrast, Cayley trees are generated by
φ(w) = ew, so that

Y (z,u) = zu0e
zu1e

zu2e
zu3e

..
.

,

which is a “continued exponential”, that is, a tower of exponentials. Expanding such generating
functions with respect tou0, u1, . . ., in order gives straightforwardly:

Proposition III.8 (Level profile of trees). The number of trees of sizen and level profile(n0, n1, n2, . . .)
in a simple variety of trees defined by the “generator”φ(w) of (49) is

Yn;n0,n1,n2,... = ωn−1 · φ(n0)
n1

φ(n1)
n2

φ(n2)
n3
· · · where φ(µ)

ν := [wν ]φ(w)µ.

There, the consistency conditions aren0 = 1 and
P

j nj = n. In particular, the counts for
general Catalan trees and for Cayley trees are respectively
 
n0 + n1 − 1

n1

! 
n1 + n2 − 1

n2

! 
n2 + n3 − 1

n3

!
· · · , (n− 1)!

n0!n1!n2! · · ·n
n1
0 nn2

1 nn3
2 · · · .

(Note that one must always haven0 = 1 for a single tree; the general formula withn0 6= 1 and
ωn−1 replaced byωn−n0 gives the level profile of forests.) The first of these enumerative results
is due to Flajolet [168] and it places itself within a general combinatorial theoryof continued
fractions (Chapter V); the second one is due to Rényi and Szekeres [409] who developed such
a formula in the course of a deep study relative to the distribution of height in random Cayley
trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . END OF EXAMPLE III.19. �

� III.28. Continued forms for path length.The BGF of path length are obtained from the level
profile MGF by means of the substitutionuj 7→ qj . For general Catalan trees and Cayley trees,
this gives

(53) G(z, q) =
z

1− zq

1− zq2

. . .

, T (z, q) = zezqe
zq2e

..
.

,

whereq marks path length. The MGFs are ordinary and exponential respectively. (Combined
with differentiation, such MGFs represent an attractive option for mean value analysis.) �
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Trees and processes.The next example is an especially important application of
complete GFs, as these GFs provide a bridge between combinatorial models and a
major class of stochastic processes, thebranching processesof probability theory.

EXAMPLE III.20. Weighted tree models and branching processes.Consider the familyG of
all general plane trees. LetΛ = (λ0, λ1, . . .) be a system of numeric weights. The weight of
a node of outdegreej is taken to beλj and the weight of a tree is the product of the individual
weights of its nodes:

(54) π(τ ) =
∞Y

j=0

λ
χj(τ)

j ,

with χj(τ ) the number of nodes of degreej in τ . One can view the weighted model of trees as
a model in which a tree receives a probability proportional to π(w). Precisely, the probability
of selecting a particular treeτ under this model is, for a fixed sizen

(55) PGn,Λ(τ ) =
π(τ )P

|T |=n π(T )
.

This defines a probability measure over the setGn and one can consider events and random
variables under this weighted model.

The weighted model defined by (54) and (55) covers any simple variety of trees: just
replace eachλj by the quantityφj given by the “generator’ (49) of the model. For instance,
plane unlabelled unary-binary trees are obtained byΛ = (1, 1, 1, 0, 0, . . .), while Cayley trees
correspond toλj = 1/j!. Two equivalence-preserving transformationsare then especially
important in this context:

(i) Let Λ∗ be defined byλ∗
j = cλj for some nonzero constantc. Then the weight cor-

responding toΛ∗ satisfiesπ∗(τ ) = c|τ |π(w). Consequently, the models associated
to Λ andΛ∗ are equivalent as regards (55).

(ii) Let Λ◦ be defined byλ◦
j = θjλj for some nonzero constantθ. Then the weight

corresponding toΛ◦ satisfiesπ◦(τ ) = c|τ |−1π(w), since
P

j jχj(τ ) = |τ | − 1 for
any treeτ . Thus the modelsΛ◦ andΛ are again equivalent.

Each transformation has a simple effect on the generatorφ, namely:

(56) φ(w) 7→ φ∗(w) = cφ(w) and φ(w) 7→ φ◦(w) = φ(θw).

Once equipped with such equivalence transformations, it becomes possible to describe
probabilistically the process that generates trees according to a weighted model. Assume that
λj ≥ 0 and that theλj are summable. Then the normalized quantities

pj =
λjP
j λj

form a probability distribution overN. By the first equivalence-preserving transformation the
model induced by the weightspj is the same as the original model induced by theλj . (By
the second equivalence transformation, one can furthermore assume that the generatorφ is the
probability generating function of thepj .)

Such a model defined by nonnegative weights{pj} summing to 1 is nothing but the classi-
cal model ofbranching processes(also known as Galton-Watson processes) ; see [17]. In effect,
a realizationT of the branching process is classically defined by the two rules: (i) produce a
root node of degreej with probability pj ; (ii) if j ≥ 1, attach to the root node a collection
T1, . . . , Tj of independent realizations of the process. This may be viewed as the development
of a “family” stemming from a common ancestor where any individual has probabilitypj of
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giving birth to j children. Clearly, the probability of obtaining a particular finite treeτ has
probabilityπ(τ ), whereπ is given by (54) and the weights areλj = pj . The generator

φ(w) =

∞X

j=0

pjw
j

is then nothing but the probability generating function of (one-generation) offspring, with the
quantityµ = φ′(1) being its mean size.

For the record, we recall that branching processes can be classified into three categories
depending on the values ofµ:

Subcriticality: whenµ < 1, the random tree produced is finite with probability 1
and its expected size is also finite.
Criticality: whenµ = 1, the random tree produced is finite with probability 1 but its
expected size is infinite.
Supercriticality: whenµ > 1, the random tree produced is finite with probability
strictly less than 1.

From the discussion of equivalence transformations (56), there furthermore results that, regard-
ing trees of afixed sizen, there is complete equivalence between all branching processes with
generators of the form

φθ(w) =
φ(θw)

φ(θ)
.

Such families of related functions are known as “exponential families” in probability theory. In
this way, one may always regard at will the random tree produced by a weighted model of some
fixed sizen as originating from a branching process of subcritical, critical, or supercritical type
conditioned upon the size of the total progeny.

Finally, take a setS ⊆ G for which the complete generating function ofS with respect to
the degree profile is available,

S(z, u0, u1, . . .) =
X

τ∈S
z|τ |

“
u

χ0(τ)
0 u

χ1(τ)
1 · · ·

”
.

Then, for a system of weightsΛ, one has

S(z, λ0, λ1, . . .) =
X

τ∈S
π(τ )z|τ |.

Thus, the probability that a weighted tree of sizen belongs toS becomes accessible by extract-
ing the coefficient ofzn. This appliesa fortiori to branching processes as well. In summary,
the analysis of parameters of trees of sizen under either weighted models or branching pro-
cess models derives from substituting weights or probability values inside the corresponding
combinatorial generating functions.. . . . . . . . . . . . . . . . . . . . . . . . . END OF EXAMPLE III.20. �

The reduction of combinatorial tree models to branching processes has been pur-
sued early, most notably by the “Russian School”: see especially the books by Kolchin
[314, 315] and references therein. (For asymptotic purposes, the equivalence between
combinatorial models and critical branching processes often turns out to be most fruit-
ful.) Conversely, symbolic-combinatorial methods may be viewed as a systematic way
of obtaining equations relative to characteristics of branching processes. We do not
elaborate further along these lines as this would take us outside of the scope of the
present book.
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� III.29. Catalan trees, Cayley trees, and branching processes.Catalan trees of sizen are
defined by the weighted model in whichλj ≡ 1, but also equivalently bybλj = cθj , for
anyc > 0 andθ ≤ 1. In particular they coincide with the random tree produced by the critical
branching process whose offspring probabilities are geometric: pj = 1/2j+1.

Cayley trees area priori defined byλj = 1/j!. They can be generated by the critical
branching process with Poisson probabilities,pj = e−1/j!, and more generally with an arbi-
trary Poisson distributionpj = e−λλj/j!. �

III. 7. Additional constructions

We discuss here additional constructions already examinedin earlier chapters,
namely pointing and substitution (Section III. 7.1) as wellas order constraints (Sec-
tion III. 7.2) on the one hand, implicit structures (SectionIII. 7.3) on the other hand.
Given that basic translation mechanisms can be directly adapted to the multivariate
realm, such extensions involve basically no new concept, and the methods of Chap-
ters I and II can be recycled. In Section III. 7.4, we revisit the classical principle of
inclusion-exclusion under a generating function perspective. In this light, the principle
appears as a typically multivariate device well-suited to enumerating objects accord-
ing the number of occurrences of sub-configurations.

III. 7.1. Pointing and substitution. Let 〈F , χ〉 be a class–parameter pair, where
χ is multivariate of dimensionr ≥ 1 and letF (z) be the MGF associated to it in
the notations of (18) and (27). In particularz0 = z marks size, andzk marks the
componentk of the multiparameterχ. If z marks size, then, like in the univariate case,
θz translates the fact of distinguishing one atom. Generally,pick up a variablex ≡ zj

for somej with 0 ≤ j ≤ r. Then since

x∂x(satbxf ) = f · (satbxf ),

the interpretation of the operatorθx ≡ x∂x is immediate; it means “pick up in all
possible ways in objects ofF a configuration marked byx and point to it”. For
instance, ifF (z, u) is the BGF of trees wherez marks size andu marks leaves,
thenθuF (z, u) = u∂uF (z, u) enumerates trees with one distinguished leaf.

Similarly, the substitutionx 7→ S(z) in a GFF , whereS(z) is the MGF of a
classS, means attaching an object of typeS to configurations marked by the variablex
in F . We refrain from giving detailed definitions (that would be somewhat clumsy
and uninformative) as the process is better understood by practice than by long formal
developments. Justification in each particular case is easily obtained by returning to
the combinatorial representation of generating functionsas images of combinatorial
classes.

EXAMPLE III.21. Constrained integer compositions and “slicing”.This example illustrates
variations around the substitution scheme. Consider compositions of integers where successive
summands have sizes that are constrained to belong to a fixed setR ⊆ N2. For instance, the
relations

R1 = {(x, y) | 1 ≤ x ≤ y}, R2 = {(x, y) | 1 ≤ y ≤ 2x},
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correspond to weakly increasing summands in the case ofR1 and to summands that can at most
double at each stage in the case ofR2. In the “ragged landscape” representation of composi-
tions, this means considering diagrams of unit cells aligned in columns along the horizontal
axis, with successive columns obeying the constraint imposed byR.

LetF (z, u) be the BGF of suchR–restricted compositions, wherez marks total sum andu
marks the value of the last summand, that is, the height of thelast column. The functionF (z, u)
satisfies a functional equation of the form

(57) F (z, u) = f(zu) + (L [F (z, u)])u 7→zu ,

wheref(z) is the generating function of the one-column objects andL is a linear operator over
formal series inu given by

(58) L[uj ] :=
X

(j,k)∈R
uk.

In effect, Equation (57) describes inductively objects as comprising either one column (f(zu))
or else being formed by adding a new column to an existing one.In the latter case, the last
column added has a sizek that must be such that(j, k) ∈ R, if it was added after a column of
sizej, and it will contributeukzk to the BGFF (z, u); this is precisely what (58) expresses. In
particular,F (z, 1) gives back the enumeration ofF–objects irrespective of the size of the last
column.

For a ruleR that is “simple enough”, the basic equation (57) will often involve a substi-
tution. Let us first rederive in this way the enumeration of partitions. We takeR = R1 and
assume that the first column can have any positive size. Compositions into increasing summands
are clearly the same as partitions. Since

L[uj ] = uj + uj+1 + uj+2 + · · · = uj

1− u ,

the functionF (z, u) satisfies a functional equation involving a substitution,

(59) F (z, u) =
zu

1− zu +
1

1− zuF (z, zu).

This relation iterates:any linear functional equation of the substitution type

φ(u) = α(u) + β(u)φ(σ(u))

is solved formally by

(60) φ(u) = α(u) + β(u)α(σ(u)) + β(u)β(σ(u))α(σ〈2〉(u)) + · · · ,
whereσ〈j〉(u) designates thejth iterate ofu.
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FIGURE III.14. The technique of “adding a slice” for enumerating constrained compositions.
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Returning to compositions into increasing summands, that is, partitions, the turnkey so-
lution (60) gives, upon iterating on the second argument with the first argument treated as a
parameter:

(61) F (z, u) =
zu

1− zu +
z2u

(1− zu)(1− z2u)
+

z3u

(1− zu)(1− z2u)(1− z3u)
+ · · · .

Equivalence with the alternative form

(62) F (z, u) =
zu

1− z +
z2u2

(1− z)(1− z2)
+

z3u3

(1− z)(1− z2)(1− z3)
+ · · ·

is then easily verified from (59) upon expandingF (z, u) as a series inu and applying the
method of indeterminate coefficients to the form(1− zu)F (z, u) = zu+ F (z, zu). The pre-
sentation (62) is furthermore consistent with the treatment of partitions given in Chapter I since
the quantity[uk]F (z, u) clearly represents the OGF of (nonempty) partitions whose largest
summand isk. (In passing, the equality between (61) and (62) is a shallowbut curious identity
that is quite typical of the area ofq-analogues.)

This same method has been applied in [201] to compositions satisfying conditionR2

above. In this case, successive summands are allowed to double at most at each stage. The
associated linear operator is

L[uj ] = u+ · · ·+ u2j = u
1− u2j

1− u .

For simplicity, it is assumed that the first column has size 1.Thus,F satisfies a functional
equation of the substitution type:

F (z, u) = zu+
zu

1− zu
`
F (z, 1)− F (z, z2u2)

´
.

This can be solved by means of the general iteration mechanism (60), treating momentarily
F (z, 1) as a known quantity: witha(u) := zu+ F (z, 1)/(1− zu), one has

F (z, u) = a(u)− zu

1− zua(z
2u2) +

zu

1− zu
z2u2

1− z2u2
a(z6u4)− · · · .

Then, the substitutionu = 1 in the solution becomes permissible. Upon solving forF (z, 1),
one eventually gets the somewhat curious GF for compositions satisfyingR2:

F (z, 1) =

P
j≥1(−1)j−1z2j+1−j−2/Qj−1(z)P

j≥0(−1)jz2j+1−j−2/Qj(z)

where Qj(z) = (1− z)(1− z3)(1− z7) · · · (1− z2j−1).

The sequence of coefficients starts as1, 1, 2, 3, 5, 9, 16, 28, 50 and isEIS A002572: it repre-
sents for instance the number of possible level profiles of binary trees, or equivalently the num-
ber of partitions of 1 into summands of the form1, 1

2
, 1

4
, 1

8
, . . . (this is related to the number

of solutions to Kraft’s inequality). See [201] for details including very precise asymptotic esti-
mates and Tangora’s paper [464] for relations to algebraic topology. END OF EXAMPLE III.21. �

The reason for presenting the slicing method in some detail is that it is very gen-
eral. It has been in particular employed to derive a number oforiginal enumerations of
polyominoes by area, a topic of interest in some branches of statistical mechanics: for
instance, the book by Janse van Rensburg [482] discusses many applications of such
lattice models to polymers and vesicles. See Bousquet-Mélou’s review paper [66] for
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a methodological perspective. Some of the origins of the method point to Pólya in the
1930’s, see [396], and independently to Temperley [466, pp. 65–67].
� III.30. Pointing-erasing and the combinatorics of Taylor’s formula. The derivative opera-
tor∂x corresponds combinatorially to a “pointing-erasing” operation: select in all possible ways
an atom marked byx and make it transparent tox-marking (e.g., by replacing it by a neutral
object). The operator1

k!
∂k

xf(x), then corresponds to picking up in all possible way asubset
(order does not count) ofk configurations marked byx. The identity (Taylor’s formula)

f(x+ y) =
X

k≥0

„
1

k!
∂k

xf(x)

«
yk

can then receive a simple combinatorial interpretation: Given a population of individuals (F
enumerated byf ), form the bicoloured population of individuals enumerated by f(x + y),
where each atom of each object can be repainted either inx-colour ory-colour; the process is
equivalent to deciding a priori for each individual to repaint k of its atoms fromx to y, this
for all possible values ofk ≥ 0. Senn from combinatorics, Taylor’s formula thus expressesthe
equivalence between two ways of counting. �

� III.31. Carlitz compositions I. Let K be the class of compositions such that all pairs of
adjacent summands are formed of distinct values. These can be generated by the operator
L[uj ] = uz

1−uz
− ujzj , so thatL[f(u)] = uz

1−uz
f(1) − f(uz). The BGFK(z, u), with u

marking the value of the last summand, then satisfies a functional equation,

K(z, u) =
uz

1− uz +
uz

1− uzK(z, 1)−K(z, zu),

giving eventuallyK(z) ≡ K(z, 1) under the form

(63)
K(z) =

0
@1 +

X

j≥1

(−z)j

1− zj

1
A

−1

= 1 + z + z2 + 3z3 + 4z4 + 7z5 + 14z6 + 23z7 + 39z8 + · · · .

The sequence of coefficients constitutesEISA003242. Such compositions have been introduced
by Carlitz in 1976; the derivation above is from a paper by Knopfmacher and Prodinger [296]
who provide early references and asymptotic properties. (We resume this thread in Note 34
below and in Chapter IV, p. 249.) �

III. 7.2. Order constraints. We refer in this subsection to the discussion of or-
der constraints in labelled products that has been given in Chapter II. We recall that
the modified labelled product

A = (B2 ⋆ C)

only includes the elements of(B ⋆ C) such that the minimal label lies in theA com-
ponent. Once more the univariate rules generalize verbatimfor parameters that are
inherited and the corresponding exponential MGFs are related by

A(z,u) =

∫ z

0

(∂tB(t,u)) · C(t,u) dt.

To illustrate this multivariate extension, we shall consider a quadrivariate statistic on
permutations.
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valley: σi−1 > σi < σi+1 leaf node (u0)

double rise: σi−1 < σi < σi+1 unary right-branching (u1)

double fall: σi−1 > σi > σi+1 unary left-branching (u′
1)

peak: σi−1 < σi > σi+1 binary node (u2)

FIGURE III.15. Local order patters in a permutation and the four types of nodes in the
corresponding increasing binary tree.

EXAMPLE III.22. Local order patterns in permutations.An elementσi of a permutation
written σ = σ1, . . . , σn when compared to its immediate neighbours can be categorized into
one of four types4 summarized in the first two columns of Figure 15. The correspondence with
binary increasing trees described in Example 17 of Chapter II then shows the following: peaks
and valleys correspond to binary nodes and leaves, respectively, while double rises and double
falls are associated with right-branching and left-branching unary nodes. Letu0, u1, u

′
1, u2 be

markers for the number of nodes of each type, as summarized inFigure 15. Then the exponential
MGF of increasing trees under this statistic satisfies

∂

∂z
I(z,u) = u0 + (u1 + u′

1)I(z,u) + u2I(z,u)2.

This is solved by separation of variables as

(64) I(z,u) =
δ

u2

v1 + δ tan(zδ)

δ − v1 tan(zδ)
− v1
u2
,

where the following abbreviations are used:

v1 =
1

2
(u1 + u′

1), δ =
q
u0u2 − v2

1 .

One has

I = u0z + u0(u1 + u′
1)
z2

2!
+ u0((u1 + u′

1)
2 + 2u0u2)

z3

3!
,

which agrees with the small cases. This calculation is consistent with what has been found in
Chapter II regarding the EGF of all nonempty permutations and of alternating permutations,

z

1− z , tan(z),

that derive from the substitutions{u0 = u1 = u′
1 = u2 = 1} and{u0 = u2 = 1, u1 =

u′
1 = 0}, respectively. The substitution{u0 = u1 = u, u′

1 = u2 = 1} gives a simple variant
(without the empty permutation) of the BGF of Eulerian numbers (73) derived below by other
means (p. 197).

By specialization of the quadrivariate GF, there results that, in a tree of sizen the mean
number of nodes of nullary, unary, or binary type is asymptotic to n/3, with a variance that is
O(n), thereby ensuring concentration of distribution. . . . . . . .. END OF EXAMPLE III.22. �

A similar analysis yields path length. It is found that a random increasing binary
tree of sizen has mean path length

2n logn+O(n).

4Here, for|σ| = n, we regardσ asborderedby (−∞,−∞), i.e., we setσ0 = σn+1 = −∞ and let
the indexi in Figure 15 vary in[1 . . n]. Alternative bordering conventions prove occasionally useful.
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FIGURE III.16. The level profile of a random increasing binary tree of size 256. (Com-
pare with Figure 13 for binary trees under the uniform Catalan statistic.)

Contrary to what the uniform combinatorial model gives, such trees tend to be rather
well balanced, and a typical branch is only about 38.6% longer than in a perfect binary
tree (since2/ log 2

.
= 1.386). This fact applies to binary search trees (Note 32) and

it justifies that the performance of such trees is quite good when they are applied to
random data [307, 351, 434] or subjected to randomization [416, 370].
� III.32. Binary search trees (BSTs). Given a permutationτ , one defines inductively a tree
BST(τ ) by

BST(ǫ) = ∅; BST(τ ) = 〈τ1, BST(τ |<τ1), BST(τ |>τ1)〉.
(There,τ |P represents the subword ofτ consisting of those elements that satisfy predicateP .)
Let IBT(σ) be the increasing binary tree canonically associated toσ. Then one has the funda-
mentalEquivalence Principle,

IBT(σ)
shape≡ BST(σ−1),

whereA
shape≡ B means thatA andB have identical tree shapes. �

III. 7.3. Implicit structures. Here again, we note that equations involving sums
and products, either labelled or not, are easily solved justlike in the univariate case.
The same applies for the sequence construction and for the set construction, especially
in the labelled case—refer to the corresponding sections ofChapters I and II. Again,
the process is best understood by examples.

Suppose for instance one wants to enumerate connected labelled graphs by the
number of nodes (marked byz) and the number of edges (marked byu). The classK
of connected graphs and the classG of all graphs are related by the set construction,

G = SET{K},
meaning that every graph decomposes uniquely into connected components. The cor-
responding exponential BGFs then satisfy

G(z, u) = eK(z,u) implying K(z, u) = logG(z, u),

since the number of edges in a graph is inherited (additively) from the corresponding
numbers in connected components. Now, the number of graphs of sizen havingk
edges is

(
n(n−1)/2

k

)
, so that

(65) K(z, u) = log

(
1 +

∞∑

n=1

(1 + u)n(n−1)/2 z
n

n!

)
.

This formula, which appears as a refinement of the univariateformula of Chapter II,
then simply reads:connected graphs are obtained as components (thelog operator) of
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general graphs, where a general graph is determined by the presence or absence of an
edge (corresponding to(1+u)) between any pair of nodes (the exponentn(n−1)/2).

Pulling out information out of the formula (65) is however not obvious due to the
alternation of signs in the expansion oflog(1 + w) and due to the strongly divergent
character of the involved series. As an aside, we note here that the quantity

K̂(z, u) = K
( z
u
, u
)

enumerates connected graphs according to size (marked byz) and excess (marked
byu) of the number of edges over the number of nodes. This means that the results of
Section 5.3 of Chapter II obtained by Wright’s decomposition can be rephrased as the
expansion (withinC(u)[[z]]):

(66)
log

(
1 +

∞∑

n=1

(1 + u)n(n−1)/2 z
nu−n

n!

)
=

1

u
W−1(z) +W0(z) + · · ·

=
1

u

(
T − 1

2
T 2

)
+

(
1

2
log

1

1 − T
− 1

2
T − 1

4
T 2

)
+ · · · ,

with T ≡ T (z). See Temperley’s early works [465, 466] as well as the “giant paper on
the giant component” [282] and the paper [205] for direct derivations that eventually
constitute analytic alternatives to Wright’s combinatorial approach.

EXAMPLE III.23. Smirnov words. Following the treatment of Goulden and Jackson [244],
we define a Smirnov word to be any word that has no consecutive equal letters. LetW =
SEQ{A} be the set of words over the alphabetA = {a1, . . . , ar} of cardinalityr, andS be the
set of Smirnov words. Let alsovj mark the number of occurrences of thejth letter in a word.
One has5

W (v1, . . . , vr) =
1

1− (v1 + · · ·+ vr)

Start from a Smirnov word and substitute to any letteraj that appears in it an arbitrary nonempty
sequence of lettersaj . When this operation is done at all places of a Smirnov word, it gives
rise to an unconstrained word. Conversely, any word is associated to a unique Smirnov word
by collapsing into single letters maximal groups of contiguous equal letters. In other terms,
arbitrary words derive from Smirnov words by a simultaneoussubstitution:

W = S
ˆ
a1 7→ SEQ≥1{a1}, . . . , ar 7→ SEQ≥1{ar}

˜
.

There results the relation

(67) W (v1, . . . , vr) = S

„
v1

1− v1 , . . . ,
vr

1− vr

«
.

This relation determines the MGFS(v1, . . . , vr) implicitly. Now, since the inverse function of
v/(1− v) is v/(1 + v), one finds the solution:

(68) S(v1, . . . , vr) = W

„
v1

1 + v1
, . . . ,

vr

1 + vr

«
=

 
1−

rX

j=1

vj

1 + vj

!−1

.

5The variablez marking length being here unnecessary, it is omitted—it would otherwise somewhat
obscure the simplicity of the calculations.
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For instance, if we setvj = z, that is, we “forget” the composition of the words into letters,
we obtain the OGF of Smirnov words counted according to length as

1

1− r z
1+z

=
1 + z

1− (r − 1)z
= 1 +

X

n≥1

r(r − 1)n−1zn.

This is consistent with elementary combinatorics since a Smirnov word of lengthn is deter-
mined by the choice of its first letter (r possibilities) followed by a sequence ofn − 1 choices
constrained to avoid one letter amongstr (and corresponding tor − 1 possibilities for each
position). The interest of (68) is to apply equally well to the Bernoulli model where letters may
receive unequal probabilities and where a direct combinatorial argument does not appear to be
easy: it suffices to perform the substitutionvj 7→ pjz in this case: see Example IV.9, p. 249
and Note V.7, p. 289

From these developments, one can next build the GF of words that never contain more
thanm consecutive equal letters. It suffices to effect in (68) the substitutionvj 7→ vj +· · ·+vm

j .
In particular for the univariate problem (or, equivalently, the case where letters are equiproba-
ble), one finds the OGF

1

1− r
z 1−zm

1−z

1 + z 1−zm

1−z

=
1− zm+1

1− rz + (r − 1)zm+1
.

This extends to an arbitrary alphabet the analysis of singleruns and double runs in binary words
that was performed in Section 4 of Chapter I. Naturally, thisapproach applies equally well to
nonuniform letter probabilities and to a collection of run-length upperbounds and lowerbounds
dependent on each particular letter. This topic is in particular pursued by different methods in
several works of Karlin and coauthors (see, e.g., [365]), themselves motivated by applications
to life sciences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . END OF EXAMPLE III.23. �

� III.33. Enumeration in free groups.Consider the composite alphabetB = A ∪ A, where
A = {a1, . . . , ar} andA = {a1, . . . , ar}. A word over alphabetB is said to bereducedif it
arises from a word overB by a maximal application of the reductionsajaj 7→ ǫ andajaj 7→ ǫ
(with ǫ the empty word). A reduced word thus has no factor of the formajaj or ajaj . Such a
reduced word serves as a canonical representation of an element in the free groupFr generated
by A, upon identifyingaj = a−1

j . The GF of reduced words withuj anduj marking the
number of occurrences of letteraj andaj , respectively, is

R(u1, . . . , ur, u1, . . . , ur) = S

„
u1

1− u1
+

u1

1− u1
, . . . ,

ur

1− ur
+

ur

1− ur

«
,

with S the GF of Smirnov words, as in (68). In particular this specializes to give the OGF of
reduced words withz marking length,R(z) = (1 + z)/(1 − (2r − 1)z): implying Rn =
2r(2r − 1)n, which checks with what elementary combinatorics gives.

The Abelian imageλ(w) of an elementw of the free groupFk is obtained by letting
all letters commute and applying the reductionsaj · a−1

j = 1. It can then be put under the
form am1

1 · · · amr
r , with eachmj in Z, so that it can be identified with an element ofZr.

Let x = (x1, . . . , xr) be a vector of indeterminates and definexλ(w) to be the monomial
xm1

1 · · ·xmr
r . Of interest in certain group-theoretic investigations isthe MGF

Q(z;x) :=
X

w∈R
z|w|

x
λ(w) = S

„
zx1

1− zx1
+

zx−1
1

1− zx−1
1

, . . . ,
zxr

1− zxr
+

zx−1
r

1− zx−1
r

«
,
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which is found to simplify to

Q(z;x) =
1− z2

1− zPr
j=1(xj + x−1

j ) + (2r − 1)z2
.

This last form appears in a paper of Rivin [412], where it is obtained by matrix techniques.
Methods developed in Chapter IX can then be used to establishcentral and local limit laws for
the asymptotic distribution ofλ(w) overRn, providing an alternative to the methods of [412,
435]. (This note is based on an unpublished memo of Flajolet, Noy, and Ventura, 2006.) �

� III.34. Carlitz compositions II. Here is an alternative derivation of the OGF of Carlitz
compositions (Note 31, p. 190). Carlitz compositions with largest summand≤ r are obtained
from the OGF of Smirnov words by the substitutionvj 7→ zj :

(69) K[r](z) =

 
1−

rX

j=1

zj

1 + zj

!−1

,

The OGF of all Carlitz compositions then results from letting r →∞:

(70) K(z) =

 
1−

∞X

j=1

zj

1 + zj

!−1

.

The asymptotic form of the coefficients is derived in ChapterIV, p. 249. �

III. 7.4. Inclusion-Exclusion. Inclusion-exclusion is a familiar type of reason-
ing rooted in elementary mathematics. Its principle, in order to countexactly, consists
in grosslyovercounting, then performing a simple correction of the overcounting, then
correcting the correction, and so on. Characteristically,enumerative results provided
by inclusion exclusion involve an alternating sum. We revisit this process here in the
perspective of multivariate generating functions, where it essentially reduces to a com-
bined use of substitution and implicit definitions. Our approach follows Goulden and
Jackson’s encyclopedic treatise [244].

Let E be a set endowed with a real or complex valued measure| · | in such a way
that, forA,B ⊂ E , there holds

|A ∪B| = |A| + |B| whenever A ∩B = ∅.
Thus,| · | is an additive measure, typically taken as set cardinality (i.e., |e| = 1 for
e ∈ E) or a discrete probability measure onE (i.e., |e| = pe for e ∈ E). The general
formula

|A ∪B| = |A| + |B| − |AB| where AB := A ∩B,
follows immediately from basic set-theoretic principles:

∑

c∈A∪B

|c| =
∑

a∈A

|a| +
∑

b∈B

|b| −
∑

i∈A∩B

|i|.

What is called theinclusion-exclusion principleor sieve formulais the following mul-
tivariate generalization, for an arbitrary familyA1, . . . , Ar ⊂ E :
(71)

|A1 ∪ · · · ∪Ar| ≡
∣∣E \ (A1A2 · · ·Ar)

∣∣ where A := E \A
=

∑

1≤i≤r

|Ai| −
∑

1≤i1<i2≤r

|Ai1Ai2 | + · · · + (−1)r−1|A1A2 · · ·Ar|.
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(The easy proof by induction results from elementary properties of the boolean algebra
formed by the subsets ofE ; see, e.g., [98, Ch. IV].) An alternative formulation results
from settingBj = Aj ,Bj = Aj :

(72)

|B1B2 · · ·Br| = |E| −
∑

1≤i≤r

|Bi|

+
∑

1≤i1<i2≤r

|Bi1Bi2 | − · · · + (−1)r|B1B2 · · ·Br|.

In terms of measure, this equality quantifies the set of objects satisfyingexactlya
collection of simultaneousconditions (all theBj) in terms of those that violateat
least someof the conditions (theBj).

Derangements.Here is a textbook example of an inclusion–exclusion argument,
namely, the enumeration ofderangements. Recall that a derangement is a permuta-
tion σ such thatσi 6= i, for all i. Fix E as the set of all permutations of[1, n], take
the measure| · | to be set cardinality, and letBi be the subset of permutations inE
associated to the propertyσi 6= i. (There are consequentlyr = n conditions.) Thus,
Bi means having no fixed point ati, whileBi means having a fixed point at thedis-
tinguishedvaluei. Then, the left hand side of (72) is the number of permutations that
are derangements, that is,Dn. As regards the right hand side, thekth sum comprises
itself

(
n
k

)
terms counting possibilities attached to the choices of indicesi1 < · · · < ik;

each such choice is associated to a factorBi1 · · ·Bik
that describes all permutations

with fixed points at the distinguished pointsi1, . . . , ik (i.e.,σ(i1) = i1, . . . , σik
= ik).

Clearly,|Bi1 · · ·Bik
| = (n− k)!. Therefore one has

Dn = n! −
(
n

1

)
(n− 1)! +

(
n

2

)
(n− 2)! − · · · + (−1)n

(
n

n

)
0!,

which rewrites into the more familiar form
Dn

n!
= 1 − 1

1!
+

1

2!
− · · · + (−1)n

n!
.

This gives an elementary derivation of the derangement numbers already encountered
in Chapter II and obtained there by means of the labelled set and cycle constructions.

The derivation above is perfectly fine but carrying it out on complex examples
may represent somewhat of a challenge. In contrast, as we nowexplain, there exists
a parallel approach based on multivariate generating functions, which is technically
easy to deal with and has great versatility.

Let us now reexamine derangements in a generating function perspective. Con-
sider the setP of all permutations and build a supersetQ as follows. The setQ
is comprised of permutations in which an arbitrary number offixed points—some,
maybe none, not necessarily all—have beendistinguished. (This corresponds to ar-
bitrary products of theBj in the argument above.) For instanceQ contains elements
like

1, 3, 2, 1, 3, 2, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3,

where distinguished fixed points are underlined. Clearly, if one removes the distin-
guished elements of aγ ∈ Q, what is left constitutes an arbitrary permutation of the
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remaining elements. One has
Q ∼= U ⋆ P ,

whereU denotes the class of urns that are sets of atoms. In particular, the EGF ofQ is
Q(z) = ez/(1 − z). What we’ve just done is to enumerate the quantities that appear
in (72), but with the signs “wrong”, i.e., all pluses.

Introduce now the variablev to mark the distinguished fixed points in objects
of Q. The exponential BGF is then by general principles of this chapter:

Q(z, v) = evz 1

1 − z
.

Let nowP (z, u) be the BGF of permutations whereu marks the number of fixed
points. (Let us ignore momentarily the fact thatP (z, u) is otherwise known.) Per-
mutations withsomefixed points distinguished are generated by the substitution u 7→
1 + v insideP (z, u). In other words one has the fundamental inclusion-exclusion
relation

Q(z, v) = P (z, 1 + v).

This is then easily solved as

P (z, u) = Q(z, u− 1),

so that knowledge of (the easy)Q gives (the harder)P . For the case at hand, this
yields

P (z, u) =
e(u−1)z

1 − z
, P (z, 0) = D(z) =

e−z

1 − z
,

and, in particular, the EGF of derangements has been retrieved. Note that the sought
P (z, 0) comes out asQ(z,−1), so that signs corresponding to the sieve formula (72)
have now been put “right”, i.e., alternating.

The process employed for derangements is clearly very general. It is a generating
function analogue of the inclusion-exclusion principle: counting objects that satisfy a
number ofsimultaneousconstraints is reduced to counting objects that violatesomeof
the constraints at distinguished “places”—the latter is usually a simpler problem. The
generating function analogue of inclusion-exclusion is then simply the substitution
v 7→ u− 1, if a bivariate GF is sought, orv 7→ −1 in the univariate case.

Rises in permutations and patterns in words.The book by Goulden and Jack-
son [244, pp. 45–48] describes a useful formalization of the inclusion process operat-
ing on MGFs. Conceptually, it combines substitution and implicit definitions. Once
again, themodus operandiis best grasped through examples, two of which are detailed
below.

EXAMPLE III.24. Rises and ascending runs in permutations.A rise (also called anascent)
in a permutationσ = σ1 · · ·σn is a pair of consecutive elementsσiσi+1 satisfyingσi < σi+1

(with 1 ≤ i < n). The problem is to determine the numberAn,k of permutations of size having
exactlyk rises, together with the BGFA(z, u). By symmetry, we are also enumerating descents
(defined byσi > σi+1) as well as ascending runs that are each terminated by a descent.

Guided by the inclusion-exclusion principle, we tackle theeasier problem of enumerating
permutations withdistinguishedrises, of which the set is denoted byB. For instance,B contains
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elements like

2 6 1 3ր4ր8ր9ր11 15 12 5ր10 13 7 14,

where those rises that are distinguished are represented byarrows. (Note that some rises may
not be distinguished.) Maximal sequences of adjacent distinguished rises (boxed in the repre-
sentation) will be calledclusters. Then,B can be specified by the sequence construction applied
to atoms (Z) and clusters (C) as

B = SEQ(Z + C), where C = (Z ր Z) + (Z ր Z ր Z) + · · · = SET≥2(Z).

since a cluster is an ordered sequence, or equivalently a set, furthermore having at least two
elements. This gives the EGF ofB as

B(z) =
1

1− (z + (ez − 1− z)) =
1

2− ez
,

which happens to coincide with the EGF of surjections.
For inclusion-exclusion purposes, we need the BGF ofB with v marking the number of

distinguished rises. A cluster of sizek containsk − 1 rises, so that

B(z, v) =
1

1− (z + (ezv − 1− zv)/v) =
v

v + 1− ezv
.

Now, the usual argument applies: the BGFA(z, u) satisfiesB(z, v) = A(z, 1 + v), so that
A(z, u) = B(z, u− 1), which yields the particularly simple form

(73) A(z, u) =
u− 1

u− ez(u−1)
.

In particular, this GF expands as

A(z, u) = 1 + z + (u+ 1)
z2

2!
+ (u2 + 4u+ 1)

z3

3!
+ (u3 + 11u2 + 11u + 1)

z4

4!
+ · · · .

The coefficientsAn,k are known as theEulerian numbers. In combinatorial analysis, these
numbers are almost as classic as the Stirling numbers. A detailed discussion of their properties
is to be found in classical treatises like [98] or [248]. (From Eq. (73), permutations without
rises are enumerated byB(z,−1) = ez, an altogether obvious result.)

Moments derive easily from an expansion of (73) atu = 1, which gives

A(z, u) =
1

1− z +
1

2

z2

(1− z)2 (u− 1) +
1

12

z3(2 + z)

(1− z)3 (u− 1)2 + · · · .

In particular: the mean of the number of rises in a random permutation of sizen is 1
2
(n − 1)

and the variance is∼ 1
12
n, ensuring concentration of distribution.

The same method applies to the enumeration ofascending runs: for a fixed parameterℓ,
an ascending run of lengthℓ is a sequence of consecutive elementsσiσi+1 · · ·σi+ℓ such that
σi < σi+1 < · · · < σi+ℓ. (Thus, a rise is an ascending run of length 1.) We define a cluster as a
sequence of distinguished runs which overlap in the sense that they share some of the elements
of the permutation. The exponential BGF of permutations with distinguished ascending runs is
then

B(z, v) =
1

1− z − bI(z, v)
, where bI(z, v) =

X

n,k

In,kv
k z

n

n!
,

andIn,k is the number of ways of covering the segment[1, n] with k distinct intervals of lengthℓ
that are contained in[1, n] and have integral end points. The numbersIn,k themselves result
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from elementary combinatorics (see also the case of patterns in words below) and one has for
the OGF corresponding tobI:

I(z, v) ≡
X

n,k

In,kv
kzn =

zℓ+1v

1− v(z + z2 + · · ·+ zℓ)
.

(Proof: The first segment in the covering must be placed on theleft, the other ones appear in
succession, each shifted right by 1 toℓ positions from the previous one.) The last two equations
finally determine the exponential BGF of permutations with size marked byz and ascending
runs of lengthℓ+ 1 marked byu,

(74) A(z, u) = B(z, u− 1),

given the inclusion-exclusion principle.
The resulting formulæ are checked to generalize the case of rises (ℓ = 1). They can

be made explicit by first expanding the OGFI(z, v) into partial fractions, then applying the
transformation(1− ωz)−1 7→ eωz in order to translateI(z, v) into bI(z, v). The net result is

A(z, u) =
1

1− z − bI(z, u− 1)
, where bI(z, v) = (1− z)(v + 1) +

ℓX

j=1

cj(v)e
ωj(v)z

involves a sum of exponentials. In this last equation, theωj(v) are the roots of the characteristic
equationωℓ = v(1 + · · · + ωℓ−1) and thecj(v) are the corresponding coefficients in the
partial fraction decomposition ofI(z, v). These expressions were first published by Elizalde
and Noy [150] who obtained them by means of tree decompositions.

The BGF (74) can be exploited in order to determine quantitative information on long runs
in permutations. First, an expansion atu = 1 (also, a direct reasoning: see the discussion of
hidden words in Chapter I) shows that the mean number of ascending runs of lengthℓ − 1 is
(n − ℓ + 1)/ℓ! exactly, as soon asn ≥ ℓ. This entails that, ifn = o(ℓ!), the probability of
finding an ascending run of lengthℓ− 1 tends to 0 asn → ∞. What is used in passing in this
argument is the general fact that for a discrete variableX with values in0, 1, 2, . . ., one has
(with Iverson’s notation)

P(X ≥ 1) = E([[X ≥ 1]]) = E(min(X, 1)) ≤ E(X).

An inequality in the converse direction can be obtained fromthe second moment method. In
effect, the variance of the number of ascending runs of length ℓ − 1 is found to be of the exact
form αℓn + βℓ whereαℓ is essentially1/ℓ! andβℓ is of comparable order (details omitted).
Then, by Chebyshev’s inequalities, concentration of distribution holds as long asℓ is such that
(ℓ + 1)! = o(n). In this case, with high probability (i.e., with probability tending to 1 asn
tends to∞), there are many ascending runs of lengthℓ− 1. In particular:

Let Ln be the length of the longest ascending run in a random permutation of n
elements. Letℓ0(n) be the smallest integer such thatℓ! ≥ n. Then the distribution
of Ln is concentrated in the sense thatLn/ℓ0(n) converges in probability to 1: for
anyǫ > 0, one has

lim
n→∞

P

„
1− ǫ < Ln

ℓ0(n)
< 1 + ǫ

«
= 1.

What has been found here is a fairly sharp threshold phenomenon. END OF EXAMPLE III.24. �
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� III.35. Permutations withoutℓ–ascending runs.The EGF of permutations without1–, 2–
and3–ascending runs are respectively
0
@X

i≥0

x2i

(2i)!
− x2i+1

(2i+ 1)!

1
A

−1

,

0
@X

i≥0

x3i

(3i)!
− x3i+1

(3i+ 1)!

1
A

−1

,

0
@X

i≥0

x4i

(4i)!
− x4i+1

(4i+ 1)!

1
A

−1

,

and so on. (See Carlitz’s review [78] as well as Elizalde and Noy’s article [150] for interesting
results involving several types of order patterns in permutations.) �

Many variations on the theme of rises and ascending runs are clearly possible. Lo-
cal order patterns in permutations have been intensely researched, notably by Carlitz
in the 1970’s. Goulden and Jackson [244, Sec. 4.3] offer a general theory of patterns
in sequences and permutations. Special permutations patterns associated with binary
increasing trees are also studied by Flajolet, Gourdon, andMartı́nez [185] (by combi-
natorial methods) and Devroye [125] (by probabilistic arguments). On another regis-
ter, the longest ascending run has been found above to be of order(log n)/ log logn
in probability. The superficially resembling problem of analysing the length of the
longest increasing sequencein random permutations (elements must be in ascending
order but need not be adjacent) has attracted a lot of attention, but is considerably
harder. This quantity is∼ 2

√
n on average and in probability, as shown by a pene-

trating analysis of the shape of random Young tableaus due toLogan, Shepp, Vershik,
and Kerov [336, 485]. Solving a problem open for over 20 years, Baik, Deift, and Jo-
hansson [19] have eventually determined its limiting distribution. The undemanding
survey by Aldous and Diaconis [7] discusses some of the background of this prob-
lem, while Chapter VIII shows how to derive bounds that are ofthe right order of
magnitude but rather crude, using saddle-point methods.

EXAMPLE III.25. Patterns in words. Take the set of all wordsW = SEQ{A} over a
finite alphabetA = {a1, . . . , ar}. A patternp = p1p2 · · · pk, which is particular word of
lengthk has been fixed. What is sought is the BGFW (z, u) ofW, whereu marks the number
of occurrences of patternp inside a word ofW. Results of Chapter I already give access to
W (z, 0), which is the OGF of words not containing the pattern.

In accordance with the inclusion-exclusion principle, oneshould introduce the classX of
words augmented by distinguishing an arbitrary number of occurrences ofp. Define acluster
as a maximal collection of distinguished occurrences that have an overlap. For instance, if
p = aaaaa, a particular word may give rise to the particular cluster:

a b a a a a a a a a a a a a a b a a a a a a a a b b
---------------------------------------------------

a a a a a
a a a a a

a a a a a

Then objects ofX decompose as sequences of either arbitrary letters fromA or clusters:

X = SEQ(A+ C) ,
with C the class of all clusters.

Clusters are themselves obtained by repeatedly sliding thepattern, but with the constraint
that it should constantly overlap partly with itself. Letc(z) be the autocorrelation polynomial
of p as defined in Chapter I, and setbc(z) = c(z) − 1. A moment’s reflection should convince
the reader thatzkbc(z)s−1 when expanded describes all the possibilities for forming clusters



III. 7. ADDITIONAL CONSTRUCTIONS 201

of s overlapping occurrences. On the example above, one hasbc(z) = z + z2 + z3 + z4, and
a particular cluster of 3 overlapping occurrences corresponds to one of the terms inzkbc(z)2 as
follows:

z5

z }| {
a a a a a z5

a a a

z2

z}|{
a a × (z + z2 + z3 + z4)

a

z4

z }| {
a a a a × (z + z2 + z3 + z4).

The OGF of clusters is consequentlyC(z) = zk/(1− bc(z)) since this quantity describes all the
ways to write the pattern (zk) and then slide it so that it should overlap with itself (thisis given
by (1− bc(z))−1). A slightly different way of obtaining this expression ofC(z) is described in
Note 38 below.

By a similar reasoning, the BGF of clusters isvzk/(1 − vbc(z)), and the BGF ofX with
the supplementary variablev marking the number of distinguished occurrences is

X(z, v) =
1

1− rz − vzk/(1− vbc(z)) .

Finally, the usual inclusion-exclusion argument (changev to u − 1) yieldsW (z, u) =
X(z, u− 1). As a result:

For a patternp with correlation polynomialc(z) and lengthk, the BGF
of words over an alphabet of cardinalityr, whereu marks the number of
occurrences ofp, is

W (z, u) =
(u− 1)c(z) − u

(1− rz)((u− 1)c(z)− u) + (u− 1)zk
.

The specializationu = 0 gives back the formula already found in Chapter I. The same
principles clearly apply to weighted models correspondingto unequal letter probabilities, pro-
vided a suitably weighted version of the correlation polynomial is introduced (Note 38 below).
END OF EXAMPLE III.25. �

There are a very large number of formulæ related to patterns in strings. For
instance, BGFs are known for occurrences of one or several patterns under either
Bernoulli or Markov models; see Note 38 below. We refer to Szpankowski’s book [458]
and Lothaire’s chapter [280], where such questions are treated systematically in great
detail. Bourdon and Vallée [65] have even succeeded in extending this approach to
dynamical sourcesof information, thereby extending a large number of previously
known results. Their approach even makes it possible to analyse the occurrence of
patterns in continued fraction representations of real numbers.
� III.36. Moments of number of occurrences.The derivatives ofX(z, v) atv = 0 give access
to the factorial moments of the number of occurrences of a pattern. In this way or directly, one
determines

W (z, u) =
1

1− rz +
zk

(1− rz)2 (u− 1) + 2
zk((1− rz)(c(z)− 1) + zk)

(1− rz)3
(u− 1)2

2!
+ · · · .

The mean number of occurrences isr−n times the coefficient ofzn in the coefficient of(u−1)

and is(n− k + 1)r−k, as anticipated. The coefficient of(u− 1)2/2! is of the form

2r−2k

(1− rz)3 +
2r−k(1 + 2kr−k − c(1/r))

(1− rz)2 +
P (z)

1− rz ,
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with P a polynomial. There results that the variance of the number of occurrences is of the
form

αn+ β, α = r−k(2c(1/r)− 1 + r−k(1− 2k)).

Consequently, the distribution is concentrated around itsmean. (See also the discussion of
“Borges’ Theorem” in Chapter I, p. 58.) �

� III.37. Words with fixed repetitions.Let W 〈s〉(z) = [us]W (z, u) be the OGF of words
containing a pattern exactlys times. One has, fors > 0 ands = 0 respectively,

W 〈s〉(z) =
zkN(z)s−1

D(z)s+1
, W 〈0〉(z) =

c(z)

D(z)
,

withN(z) andD(z) given by

N(z) = (1− rz)(c(z)− 1) + zk, D(z) = (1− rz)c(z) + zk.

The expression ofW 〈0〉 is in agreement with Chapter I, Equation (48). �

� III.38. Patterns in Bernoulli sequences.LetA be an alphabet where letterα has probabil-
ity πα and consider the Bernoulli model where letters in words are chosen independently. Fix a
patternp = p1 · · · pk and define the finite language ofprotrusionsas

Γ =
[

i : ci 6=0

{pi+1pi+2 · · · pk},

where the union is over all correlation positions of the pattern. Define now the correlation
polynomialγ(z) (relative top and theπα) as the generating polynomial of the finite language
of protrusions weighted byπα. For instance,p = ababa gives rise toΓ = {ǫ, ba, baba} and

γ(z) = 1 + πaπbz
2 + π2

aπ
2
bz

4.

Then, the BGF of words withz marking length andu marking the number of occurrences ofp
is

W (z, u) =
(u− 1)γ(z)− u

(1− z)((u− 1)γ(z)− u) + (u− 1)π[p]zk
,

whereπ[p] is the product of the probabilities of letters ofp. �

� III.39. Patterns in binary trees.Consider the classB of pruned binary trees. An occurrence
of patternt in a treeτ is defined by a node whose “dangling subtree” is isomorphic tot. Let p
be the size oft. The BGFB(z, u) of classB whereu marks the number of occurrences oft is
sought.

The OGF ofB is B(z) = (1 − √1− 4z)/(2z). The quantityvB(zv) is the BGF ofB
with v marking external nodes. By virtue of the pointing operation, the quantity

Uk :=

„
1

k!
∂k

v (vB(zv))

«

v=1

,

describes trees withk distinct external nodes distinguished (pointed). The quantity

V :=
X

Uku
k(zp)k satisfies V = (vB(zv))v=1+uzp ,

by virtue of Taylor’s formula. It is also the BGF of trees withdistinguished occurrences oft.
Settingv 7→ u− 1 in V then gives backB(z, u) as

B(z, u) =
1

2z

“
1−

p
1− 4z − 4(u− 1)zp+1

”
.

In particular

B(z, 0) =
1

2z

“
1−

p
1− 4z + 4zp+1

”

gives the OGF of treesnot containing patternt. The method generalizes to any simple variety
of trees and it can be used to prove that the factored representation (as a directed acyclic graph)
of a random tree of sizen has expected sizeO(n/

√
log n); see [209]. �
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III. 8. Extremal parameters

Apart from additively inherited parameters already examined at length in this
chapter, another important category is that of parameters defined by a maximum rule.
Two major cases are the largest component in a combinatorialstructure (for instance,
the largest cycle of a permutation) and the maximum degree ofnesting of construc-
tions in a recursive structure (typically, the height of a tree). In this case, bivariate
generating functions are of little help. The standard technique consists in introducing
a collection of univariate generating functions defined by imposing a bound on the
parameter of interest. Such GFs can then be constructed by the symbolic method in
its univariate version.

III. 8.1. Largest components. Consider a constructionB = Φ{A}, whereΦ
may involve an arbitrary combination of basic constructions, and assume here for
simplicity that the construction forB is a non–recursive one. This corresponds to a
relation between generating functions

B(z) = Ψ[A(z)],

whereΨ is the functional that is the “image” of the combinatorial constructionΦ.
Elements ofA thus appear as components in an objectβ ∈ B. Let B〈b〉 denote the
subclass ofB formed with objects whoseA–components all have a size at mostb. The
GF ofB〈b〉 is obtained by the same process as that ofB itself, save thatA(z) should
be replaced by the GF of elements of size at mostb. Thus,

B〈b〉(z) = Ψ[TbA(z)],

where thetruncation operatoris defined on series by

Tbf(z) =
b∑

n=0

fnz
n (f(z) =

∞∑

n=0

fnz
n).

Several cases of this situation have already been encountered in earlier chapters.
For instance, the cycle decomposition of permutations translated by

P (z) = exp

(
log

1

1 − z

)

gives more generally the EGF of permutations with longest cycle≤ b,

P 〈b〉(z) = exp

(
z

1
+
z2

2
+ · · · + zb

b

)
,

which involves the truncated logarithm. Similarly, the EGFof words over anm–ary
alphabet

W (z) = (ez)
m

leads to the EGF of words such that each letter occurs at mostb times:

W 〈b〉(z) =

(
1 +

z

1!
+
z2

2!
+ · · · + zb

b!

)m

,
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which now involves the truncated exponential. One finds similarly the EGF of set
partitions with largest block of size at mostb,

S〈b〉(z) = exp

(
z

1!
+
z2

2!
+ · · · + zb

b!

)
.

A slightly less direct example is that of the longest run in a sequence of binary
draws. The collectionW of binary strings over the alphabet{a, b} admits the decom-
position

W = SEQ(a) · SEQ(b SEQ(a)),

corresponding to a “scansion” dictated by the occurrences of the letterb. The corre-
sponding OGF then appears under the form

W (z) = Y (z) · 1

1 − zY (z)
whereY (z) =

1

1 − z

corresponds toY = SEQ(a). Thus, the OGF of strings with at mostk− 1 consecutive
occurrences of the lettera obtains upon replacingY (z) by its truncation:

W 〈k〉(z) = Y 〈k〉(z)
1

1 − zY 〈k〉(z)
whereY 〈k〉(z) = 1 + z + z2 + · · · + zk−1,

so that

W 〈k〉(z) =
1 − zk

1 − 2z + zk+1
.

Such generating functions are thus easy to derive. The asymptotic analysis of
their coefficients is however often hard when compared to additive parameters, owing
to the need to rely on complex analytic properties of the truncation operator. The bases
of a general asymptotic theory have been laid by Gourdon [246].
� III.40. Smallest components.The EGF of permutations with smallest cycle of size> b is

exp(− z
1
− z2

2
− · · · − zb

b
)

1− z .

A symbolic theory ofsmallestcomponents in combinatorial structures is easily developed as
regards GFs. Elements of the corresponding asymptotic theory are provided by Panario and
Richmond in [385]. �

III. 8.2. Height. The degree of nesting of a recursive construction is a general-
ization of the notion of height in the simpler case of trees. Consider for instance a
recursively defined class

B = Φ{B},
whereΦ is a construction. LetB[h] denote the subclass ofB composed solely of ele-
ments whose construction involves at mosth applications ofΦ. We have by definition

B[h+1] = Φ{B[h]}.
Thus, withΨ the image functional of constructionΦ, the corresponding GFs are de-
fined by arecurrence,

B[h+1] = Ψ[B[h]].

It is usually convenient to start the recurrence with the initial conditionB[−1](z) = 0.
(This discussion is related to semantics of recursion, p. 31.)
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Consider for instance general plane trees defined by

G = N × SEQ(G) so that G(z) =
z

1 −G(z)
.

Define the height of a tree as the number of edges on its longestbranch. Then the set
of trees of height≤ h satisfies the recurrence

G[0] = N , G[h+1] = N × SEQ(G[h]).

Accordingly, the OGF of trees of bounded height satisfies

G[−1](z) = 0, G[0](z) = z, G[h+1](z) =
z

1 −G[h](z)
.

The recurrence unwinds and one finds

(75) G[h](z) =
z

1 − z

1 − z

. . .

1 − z

,

where the number of stages in the fraction equalsb. This is the finite form (tech-
nically known as a “convergent”) of acontinued fractionexpansion. From implied
linear recurrences and an analysis based on Mellin transforms, de Bruijn, Knuth, and
Rice [113] have determined the average height of a general plane tree to be∼ √

πn.
We provide a proof of this fact in Chapter V dedicated to applications of rational and
meromorphic asymptotics.

For plane binary trees defined by

B = Z + B × B so that B(z) = z + (B(z))2,

(size is the number of external nodes), the recurrence is

B[0](z) = z, B[h+1](z) = z + (B[h](z))2.

In this case, theB[h] are the approximants to a “continuous quadratic form”, namely

B[h](z) = z + (z + (z + (· · · )2)2)2.
These are polynomials of degree2h for which no closed form expression is known,
nor even likely to exist6. However, using complex asymptotic methods and singularity
analysis, Flajolet and Odlyzko [197] have shown that the average height of a binary
plane tree is∼ 2

√
πn.

For Cayley trees, finally, the defining equation is

T = Z ⋆ SET(T ) so that T (z) = zeT (z).

The EGF of trees of bounded height satisfy the recurrence

T [0](z) = z, T [h+1](z) = zeT [h](z).

6These polynomials are exactly the much studied Mandelbrot polynomials whose behaviour in the
complex plane gives rise to extraordinary graphics.
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We are now confronted with a “continuous exponential”,

T [h](z) = zeze
ze

..
. zez

.

The average height was found by Rényi and Szekeres who appealed again to complex
asymptotics and found it to be∼

√
2πn.

These examples show that height statistics are closely related to iteration theory.
Except in a few cases like general plane trees, normally no algebra is available and
one has to resort to complex analytic methods as exposed in forthcoming chapters.

III. 8.3. Averages and moments.For extremal parameters, the GF of mean val-
ues obey a general pattern. LetF be some combinatorial class with GFf(z). Consider
for instance an extremal parameterχ such thatf [h](z) is the GF of objects withχ-
parameterat mosth. The GF of objects for whichχ = h exactlyis equal to

f [h](z) − f [h−1](z).

Thus differencing gives access to the probability distribution of height overF . The
generating function of cumulated values (providing mean values after normalization)
is then

Ξ(z) =
∞∑

h=0

h
[
f [h](z) − f [h−1](z)

]

=

∞∑

h=0

[
f(z)− f [h](z)

]
,

as is readily checked by rearranging the second sum, or equivalently using summation
by parts.

For maximum component size, the formulæ involve truncated Taylor series. For
height, analysis involves in all generality the differences between the fixed point of a
functionalΦ (the GFf(z)) and the approximations to the fixed point (f [h](z)) pro-
vided by iteration. This is a common scheme in extremal statistics.
� III.41. Hierarchical partitions.Let ε(z) = ez − 1. The generating function

ε(ε(· · · (ε(z)))) (h times).

can be interpreted as the EGF of certain hierarchical partitions. (Such structures show up in
statistical classification theory [475, 476].) �

� III.42. Balanced trees.Balanced structures lead to counting GFs close to the ones obtained
for height statistics. The OGF of balanced 2-3 trees of height h counted by the number of leaves
satisfies the recurrence

Z[h+1](z) = Z[h](z2 + z3) = (Z[h](z))2 + (Z[h](z))3,

which can be expressed in terms of the iterates ofσ(z) = z2 + z3. It is also possible to express
the OGF of cumulated values of the number of internal nodes insuch trees. �

� III.43. Extremal statistics in random mappings.One can express the EGFs relative to the
largest cycle, longest branch, and diameter of functional graphs. Similarly for the largest tree,
largest component. [Hint: see [198] for details.] �

� III.44. Deep nodes in trees.The BGF giving the number of nodes at maximal depth in
a general plane tree or a Cayley tree can be expressed in termsof a continued fraction or a
continuous exponential. �
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III. 9. Perspective

The message of this chapter is that we can use the symbolic method not just to
count combinatorial objects but also to quantify their properties. The relative ease
with which we are able to do so is testimony to the power of the method as major
organizing principle of analytic combinatorics.

The global framework of the symbolic method leads us to a natural structural cat-
egorization of parameters of combinatorial objects. First, the concept ofinherited pa-
rameterspermits a direct extension of the already seen formal translation mechanisms
from combinatorial structures to GFs, for both labelled andunlabelled objects—this
leads to MGFs useful for solving a broad variety of classicalcombinatorial problems.
Second, the adaptation of the theory torecursive parametersprovides information
about trees and similar structures, this even in the absenceof explicit representations
of the associated MGFs. Third,extremal parameterswhich are defined by a maximum
rule (rather than an additive rule) can be studied by analysing families of univariate
GFs. Yet another illustration of the power of the symbolic method is found in the
notion of complete GFs, which in particular enable us to study Bernoulli trials and
branching processes.

As we shall see starting with Chapter IV, these approaches become especially
powerful since they serve as the basis for theasymptotic analysis of properties of
structures. Not only does the symbolic method provide precise information about
particular parameters, but also it paves the way for the discovery of general theorems
that tell us what to expect about a broad variety of combinatorial types.

Multivariate generating functions are a common tool from classical combinatorial analy-
sis. Comtet’s book [98] is once more an excellent source of examples. A systematization of
multivariate generating functions for inherited parameters is given in the book by Goulden and
Jackson [244].

In contrast generating functions for cumulated values of parameters (related to averages)
seemed to have received relatively little attention until the advent of digital computers and
the analysis of algorithms. Many important techniques are implicit in Knuth’s treatises, es-
pecially [306, 307]. Wilf discusses related issues in his book [496] and the paper [494].
Early systems specialized to tree algorithms have been proposed by Flajolet and Steyaert in
the 1980s [169, 213, 214, 455]; see also Berstel and Reutenauer’s work [44]. Some of the
ideas developed there initially drew their inspiration from the well established treatment of
formal power series in noncommutative indeterminates; seethe books by Eilenberg [149] and
Salomaa–Soittola [423] as well as the proceedings edited by Berstel [45]. Several computations
in this area can nowadays even be automated with the help of computer algebra systems, as
shown by Flajolet, Salvy, and Zimmermann [206, 424, 515].





Part B

COMPLEX ASYMPTOTICS





IV

Complex Analysis, Rational and
Meromorphic Asymptotics

The shortest path between two truths in the real domain
passes through the complex domain.

— JACQUESHADAMARD 1
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Generating functions are a central concept of combinatorial theory. In Part A,
we have treated them as formal objects, that is, as formal power series. Indeed, the
major theme of Chapters I–III has been to demonstrate how thealgebraic structure
of generating functions directly reflects the structure of combinatorial classes. From
now on, we examine generating functions in the light ofanalysis. This point of view
involves assigningvaluesto the variables that appear in generating functions.

Comparatively little benefit results from assigning only real values to the vari-
ablez that figures in a univariate generating function. In contrast, assigningcomplex
values turns out to have serendipitous consequences. When we do so, a generating
function becomes a geometric transformation of the complexplane. This transforma-
tion is very regular near the origin—one says that it isanalytic (or holomorphic). In
other words, near0, it only effects a smooth distortion of the complex plane. Farther
away from the origin, some cracks start appearing in the picture. These cracks—the
dignified name issingularities—correspond to the disappearance of smoothness. It
turns out that a function’s singularities provide a wealth of information regarding the
function’s coefficients, and especially their asymptotic rate of growth. Adopting a
geometric point of view for generating functions has a largepay-off.

By focussing on singularities, analytic combinatorics treads in the steps of many
respectable older areas of mathematics. For instance, Euler recognized that the fact
for the Riemann zeta functionζ(s) to become infinite at 1 implies the existence of
infinitely many prime numbers, while Riemann, Hadamard, andde la Vallée-Poussin
uncovered deeper connections between quantitative properties of prime numbers and
singularities of1/ζ(s).

1Quoted in The Mathematical Intelligencer, v. 13, no. 1, Winter 1991.
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The purpose of this chapter is largely to serve as an accessible introduction or a
refresher of basic notions regarding analytic functions. We start by recalling the el-
ementary theory of functions and their singularities in a style tuned to the needs of
analytic combinatorics. Cauchy’s integral formula expresses coefficients of analytic
functions as contour integrals. Suitable uses of Cauchy’s integral formula then make
it possible to estimate such coefficients by suitably selecting an appropriate contour
of integration. For the common case of functions that have singularities at a finite
distance, the exponential growth formula relates thelocationof the singularities clos-
est to the origin—these are also known as dominant singularities—to theexponential
order of growthof coefficients. Thenatureof these singularities then dictates the fine
structure of the asymptotics of the function’s coefficients, especially thesubexponen-
tial factors involved.

As regards generating functions, combinatorial enumeration problems can be
broadly categorized according to a hierarchy of increasingstructural complexity. At
the most basic level, we encounter scattered classes, whichare simple enough, so that
the associated generating function and coefficients can be made explicit. (Examples of
Part A include binary and general plane trees, Cayley trees,derangements, mappings,
and set partitions). In that case, elementary real-analysis techniques usually suffice
to estimate asymptotically counting sequences. At the next, intermediate, level, the
generating function is still explicit, but its form is such that no simple expression is
available for coefficients. This is where the theory developed in this and the next chap-
ters comes into play. It usually suffices to have an expression for a generating function,
but not necessarily its coefficients, so as to be able to deduce precise asymptotic es-
timates of its coefficients. (Surjections, generalized derangements, unary-binary trees
are easily subjected to this method. A striking example, that of trains, is detailed in
Section IV. 4.) Properties of analytic functions then make this analysis depend only on
local propertiesof the generating function at a few points, its dominant singularities.
The third, highest, level, within the perspective of analytic combinatorics, comprises
generating functions that can no longer be made explicit, but are only determined by a
functional equation. This covers structures defined recursively or implicitly by means
of the basic constructors of Part A. The analytic approach even applies to a large
number of such cases. (Examples include simple families of trees, balanced trees,
and the enumeration of certain molecules treated at the end of this chapter. Another
characteristic example is that of nonplane unlabelled trees treated in Chapter VII.)

As we are going to see in this chapter and the next four ones, the analytic method-
ology applies to almost all the combinatorial classes studied in Part A, which are pro-
vided by the symbolic method. In the present chapter we carryout this programme
for rational functionsandmeromorphic functions, where the latter are defined by the
fact their singularities are simplypoles.

IV. 1. Generating functions as analytic objects

Generating functions, considered in Part A as purelyformal objects subject to
algebraic operations, are now going to be interpreted asanalyticobjects. In so doing
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FIGURE IV.1. Left: the graph of the Catalan OGF,f(z), for z ∈ (− 1
4
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4
); right: the

graph of the derangement EGF,g(z), for z ∈ (−1,+1).

one gains an easy access to the asymptotic form of their coefficients. This informal
section offers a glimpse of themes that form the basis of Chapters IV–VII.

In order to introduce the subject softly, let us start with two simple generating
functions, one,f(z), being the OGF of the Catalan numbers (cfG(z), p. 33), the
other,g(z), being the EGF of derangements (cfD(1)(z), p. 113):

(1) f(z) =
1

2

(
1 −

√
1 − 4z

)
, g(z) =

exp(−z)
1 − z

.

At this stage, the forms above are merely compact descriptions of formal power series
built from the elementary series

(1 − y)−1 = 1 + y + y2 + · · · , (1 − y)1/2 = 1 − 1

2
y − 1

8
y2 − · · · ,

exp(y) = 1 +
1

1!
y +

1

2!
y2 + · · · ,

by standard composition rules. Accordingly, the coefficients of both GFs are known
in explicit form

fn := [zn]f(z) =
1

n

(
2n− 2

n− 1

)
, gn := [zn]g(z) =

(
1

0!
− 1

1!
+

1

2!
− · · · + (−1)n

n!

)
.

Stirling’s formula and comparison with the alternating series givingexp(−1) provide
respectively

(2) fn ∼
n→∞

4n

√
πn3

, gn = ∼
n→∞

e−1 .
= 0.36787.

Our purpose now is to provide intuition on how such approximations could be
derived without a recourse to explicit forms. We thus examine, heuristically for the
moment, the direct relationship between the asymptotic forms (2) and the structure of
the corresponding generating functions in (1).

Granted the growth estimates available forfn andgn, it is legitimate to substitute
in the power series expansions of the GFsf(z) andg(z) any real or complex value
of a small enough modulus, the upper bounds on modulus beingρf = 1

4 (for f ) and
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FIGURE IV.2. The images of regular grids byf(z) (left) andg(z) (right).

ρg = 1 (for g). Figure 1 represents the graph of the resulting functions when such
real values are assigned toz. The graphs are smooth, representing functions that are
differentiable any number of times forz interior to the interval(−ρ,+ρ). However, at
the right boundary point, smoothness stops:g(z) become infinite atz = 1, and so it
even ceases to be finitely defined;f(z) does tend to the limit12 asz → (1

4 )−, but its
derivative becomes infinite there. Such special points at which smoothness stops are
calledsingularities, a term that will acquire a precise meaning in the next sections.

Observe also that, in spite of the series expressions being divergent outside the
specified intervals, the functionsf(z) andg(z) can becontinuedin certain regions: it
suffices to make use of the global expressions of Equation (1), with exp and√ being
assigned their usual real-analytic interpretation. For instance:

f(−1) =
1

2

(
1 −

√
5
)
, g(−2) =

e2

3
.

Such continuation properties, most notably to thecomplexrealm, will prove essential
in developing efficient methods for coefficient asymptotics.

One may proceed similarly with complex numbers, starting with numbers whose
modulus is less than the radius of convergence of the series defining the GF. Figure 2
displays the images of regular grids byf andg, as given by (1). This illustrates the fact
that a regular grid transforms into an orthogonal network ofcurves and more precisely
thatf andg preserve angles—this property corresponds to complex differentiability
and is equivalent to analyticity to be introduced shortly. The singularity off is clearly
perceptible on the right of its diagram, since, atz = 1

4 (corresponding tof(z) = 1
2 ),

the functionf folds lines and divides angles by a factor of 2.

Let us now turn to coefficient asymptotics. As is expressed by(2), the coefficients
fn andgn each belong to a general asymptotic type for coefficients of afunctionF ,
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namely,

[zn]F (z) = Anθ(n),

corresponding to an exponential growth factorAn modulated by a tame factorθ(n),
which is subexponential. Here, one hasA = 4 for fn andA = 1 for gn; also,
θ(n) ∼ 1

4 (
√
πn3)−1 for fn andθ(n) ∼ e−1 for gn. Clearly,A should be related to the

radius of convergence of the series. We shall see that invariably, for combinatorial gen-
erating functions, the exponential rate of growth is given by A = 1/ρ, whereρ is the
first singularity encountered along the positive real axis (Theorem IV.6). In addition,
under general complex-analytic conditions, it will be established thatθ(n) = O(1) is
systematically associated to a simple pole of the generating function (Theorem IV.10,
p. 245), whileθ(n) = O(n−3/2) systematically arises from a singularity that is of the
square-root type (Chapters VI and VII). In summary, as this chapter and the next ones
will copiously illustrate, the coefficient formula

(3) [zn]F (z) = Anθ(n),

with its exponentially dominating term and its subexponential factor, is central. We
have:

First Principle of Coefficient Asymptotics. The locationof a function’s
singularities dictates theexponential growth(An) of its coefficients.
Second Principle of Coefficient Asymptotics.Thenatureof the function’s
singularities determines the associatesubexponential factor(θ(n)).

Observe that the rescaling rule,

[zn]F (z) = ρ−n[zn]F (ρz),

enables one to normalize functions so that they are singularat 1. Then various the-
orems, starting with Theorems IV.9 and IV.10, provide sufficient conditions under
which the following central implication is valid,

(4) h(z) ∼ σ(z) =⇒ [zn]h(z) ∼ [zn]σ(z).

Thereh(z), whose coefficients are to be estimated, is a function singular at 1 andσ(z)
is a local approximation near the singularity; usuallyσ is a much simpler function,
typically like (1 − z)α logβ(1 − z) whose coefficients are comparatively easy to esti-
mate (Chapter VI). The relation (4) expressesa mapping between asymptotic scales
of functions near singularities and asymptotics scales of coefficients. Under suitable
conditions, it then suffices to estimate a function locally at a few distinguished points
(singularities), in order to estimate its coefficients asymptotically.

� IV.1. Euler, the discrete, and the continuous.Eulers’s proof of the existence of infinitely
many prime numbers illustrates in a striking manner the way analysis of generating functions
can inform us on the discrete realm. Define, for reals > 1 the function

ζ(s) :=

∞X

n=1

1

ns
,
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known as the Riemann zeta function. The decomposition (p ranges over the prime numbers
2, 3, 5, . . .)

(5)

ζ(s) =

„
1 +

1

2s
+

1

22s
+ · · ·

«„
1 +

1

3s
+

1

32s
+ · · ·

«„
1 +

1

5s
+

1

52s
+ · · ·

«
· · ·

=
Y

p

„
1− 1

ps

«−1

expresses precisely the fact that each integer has a unique decomposition as a product of primes.
Analytically, the identity (5) is easily checked to be validfor all s > 1. Now suppose that there
were only finitely many primes. Lets tend to1+ in (5). Then, the left hand side becomes
infinite, while the right hand side tends to the finite limit

Q
p(1− 1/p)−1: a contradiction has

been reached. �

� IV.2. Elementary transfers.Elementary series manipulation yield the following general re-
sult: Let h(z) be a power series with radius of convergence> 1 and assume thath(1) 6= 0;
then one has

[zn]
h(z)

1− z ∼h(1), [zn]h(z)
√

1− z∼− h(1)

2
√
πn3

, [zn]h(z) log
1

1− z ∼
h(1)

n
.

See Bender’s survey [29] for many similar statements. �

� IV.3. Asymptotics of generalized derangements.The EGF of permutations without cycles of
length 1 and 2 satisfies (p. 113)

j(z) =
e−z−z2/2

1− z with j(z) ∼
z→1

e−3/2

1− z .

Analogy with derangements suggests that[zn]j(z) ∼
n→∞

e−3/2. [For a proof, use Note 2 or

refer to Example 8.] Here is a table of exact values of[zn]j(z) (with relative error of the
approximation bye−3/2 in parentheses):

n = 5 n = 10 n = 20 n = 50

jn : 0.2 0.22317 0.2231301600 0.2231301601484298289332804707640122
error : (10−1) (2 · 10−4) (3 · 10−10) (10−33)

The quality of the asymptotic approximation is extremely good, such a property being invariably
attached to polar singularities. �

IV. 2. Analytic functions and meromorphic functions

Analytic functionsare a primary mathematical concept of asymptotic theory. They
can be characterized in two essentially equivalent ways (see IV. 2.1): by means of
convergent series expansions (à la Cauchy and Weierstraß)and by differentiability
properties (à la Riemann). The first aspect is directly related to the use of generating
functions for enumeration; the second one allows for a powerful abstract discussion
of closure properties that usually requires little computation.

Integral calculus with analytic functions (see IV. 2.2) assumes a shape radically
different from what it is in the real domain: integrals become quintessentially inde-
pendent of details of the integration contour—certainly the prime example of this fact
is Cauchy’s famous residue theorem. Conceptually, this independence makes it pos-
sible to relate properties of a function at a point (e.g., thecoefficients of its expansion
at 0) to its properties at another far-away point (e.g., its residue at a pole).
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The presentation in this section and the next one constitutes an informal review2

of basic properties of analytic functions tuned to the needsof asymptotic analysis of
counting sequences. The entry in APPENDIX B: Equivalent definitions of analyticity,
p. 687 provides further information, in particular a proof of the Basic Equivalence
Theorem, Theorem IV.1 below. For a detailed treatment, we refer the reader to one
of the many excellent treatises on the subject, like the books by Dieudonné [129],
Henrici [265], Hille [ 269], Knopp [299], Titchmarsh [469], or Whittaker and Wat-
son [492].

IV. 2.1. Basics. We shall consider functions defined in certainregionsof the
complex domainC. By a region is meant anopensubsetΩ of the complex plane
that isconnected. Here are some examples:

simply connected domain slit complex plane indented disc annulus

Classical treatises teach us how to extend to the complex domain the standard
functions of real analysis: polynomials are immediately extended as soon as complex
addition and multiplication have been defined, while the exponential is definable by
means of Euler’s formula. One has for instance

z2 = (x2 − y2) + 2ixy, ez = ex cos y + iex sin y,

if z = x + iy, that is,x = ℜ(z) andy = ℑ(z) are the real and imaginary parts ofz.
Both functions are consequently defined over the whole complex planeC.

The square-root and the logarithm are conveniently described in polar coordinates
by

(6)
√
z =

√
ρeiθ/2, log z = log ρ+ iθ,

if z = ρeiθ. One can take the domain of validity of (6) to be the complex plane slit
along the axis from0 to−∞, that is, restrictθ to the open interval(−π,+π), in which
case the definitions above specify what is known as theprincipal determination. There
is no way for instance to extend by continuity the definition of

√
z in any domain

containing 0 in its interior since, fora > 0 andz → −a, one has
√
z → i

√
a as

z → −a from above, while
√
z → −i√a asz → −a from below. This situation is

depicted here:

2The reader previously unfamilar with the theory of analyticfunctions should essentially be able to
adopt Theorems IV.1 and IV.2 as “axioms” and start from there using basic definitions and a fair knowledge
of elementary calculus. Figure 18 at the end of this chapter (p. 273) recapitulates the main results of
relevance toAnalytic Combinatorics.
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+i
√
a

−i√a
0

√
a The values of

√
z

asz varies along|z| = a.

The pointz = 0 where several determinations “meet” is accordingly known as a
branch point.

Analytic functions. First comes the main notion of an analytic function that
arises from convergent series expansions and is closely related to the notion of gener-
ating function encountered in previous chapters.

Definition IV.1. A functionf(z) defined over a regionΩ is analyticat a pointz0 ∈ Ω
if, for z in some open disc centred atz0 and contained inΩ, it is representable by a
convergent power series expansion

(7) f(z) =
∑

n≥0

cn(z − z0)
n.

A function is analytic in a regionΩ iff it is analytic at every point ofΩ.

As derived from an elementary property of power series, given a functionf that is
analytic at a pointz0, there exists a disc (of possibly infinite radius) with the property
that the series representingf(z) is convergent forz inside the disc and divergent forz
outside the disc. The disc is called thedisc of convergenceand its radius is theradius
of convergenceof f(z) at z = z0, which will be denoted byRconv(f ; z0). Quite ele-
mentarily, the radius of convergence of a power series conveys information regarding
the rate at which its coefficients grow; see Subsection IV. 3.2 below for developments.
It is also easy to prove by simple series rearrangement (see APPENDIX B: Equivalent
definitions of analyticity, p. 687) that if a function is analytic atz0, it is then analytic
at all points interior to its disc of convergence.

Consider for instance the functionf(z) = 1/(1 − z) defined overC \ {1} in the
usual way via complex division. It is analytic at 0 by virtue of the geometric series
sum,

1

1 − z
=
∑

n≥0

1 · zn,

which converges in the disc|z| < 1. At a pointz0 6= 1, we may write

(8)

1

1 − z
=

1

1 − z0 − (z − z0)
=

1

1 − z0

1

1 − z−z0

1−z0

=
∑

n≥0

(
1

1 − z0

)n+1

(z − z0)
n.

The last equation shows thatf(z) is analytic in the disc centred atz0 with radius
|1− z0|, that is, the interior of the circle centred atz0 and passing through the point 1.
In particularRconv(f, z0) = |1 − z0| andf(z) is globally analytic in the punctured
planeC \ {1}.
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The last example illustrates the definition of analyticity.However, the series re-
arrangement approach that it uses might be difficult to carryout for more complicated
functions. In other words, a more manageable approach to analyticity is called for.
The differentiability properties developed next provide such an approach.

Differentiable (holomorphic) functions.The next important notion is a geomet-
ric one based on differentiability.

Definition IV.2. A functionf(z) defined over a regionΩ is calledcomplex-differen-
tiable(alsoholomorphic) at z0 if the limit, for complexδ,

lim
δ→0

f(z0 + δ) − f(z0)

δ

exists. (In particular, the limit is independent of the wayδ tends to0 in C.) This limit
is denoted as usual byf ′(z0) or d

dz f(z)
∣∣
z0

. A function is complex-differentiable inΩ
iff it is complex-differentiable at everyz0 ∈ Ω.

Clearly, if f(z) is complex-differentiable atz0 andf ′(z0) 6= 0, it acts locally as a
linear transformation:

f(z) − f(z0) ∼ f ′(z0)(z − z0) (z → z0).

Thenf(z) behaves in small regions almost like a similarity transformation (composed
of a translation, a rotation, and a scaling). In particular,it preserves angles3 and infin-
itesimal squares get transformed into infinitesimal squares; see Figure 3 for a render-
ing.

For instance the function
√
z, defined by (6) in the complex plane slit along the

ray (−∞, 0), is complex-differentiable at anyz of the slit plane since

(9) lim
δ→0

√
z + δ −√

z

δ
= lim

δ→0

√
z

√
1 + δ/z − 1

δ
=

1

2
√
z
,

which extends the customary proof of real analysis. Similarly,
√

1 − z is analytic in
the complex plane slit along the ray(1,+∞). More generally, the usual proofs from
real analysis carry over almost verbatim to the complex realm, to the effect that

(f + g)′ = f ′ + g′, (fg)′ = f ′g + fg′,

(
1

f

)′
= − f ′

f2
, (f ◦ g)′ = (f ′ ◦ g)g′.

The notion of complex differentiability is thus much more manageable than the notion
of analyticity.

It follows from a well known theorem of Riemann (see for instance [265, vol. 1,
p 143] and APPENDIX B: Equivalent definitions of analyticity, p. 687) that analyticity
and complex differentiability are equivalent notions.

Theorem IV.1 (Basic Equivalence Theorem). A function is analytic in a regionΩ if
and only if it is complex-differentiable inΩ.

The following are known facts (see again Appendix B): if a function is analytic
(equivalently complex-differentiable) inΩ, it admits (complex) derivatives of any or-
der there. This property markedly differs from real analysis: complex differentiable

3A mapping of the plane that locally preserves angles is also called aconformalmap.
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FIGURE IV.3. Multiple views of an analytic function. The image of the domain Ω =
{z

˛̨
|ℜ(z)| < 2, |ℑ(z)| < 2} by f(z) = exp(z) + z + 2: [top] transformation of a

square grid inΩ by f ; [middle] the modulus and argument off(z); [bottom] the real and
imaginary parts off(z).

(equivalently, analytic) functions are all smooth. Also derivatives of a function are
obtained through term-by-term differentiation of the series representation of the func-
tion.

Meromorphic functions. We finally introducemeromorphic4 functions that are
mild extensions of the concept of analyticity (or holomorphy) and are essential to the
theory.

The quotient of two analytic functionsf(z)/g(z) ceases to be analytic at a point
a whereg(a) = 0. However, a simple structure for quotients of analytic functions
prevails.

Definition IV.3. A functionh(z) is meromorphicat z0 iff, for z in a neighbourhood of
z0 with z 6= z0, it can be represented asf(z)/g(z), with f(z) andg(z) being analytic

4“Holomorphic” and “meromorphic” are words coming from Greek, meaning respectively “of com-
plete form” and “of partial form”.
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at z0. In that case, it admits nearz0 an expansion of the form

(10) h(z) =
∑

n≥−M

hn(z − z0)
n.

If h−M 6= 0 andM ≥ 1, thenh(z) is said to have apoleof orderM at z = z0. The
coefficienth−1 is called theresidueof h(z) at z = z0 and is written as

Res[h(z); z = z0].

A function is meromorphic in a region iff it is meromorphic atany point of the region.

IV. 2.2. Integrals and residues.A path in a regionΩ is described by its param-
eterization, which is a continuous functionγ mapping[0, 1] into Ω. Two pathsγ, γ′

in Ω having the same end points are said to behomotopic(in Ω) if one can be contin-
uously deformed into the other while staying withinΩ as in the following examples:

homotopic paths:

A closed path5 is defined by the fact that its end points coincide:γ(0) = γ(1), and
a path issimpleif the mappingγ is one-to-one. A closed path is said to be aloop of
Ω if it can be continuously deformedwithin Ω to a single point; in this case one also
says that the path is homotopic to 0. In what follows we implicitly restrict attention to
paths that are assumed to be rectifiable. Unless otherwise stated, all integration paths
will be assumed to be oriented positively.

Integrals along curves in the complex plane are defined in theusual way as curvi-
linear integrals of complex-valued functions. Explicitly: let f(x + iy) be a function
andγ be a path; then,

∫

γ

f(z) dz :=

∫ 1

0

f(γ(t))γ′(t) dt

=

∫ 1

0

[AC −BD] dt+ i

∫ 1

0

[AD +BC] dt,

wheref = A+ iB andγ′ = C+ iD. However integral calculus in the complex plane
is of a radically different nature from what it is on the real line—in a way it is much
simpler and much more powerful. One has:

Theorem IV.2 (Null Integral Property). Let f be analytic inΩ and letλ be a simple
loop ofΩ. Then

∫
λ f = 0.

5By default, paths used in this book are assumed to be positively oriented piecewise continuously
differentiable (hence rectifiable); in addition, closed paths are assumed to be positively oriented.
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Equivalently, integrals are largely independent of details of contours: forf analytic
in Ω, one has

(11)
∫

γ

f =

∫

γ′

f,

providedγ andγ′ are homotopic (not necessarily closed) paths inΩ. A proof of The-
orem IV.2 is sketched in APPENDIX B: Equivalent definitions of analyticity, p. 687.

Residues.The importantResidue Theoremdue to Cauchy relatesglobal prop-
erties of a meromorphic function (its integral along closedcurves) to purelylocal
characteristics at designated points (the residues at poles).

Theorem IV.3 (Cauchy’s residue theorem). Leth(z) be meromorphic in the regionΩ
and letλ be a simple loop inΩ along which the function is analytic. Then

1

2iπ

∫

λ

h(z) dz =
∑

s

Res[h(z); z = s],

where the sum is extended to all poless of h(z) enclosed byλ.

PROOF. (Sketch) To see it in the representative case whereh(z) has only a pole at
z = 0, observe by appealing to primitive functions that

∫

λ

h(z) dz =
∑

n≥−M
n 6=−1

hn

[
zn+1

n+ 1

]

λ

+ h−1

∫

λ

dz

z
,

where the bracket notation
[
u(z)

]
λ

designates the variation of the functionu(z) along
the contourλ. This expression reduces to its last term, itself equal to2iπh−1, as is
checked by using integration along a circle (setz = reiθ). The computation extends
by translation to the case of a unique pole atz = a.

In the case of multiple poles, we observe that the simple loopcan only enclose
finitely many poles (by compactness). The proof then followsfrom a simple decom-
position of the interior domain ofλ into cells each containing only one pole. Here is
an illustration in the case of three poles.

(Contributions from internal edges cancel.) �

Global (integral) to local (residues) connections.Here is a textbook example of
a reduction from global to local properties of analytic functions. Define the integrals

Im :=

∫ ∞

−∞

dx

1 + x2m
,
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and consider specificallyI1. Elementary calculus teaches us thatI1 = π since the
antiderivative of the integrand is an arc tangent:

I1 =

∫ ∞

−∞

dx

1 + x2
= [arctanx]

+∞
−∞ = π.

Here is an alternative, and in many ways more fruitful, derivation. In the light
of the residue theorem, we consider the integral over the whole line as the limit of
integrals over large intervals of the form[−R,+R], then complete the contour of
integration by means of a large semi-circle in the upper half-plane, as shown below:

0

i

−R +R
Let γ be the contour comprised of the interval and the semi-circle. Insideγ, the

integrand has a pole atx = i, where

1

1 + x2
≡ 1

(x + i)(x− i)
= − i

2

1

x− i
+ · · · ,

so that its residue there is−i/2. By the residue theorem, the integral taken overγ is
equal to2iπ times the residue of the integrand ati. As R → ∞, the integral along
the semi-circle vanishes (it is less thanπR/(1 + R2) in modulus), while the integral
along the real segment givesI1 in the limit. There results the relation givingI1:

I1 = 2iπRes

(
1

1 + x2
;x = i

)
= (2iπ)

(
− i

2

)
= π.

The evaluation of the integral in the framework of complex analysis rests solely
upon the local expansion of the integrand at special points (here, the pointi). This is a
remarkable feature of the theory, one that confers it much simplicity, when compared
to real analysis.
� IV.4. The general integralIm. Let α = exp( iπ

2m
) so thatα2m = −1. Contour integration

of the type used forI1 yields

Im = 2iπ
mX

j=1

Res

„
1

1 + x2m
;x = α2j−1

«
,

while, for anyβ = α2j−1 with 1 ≤ j ≤ m, one has

1

1 + x2m
∼

x→β

1

2mβ2m−1

1

x− β ≡ −
β

2m

1

x− β .

As a consequence,

I2m = − iπ
m

`
α+ α3 + · · ·+ α2m−1´ =

π

m sin π
2m

.

In particular,I2 = π/
√

2, I3 = 2π/3, I4 = π
4

√
2
p

2 +
√

2, and 1
π
I5, 1

π
I6 are expressible by

radicals, but1
π
I7,

1
π
I9 are not. The special cases1

π
I17,

1
π
I257 are expressible by radicals.�
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� IV.5. Integrals of rational fractions.Generally, all integrals of rational functions taken over
the whole real line are computable by residues. In particular,

Jm =

Z +∞

−∞

dx

(1 + x2)m
, Km =

Z +∞

−∞

dx

(12 + x2)(22 + x2) · · · (m2 + x2)

can be explicitly evaluated. �

Cauchy’s coefficient formula.Many function-theoreticconsequences derive from
the residue theorem. For instance, iff is analytic inΩ, z0 ∈ Ω andλ is a simple loop
of Ω encirclingz0, one has

(12) f(z0) =
1

2iπ

∫

λ

f(ζ)
dζ

ζ − z0
.

This follows directly since

Res [f(ζ)/(ζ − z0); ζ = z0] = f(z0).

Then, by differentiation with respect toz0 under the integral sign, one gets similarly

(13)
1

k!
f (k)(z0) =

1

2iπ

∫

λ

f(ζ)
dζ

(ζ − z0)k+1
.

The values of a function and its derivatives at a point can thus be obtained as values of
integrals of the function away from that point. The world of analytic functions is a very
gentle one in which to live: contrary to real analysis, a function is differentiableany
number of timesas soon as it is differentiableonce. Also, Taylor’s formula invariably
holds: as soon asf(z) is analytic atz0, one has

(14) f(z) = f(z0) + f ′(z0)(z − z0) +
1

2!
f ′′(z0)(z − z0)

2 + · · · ,
with the representation being convergent in a small disc centred atz0. [Proof: a veri-
fication from (12) and (13), or a series rearrangement as in (B.7), p. 688.]

A very important application of the residue theorem concerns coefficients of ana-
lytic functions.

Theorem IV.4 (Cauchy’s Coefficient Formula). Letf(z) be analytic in a region con-
taining 0 and letλ be a simple loop around0 that is positively oriented. Then the
coefficient[zn]f(z) admits the integral representation

fn ≡ [zn]f(z) =
1

2iπ

∫

λ

f(z)
dz

zn+1
.

PROOF. This formula follows directly from the equalities

1

2iπ

∫

λ

f(z)
dz

zn+1
= Res

[
f(z)z−n−1; z = 0

]
= [zn]f(z),

of which the first follows from the residue theorem, and the second from the identifi-
cation of the residue at 0 as a coefficient. �

Analytically, the coefficient formula allows one to deduce information about the
coefficients from the values of the function itself, using adequately chosen contours of
integration. It thus opens the possibility of estimating the coefficients[zn]f(z) in the
expansion off(z) near0 by using information onf(z) awayfrom 0. The rest of this
chapter will precisely illustrate this process in the case of rational and meromorphic
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functions. Observe also that the residue theorem provides the simplest known proof
of the Lagrange inversion theorem (see APPENDIX A: Lagrange Inversion, p. 677)
whose rôle is central to tree enumerations, as we saw in Chapters I and II. The notes
below explore some independent consequences of the residuetheorem and the coeffi-
cient formula.
� IV.6. Liouville’s Theorem. If a functionf(z) is analytic in the whole ofC and is of modulus
bounded by an absolute constant,|f(z)| ≤ B, then it must be a constant. [By trivial bounds,
upon integrating on a large circle, it is found that the Taylor coefficients at the origin of index
≥ 1 are all equal to 0.] Similarly, iff(z) is of at most polynomial growth,|f(z)| ≤ B (|z|+1)r

over the whole ofC, then it must be a polynomial. �

� IV.7. Lindelöf integrals. Let a(s) be analytic inℜ(s) > 1
4

where it is assumed to satisfy
a(s) = O(exp((π − δ)|s|)) for someδ with 0 < δ < π. Then, one has for| arg(z)| < δ,

∞X

k=1

a(k)(−z)k = − 1

2iπ

Z 1/2+i∞

1/2−i∞
a(s)zs π

sin πs
ds,

in the sense that the integral exists and provides the analytic continuation of the sum in| arg(z)| <
δ. [Close the integration contour by a large semi-circle on the right and evaluate by residues.]
Such integrals, sometimes called Lindelöf integrals, provide representations for many functions
whose Taylor coefficients are given by an explicit rule [220, 333]. �

� IV.8. Continuation of polylogarithms.As a consequence of Lindelöf’s representation, the
generalizedpolylogarithmfunctions,

Liα,k(z) =
X

n≥1

n−α(log n)kzn (α ∈ R, k ∈ Z≥0),

are analytic in the complex planeC slit along (1+,∞). (More properties are presented in
Section VI. 8; see also [176, 220].) For instance, one obtains in this way

“
∞X

n=1

(−1)n log n ” = −1

4

Z +∞

−∞

log( 1
4

+ t2)

cosh(πt)
dt = 0.22579 · · · = log

r
π

2
,

when the divergent series on the left is interpreted asLi0,1(−1) = limz→−1+ Li0,1(z). �

� IV.9. Magic duality. Let φ be a function initially defined over the nonnegative integers but
admitting a meromorphic extension over the whole ofC. Under growth conditions in the style
of Note 7, the function

F (z) :=
X

n≥1

φ(n)(−z)n,

which is analytic at the origin, is such that, near positive infinity,

F (z) ∼
z→+∞

E(z)−
X

n≥1

φ(−n)(−z)−n,

for some elementary functionE(z). [Starting from the representation of Note 7, close the
contour of integration by a large semicircle to the left.] Insuch cases, the function is said to
satisfy the principle ofmagic duality—its expansion at0 and∞ are given by one and the same
rule. Functions

1

1 + z
, log(1 + z), exp(−z), Li2(−z), Li3(−z),

satisfy a form of magic duality. Ramanujan [42] made a great use of this principle, which
applies to a wide class of functions including hypergeometric ones; see Hardy’s insightful dis-
cussion [260, Ch XI]. �
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� IV.10. Euler–Maclaurin and Abel–Plana summations. Under simple conditions on the an-
alytic function f , one has Plana’s (also known as Abel’s) complex variables version of the
Euler–Maclaurin summation formula:

∞X

n=0

f(n) =
1

2
f(0) +

Z ∞

0

f(x) dx+

Z ∞

0

f(iy)− f(−iy)
e2iπy − 1

dy.

(See [266, p. 274] for a proof and validity conditions.) �

� IV.11. Nörlund-Rice integrals.Let a(z) be analytic forℜ(z) > k0 − 1
2

and of at most
polynomial growth in this right half plane. Then, withγ a simple loop around the interval
[k0, n], one has

nX

k=k0

 
n

k

!
(−1)n−ka(k) =

1

2iπ

Z

γ

a(s)
n! ds

s(s− 1)(s− 2) · · · (s− n)
.

If a(z) is meromorphic in a larger region, then the integral can be estimated by residues. For
instance, with

Sn =

nX

k=1

 
n

k

!
(−1)k

k
, Tn =

nX

k=1

 
n

k

!
(−1)k

k2 + 1
,

it is found thatSn = −Hn (a harmonic number), whileTn oscillates boundedly asn →
+∞. [This technique is a classical one in the calculus of finite differences, going back to
Nörlund [374]. In computer science it is known as the method of Rice’s integrals [207] and
is used in the analysis of many algorithms and data structures including digital trees and radix
sort [307, 458].] �

IV. 3. Singularities and exponential growth of coefficients

For a given function, a singularity can be informally definedas a point where the
function ceases to be analytic. (Poles are the very simplesttype of singularity.) Singu-
larities are, as we have stressed repeatedly, essential to coefficient asymptotics. This
section presents the bases of a discussion within the framework of analytic function
theory.

IV. 3.1. Singularities. Let f(z) be an analytic function defined over the interior
region determined by a simple closed curveγ, and letz0 be a point of the bounding
curveγ. If there exists an analytic functionf⋆(z) defined over some open setΩ⋆

containingz0 and such thatf⋆(z) = f(z) in Ω⋆ ∩ Ω, one says thatf is analytically
continuableat z0 and thatf⋆ is animmediate analytic continuationof f .

Analytic continuation:

( f )

Ω

( f* )

z0

Ωγ *

f⋆(z) = f(z) onΩ⋆ ∩ Ω.

Consider for instance the quasi-inverse function,f(z) = 1/(1 − z). Its power se-
ries representationf(z) =

∑
n≥0 z

n initially converges in|z| < 1. However, the
calculation of (8) shows that it is representable locally bya convergent series near
any pointz0 6= 1. In particular, it is continuable at any point of the unit disc ex-
cept1. (Alternatively, one may appeal to complex-differentiability to verify directly
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thatf(z), which is given by a “global” expression, is holomorphic, hence analytic, in
the punctured planeC \ {1}.)

In sharp contrast to real analysis where a function admits ofmany smooth ex-
tensions, analytic continuation is essentiallyunique: if f⋆ (in Ω⋆) andf⋆⋆ (in Ω⋆⋆)
continuef at z0, then one must havef⋆(z) = f⋆⋆(z) in the intersectionΩ⋆ ∩ Ω⋆⋆,
which in particular includes a small disc aroundz0. Thus, the notion of immediate
analytic continuation at a boundary point is intrinsic. Theprocess can be iterated and
we say thatg is ananalytic continuation6 of f along a pathγ, even if the domains of
definition off andg do not overlap, provided a finite chain of intermediate functions
connectsf andg. This notion is once more intrinsic—this is known as the principle of
unicity of analytic continuation(Rudin [419, Ch. 16] provides a thorough discussion).
An analytic function is then much like a hologram: as soon as it is specified in any
tiny region, it is rigidly determined in any wider region where it can be continued.

Definition IV.4. Given a functionf defined in the region interior to the simple closed
curveγ, a pointz0 on the boundary (γ) of the region is asingular pointor a singular-
ity7 if f is notanalytically continuable atz0.

Granted the intrinsic character of analytic continuation,we can usually dispense with
a detailed description of the original domainΩ and the curveγ. In simple terms, a
function is singular atz0 if it cannot be continued as an analytic function beyondz0.
A point at which a function is analytic is also called by contrast aregular point.

The two functionsf(z) = 1/(1−z) andg(z) =
√

1 − z may be taken as initially
defined over the open unit disk by their power series representation. Then, as we
already know, they can be analytically continued to larger regions, the punctured plane
Ω = C \ {1} for f [e.g., by the calculation of (8)] and the complex plane slit along
(1,+∞) for g [e.g., by virtue of differentiability as in (9)]. But both are singular at 1:
for f , this results from the fact that (say)f(z) → ∞ asz → 1; for g this is due to the
branching character of the square-root. Figure 4 displays afew types of singularities
that are traceable by the way they deform a regular grid near aboundary point.

It is easy to check from the definitions that a converging power series is analytic
inside its disc of convergence. In other words, it can have nosingularity inside this
disc. However, itmusthave at least one singularity on the boundary of the disc, as
asserted by the theorem below. In addition, a classical theorem, called Pringsheim’s
theorem, provides a refinement of this property in the case offunctions with nonneg-
ative coefficients, which includes all combinatorial generating functions.

Theorem IV.5 (Boundary singularities). A functionf(z) analytic at the origin, whose
expansion at the origin has a finite radius of convergenceR, necessarily has a singu-
larity on the boundary of its disc of convergence,|z| = R.

PROOF. Consider the expansion

(15) f(z) =
∑

n≥0

fnz
n,

6The collection of all function elements continuing a given function gives rise to the notion ofRiemann
surface, for which many good books exist, e.g., [157, 444]. We shall normally avoid appealing to this theory.

7For a detailed discussion, see [129, p. 229], [299, vol. 1, p. 82], or [469].
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FIGURE IV.4. The images of a grid on the unit square (with corners±1± i) by various
functions singular atz = 1 reflect the nature of the singularities involved. Singularities are
apparent near the right of each diagram where small grid squares get folded or unfolded in
various ways. (In the case of functionsf0, f1, f4 that become infinite atz = 1, the grid
has been slightly truncated to the right.)
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assumed to have radius of convergence exactlyR. We already know that there can
be no singularity off within the disc|z| < R. To prove that there is a singularity
on |z| = R, suppose a contrario thatf(z) is analytic in the disc|z| < ρ for someρ
satisfyingρ > R. By Cauchy’s coefficient formula (Theorem IV.4), upon integrating
along the circle of radiusr = (R + ρ)/2, and by trivial bounds, it is seen that the
coefficient[zn]f(z) is O(r−n). But then, the series expansion off would have to
converge in the disc of radiusr > R, a contradiction. �

Pringsheim’s Theorem stated and proved now is a refinement ofTheorem IV.5 that
applies toall series having nonnegative coefficients, in particular, generating func-
tions. It is central to asymptotic enumeration as the remainder of this section will
amply demonstrate.

Theorem IV.6 (Pringsheim’s Theorem). If f(z) is representable at the origin by a
series expansion that has nonnegative coefficients and radius of convergenceR, then
the pointz = R is a singularity off(z).

� IV.12. Proof of Pringsheim’s Theorem.(See also [469, Sec. 7.21].) In a nutshell, the idea
of the proof is that iff has positive coefficients and is analytic atR, then its expansion slightly
to the left ofR has positive coefficients. Then the power series off would converge in a disc
larger than the postulated disc of convergence—a clear contradiction.

Suppose a contrario thatf(z) is analytic atR, implying that it is analytic in a disc of
radiusr centred atR. We choose a numberh such that0 < h < 1

3
r and consider the expansion

of f(z) aroundz0 = R− h:

(16) f(z) =
X

m≥0

gm(z − z0)m.

By Taylor’s formula and the representability off(z) together with its derivatives atz0 by means
of (15), we have

gm =
X

n≥0

 
n

m

!
fnz

n−m
0 ,

and in particular,gm ≥ 0.
Given the wayh was chosen, the series (16) converges atz = R+h (so thatz− z0 = 2h)

as illustrated by the following diagram:

z0 = R− h
R
R+ h

R 2h r

Consequently, one has

f(R+ h) =
X

m≥0

0
@X

n≥0

 
n

m

!
fnz

m−n
0

1
A (2h)m.
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This is a converging double sum of positive terms, so that thesum can be reorganized in any
way we like. In particular, one has convergence of all the series involved in

f(R+ h) =
X

m,n≥0

 
n

m

!
fn(R− h)m−n(2h)m

=
X

n≥0

fn [(R− h) + (2h)]n

=
X

n≥0

fn(R+ h)n.

This establishes the fact thatfn = o((R + h)n), thereby reaching a contradiction with the
assumption that the serie representation off has radius of convergence exactlyR. Pringsheim’s
theorem is proved. �

Singularities of a function analytic at 0 which lie on the boundary of the disc of
convergence are calleddominant singularities. Pringsheim’s theorem appreciably
simplifies the search for dominant singularities of combinatorial generating functions
since these have nonnegative coefficients—it is then sufficient to investigate analytic-
ity along the positive real line and detect the first place at which it ceases to hold.

For instance, the derangement EGF and the surjection EGF,

D(z) =
e−z

1 − z
, R(z) = (2 − ez)−1

are analytic except for a simple pole atz = 1 in the case ofD(z), and except for
pointsχk = log 2+2ikπ that are simple poles in the case ofR(z). Thus the dominant
singularities for derangements and surjections are at1 andlog 2 respectively.

It is known that
√
Z cannot be unambiguously defined as an analytic function in

a neighbourhood ofZ = 0. As a consequence, the function

C(z) = (1 −
√

1 − 4z)/2,

which is the generating function of the Catalan numbers, is an analytic function in
regions that must exclude1/4; for instance, one may opt to take the complex plane
slit along the ray(1/4,+∞). Similarly, the function

L(z) = log
1

1 − z

which is the EGF of cyclic permutations is analytic in the complex plane slit along
(1,+∞).

A function having no singularity at a finite distance is called entire; its Taylor
series then converges everywhere in the complex plane. The EGFs,

ez+z2/2 and eez−1,

associated respectively with involutions and set partitions, are entire.

IV. 3.2. The Exponential Growth Formula. We say that a number sequence
{an} is of exponential orderKn which we abbreviate as (the symbol⊲⊳ is a “bowtie”)

an ⊲⊳ K
n iff lim sup |an|1/n = K.

The relationX ⊲⊳ Y reads as “X is of exponential orderY ”. It expresses both an
upper bound and a lower bound, and one has, for anyǫ > 0:
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(i) |an| >i.o (K− ǫ)n, that is to say,|an| exceeds(K− ǫ)n infinitely often (for
infinitely many values ofn);

(ii) |an| <a.e. (K + ǫ)n, that is to say,|an| is dominated by(K + ǫ)n almost
everywhere (except for possibly finitely many values ofn).

This relation can be rephrased asan = Knθ(n), whereθ is asubexponential factor
satisfying

lim sup |θ(n)|1/n = 1;

such a factor is thus bounded from above almost everywhere byany increasing expo-
nential (of the form(1+ǫ)n) and bounded from below infinitely often by any decaying
exponential (of the form(1 − ǫ)n). Typical subexponential factors are

1, n3, (logn)2,
√
n,

1
3
√

logn
, n−3/2, log logn.

(Functions likee
√

n andexp(log2 n) are to be treated as subexponential factors for the
purpose of this discussion.) Thelim sup definition also allows in principle for factors
that are infinitely often very small or 0, liken2 sinnπ

2 , logn cos
√
nπ

2 , and so on. In
this and the next chapters, we shall develop systematic methods that enable one to
extract such subexponential factors from generating functions.

It is an elementary observation that the radius of convergence of the series rep-
resentation off(z) at 0 is related to the exponential growth rate of the coefficients
fn = [zn]f(z). To wit, if Rconv(f ; 0) = R, then we claim that

(17) fn ⊲⊳

(
1

R

)n

, i.e., fn = R−nθ(n) with lim sup |θ(n)|1/n = 1.

� IV.13. Radius of convergence and exponential growth.This only requires the basic definition
of a power series.(i) By definition of the radius of convergence, we have for any small ǫ > 0,
fn(R− ǫ)n → 0. In particular,|fn|(R− ǫ)n < 1 for all sufficiently largen, so that|fn|1/n <
(R− ǫ)−1 “almost everywhere”.(ii) In the other direction, for anyǫ > 0, |fn|(R+ ǫ)n cannot
be a bounded sequence, since otherwise,

P
n |fn|(R + ǫ/2)n would be a convergent series.

Thus,|fn|1/n > (R+ ǫ)−1 “infinitely often”. �

A global approach to the determination of growth rates is desirable. This is made
possible by Theorem IV.5.

Theorem IV.7 (Exponential Growth Formula). If f(z) is analytic at0 andR is the
modulus of a singularity nearest to the origin in the sense that8

R := sup
{
r ≥ 0

∣∣ f is analytic in|z| < r
}
,

then the coefficientfn = [zn]f(z) satisfies

fn ⊲⊳

(
1

R

)n

.

8One should think of the process definingR as follows: take discs of increasing radiir and stop as
soon as a singularity is encountered on the boundary. (The dual process that would start from a large disc
and restrict its radius is in general ill-defined—think of

√
1 − z.)
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For functions with nonnegative coefficients, including allcombinatorial generating
functions, one can also adopt

R := sup
{
r ≥ 0

∣∣ f is analytic at all points of0 ≤ z < r
}
.

PROOF. Let R be as stated. We cannot haveR < Rconv(f ; 0) since a function is
analytic everywhere in the interior of the disc of convergence of its series representa-
tion. We cannot haveR > Rconv(f ; 0) by the Boundary Singularity Theorem. Thus
R = Rconv(f ; 0). The statement then follows from (17). The adaptation to nonnega-
tive coefficients results from Pringsheim’s theorem. �

The exponential growth formula thus directly relates the exponential order of
growth of coefficients of a function to thelocationof its singularities nearest to the
origin. This is precisely expressed by theFirst Principle of Coefficient Asymptotics
(p. 215), which, given its importance, we repeat here:

First Principle of Coefficient Asymptotics. The locationof a function’s
singularities dictates theexponential growth(An) of its coefficient.

Several direct applications to combinatorial enumerationare given below.

EXAMPLE IV.1. Exponential growth and combinatorial enumeration. Here are a few imme-
diate applications of exponential bounds.

Surjections.The function
R(z) = (2− ez)−1

is the EGF of surjections. The denominator is an entire function, so that singularities may only
arise from its zeros, to be found at the points

χk = log 2 + 2ikπ, k ∈ Z.

The dominant singularity ofR is then atρ = χ0 = log 2. Thus, withrn = [zn]R(z),

rn ⊲⊳ (
1

log 2
)n.

Similarly, if “double” surjections are considered (each value in the range of the surjection
is taken at least twice), the corresponding EGF is

R∗(z) =
1

2 + z − ez
,

with the counts starting as 1,0,1,1,7,21,141 (EIS A032032). The dominant singularity is at
ρ∗ defined as the positive root of equationeρ∗ − ρ∗ = 2, and the coefficientr∗n satisfies:
r∗n ⊲⊳ ( 1

ρ∗ )n Numerically, this gives

rn ⊲⊳ 1.44269n and r∗n ⊲⊳ 0.87245n ,

with the actual figures for the corresponding logarithms being

n 1
n

log rn
1
n

log r∗n
10 0.33385 −0.22508
20 0.35018 −0.18144
50 0.35998 −0.154449
100 0.36325 −0.145447
∞ 0.36651 −0.13644

(log 1/ρ) (log(1/ρ∗)
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These estimates constitute a weak form of a more precise result to be established later
in this chapter: If random surjections of sizen are taken equally likely, the probability of a
surjection being a double surjection is exponentially small.

Derangements.There, ford1,n = [zn]e−z(1− z)−1 andd2,n = [zn]e−z−z2/2(1 − z)−1 we
have, from the poles atz = 1,

d1,n ⊲⊳ 1n and d2,n ⊲⊳ 1n.

The upper bound is combinatorially trivial. The lower boundexpresses that the probability for a
random permutation to be a derangement isnot exponentially small. Ford1,n, we have already
proved by an elementary argument the stronger resultd1,n → e−1; in the case ofd2,n, we shall
establish later the precise asymptotic equivalentd2,n → e−3/2, in accordance with what was
announced in the introduction.

Unary-Binary trees.The expression

U(z) =
1− z −

√
1− 2z − 3z2

2z
= z + z2 + 2 z3 + 4 z4 + 9 z5 + · · · ,

represents the OGF of (plane unlabelled) unary-binary trees. From the equivalent form,

U(z) =
1− z −

p
(1− 3z)(1 + z)

2z
,

it follows thatU(z) is analytic in the complex plane slit along( 1
3
,+∞) and(−∞,−1) and

is singular atz = −1 andz = 1/3 where it has branch points. The closest singularity to the
origin being at1

3
, one has

Un ⊲⊳ 3n.

In this case, the stronger upper boundUn ≤ 3n results directly from the possibility of encoding
such trees by words over a ternary alphabet using Łukasiewicz codes (Chapter I). A complete
asymptotic expansion will be obtained in Chapter VI. . . . . . .. . . . END OF EXAMPLE IV.1. �

� IV.14. Coding theory bounds.Let C be a combinatorial class. We say that itcan be encoded
with f(n) bits if, for all sufficiently large values ofn, elements ofCn can be encoded as words
of f(n) bits. Assume thatC has OGFC(z) with radius of singularityR satisfying0 < R < 1.
Then, for anyǫ, C can be encoded with(1 + ǫ)κn bits whereκ = − log2 R, butC cannot be
encoded with(1− ǫ)κn bits.

Similarly, if C has EGFbC(z) with radius of convergenceR satisfying0 < R <∞, C can
be encoded withn log(n/e) + (1 + ǫ)κn bits whereκ = − log2 R, butC cannot be encoded
with n log(n/e) + (1− ǫ)κn bits. Singularities convey information on optimal codes! �

Saddle-point bounds.The exponential growth formula (Theorem IV.7) can be
supplemented by effective upper bounds which are very easy to derive and often turn
out to be surprisingly accurate. We state:

Proposition IV.1 (Saddle-Point bounds). Let f(z) be analytic in the disc|z| < R
with 0 < R ≤ ∞. DefineM(f ; r) for r ∈ (0, R) byM(f ; r) := sup|z|=r |f(z)|.
Then, one has, foranyr in (0, R), the family ofsaddle point upper bounds

(18) [zn]f(z) ≤ M(f ; r)

rn
implying [zn]f(z) ≤ inf

r∈(0,R)

M(f ; r)

rn
.

If in additionf(z) has nonnegative coefficients at 0, then

(19) [zn]f(z) ≤ f(r)

rn
implying [zn]f(z) ≤ inf

r∈(0,R)

f(r)

rn
.
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PROOF. In the general case of (18), the first inequality results from trivial bounds ap-
plied to the Cauchy coefficient formula, when integration isperformed along a circle:

[zn]f(z) =
1

2iπ

∫

|z|=r

f(z)
dz

zn+1
.

It is consequently valid for anyr smaller than the radius of convergence off at 0. The
second inequality in (18) plainly represents the best possible bound of this type.

In the positive case of (19), the bounds can be viewed as a direct specialization
of (18). (Alternatively, they can be obtained elementarilysince, in the case of positive
coefficients,

fn ≤ f0
rn

+ · · · + fn−1

r
+ fn +

fn+1

rn+1
+ · · · ,

whenever thefk are nonnegative.) �

Note that the values that provides the best bound in (19) can be determined by
cancelling a derivative,

(20) s
f ′(s)

f(s)
= n.

Thanks to the universal character of the first bound,anyapproximate solution of this
last equation will in fact provide a valid upper bound.

For reasons well explained by the saddle point method (Chapter VIII), these
bounds usually capture the actual asymptotic behaviour up to a polynomial factor
only. A typical instance is the weak form of Stirling’s formula,

1

n!
≡ [zn]ez ≤ en

nn
,

which only overestimates the true asymptotic value by a factor of
√

2πn.
� IV.15. A suboptimal but easy saddle-point bound.Let f(z) be analytic in|z| < 1 with
nonnegative coefficients. Assume thatf(x) ≤ (1 − x)−β for someβ ≥ 0 and allx ∈ (0, 1).
Then

[zn]f(z) = O(nβ).

(Better bounds of the formO(nβ−1) are usually obtained by the method of singularity analysis
exposed in Chapter VI.) �

EXAMPLE IV.2. Combinatorial examples of saddle point bounds.Here are applications to
fragmented permutations, set partitions (Bell numbers), involutions, and integer partitions.

Fragmented permutations.Consider first fragmented permutations defined byF = SET(SEQ≥1(Z))

in the labelled universe (Chapter II, p. 115). The EGF isez/(1−z), and we claim that

(21)
1

n!
Fn ≡ [zn]ez/(1−z) ≤ e2

√
n− 1

2
+O(n−1/2).

Indeed, the minimizing radius of the saddle point bound (19)is s such that

0 =
d

ds

„
s

1− s − n log s

«
=

1

(1− s)2 −
n

s
.

The equation is solved bys = (2n+ 1−
√

4n+ 1)/(2n). One can either use this exact value
and compute an asymptotic approximation off(s)/sn, or adopt right away the approximate
values1 = 1 − 1/

√
n, which leads to simpler calculations. The estimate (21) results. It is off

from the actual asymptotic value only by a factor of ordern−3/4 (cf Example VIII.6, p. 527).
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n eIn In

100 0.106579 · 1085 0.240533 · 1083

200 0.231809 · 10195 0.367247 · 10193

300 0.383502 · 10316 0.494575 · 10314

400 0.869362 · 10444 0.968454 · 10442

500 0.425391 · 10578 0.423108 · 10576
–2

–1

0 1 2 3

FIGURE IV.5. A comparison of the exact number of involutionsIn to its approximation
eIn = n!e

√
n+n/2n−n/2: [left] a table; [right] a plot oflog10(In/eIn) againstlog10 n

suggesting that the ratio satisfiesIn/eIn ∼ K · n−1/2, the slope of the line being≈ 1
2
.

Bell numbers and set partitions.Another immediate applications is an upper bound on Bell
numbers enumerating set partitions,S = SET(SET≥1(Z)), with EGF eez−1. According
to (20), the best saddle point bound is obtained fors such thatses = n. Thus,

(22)
1

n!
Sn ≤ ees−1−n log s, s : ses = n,

where, additionally,s = log n − log log n + o(log log n). See Chapter VIII, p. 525 for the
complete saddle point analysis.

Involutions.Involutions are specified byI = SET(CYC1,2(Z)) and have EGFI(z) = exp(z+
1
2
z2). One determines, by choosings =

√
n as an approximate solution to (20):

(23)
1

n!
In ≤ e

√
n+n/2

nn/2
.

(See Figure 5 for numerical data and Example VIII.4, p. 524 for a full analysis.) Similar bounds
hold for permutations with all cycle lengths≤ k and permutationsσ such thatσk = Id.

Integer partitions.The function

(24) P (z) =
∞Y

k=1

1

1− zk
= exp

 ∞X

ℓ=1

1

ℓ

zℓ

1− zℓ

!

is the OGF of integer partitions, an unlabelled analogue of set partitions. Its radius of con-
vergence isa priori bounded from above by 1, since the setP is infinite and the second form
of P (z) shows that it is exactly equal to 1. ThereforePn ⊲⊳ 1n. A finer upper bound results
from the estimate

(25) Λ(t) := logP (e−t) ∼ π2

6t
+ log

r
t

2π
− 1

24
t+O(t2),

which obtains from Euler–Maclaurin summation or, better, from a Mellin analysis follow-
ing APPENDIX B: Mellin transform, p. 707. Indeed, the Mellin transform ofΛ is, by the
harmonic sum rule,

Λ⋆(s) = ζ(s)ζ(s+ 1)Γ(s), s ∈ 〈1,+∞〉,
and the successive leftmost poles ats = 1 (simple pole),s = 0 (double pole), ands = −1
(simple pole) translate into the asymptotic expansion (25). Whenz → 1−, we have

(26) P (z) ∼ e−π2/12

√
2π

√
1− z exp

„
π2

6(1− z)

«
,

from which we derive (chooses = D
√
n as an approximate solution to (20))

Pn ≤ Cn−1/4eπ
√

2n/3,
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for someC > 0. This last bound is once more only off by a polynomial factor,as we shall prove
when studying the saddle point method (Proposition VIII.8,p. 544). END OF EXAMPLE IV.2. �

� IV.16. A natural boundary.One hasP (reiθ) → ∞ asr → 1−, for any angleθ that is a
rational multiple of2π. Pointse2iπp/q being dense on the unit circle, the functionP (z) admits
the unit circle as anatural boundary, i.e., it cannot be analytically continued beyond this circle.
�

IV. 4. Closure properties and computable bounds

Analytic functions are robust: they satisfy a rich set of closure properties. This
fact makes possible the determination of exponential growth constants for coefficients
of a wide range of classes of functions. Theorem IV.8 below expresses computability
of growth rate for all specifications associated with iterative specifications. It is the
first result of this sort that relates symbolic methods of Part A with analytic methods
developed here.

Closure properties of analytic functions.The functions analytic at a pointz = a
are closed under sum and product, and hence form a ring. Iff(z) andg(z) are ana-
lytic at z = a, then so is their quotientf(z)/g(z) providedg(a) 6= 0. Meromorphic
functions are furthermore closed under quotient and hence form a field. Such prop-
erties are proved most easily using complex-differentiability and extending the usual
relations from real analysis, for instance,(f + g)′ = f ′ + g′, (fg)′ = fg′ + f ′g.

Analytic functions are also closed under composition: iff(z) is analytic atz = a
andg(w) is analytic atb = f(a), theng ◦ f(z) is analytic atz = a. Graphically:

a
f g

b=f(a) c=g(b)

The proof based on complex-differentiability closely mimicks the real case. Inverse
functions exist conditionally: iff ′(a) 6= 0, thenf(z) is locally linear neara, hence
invertible, so that there exists ag satisfyingf ◦g = g◦f = Id,whereId is the identity
function, Id(z) ≡ z. The inverse function is itself locally linear, hence complex
differentiable, hence analytic. In short, the inverse of ananalytic functionf at a place
where the derivative does not vanish is an analytic function.
� IV.17. The analytic inversion lemma.Let f be analytic onΩ ∋ z0 and satisfyf ′(z0) 6= 0.
Then there esists a small regionΩ1 ⊆ Ω containingz0 and aC > 0 such that|f(z)− f(z′)| >
C|z − z′|, for all z, z′ ∈ Ω1. Consequently,f maps bijectivelyΩ1 onf(Ω1). �

One way to establish closure properties, as suggested above, is to deduce analyt-
icity criteria from complex differentiability by way of theBasic Equivalence Theorem
(Theorem IV.1). An alternative approach, closer to the original notion of analyticity,
can be based on a two-step process:(i) closure properties are shown to hold true for
formal power series;(ii) the resulting formal power series are proved to be locally
convergent by means of suitable majorizations on their coefficients. This is the basis
of the classical method ofmajorant seriesoriginating with Cauchy.
� IV.18. The majorant series technique.Given two power series, definef(z) � g(z) if
|[zn]f(z)| ≤ [zn]g(z) for all n ≥ 0. The following two conditions are equivalent:(i) f(z) is
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analytic in the disc|z| < ρ; (ii) for anyr > ρ−1 there exists ac such that

f(z) � c

1− rz .

If f, g are majorized byc/(1−rz), d/(1−rz) respectively, thenf +g andf ·g are majorized,

f(z) + g(z) � c+ d

1− rz , f(z) · g(z) � e

1− sz ,

for anys > r and for somee dependent ons. Similarly, the compositionf ◦ g is majorized:

f ◦ g(z) � c

1− r(1 + d)z
.

Constructions for1/f and for the functional inverse off can be similarly developed. See
Cartan’s book [79] and van der Hoeven’s study [477] for a systematic treatment. �

For functions defined by analytic expressions, singularities can be determined
inductively in an intuitively transparent manner. IfSing(f) andZero(f) are respec-
tively the set of singularities and zeros of functionf , then, due to closure properties
of analytic functions, the following informally stated guidelines apply.

8
>>>>>>>><
>>>>>>>>:

Sing(f ± g) ⊆ Sing(f) ∪ Sing(g)
Sing(f × g) ⊆ Sing(f) ∪ Sing(g)
Sing(f/g) ⊆ Sing(f) ∪ Sing(g) ∪ Zero(g)

Sing(f ◦ g) ⊆ Sing(g) ∪ g(−1)(Sing(f))
Sing(

√
f) ⊆ Sing(f) ∪ Zero(f)

Sing(log(f)) ⊆ Sing(f) ∪ Zero(f)

Sing(f (−1)) ⊆ f(Sing(f)) ∪ f(Zero(f ′)).

A mathematically rigorous treatment would require considering multivalued func-
tions and Riemann surfaces, so that we do not state detailed validity conditions and,
at this stage, keep for these formulæ the status of useful heuristics. In fact, because
of Pringsheim’s theorem, the search of dominant singularities of combinatorial gener-
ating function can normally avoid considering the completemultivalued structure of
functions, since only some initial segment of the positive real half–line needs to be
considered. This in turn implies a powerful and easy way of determining the expo-
nential order of coefficients of a wide variety of generatingfunctions, as we explain
next.

Computability of exponential growth constants.As defined in Chapters I and II,
a combinatorial class isconstructibleor specifiableif it can be specified by a finite
set of equations involving only the basic constructors. A specification isiterativeor
non-recursiveif in addition the dependency graph of the specification is acyclic, that
is, no recursion is involved and a single functional term (written with sums, products,
as well as sequence, set, and cycle constructions) describes the specification.

Our interest here is in effective computability issues. We recall that a real number
α is computable iff there exists a programΠα which on inputm outputs a rational
numberαm guaranteed to be within±10−m of α. We state:

Theorem IV.8 (Computability of growth). Let C be aconstructibleunlabelled class
that admits of aniterativespecification in terms of(SEQ,PSET,MSET,CYC; +,×)
starting with (1,Z). Then the radius of convergenceρC of the OGFC(z) of C is
either+∞ or a (strictly) positive computable real number.
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LetD be aconstructiblelabelled class that admits of aniterativespecification in
terms of(SEQ,SET,CYC; +, ⋆) starting with(1,Z). Then the radius of convergence
ρD of the EGFD(z) ofD is either+∞ or a (strictly) positive computable real number.

Accordingly, if finite, the constantsρC , ρD in the exponential growth estimates,

[zn]C(z) ≡ Cn ⊲⊳

(
1

ρC

)n

, [zn]D(z) ≡ 1

n!
Dn ⊲⊳

(
1

ρD

)n

,

are computable numbers.

PROOF. In both cases, the proof proceeds by induction on the structural specification
of the class. For each classF , with generating functionF (z), we associate asignature,
which is an ordered pair〈ρF , τF 〉, whereρF is the radius of convergence ofF andτF
is the value ofF atρF , precisely,

τF := lim
x→ρ−

F

F (x).

(The valueτF is well defined as an element ofR ∪ {+∞} sinceF , being a counting
generating function, is necessarily increasing on(0, ρF ).)

Unlabelled case.An unlabelled classG is either finite, in which case its OGFG(z)
is a polynomial, or infinite, in which case it diverges atz = 1, so thatρG ≤ 1. It
is clearly decidable, given the specification, whether a class is finite or not: a neces-
sary and sufficient condition is that one of the unary constructors (SEQ,MSET,CYC)
intervenes in the specification. We prove (by induction) theassertion of the theorem
together with the stronger property thatτF = ∞ as soon as the class is infinite.

First, the signatures of the neutral class1 and the atomic classZ, with OGF1 and
z, are〈+∞, 1〉 and〈+∞,+∞〉. Any nonconstant polynomial which is the OGF of a
finite set has the signature〈+∞,+∞〉. The assertion is thus easily verified in these
cases.

Next, letF = SEQ(G). The OGFG(z) must be nonconstant and in fact satisfy
G(0) = 0 in order for the sequence construction to be properly defined. Thus, by the
induction hypothesis, one has0 < ρG ≤ +∞ andτG = +∞. Now, the functionG
being increasing and continuous along the positive axis, there must exist a valueβ
such that0 < β < ρG with G(β) = 1. For z ∈ (0, β), the quasi-inverseF (z) =
(1 − G(z))−1 is well defined and analytic; asz approachesβ from the left,F (z)
increases unboundedly. Thus, the smallest singularity ofF along the positive axis is
at β, and by Pringsheim’s theorem, one hasρF = β. The argument simultaneously
shows thatτF = +∞. There only remains to check thatβ is computable. The
coefficients ofG form a computable sequence of integers, so thatG(x), which can be
well approximated via truncated Taylor series, is an effectively computable number9

if x is itself a positive computable number less thanρG. Then binary search provides
an effective procedure for determiningβ.

9The present argument only establishes non-constructivelythe existenceof a program, based on the
fact that truncated Taylor series converge geometrically fast at an interior point of their disc of convergence.
Making explict this program and the involved parameters from the specification itself however represents a
much harder problem (that of “uniformity” with respect to specifications) that is not addressed here.
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Next, we consider the multiset construction,F = MSET(G), whose translation
into OGFs necessitates the Pólya exponential of Chapter I (p. 32):

F (z) = Exp(G(z)) whereExp(h(z)) := exp

(
h(z) +

1

2
h(z2) +

1

3
h(z3) + · · ·

)
.

Once more, the induction hypothesis is assumed forG. If G is a polynomial, thenF
is a rational function with poles at roots of unity only. Thus, ρF = 1 andτF = ∞
in that particular case. In the general case ofF = MSET(G) with G infinite, we start
by fixing arbitrarily a numberr such that0 < r < ρG ≤ 1 and examineF (z) for
z ∈ (0, r). The expression forF rewrites as

Exp(G(z)) = eG(z) · exp

(
1

2
G(z2) +

1

3
G(z3) + · · ·

)
.

The first factor is analytic forz on(0, ρG) since, the exponential function being entire,
eG has the singularities ofG. As to the second factor, one hasG(0) = 0 (in order
for the set construction to be well-defined), whileG(x) is convex forx ∈ [0, r] (since
its second derivative is positive). Thus, there exists a positive constantK such that
G(x) ≤ Kx whenx ∈ [0, r]. Then, the series12G(z2) + 1

3G(z3) + · · · has its terms
dominated by those of the convergent series

K

2
r2 +

K

3
r3 + · · · = K log(1 − r)−1 −Kr.

By a well-known theorem of analytic function theory, a uniformly convergent sum of
analytic functions is itself analytic; consequently,1

2G(z2) + 1
3G(z3) + · · · is analytic

at all z of (0, r). Analyticity is then preserved by the exponential, so thatF (z), being
analytic atz ∈ (0, r) for anyr < ρG has a radius of convergence that satisfiesρF ≥
ρG. On the other hand, sinceF (z) dominates termwiseG(z), one hasρF ≤ ρG. Thus
finally one hasρF = ρG. Also, τG = +∞ impliesτF = +∞.

A parallel discussion covers the case of the powerset construction (PSET) whose
associated functionalExp is a minor modification of the Pólya exponentialExp.
The cycle construction can be treated by similar arguments based on consideration
of “Pólya’s logarithm” asF = CYC(G) corresponds to

F (z) = Log
1

1 −G(z)
, where Log h(z) = log h(z) +

1

2
log h(z2) + · · · .

In order to conclude with the unlabelled case, there only remains to discuss the
binary constructors+, ×, which give rise toF = G + H , F = G · H . It is easily
verified thatρF = min(ρG, ρH). Computability is granted since the minimum of two
computable numbers is computable. ThatτF = +∞ in each case is immediate.

Labelled case.The labelled case is covered by the same type of argument as above,
the discussion being even simpler, since the ordinary exponential and logarithm re-
place the Pólya operatorsExp andLog. It is still a fact that all the EGFs of infinite
nonrecursive classes are infinite at their dominant positive singularity, though the radii
of convergence can now be of any magnitude (compared to 1). �
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� IV.19. Relativized constructions.This is an exercise in induction. Theorem IV.8 is stated for
specifications involving the basic constructors. Show thatthe conclusion still holds if the corre-
sponding relativized constructions (K=r,K<r,K>r with K being any of the basic constructors)
are also allowed. �

� IV.20. Syntactically decidable properties.For unlabelled classesF , the propertyρF = 1 is
decidable. For labelled and unlabelled classes, the property ρF = +∞ is decidable. �

� IV.21. Pólya–Carlson and a curious property of OGFs.Here is a statement first conjectured
by Pólya, then proved by Carlson in 1921 (see [128, p. 323]): If a function is represented by
a power series with integer coefficients that converges inside the unit disc, then either it is a
rational function or it admits the unit circle as a natural boundary. This theorem applies in
particular to the OGF of any combinatorial class. �

� IV.22. Trees are recursive structures only!General and binary trees cannot receive an iter-
ative specification since their OGFs assume a finite value at their Pringsheim singularity. [The
same is true of most simple families of treee; cf PropositionIV.5 p. 264]. �

� IV.23. Nonconstructibility of permutations and graphs.The classP of all permutations
cannot be specified as a constructible unlabelled class since the OGFP (z) =

P
n n!zn has

radius of convergence 0. (It is of course constructible as a labelled class.) Graphs, whether
labelled or unlabelled, are too numerous to form a constructible class. �

Theorem IV.8 establishes a link between analytic combinatorics, computability
theory, and symbolic manipulation systems. It is based on anarticle of Flajolet, Salvy,
and Zimmermann [206] devoted to such computability issues in exact and asymptotic
enumeration. (Recursive specifications are not discussed now since they tend to give
rise to branch points, themselves amenable to singularity analysis techniques to be
developed in Chapters VI and VII.) The inductive process, implied by the proof of
Theorem IV.8, that decorates a specification with the radiusof convergence of each of
its subexpressions provides a practical basis for determining the exponential growth
rate of counts associated to a nonrecursive specification. The example of trains de-
tailed below is typical.

EXAMPLE IV.3. Combinatorial trains. This somewhat artificial example from [173] (see
Figure 6) serves to illustrate the scope of Theorem IV.8 and demonstrate its inner mechanisms
at work. Define the class of alllabelled trainsby the following specification,

(27)

8
>><
>>:

T r = Wa ⋆ SEQ(Wa ⋆ SET(Pa)),
Wa = SEQ≥1(Pℓ),
Pℓ = Z ⋆Z ⋆ (1 + CYC(Z)),
Pa = CYC(Z) ⋆ CYC(Z).

In figurative terms, a train (T ) is composed of a first wagon (Wa) to which is appended a
sequence of passenger wagons, each of the latter capable of containing a set of passengers
(Pa). A wagon is itself composed of “planks” (Pℓ) determined by their end points(Z ⋆Z) and
to which a circular wheel (CYC(Z)) may be attached. A passenger is composed of a head and
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T r

⋆

Wa

Seq≥1

⋆

Z Z +

1 Cyc

Z

Seq

⋆

(Wa) Set

⋆

Cyc

Z

Cyc

Z

×

Wa

S1

×

z z +

1 L

z

S

×

(Wa) exp

×

L

z

L

z

0.48512

0.68245

1

∞ ∞ 1

∞ 1

∞

0.48512

0.68245

0.68245 1

1

1

∞

1

∞

FIGURE IV.6. The inductive determination of the radius of convergence ofthe EGF of
trains: (top) a hierarchical view of the specification ofT r; (bottom left) the corresponding
expression tree of the EGFTr(z); (bottom right) the value of the radii for each subexpres-
sion ofTr(z) (with L(y) = log(1− y)−1, S(y) = (1− y)−1, S1(y) = yS(y)).

a belly that are each circular arrangements of atoms. Here isa depiction of a random train:

The translation into a set of EGF equations is immediate and asymbolic manipulation system
readily provides the form of the EGF of trains as

Tr(z) =
z2

“
1 + log((1 − z)−1)

”

“
1 − z2

“
1 + log((1 − z)−1)

””

0
B@1 −

z2
“
1 + log((1 − z)−1)

”
e(log((1−z)−1))2

1 − z2
“
1 + log((1 − z)−1)

”

1
CA

−1

,

together with the expansion

Tr(z) = 2
z2

2!
+ 6

z3

3!
+ 60

z4

4!
+ 520

z5

5!
+ 6660

z6

6!
+ 93408

z7

7!
+ · · · .

The specification (27) has a hierarchical structure, as suggested by the top representation of
Figure 6, and this structure is itself directly reflected by the form of the expression tree of the GF
Tr(z). Then each node in the expression tree ofTr(z) can be tagged with the corresponding
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value of the radius of convergence. This is done according tothe principles of Theorem IV.8;
see the bottom-right part of Figure 6. For instance, the quantity 0.68245 associated toWa(z)
is given by the sequence rule and is determined as smallest positive solution to the equation

z2
`
1− log(1− z)−1

´
= 1.

The tagging process works upwards till the root of the tree isreached; here the radius of con-
vergence ofTr is determined to beρ

.
= 0.48512 · · · , a quantity that happens to coincide with

the ratio[z49]Tr(z)/[z50]Tr(z) to more than 15 decimal places. END OF EXAMPLE IV.3. �

IV. 5. Rational and meromorphic functions

The last section has fully justified theFirst Principle of coefficient asymptotics
leading to the exponential growth formulafn ⊲⊳ A

n for the coefficients of an analytic
functionf(z). Indeed, as we saw, one hasA = 1/ρ, whereρ equals both the radius of
convergence of the series representingf and the distance of the origin to the dominant,
i.e., closest, singularities. We are going to start examining here theSecond Principle,
already quoted on p. 215 and relative to the form,

fn = Anθ(n),

with θ(n) the subexponential factor:

Second Principle of Coefficient Asymptotics.Thenatureof the function’s
singularities determines the associatesubexponential factor(θ(n)).

In this section, we develop a complete theory in the case of rational functions (that is,
quotients of polynomials) and, more generally, meromorphic functions. The net result
is that, for such functions, the subexponential factors areessentially polynomials:

Polar singularities ; Subexponential factorsθ(n) are ofpolynomial growth.

A distinguishing feature is the extremely good quality of the asymptotic approxima-
tions obtained; for naturally occuring combinatorial problems, 15 digits of accuracy is
not uncommon in coefficients of index as low as50 (see Figure 7 below for a striking
example).

IV. 5.1. Rational functions. A functionf(z) is arational functioniff it is of the
form f(z) = N(z)/D(z), with N(z) andD(z) being polynomials, which we may
without loss of generality assume to be relatively prime. For rational functions that
are analytic at the origin (e.g., generating functions), wehaveD(0) 6= 0.

Sequences{fn}n≥0 that are coefficients of rational functions satisfy linear re-
currence relations with constant coefficients. This fact iseasy to establish: com-
pute [zn]f(z) · D(z); then, withD(z) = d0 + d1z + · · · + dmz

m, one has, for
all n > deg(N(z)),

m∑

j=0

djfn−j = 0.

The main theorem we prove here provides anexactfinite expression for coeffi-
cients off(z) in terms of the poles off(z). Individual terms in these expressions are
sometimes calledexponential polynomials.
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Theorem IV.9 (Expansion of rational functions). If f(z) is a rational function that is
analytic at zero and has poles at pointsα1, α2, . . . , αm, then its coefficients are a sum
of exponential polynomials: there existm polynomials{Πj(x)}m

j=1 such that, forn
larger than some fixedn0,

(28) fn ≡ [zn]f(z) =
m∑

j=1

Πj(n)α−n
j .

Furthermore the degree ofΠj is equal to the order of the pole off atαj minus one.

PROOF. Sincef(z) is rational it admits a partial fraction expansion. To wit:

f(z) = Q(z) +
∑

(α,r)

cα,r

(z − α)r
,

whereQ(z) is a polynomial of degreen0 := deg(N)−deg(D) if f = N/D. Thereα
ranges over the poles off(z) andr is bounded from above by the multiplicity ofα as
a pole off . Coefficient extraction in this expression results from Newton’s expansion,

[zn]
1

(z − α)r
=

(−1)r

αr
[zn]

1

(1 − z
α )r

=
(−1)r

αr

(
n+ r − 1

r − 1

)
α−n.

The binomial coefficient is a polynomial of degreer − 1 in n, and collecting terms
associated with a givenα yields the statement of the theorem. �

Notice that the expansion (28) is also an asymptotic expansion in disguise: when
grouping terms according to theα’s of increasing modulus, each group appears to be
exponentially smallerthan the previous one. In particular, if there is a unique dominant
pole,|α1| < |α2| ≤ |α3| ≤ · · · , then

fn ∼ α−n
1 Π1(n),

and the error term is exponentially small as it isO(α−n
2 nr) for somer. A classical

instance is the OGF of Fibonacci numbers,

f(z) =
z

1 − z − z2
,

with poles at
−1 +

√
5

2

.
= 0.61803 and

−1 −
√

5

2

.
= −1.61803, so that

Fn =
1√
5
ϕn − 1√

5
ϕ̄n =

ϕn

√
5

+O(
1

ϕn
),

with ϕ = (1 +
√

5)/2 the golden ratio, and̄ϕ its conjugate.
� IV.24. A simple exercise.Let f(z) be as in Theorem IV.9, assuming additionally a unique
dominant poleα1 of multiplicity r. Then, by inspection of the proof of Theorem IV.9:

fn =
C

(r − 1)!
α−n+r

1 nr−1

„
1 +O

„
1

n

««
with C = lim

z→α1

(z − α1)
rf(z).

This is certainly the most direct illustration of the SecondPrinciple: under the assumptions, a
one-term asymptotic expansion of the functon at its dominant singularity suffices to determine
the asymptotic form of the coefficients. �
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EXAMPLE IV.4. Qualitative analysis of a rational function.This is an artificial example
designed to demonstrate that all the details of the full decomposition are usually not required.
The rational function

f(z) =
1

(1− z3)2(1− z2)3(1− z2

2
)

has a pole of order 5 atz = 1, poles of order 2 atz = ω,ω2 (ω = e2iπ/3 a cubic root of unity),
a pole of order 3 atz = −1, and simple poles atz = ±

√
2. Therefore,

fn = P1(n) + P2(n)ω−n + P3(n)ω−2n + P4(n)(−1)n+

+P5(n)2−n/2 + P6(n)(−1)n2−n/2

where the degrees ofP1, . . . , P6 are respectively4, 1, 1, 2, 0, 0. For an asymptotic equivalent
of fn, only the poles at roots of unity need to be considered since they corresponds to the fastest
exponential growth; in addition, onlyz = 1 needs to be considered for first order asymptotics;
finally, atz = 1, only the term of fastest growth needs to be taken into account. In this way, we
find the correspondence

f(z) ∼ 1

32 · 23 · ( 1
2
)

1

(1− z)5 =⇒ fn ∼ 1

32 · 23 · ( 1
2
)

 
n+ 4

4

!
∼ n4

864
.

The way the analysis can be developedwithout computing detailsof partial fraction expansion
is typical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . END OF EXAMPLE IV.4. �

Theorem IV.9 applies to any specification leading to a GF thatis a rational func-
tion10. Combined with the qualitative approach to rational coefficient asymptotics,
it gives access to a large number of effective asymptotic estimates for combinatorial
counting sequences.

EXAMPLE IV.5. Asymptotics of denumerants.Denumerants are integer partitions with sum-
mands restricted to be from afixedfinite set (Chapter I, p. 41). We letPT be the class relative
to setT ⊂ Z>0, with the known OGF,

P T (z) =
Y

ω∈T

1

1− zω
.

A particular case is the one of integer partitions whose summands are in{1, 2, . . . , r},

P {1,...,r}(z) =
rY

m=1

1

1− zm
.

The GF has all its poles that are roots of unity. Atz = 1, the order of the pole isr, and one has

P {1,...,r}(z) ∼ 1

r!

1

(1− z)r
,

asz → 1. Other poles have smaller multiplicity: for instance the multiplicity of z = −1 is
equal to the number of factors(1−z2j)−1 in P {1,...,r}, that is⌊r/2⌋; in general a primitiveqth
root of unity is found to have multiplicity⌊r/q⌋. There results thatz = 1 contributes a term of
the formnr−1 to the coefficient of ordern, while each of the other poles contributes a term of
order at mostn⌊r/2⌋. We thus find

P {1,...,r}
n ∼ crnr−1 with cr =

1

r!(r − 1)!
.

10In Part A, we have been occasionally led to discuss coefficients of rational functions, thereby antic-
ipating the statement of the theorem: see for instance the discussion of parts in compositions (p. 157) and
of records in sequences (p. 178).
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The same argument provides the asymptotic form ofP T
n , since, to first order asymptotics,

only the pole atz = 1 counts. One then has:

Proposition IV.2. Let T be a finite set of integers without a common divisor (gcd(T ) = 1).
The number of partitions with summands restricted toT satisfies

P T
n ∼

1

τ

nr−1

(r − 1)!
, with τ :=

Y

ω∈T
ω, r := card(T ).

For instance, in a strange country that would have pennies (1cent), nickels (5 cents), dimes
(10 cents), and quarters (25 cents), the number of ways to make change for a total ofn cents is

[zn]
1

(1− z)(1− z5)(1− z10)(1− z25)
∼ 1

1 · 5 · 10 · 25
n3

3!
≡ n3

7500
,

asymptotically. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . END OF EXAMPLE IV.5. �

IV. 5.2. Meromorphic Functions. An expansion similar to that of Theorem IV.9
holds true for coefficients of a larger class—meromorphic functions.

Theorem IV.10 (Expansion of meromorphic functions). Letf(z) be a function mero-
morphic for|z| ≤ R with poles at pointsα1, α2, . . . , αm, and analytic at all points of
|z| = R and atz = 0. Then there existm polynomials{Πj(x)}m

j=1 such that:

(29) fn ≡ [zn]f(z) =

m∑

j=1

Πj(n)α−n
j + O(R−n).

Furthermore the degree ofΠj is equal to the order of the pole off atαj minus one.

PROOF. We offer two different proofs, one based on subtracted singularities, the other
one based on contour integration.

(i) Subtracted singularities.Around any poleα, f(z) can be expanded locally:

f(z) =
∑

k≥−M

cα,k(z − α)k(30)

= Sα(z) +Hα(z)(31)

where the “singular part”Sα(z) is obtained by collecting all the terms with index in
[−M . . − 1] (that is, formingSα(z) = Nα(z)/(z − α)M with Nα(z) a polynomial
of degree less thanM ) andHα(z) is analytic atα. Thus settingS(z) :=

∑
j Sαj (z),

we observe thatf(z) − S(z) is analytic for|z| ≤ R. In other words, by collecting
the singular parts of the expansions and subtracting them, we have “removed” the sin-
gularities off(z), whence the name ofmethod of subtracted singularitiessometimes
given to the method [265, vol. 2, p. 448].

Taking coefficients, we get:

[zn]f(z) = [zn]S(z) + [zn](f(z) − S(z)).

The coefficient of[zn] in the rational functionS(z) is obtained from Theorem IV.9. It
suffices to prove that the coefficient ofzn in f(z)−S(z), a function analytic for|z| ≤
R, is O(R−n). This fact follows from trivial bounds applied to Cauchy’s integral
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formula with the contour of integration beingλ = {z / |z| = R}, as in the proof of
Theorem IV.7:∣∣∣∣[z

n](f(z) − S(z))

∣∣∣∣ =
1

2π

∣∣∣∣
∫

|z|=R

(f(z) − S(z))
dz

zn+1

∣∣∣∣ ≤
1

2π

O(1)

Rn+1
2πR.

(ii) Contour integration.There is another line of proof for Theorem IV.10 which
we briefly sketch as it provides an insight which is useful forapplications to other
types of singularities treated in Chapter VI. It consists inusing directly Cauchy’s
coefficient formula and “pushing” the contour of integration past singularities. In
other words, one computes directly the integral

In =
1

2iπ

∫

|z|=R

f(z)
dz

zn+1

by residues. There is a pole atz = 0 with residuefn and poles at theαj with residues
corresponding to the terms in the expansion stated in Theorem IV.10; for instance, if
f(z) ∼ c/(z − a) asz → a, then

Res(f(z)z−n−1; z = a) = Res(
c

(z − a)
z−n−1; z = a) =

c

an+1
.

Finally, by the same trivial bounds as before,In isO(R−n). �

� IV.25. Effective error bounds.The error termO(R−n) in (29), call itεn, satisfies

|εn| ≤ sup
|z|=R

|f(z)|.

This results immediately from the second proof. This bound may be useful, even in the case of
rational functions. �

EXAMPLE IV.6. Surjections.These are defined as sequences of sets (R = SEQ(SET≥1(Z)))
with EGFR(z) = (2 − ez)−1 (see p. 98). We have already determined the poles, the one
of smallest modulus being atlog 2

.
= 0.69314. At this dominant pole, one findsR(z) ∼

− 1
2
(z − log 2)−1. This implies an approximation for the number of surjections:

Rn ≡ n![zn]R(z) ∼ ξ(n), with ξ(n) :=
n!

2
·
` 1

log 2

´n+1
.

Here is, forn = 2, 4, . . . , 32, a table of the values of the surjection numbers (left) compared
with the asymptotic approximation rounded11 to the nearest integer,⌈ξ(n)⌋: It is piquant to
see that⌈ξ(n)⌋ provides the exact value ofRn for all values ofn = 1, . . . , 15, and it starts
losing one digit forn = 17, after which point a few “wrong” digits gradually appear, but in
very limited number; see Figure 7. (A similar situation holds for tangent numbers discussed
in our Invitation, p. 4.) The explanation of such a faithful asymptotic representation owes to
the fact that the error terms provided by meromorphic asymptotics are exponentially small. In
effect, there is no other pole in|z| ≤ 6, the next ones being atlog 2 ± 2iπ with modulus of
about 6.32. Thus, forrn = [zn]R(z), there holds

(32)
Rn

n!
∼ 1

2
·
` 1

log 2

´n+1
+O(6−n).

For the double surjection problem,R∗(z) = (2 + z − ez), we get similarly

[zn]R∗(z) ∼ 1

eρ∗ − 1
(ρ∗)−n−1,

11The notation⌈x⌋ representsx rounded to the nearest integer:⌈x⌋ := ⌊x+ 1
2
⌋.
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3 3
75 75

4683 4683
545835 545835

102247563102247563
2809156759528091567595

1064134297044310641342970443
53156546819813555315654681981355

33855346632568453233385534663256845326
26776877962443842031152677687796244384203088

25748444198031903845442032574844419803190384544450
29582791210741454726506488752958279121074145472650646597

40022257598441684924861275390834002225759844168492486127555859
62975620649500660335183739353346356297562064950066033518373935416161

1140356879401188048374246419618490196311403568794011880483742464196174527074
2354515408573489664918449063714485547639523545154085734896649184490637145314147690

FIGURE IV.7. The surjection numbers pyramid: forn = 2, 4, . . . , 32, the exact values
of the numbersRn (left) compared to the approximation⌈ξ(n)⌋ with discrepant digits in
boldface (right).

with ρ∗ = 1.14619 the smallest positive root ofeρ∗ − ρ∗ = 2. . . END OF EXAMPLE IV.6. �

It is worth reflecting on this example as it is representativeof a production chain
based on the two successive implications reflecting the spirit of Part A and Part B of
the book:




R = SEQ(SET≥1(Z)) =⇒ R(z) =
1

2 − ez

R(z) ∼
z→log 2

−1

2

1

(z − log 2)
;

1
n!Rn ∼ 1

2 (log 2)−n−1.

There the first implication (written ‘=⇒’ as usual) is provided automatically by the
symbolic method. The second one (written here ‘;’) is a formal translation from the
expansion of the GF at its dominant singularity to the asymptotic form of coefficients,
validity being granted by complex-analytic conditions.

EXAMPLE IV.7. Alignments.These are sequences of cycles (O = SEQ(CYC(Z)), p. 110)
with EGF

O(z) =
1

1− log(1− z)−1
.

There is a singularity whenlog(1 − z)−1 = 1, which is atρ = 1 − e−1 and arises before
z = 1 where the logarithm becomes singular. Then, the computation of the asymptotic form of
[zn]O(z) only requires a local expansion nearρ,

O(z) ∼ −e−1

z − 1 + e−1
=⇒ [zn]O(z) ∼ e−1

(1− e−1)n+1
,

and the coefficient estimates result from Theorem IV.10. . . .. . . . . END OF EXAMPLE IV.7. �

� IV.26. Some “supernecklaces”.One estimates

[zn] log

 
1

1− log 1
1−z

!
∼ 1

n
(1− e−1)−n,
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where the EGF enumerates labelled cycles of cycles (supernecklaces, p. 115). [Hint: Take
derivatives.] �

EXAMPLE IV.8. Generalized derangements.The probability that the shortest cycle in a
random permutation of sizen has length larger thank is

[zn]D(k)(z), where D(k)(z) =
e−

z
1
− z2

2
−···− zk

k

1− z ,

as results from the specificationD(k) = SET(CYC>k(Z)). For anyfixedk, one has (easily)
D(k)(z) ∼ e−Hk/(1− z) asz → 1, with 1 being a simple pole. Accordingly the coefficients
[zn]D(k)(z) tend toe−Hk asn → ∞. Thus, due to meromorphy, we have the characteristic
implication

D(k)(z) ∼ e−Hk

1− z =⇒ [zn]D(k)(z) ∼ e−Hk .

Since there is no other singularity at a finite distance, the error in the approximation is (at least)
exponentially small,

(33) [zn]
e−

z
1
− z2

2
−···− zk

k

1− z = e−Hk +O(R−n),

for anyR > 1. The casesk = 1, 2 in particular justify the estimates mentioned at the beginning
of this chapter, on p. 216. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . END OF EXAMPLE IV.8. �

This example is also worth reflecting upon. In prohibiting cycles of length< k,
we modify the EGF of all permutations,(1 − z)−1 by a factore−z/1−···−zk/k. The
resulting EGF is meromorphic at 1; thus only the value of the modifying factor at
z = 1 matters, so that this value, namelyeHk , provides the asymptotic proportion
of k-derangements. We shall encounter more and more shortcuts of this sort as we
progress into the book.
� IV.27. Shortest cycles of permutations are not too long.Let Sn be the random variable
denoting the length of the shortest cycle in a random permutation of sizen. Using the circle
|z| = 2 to estimate the error in the approximatione−Hk above, one finds that, fork ≤ log n,

˛̨
˛P(Sn > k)− e−Hk

˛̨
˛ ≤ 1

2n
e2

k+1

,

which is exponentially small in this range ofk-values. Thus, the approximatione−Hk remains
good whenk is allowed to tend sufficiently slowly to∞ with n. One can also explore the
possibility of better bounds and larger regions of validityof the main approximation. (See
Panario and Richmond’s study [385] for a general theory of smallest components in sets.)�

� IV.28. Expected length of the shortest cycle.The classical approximation of the harmonic
numbers,Hk ≈ log k+ γ suggestse−γ/k as a possible approximation to (33) forboth largen
and largek in suitable regions. In agreement with this heuristic argument, the expected length
of the shortest cycle in a random permutation of sizen is effectively asymptotic to

nX

k=1

e−γ

k
∼ e−γ log n,

a property first discovered by Shepp and Lloyd [436]. �

The next example illustrates the analysis of a collection ofrational generating
functions (Smirnov words) paralleling nicely the enumeration of a special type of
integer composition (Carlitz compositions) that resorts to meromorphic asymptotics.
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EXAMPLE IV.9. Smirnov words and Carlitz compositions.Bernoulli trials have been dis-
cussed in Chapter III, in relation to weighted word models. Take the classW of all words over
anr-ary alphabet, where letterj is assigned probabilitypj and letters of words are drawn inde-
pendently. With this weighting, the GF of all words isW (z) = 1/(1 −P pjz) = (1− z)−1.
Consider the problem of determining the probability that a random word of lengthn is of
Smirnov type, that is, all blocks of length 2 are formed with distinct letters. In order to avoid
degeneracies, we imposer ≥ 3 (since forr = 2, the only Smirnov words areababa . . . and
babab . . . ).

By our discussion of Section III. 7 (p. 193), the GF of Smirnovwords (again with the
probabilistic weighting) is

S(z) =
1

1−P pjz

1+pjz

.

By monotonicity of the denominator, this rational functionhas a unique dominant singularity
atρ such that

(34)
rX

j=1

pjρ

1 + pjρ
= 1,

andz = ρ is a simple pole. Consequently,ρ is a well-characterized algebraic number defined
implicitly by an equation of degreer. There results that the probability for a word to be Smirnov
is (not too surprisingly) exponentially small, with the precise formula being

[zn]S(z) ∼ C · ρ−n, C =

 
rX

j=1

pjρ

(1 + pjρ)2

!−1

.

A similar analysis, using bivariate generating functions,shows that in a random word of lengthn
conditioned to be Smirnov, the letterj appears with asymptotic frequency

(35) qj =
1

Q

pj

(1 + pjρ)2
, Q :=

rX

j=1

pj

(1 + pjρ)2
,

in the sense that the mean number of occurrences of letterj is asymptotic toqjn. All these
results are seen to be consistent with the equiprobable letter casepj = 1/r, for which ρ =
r/(r − 1).

Carlitz compositionsillustrate a limit situation, in which the alphabet is infinite, while
letters have different sizes. Recall that a Carlitz composition of the integern is a composition
of n such that no two adjacent summands have equal value. By Note III.31, p. 190, such
compositions can be obtained by substitution from Smirnov words, to the effect that

(36) K(z) =

 
1−

∞X

j=1

zj

1 + zj

!−1

.

The asymptotic form of the coefficients then results from an analysis of dominant poles. The
OGF has a simple pole atρ, which is the smallest positive root of the equation

(37)
∞X

j=1

ρj

1 + ρj
= 1.

(Note the analogy with (34) due to commonality of the combinatorial argument.) Thus:

Kn ∼ C · βn, C
.
= 0.45636 34740, β

.
= 1.75024 12917.
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FIGURE IV.8. The coefficients [zn]f(z), where f(z) =`
1 + 1.02z4

´−3 `
1− 1.05z5

´−1
illustrate a periodic superposition of smooth behaviours

that depend on the residue class ofn modulo 20.

There,β = 1/ρ with ρ as in (37). In a way analogous to Smirnov words, the asymptotic
frequency of summandk appears to be proportional tokρk/(1 + ρk)2; see [296, 344] for
further properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . END OF EXAMPLE IV.9. �

IV. 6. Localization of singularities

There are situations where a function possesses several dominant singularities,
that is, several singularities are present on the boundary of the disc of convergence.
We examine here the induced effect on coefficients and discuss ways to localize such
dominant singularities.

IV. 6.1. Multiple singularities. In the case when there exists more than one
dominant singularity, several geometric terms of the formβn sharing the same mod-
ulus (and each carrying its own subexponential factor) mustbe combined. In simpler
situations, such terms globally induce a pure periodic behaviour for coefficients that is
easy to describe. In the general case, irregular fluctuations of a somewhat arithmetic
nature may prevail.

Pure periodicities.When several dominant singularities off(z) have the same
modulus and are regularly spaced on the boundary of the disc of convergence, they
may induce complete cancellations of the main exponential terms in the asymptotic
expansion of the coefficientfn. In that case, different regimes will be present in the
coefficientsfn based on congruence properties ofn. For instance, the functions

1

1 + z2
= 1 − z2 + z4 − z6 + z8 − · · · , 1

1 − z3
= 1 + z3 + z6 + z9 + · · · ,

exhibit patterns of periods 4 and 3 respectively, this corresponding to poles that are
roots of unity or order 4(±i), and 3 (ω : ω3 = 1). Accordingly, the function

φ(z) =
1

1 + z2
+

1

1 − z3
=

2 − z2 + z3 + z4 + z8 + z9 − z10

1 − z12
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FIGURE IV.9. The coefficients off = 1/(1 − 6
5
z + z2) exhibit an apparently chaotic

behaviour (left) which in fact corresponds to a discrete sampling of a sine function (right),
reflecting the presence of two conjugate complex poles.

has coefficients that obey a pattern of period 12 (for example, the coefficientsφn such
thatn ≡ 1, 5, 6, 7, 11 modulo12 are zero). Accordingly, the coefficients of

[zn]ψ(z) where ψ(z) = φ(z) +
1

1 − z/2
,

manifest a different exponential growth whenn is congruent to1, 5, 6, 7, 11 mod 12.
See Figure 8 for such a superposition of pure periodicities.In many combinatorial
applications, generating functions involving periodicities can be decomposed at sight,
and the corresponding asymptotic subproblems generated are then solved separately.
� IV.29. Decidability of polynomial properties.Given a polynomialp(z) ∈ Q[z], the following
properties are decidable:(i) whether one of the zeros ofp is a root of unity;(ii) whether one
of the zeros ofp has an argument that is commensurate withπ. [One can use resultants. An
algorithmic discussion of this and related issues is given in [247].] �

Nonperiodic fluctuations.As a representative example, consider the polynomial
D(z) = 1 − 6

5z + z2, whose roots are

α =
3

5
+ i

4

5
, ᾱ =

3

5
− i

4

5
,

both of modulus1 (the numbers3, 4, 5 form a Pythagorean triple), with argument±θ0
whereθ0 = arctan(4

3 )
.
= 0.92729. The expansion of the functionf(z) = 1/D(z)

starts as

1

1 − 6
5z + z2

= 1 +
6

5
z +

11

25
z2 − 84

125
z3 − 779

625
z4 − 2574

3125
z5 + · · · ,

the sign sequence being

+ + +−−−+ + + +−−−+ + +−−−−+ + +−−−−+ + +−−− ,

which indicates a somewhat irregular oscillating behaviour, where blocks of 3 or 4
pluses follow blocks of 3 or 4 minuses.
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The exact form of the coefficients off results from a partial fraction expansion:

f(z) =
a

1 − z/α
+

b

1 − z/ᾱ
with a =

1

2
+

3

8
i, b =

1

2
− 3

8
i,

whereα = eiθ0 , α = e−iθ0 Accordingly,

(38) fn = ae−inθ0 + beinθ0 =
sin((n+ 1)θ0)

sin(θ0)
.

This explains the sign changes observed. Since the angleθ0 is not commensurate with
π, the coefficients fluctuate but, unlike in our earlier examples, no exact periodicity is
present in the sign patterns. See Figure 9 for a rendering andFigure 13 of Chapter V
(p. 319) for a meromorphic case linked to compositions into prime summands.

Complicated problems of an arithmetical nature may occur ifseveral such sin-
gularities with non–commensurate arguments combine, and some open problem even
remain in the analysis of linear recurring sequences. (For instance no decision proce-
dure is known to determine whether such a sequence ever vanishes.) Fortunately, such
problems occur infrequently in combinatorial applications, where dominant poles of
rational functions (as well as many other functions) tend tohave a simple geometry as
we explain next.

� IV.30. Irregular fluctuations and Pythagorean triples.The quantity 1
π
θ0 is an irrational

number, so that the sign fluctuations of (38) are “irregular”(i.e., non purely periodic). [Proof:
a contrario. Indeed, otherwise,α = (3 + 4i)/5 would be a root of unity. But then the minimal
polynomial ofα would be a cyclotomic polynomial with nonintegral coefficients, a contradic-
tion; see [327, VIII.3] for the latter property.] �

� IV.31. Skolem-Mahler-Lech Theorem.Let fn be the sequence of coefficients of a rational
function, f(z) = A(z)/B(z), whereA,B ∈ Q[z]. The set of alln such thatfn = 0 is
the union of a finite (possibly empty) set and a finite number (possibly zero) of infinite arith-
metic progressions. (The proof is based onp-adic analysis, but the argument is intrinsically
nonconstructive; see [371] for an attractive introduction to the subject and references.) �

Periodicity conditions for positive generating functions. By the previous dis-
cussion, it is of interest to locate dominant singularitiesof combinatorial generating
functions, and, in particular, determine whether their arguments (the “dominant direc-
tions”) are commensurate to2π. In the latter case, different asymptotic regimes of the
coefficients manifest themselves, depending on congruenceproperties ofn.

First a few definitions. For a sequence(fn) with GF f(z), the supportof f ,
denotedSupp(f), is the set of alln such thatfn 6= 0. The sequence (also its GF) is
said to admitspan, or period, d if for somer, there holds

Supp(f) ⊆ r + dZ≥0 ≡ {r, r + d, r + 2d, . . .}.
In that case, iff is analytic at 0, then there exists a functiong analytic at 0 such that
f(z) = zrg(zd). The largest span,p, is often plainly referred to asthe period, all
other spans being divisors ofp. With E := Supp(f), this maximal span is attainable
as p = gcd(E − E) (pairwise differences) as well asp = gcd(E − {r}) where
r := min(E). For instancesin(z) has period 2,cos(z) + cosh(z) has period 4,z3ez5

has period 5, and so on.
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FIGURE IV.10. Illustration of the “Daffodil Lemma”: the images of circlesz = Reiθ

(R = 0.4 . . 0.8) rendered by a polar plot of|f(z)| in the case off(z) = z7ez25

+z2/(1−
z10)), which has span 5.

In the context of periodicities, a basic property is expressed by what we have
chosen to name figuratively the “Daffodil Lemma”. By virtue of this lemma, the span
of a functionf with nonnegative coefficients is related to the behaviour of|f(z)| asz
varies along circles centred at the origin (Figure 10).

Lemma IV.1 (“Daffodil Lemma”). Letf(z) be analytic in|z| < ρ and have nonneg-
ative coefficients at 0. Assume thatf does not reduce to a monomial and that forsome
nonzero nonpositivez satisfying|z| < ρ, one has

|f(z)| = f(|z|).

Then, the following hold:(i) the argument ofz must be commensurate to2π, i.e.,
z = Reiθ with θ/(2π) = r

p ∈ Q (an irreducible fraction) and0 < r < p; (ii) f

admitsp as a span.

PROOF. This classical lemma is a simple consequence of the strong triangle inequality.
Indeed, withz = Reiθ, the equality|f(z)| = f(|z|) implies that the complex numbers
fnR

neinθ for n ∈ Supp(f) all lie on the same ray (a half-line emanating from0).
This is impossible ifθ is irrational, as soon as the expansion off contains at least two
monomials. �

Berstel [43] first realized that rational generating functions arisingfrom regular
languages can only have dominant singularities of the formρωj , whereω is a certain
root of unity. This property in fact extends to many nonrecursive specifications, as
shown by Flajolet, Salvy, and Zimmermann in [206].

Proposition IV.3 (Commensurability of dominant directions). LetS be a constructible
labelled class that is nonrecursive, in the sense of TheoremIV.8. Assume that the
EGFS(z) has a finite radius of convergenceρ. Then there exists a computable inte-
ger d ≥ 1 such that the set of dominant singularities ofS(z) is contained in the set
{ρωj}, whereωd = 1.
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PROOF. (Sketch; see [43, 206]) By definition, a nonrecursive classS is obtained
from 1 andZ by means of a finite number of union, product, sequence, set, and
cycle constructions. We have seen earlier, in Section IV. 4,an inductive algorithm that
determines radii of convergence. It is then easy to enrich that algorithm and determine
simultaneously (by induction on the specification) the period of its GF and the set of
dominant directions.

The period is determined by simple rules. For instance, ifS = T ⋆U (S = T ·U )
andT, U are infinite series with respective periodsp, q, one has the implication

Supp(T ) ⊆ a+ pZ, Supp(U) ⊆ b+ qZ =⇒ Supp(S) ⊆ a+ b+ ξZ,

with ξ = gcd(p, q). Similarly, forS = SEQ(T ),

Supp(T ) ⊆ a+ pZ =⇒ Supp(S) ⊆ δZ,

where nowδ = gcd(a, p).
Regarding dominant singularities, the case of a sequence construction is typical.

It corresponds tog(z) = (1 − f(z))−1. Assume thatf(z) = zah(zp), with p the
maximal period, and letρ > 0 be such thatf(ρ) = 1. The equations determining
any dominant singularityζ aref(ζ) = 1, |ζ| = ρ. In particular, the equations imply
|f(ζ)| = f(|ζ|), so that, by the Daffodil Lemma, the argument ofζ must be of the
form2πr/s. An easy refinement of the argument shows that, forδ = gcd(a, p), all the
dominant directions coincide with the multiples of2π/δ. The discussion of cycles is
entirely similar sincelog(1− f)−1 has the same dominant singularities as(1− f)−1.
Finally, for exponentials, it suffices to observe thatef does not modify the singularity
pattern off , sinceexp(z) is an entire function. �

� IV.32. Daffodil lemma and unlabelled classes.Proposition IV.3 applies to any unlabelled
classS that admits a nonrecursive specification, provided its radius of convergenceρ satisfies
ρ < 1. (Whenρ = 1, there is a possibility of having the unit circle as a naturalboundary—a
property that is otherwise decidable.) �

Exact formulæ. The error terms appearing in the asymptotic expansion of coef-
ficients of meromorphic functions are already exponentially small. By peeling off the
singularities of a meromorphic function layer by layer, in order of increasing modulus,
one is led to extremely precise—or even exact—expansions for the coefficients. Such
exact representations are found for Bernoulli numbersBn, surjection numbersRn, as
well as Secant numbersE2n and Tangent numbersE2n+1, defined by

∞∑

n=0

Bn
zn

n!
=

z

ez − 1
(Bernoulli numbers)

∞∑

n=0

Rn
zn

n!
=

1

2 − ez
(Surjection numbers)

∞∑

n=0

E2n
z2n

(2n)!
=

1

cos(z)
(Secant numbers)

∞∑

n=0

E2n+1
z2n+1

(2n+ 1)!
= tan(z) (Tangent numbers).
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Bernoulli numbers.These numbers traditionally writtenBn can be defined by their
EGFB(z) = z/(ez − 1). The functionB(z) has poles at the pointsχk = 2ikπ, with
k ∈ Z \ {0}, and the residue atχk is equal toχk,

z

ez − 1
∼ χk

z − χk
(z → χk).

The expansion theorem for meromorphic functions is applicable here: start with the
Cauchy integral formula, and proceed as in the proof of Theorem IV.10, using as
external contours a large circle of radiusR that passes half way between poles. AsR
tends to infinity, the integrand tends to 0 (as soon asn ≥ 2) because the Cauchy kernel
z−n−1 decreases as an inverse power ofR while the EGF remainsO(R). In the limit,
corresponding to an infinitely large contour, the coefficient integral becomes equal to
the sum of all residues of the meromorphic function over the whole of the complex
plane.

From this argument, we get the representationBn = −n!
∑

k∈Z\{0} χ
−n
k . This

verifies thatBn = 0 if n is odd andn ≥ 3. If n is even, then grouping terms two by
two, we get the exact representation (which also serves as anasymptotic expansion):

(39)
B2n

(2n)!
= (−1)n−121−2nπ−2n

∞∑

k=1

1

k2n
.

Reverting the equality, we have also established that

ζ(2n) = (−1)n−122n−1π2n B2n

(2n)!
with ζ(s) =

∞∑

k=1

1

ks
, Bn = n![zn]

z

ez − 1
,

a well-known identity that provides values of the Riemann zeta functionζ(s) at even
integers as rational multiples of powers ofπ.
Surjection numbers.In the same vein, the surjection numbers have EGFR(z) =
(2 − ez)−1 with simple poles at

χk = log 2 + 2ikπ where R(z) ∼ 1

2

1

χk − z
.

SinceR(z) stays bounded on circles passing half way in between poles, we find the
exact formula,Rn = 1

2n!
∑

k∈Z
χ−n−1

k . An equivalent real formulation is

(40)
Rn

n!
=

1

2

(
1

log 2

)n+1

+

∞∑

k=1

cos((n+ 1)θk)

(log2 2 + 4k2π2)(n+1)/2
, θk := arctan(

2kπ

log 2
),

which exhibits infinitely many harmonics of fast decaying amplitude.
� IV.33. Alternating permutations, tangent and secant numbers.The relation (39) also provides
a representation of thetangent numberssinceE2n−1 = (−1)n−1B2n4n(4n − 1)/(2n). The
secant numbersE2n satisfy

∞X

k=1

(−1)k

(2k + 1)2n+1
=

(π/2)2n+1

2 (2n)!
E2n,

which can be read either as providing an asymptotic expansion ofE2n or as an evaluation of the
sums on the left (the values of a DirichletL-function) in terms ofπ. The asymptotic number of
alternating permutations (Chapter II) is consequently known to great accuracy. �
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� IV.34. Solutions to the equationtan(x) = x. Let xn be thenth positive root of the equation
tan(x) = x. For any integerr ≥ 1, the sumS(r) :=

P
n x

−2r
n is a computable rational

number. [From folklore andThe American Mathematical Monthly.] �

IV. 6.2. Localization of zeros and poles.We gather here a few results that often
prove useful in determining the location of zeros of analytic functions, and hence of
poles of meromorphic functions. A detailed treatment of this topic may be found in
Henrici’s book [265].

Let f(z) be an analytic function in a regionΩ and letγ be a simple closed curve
interior toΩ, and on whichf is assumed to have no zeros. We claim that the quantity

(41) N(f ; γ) =
1

2iπ

∫

γ

f ′(z)

f(z)
dz

exactly equals the number of zeros off insideγ counted with multiplicity. [Proof: the
functionf ′/f has its poles exactly at the zeros off , and the residue at each poleα
equals the multiplicity ofα as a root off ; the assertion then results from the residue
theorem.]

Since a primitive function off ′/f is log f , the integral also represents the vari-
ation of log f alongγ, which is written[log f ]γ . This variation itself reduces to2iπ
times the variation of the argument off alongγ, sincelog(reiθ) = log r+ iθ and the
modulusr has variation equal to 0 along a closed contour ([log r]γ = 0). The quantity
[θ]γ is, by its definition,2π multiplied by the number of times the transformed contour
f(γ) winds about the origin. This observation is known as theArgument Principle:

Argument Principle. The number of zeros off(z) (counted with multiplic-
ities) insideγ equals the winding number of the transformed contourf(γ)
around the origin.

By the same argument, iff is meromorphic inΩ ∋ γ, thenN(f ; γ) equals the differ-
ence between the number of zeros and the number of poles off insideγ, multiplicities
being taken into account. Figure 11 exemplifies the use of theargument principle in
localizing zeros of a polynomial.

By similar devices, we get Rouché’s theorem:

Rouché’s theorem.Let the functionsf(z) andg(z) be analytic in a region
containing in its interior the closed simple curveγ. Assume thatf and g
satisfy|g(z)| < |f(z)| on the curveγ. Thenf(z) andf(z) + g(z) have the
same number of zerosinsidethe interior domain delimited byγ.

An intuitive way to visualize Rouché’s Theorem is as follows: since|g| < |f |, then
f(γ) and(f + g)(γ) must have the same winding number.

� IV.35. Proof of Rouché’s theorem.Under the hypothesis of Rouché’s theorem, for0 ≤ t ≤ 1
h(z) = f(z) + tg(z) is such thatN(h; γ) is both an integer and an analytic, hence continuous,
function oft in the given range. The conclusion of the theorem follows. �

� IV.36. The Fundamental Theorem of Algebra.Every complex polynomialp(z) of degreen
has exactlyn roots. A proof follows by Rouché’s theorem from the fact that, for large enough
|z| = R, the polynomial assumed to be monic is a “perturbation” of its leading term,zn. �
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FIGURE IV.11. The transforms ofγj = {|z| = 4j
10
} by P4(z) = 1 − 2z + z4, for

j = 1, 2, 3, 4, demonstrate thatP4(z) has no zero inside|z| < 0.4, one zero inside
|z| < 0.8, two zeros inside|z| < 1.2 and four zeros inside|z| < 1.6. The actual zeros are
atρ4 = 0.54368, 1 and1.11514 ± 0.77184i.

� IV.37. Symmetric function of the zeros.Let Sk(f ; γ) be the sum of thekth powers of the
roots of equationf(z) = 0 insideγ. One has

Sk(f ; γ) =
1

2iπ

Z
f ′(z)

f(z)
zk dz,

by a variant of the proof of the Argument Principle. �

These principles form the basis of numerical algorithms forlocating zeros of ana-
lytic functions, in particular the ones closest to the origin, which are of most interest to
us. One can start from an initially large domain and recursively subdivide it until roots
have been isolated with enough precision—the number of roots in a subdomain being
at each stage determined by numerical integration; see Figure 11 and refer for instance
to [117] for a discussion. Such algorithms even acquire the status of full proofs if one
operates with guaranteed precision routines (using, e.g.,careful implementations of
interval arithmetics).

IV. 6.3. Patterns in words: a case-study.Analysing the coefficients of a single
generating function that is rational is a simple task, ofteneven bordering on the trivial,



258 IV. COMPLEX ANALYSIS, RATIONAL AND MEROMORPHIC ASYMPTOTICS

Length(k) Types c(z) ρ

k = 3 aab, abb, bba, baa 1 0.61803
aba, bab 1 + z2 0.56984
aaa, bbb 1 + z + z2 0.54368

k = 4 aaab, aabb, abbb,
bbba, bbaa, baaa 1 0.54368

aaba, abba, abaa,
bbab, baab, babb 1 + z3 0.53568

abab, baba 1 + z2 0.53101
aaaa, bbbb 1 + z + z2 + z3 0.51879

FIGURE IV.12. Patterns of length3, 4: autocorrelation polynomial and dominant poles
of S(z).

granted the exponential-polynomial formula for coefficients (Theorem IV.9). How-
ever, in analytic combinatorics, we are often confronted with problems that involve
an infinite family of functions. In that case, Rouché’s Theorem and the Argument
Principle provide decisive tools for localizing poles, while Theorems IV.3 (Residue
Theorem) and IV.10 (Expansion of meromorphic functions) serve to determine effec-
tive error terms. An illustration of this situation is the analysis of patterns in words for
which GFs have been derived in Chapters I (p. 50) and III (p. 200).

All patterns are not born equal. Surprisingly, in a random sequence of coin toss-
ings, the patternHTTis likely to occur much sooner (after 8 tosses on average) than the
patternHHH(needing 14 tosses on average); see the preliminary discussion in Exam-
ple I.12 (p. 56). Questions of this sort are of obvious interest in the statistical analysis
of genetic sequences [338, 491]. Say you discover that a sequence of length 100,000
on the four lettersA,G,C,T contains the patternTACTACtwice. Can this be assigned
to chance or is this likely to be a meaningful signal of some yet unknown structure?
The difficulty here lies in quantifying precisely where the asymptotic regime starts,
since, by Borges’s Theorem (Note I.32, p. 58), sufficiently long texts will almost cer-
tainly contain any fixed pattern. The analysis of rational generating functions sup-
plemented by Rouché’s theorem provides definite answers tosuch questions, under
Bernoulli models at least.

We consider here the classW of words over an alphabetA of cardinalitym ≥ 2.
A patternp of some lengthk is given. As seen in Chapters I and III, its autocorre-
lation polynomial is central to enumeration. This polynomial is defined asc(z) =∑k−1

j=0 cjz
j, wherecj is 1 if p coincides with itsjth shifted version and 0 otherwise.

We consider here the enumeration of words containing the patternp at least once, and
dually of words excluding the patternp. In other words, we look at problems such as:
What is the probability that a random text of lengthn does (or does not) contain your
name as a block of consecutive letters?

The OGF of the class of words excludingp is, we recall,

(42) S(z) =
c(z)

zk + (1 −mz)c(z)
.
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FIGURE IV.13. Complex zeros ofz31 +(1− 2z)c(z) represented as joined by a polyg-
onal line: (left) correlated patterna(ba)15; (right) uncorrelated patterna(ab)15.

(Proposition I.4, p. 57), and we shall start with the casem = 2 of a binary alphabet.
The functionS(z) is simply a rational function, but the location and nature ofits poles
is yet unknown. We only knowa priori that it should have a pole in the positive inter-
val somewhere between12 and1 (by Pringsheim’s Theorem and since its coefficients
are in the interval[1, 2n], for n large enough). Figure 12 gives a small list, for patterns
of lengthk = 3, 4, of the poleρ of S(z) that is nearest to the origin. Inspection of the
figure suggestsρ to be close to12 as soon as the pattern is long enough. We are going
to prove this fact, based on Rouché’s Theorem applied to thedenominator of (42).

As regards termwise domination of coefficients, the autocorrelation polynomial
lies between1 (for less correlated patterns likeaaa...b ) and1 + z + · · · + zk−1

(for the special caseaaa...a ). We set aside the special case ofp having only equal
letters, i.e., a “maximal” autocorrelation polynomial—this case is discussed at length
in the next chapter. Thus, in this scenario, the autocorrelation polynomial starts as
1 + zℓ + · · · for someℓ ≥ 2. Fix the numberA = 0.6. On |z| = A, we have

(43) |c(z)| ≥
∣∣1 − (A2 +A3 + · · · )

∣∣ =

∣∣∣∣1 − A2

1 −A

∣∣∣∣ =
1

10
.

In addition, the quantity(1 − 2z) ranges over the circle of diameter[−0.2, 1.2] as
z varies along|z| = A, so that|1 − 2z| ≥ 0.2. All in all, we have found that, for
|z| = A,

|(1 − 2z)c(z)| ≥ 0.02.

On the other hand, fork > 7, we have|zk| < 0.017 on the circle|z| = A. Then,
amongst the two terms composing the denominator of (42), thefirst is strictly dom-
inated by the second along|z| = A. By virtue of Rouché’s Theorem, the number
of roots of the denominator inside|z| ≤ A is then same as the number of roots of
(1 − 2z)c(z). The latter number is 1 (due to the root1

2 ) sincec(z) cannot be 0 by the
argument of (43). Figure 13 exemplifies the extremely well-behaved characters of the
complex zeros.
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In summary, we have found that for all patterns with at least two different letters
(ℓ ≥ 2) and lengthk ≥ 8, the denominator has a unique root in|z| ≤ A = 0.6.
The property for lengthsk satisfying4 ≤ k ≤ 7 is then easily verified directly. The
caseℓ = 1 where we are dealing with long runs of identical letters can be subjected
to an entirely similar argument (see also Example V.2, p. 285, for details). Therefore,
unicity of a simple poleρ of S(z) in the interval(0.5, 0.6) is granted.

It is then a simple matter to determine the local expansion ofs(z) nearz = ρ,

S(z) ∼
z→ρ

Λ̃

ρ− z
, Λ̃ :=

c(ρ)

2c(ρ) − (1 − 2ρ)c′(ρ) − kρk−1
,

from which a precise estimate for coefficients derives by Theorems IV.9 and IV.10.
The computation finally extends almost verbatim to nonbinary alphabets, withρ

being now close to1
m . It suffices to use the disc of radiusA = 1.2/m. The Rouché

part of the argument grants us unicity of the dominant pole inthe interval(1/m,A)
for k ≥ 5 whenm = 3, and fork ≥ 4 and anym ≥ 4. (The remaining cases are
easily checked individually.)

Proposition IV.4. Consider anm-ary alphabet. Letp be a fixed pattern of lengthk ≥
4, with autocorrelation polynomialc(z). Then the probability that a random word of
lengthn does not containp as a pattern (a block of consecutive letters) satisfies

(44) PWn(p does not occur) = Λp(mρ)
−n−1 +O

((5
6

)n
)
,

whereρ ≡ ρp is the unique root in( 1
m ,

6
5m ) of the equationzk + (1 −mz)c(z) = 0

andΛp := mc(ρ)/(mc(ρ) − c′(ρ)(1 −mρ) − kρk−1).

Despite their austere appearance, these formulæ have indeed a fairly concrete
content. First, the equation satisfied byρ can be put under the formmz = 1+zk/c(z),
and, sinceρ is close to 1

m , we may expect the approximation (remember the use of
“≈” as meaning “numerically approximately equal”)

mρ ≈ 1 +
1

γmk
,

whereγ := c(m−1) satisfies1 ≤ γ < m/(m − 1). By similar principles, the
probabilities in (44) should be approximately

PWn(p does not occur) ≈
(

1 +
1

γmk

)−n

≈ e−n/(γmk).

For a binary alphabet, this tells us that the occurrence of a pattern of lengthk starts
becoming likely whenn is of the order of2k, that is, whenk is of the order oflog2 n.
The more precise moment when this happens must depend (viaγ) on the autocorrela-
tion of the pattern, with strongly correlated patterns having a tendency to occur a little
late. (This vastly generalizes our empirical observationsof Chapter I.) However, the
mean number of occurrences of a pattern in a text of lengthn does not depend on the
shape of the pattern. The apparent paradox is easily resolved: correlated patterns tend
to occur late, while being prone to appear in clusters. For instance, the “late” pattern
aaa , when it occurs, still has probability12 to occur at the next position as well and
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cash in another occurrence; in contrast no such possibilityis available to the “early”
uncorrelated patternaab , whose occurrences must be somewhat spread out.

Such analyses are important as they can be used to develop a precise understand-
ing of the behaviour of data compression algorithms (the Lempel–Ziv scheme); see
Julien Fayolle’s contribution [160] for details.
� IV.38. Multiple pattern occurrences.A similar analysis applies to the generating func-
tion S〈s〉(z) of words containing a fixed numbers of occurrences of a patternp. The OGF is
obtained by expanding (with respect tou) the BGFW (z, u) obtained in Chapter III by means
of an inclusion-exclusion argument. Fors ≥ 1, one finds

S〈s〉(z) = zkN(z)s−1

D(z)s+1
, D(z) = zk+(1−mz)c(z), N(z) = zk+(1−mz)(c(z)−1)),

which now has a pole of multiplicitys+ 1 at z = ρ. �

� IV.39. Patterns in Bernoulli sequences—asymptotics.Similar results hold when letters are
assigned nonuniform probabilities,pj = P(aj), for aj ∈ A. The weighted autocorrelation
polynomial is then defined by protrusions, as in Note III.38 (p. 202). Multiple pattern occur-
rences can be also analysed. �

IV. 7. Singularities and functional equations

In the various combinatorial examples discussed so far in this chapter, we have
been dealing with functions that are given by explicit expressions. Such situations
essentially cover nonrecursive structures as well as the very simplest recursive ones,
like Catalan or Motzkin trees, whose generating functions are expressible in terms of
radicals. In fact, as will shall see extensively in this book, complex analytic methods
are instrumental in analysing coefficients of functionsimplicitly specified by func-
tional equations. In other words:the nature of a functional equation can often provide
information regarding the singularities of its solution. Chapter V will illustrate this
philosophy in the case of rational functions defined by systems of positive equations;
a very large number of examples will then be given in ChaptersVI and VII, where
singularities much more general than poles are treated.

In this section, we discuss three representative functional equations,

f(z) = zef(z), f(z) = z + f(z2 + z3), f(z) =
1

1 − zf(z2)
.

that illustrate the use of fundamental inversion or iteration properties to locate domi-
nant singularities and derive exponential growth estimates for coefficients.

IV. 7.1. Inverse functions. We start with a generic problem: given a functionψ
analytic at a pointy0 with z0 = ψ(y0) what can be said about its inverse, namely the
solution(s) to the equationψ(y) = z whenz is nearz0 andy neary0?

Let us examine what happens whenψ′(y0) 6= 0, first without paying attention to
analytic rigour. One has locally (‘≈’ means as usual ‘approximately equal’)

(45) ψ(y) ≈ ψ(y0) + ψ′(y0)(y − y0),

so that the equationψ(y) = z should admit, forz nearz0, a solution satisfying

(46) y ≈ y0 +
1

ψ′(y0)
(z − z0).
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If this is granted, the solution being locally linear, it is differentiable, hence analytic.
The Analytic Inversion Lemma12 provides a firm foundation for this calculation.

Lemma IV.2 (Analytic Inversion). Let ψ(z) be analytic aty0, with ψ(y0) = z0.
Assume thatψ′(y0) 6= 0. Then, forz in some small neighbourhoodΩ0 of z0, there
exists an analytic functiony(z) that solves the equationψ(y) = z and is such that
y(z0) = y0.

PROOF. (Sketch) The proof involves ideas analogous to those used to establish Rouché’s
Theorem and the Argument Principle (see especially the argument justifying Equa-
tion (41), p. 256) As a preliminary step, define the integrals(j ∈ Z≥0)

(47) σj(z) :=
1

2iπ

∫

γ

ψ′(y)

ψ(y) − z
yj dy,

whereγ is a small enough circle centred aty0 in they-plane.
First considerσ0. This function satisfiesσ0(z0) = 1 [by the Residue Theorem]

and is a continuous function ofz whose value can only be an integer, this value being
the number of roots of the equationψ(y) = z. Thus, forz close enough toz0, one
must haveσ0(z) ≡ 1. In other words, the equationψ(y) = z has exactly one solution,
the functionψ is locally invertible and a solutiony = y(z) that satisfiesy(z0) = y0 is
well-defined.

Next examineσ1. By the Residue Theorem once more, the integral definingσ1(z)
is the sum of the roots of the equationψ(y) = z that lie insideγ, that is, in our case,
the value ofy(z) itself. (This is also a particular case of Note 37.) Thus, onehas
σ1(z) ≡ y(z). Since the integral definingσ1(z) depends analytically onz for z close
enough toz0, analyticity ofy(z) results. �

� IV.40. Details.Letψ be analytic in an open discD centred aty0. Then, there exists a small
circleγ centred aty0 and contained inD such thatψ(y) 6= y0 onγ. [Zeros of analytic functions
are isolated, a fact that results from the definition of an analytic expansion]. The integralsσj(z)
are thus well defined forz restricted to be close enough toz0, which ensures that there exists
a δ > 0 such that|ψ(y) − z| > δ for all y ∈ γ. One can then expand the integrand as a
power series in(z − z0), integrate the expansion termwise, and form in this way the analytic
expansions ofσ0, σ1 at z0. [This line of proof follows [269, I, §9.4].] �

� IV.41. Inversion and majorant series.The process corresponding to (45) and (46) can be
transformed into a sound proof: first derive a formal power series solution, then verify that the
formal solution is locally convergent using the method of majorant series (p. 236). �

The Analytic Inversion Lemma states the following:An analytic function locally
admits an analytic inverse near any point where its first derivative is nonzero.How-
ever, as we see next, a function cannot be analytically inverted in a neighbourhood of
a point where its first derivative vanishes.

Consider now a functionψ(y) such thatψ′(y0) = 0 butψ′′(y0) 6= 0, then, by the
Taylor expansion ofψ, one expects

(48) ψ(y) ≈ ψ(y0) +
1

2
(y − y0)

2ψ′′(y0).

12A more general statement and several proof techniques are also discussed in APPENDIXB: Implicit
Function Theorem, p. 698.
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Solving formally fory now indicates alocally quadraticdependency

(y − y0)
2 ≈ 2

ψ′′(y0)
(z − z0),

and the inversion problem admitstwo solutions satisfying

(49) y ≈ y0 ±
√

2

ψ′′(y0)

√
z − z0.

What this informal argument suggests is that the solutions have a singularity atz0, and,
in order for them to be suitably specified, one must somehow restrict their domain of
definition: the case of

√
z (the root(s) ofy2 − z = 0) discussed on p. 217 is typical.

Given some pointz0 and a neighbourhoodΩ, theslit neighbourhoodalong direc-
tion θ, is the set

Ω\θ :=
{
z ∈ Ω

∣∣ arg(z − z0) 6≡ θ mod 2π
}
.

We state:

Lemma IV.3 (Singular Inversion). Let ψ(y) be analytic aty0, with ψ(y0) = z0.
Assume thatψ′(y0) = 0 andψ′′(y0) 6= 0. There exists a small neighbourhoodΩ0

such that the following holds: for any directionθ, there exist two functions,y1(z)

and y2(z) defined onΩ\θ
0 that satisfyψ(y(z)) = z; each is analytic inΩ\θ

0 , has a
singularity at the pointz0, and satisfieslimz→z0 y(z) = y0.

PROOF. (Sketch) Define the functionsσj(z) as in the proof of the previous lemma,
Equation (47). One now hasσ0(z) = 2, that is, the equationψ(y) = z possessestwo
roots neary0, whenz is nearz0. In other wordsψ effects a double covering of a small
neighbourhoodΩ of y0 onto the image neighbourhoodΩ0 = ψ(Ω) ∋ z0. By possibly
restrictingΩ, we may furthermore assume thatψ′(y) only vanishes aty0 in Ω (zeros
of analytic functions are isolated) and thatΩ is simply connected.

Fix any directionθ and consider the slit neighbourhoodΩ
\θ
0 . Fix a pointζ in

this slit domain; it has two preimages,η1, η2 ∈ Ω. Pick up the one namedη1. Since
ψ′(η1) is nonzero, the Analytic Inversion lemma applies: there is alocal analytic
inversey1(z) of ψ. Thisy1(z) can then be uniquely continued13 to the whole ofΩ\θ

0 ,
and similarly fory2(z). We have thus obtained twodistinctanalytic inverses.

Assumea contrario thaty1(z) can be analytically continued atz0. It would then
admit a local expansion

y1(z) =
∑

n≥0

cn(z − z0)
n,

while satisfyingψ(y1(z)) = z. But then, composing the expansions ofψ andy would
entail

ψ(y1(z)) = z0 +O
(
(z − z0)

2
)

(z → z0),

13The fact of slittingΩ0 makes the resulting domain simply connected, so that analytic continuation
becomes uniquely defined. In contrast, the punctured domainΩ0 \ {z0} is not simply connected, so that
the argument cannot be applied to it. As a matter of fact,y1(z) gets continued toy2(z), when the ray of
angleθ is crossed: the pointz0 where two determinations meet is abranch point.
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which cannot coincide with the identity function (z). A contradiction has been reached.
The pointz0 is thus a singular point fory1 (as well as fory2). �

� IV.42. Singular inversion and majorant series.In a way that parallels Note 41, the process
summarized by Equations (48) and (49) can be justified by the method of majorant series, which
leads to an alternative proof of the Singular Inversion Lemma. �

� IV.43. Higher order branch points.If all derivatives ofψ till order r − 1 inclusive vanish
aty0, there arer inverses,y1(z), . . . , yr(z), defined over a slit neighbourhood ofz0. �

Tree enumeration.We can now consider the problem of obtaining information
on the coefficients of a functiony(z) defined by an implicit equation

(50) y(z) = zφ(y(z)),

whenφ(u) is analytic atu = 0. In order for the problem to be well-posed (alge-
braically, in terms of formal power series, as well as analytically, near the origin), we
assume thatφ(0) 6= 0. Equation (50) may then be rephrased as

(51) ψ(y(z)) = z where ψ(u) =
u

φ(u)
,

so that it is in fact an instance of the inversion problem for analytic functions.
Equation (50) occurs in the counting of various types of trees, as seen in Subsec-

tions I. 5.1 (p. 61), II. 5.1 (p. 116), and III. 6.2 (p. 182). A typical case isφ(u) = eu,
which corresponds to labelled nonplane trees, known as Cayley trees. The function
φ(u) = (1 + u)2 is associated to unlabelled plane binary trees andφ(u) = 1 + u+ u2

to unary–binary trees (Motzkin trees). A full analysis was developed by Meir and
Moon [356], themselves elaborating on earlier ideas of Pólya [395, 397] and Ot-
ter [382]. In all these cases, the exponential growth rate of the number of trees can be
automatically determined.

Proposition IV.5. Letφ be a function analytic at 0, having nonnegative Taylor coef-
ficients, and such thatφ(0) 6= 0. LetR ≤ +∞ be the radius of convergence of the
series representingφ at 0. Under the condition,

(52) lim
x→R−

xφ′(x)

φ(x)
> 1,

there exists a unique solutionτ ∈ (0, R) of thecharacteristic equation,

(53)
τφ′(τ)

φ(τ)
= 1.

Then, the formal solutiony(z) of the equationy(z) = zφ(y(z)) is analytic at 0 and
its coefficients satisfy the exponential growth formula:

[zn] y(z) ⊲⊳

(
1

ρ

)n

where ρ =
τ

φ(τ)
=

1

φ′(τ)
.

Note that condition (52) is automatically realized as soon as φ(R−) = +∞, which
covers our earlier examples as well as all the cases whereφ is an entire function (e.g.,
a polynomial). Figure 14 displays graphs of functions on thereal line associated to a
typical inversion problem, that of Cayley trees, whereφ(u) = eu.
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FIGURE IV.14. Singularities of inverse functions:φ(u) = eu (left); ψ(u) = u/φ(u)
(middle);y = Inv(ψ) (right).

PROOF. By Note 44 below, the functionxφ′(x)/φ(x) is an increasing function ofx
for x ∈ (0, R). Condition (52) thus guarantees the existence and unicity of a solution
of the characteristic equation. (Alternatively, rewrite the characteristic equation as
φ0 = φ2τ

2 + 2φ3τ
3 + · · · , where the right side is clearly an increasing function.)

Next, we observe that the equationy = zφ(y) admits a unique formal power
series solution, which furthermore has nonnegative coefficients. (This solution can for
instance be built by the method of indeterminate coefficients.) The Analytic Inversion
Lemma (Lemma IV.2) then implies that this formal solution represents a function,
y(z), that is analytic at 0, where it satisfiesy(0) = 0.

Now comes the hunt for singularities and, by Pringsheim’s Theorem, one may
restrict attention to the positive real axis. Letr ≤ +∞ be the radius of convergence
of y(z) at 0 and sety(r) := limx→r− y(x), which is well defined (though possibly
infinite), given positivity of coefficients. Our goal is to prove thaty(r) = τ .

— Assumea contrariothaty(r) < τ . One would then haveψ′(y(r)) 6= 0. By
the Analytic Inversion Lemma,y(z) would be analytic atr, a contradiction.

— Assumea contrariothaty(r) > τ . There would then existr∗ ∈ (0, r) such
thatψ′(y(r∗)) = 0. But theny would be singular atr∗, by the Singular
Inversion Lemma, also a contradiction.

Thus, one hasy(r) = τ , which is finite. Finally, sincey andψ are inverse functions,
one must have

r = ψ(τ) = τ/φ(τ) = ρ,

by continuity asx→ r−, which completes the proof. �

Proposition IV.5 thus yields analgorithm that produces the exponential growth
rate associated to tree functions. This rate is itself invariably a computable number as
soon asφ is computable (i.e., its sequence of coefficients is computable). This com-
putability result complements Theorem IV.8 which is relative to nonrecursive struc-
tures only.

As an example of application of Proposition IV.5, general Catalan trees corre-
spond toφ(y) = (1−y)−1, whose radius of convergence isR = 1. The characteristic
equation isτ/(1 − τ) = 1, which impliesτ = 1

2 andρ = 1
4 . We obtain (not a
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Type φ(u) (R) τ ρ yn ⊲⊳ ρ
−n

binary tree (1 + u)2 (∞) 1 1
4

yn ⊲⊳ 4n

Motzkin tree 1 + u+ u2 (∞) 1 1
3

yn ⊲⊳ 3n

gen. Catalan tree
1

1− u (1) 1
2

1
4

yn ⊲⊳ 4n

Cayley tree eu (∞) 1 e−1 yn ⊲⊳ e
n

FIGURE IV.15. Exponential growth for classical tree families.

suprise!) yn ⊲⊳ 4n, a weak asymptotic formula for the Catalan numbers. Similarly,
for Cayley trees,φ(u) = eu andR = +∞. The characteristic equation reduces to
(τ − 1)eτ = 0, so thatτ = 1 andρ = e−1, giving a weak form of Stirling’s formula:
[zn]y(z) = nn−1

n! ⊲⊳ en. Figure 15 summarizes the application of the method to a few
already encountered tree families.

As our previous discussion suggests, the dominant singularity of tree generating
functions is, under mild conditions, of the square-root type. Such a singular behaviour
can then be analysed by the methods of Chapter VI: the coefficients admit an asymp-
totic form

[zn] y(z) ∼ C · ρ−nn−3/2,

with a subexponential factor of the formn−3/2; see Section VI. 7, p. 385.
� IV.44. Convexity of GFs, Boltzmann models, and the Variance Lemma.Let φ(z) be a non-
constant analytic function with nonnegative coefficients and a nonzero radius of convergenceR,
such thatφ(0) 6= 0. Forx ∈ (0, R) a parameter, define theBoltzmann random variableΞ (of
parameterx) by the property

(54) P(Ξ = n) =
φnx

n

φ(x)
, with E(sΞ) =

φ(sx)

φ(x)

the probability generating function ofΞ. By differentiation, the first two moments ofΞ are

E(Ξ) =
xφ′(x)

φ(x)
, E(Ξ2) =

x2φ′′(x)

φ(x)
+
xφ′(x)

φ(x)
.

There results, for any nonconstant GFφ, the general convexity inequality valid for0 < x < R:

(55)
d

dx

„
xφ′(x)

φ(x)

«
> 0,

due to the fact that the variance of a nondegenerate random variable is always positive. Equiv-
alently, the functionlog(φ(et)) is convex fort ∈ (−∞, logR). (In statistical physics, a Boltz-
mann model (of parameterx) corresponds to a classΦ (with OGF φ) from which elements
are drawn according to the size distribution (54). An alternative derivation of (55) is given in
Note VIII.4, p. 516.) �

� IV.45. A variant form of the inversion problem.Consider the equationy = z+φ(y), whereφ
is assumed to have nonegative coefficients and be entire, with φ(u) = O(u2) at u = 0. This
corresponds to a simple variety of trees in which trees are counted by the number of their leaves
only. For instance, we have already encountered labelled hierarchies (phylogenetic trees in
Section II. 5, p. 119) corresponding toφ(u) = eu−1−u, which gives rise to one of “Schröder’s
problems”. Letτ be the root ofφ′(τ ) = 1 and setρ = τ − φ(τ ). Then[zn]y(z) ⊲⊳ ρ−n. For
the EGFL of labelled hierarchies (L = z+ eL− 1−L), this givesLn/n! ⊲⊳ (2 log 2− 1)−n.
(Observe that Lagrange inversion also provides[zn]y(z) = 1

n
[wn−1](1− y−1φ(y))−n.) �
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IV. 7.2. Iteration. The study of iteration of analytic functions was launched by
Fatou and Julia in the first half of the twentieth century. Ourreader is certainly aware
of the beautiful images associated with the name of Mandelbrot whose works have
triggered renewed interest in these questions now classified as resorting to the field
of “complex dynamics” [24, 122, 362, 387]. In particular, the sets that appear in this
context are often of a fractal nature. Mathematical objectsof this sort are occasionally
encountered in analytic combinatorics. We present here thefirst steps of a classic
analysis of balanced trees published by Odlyzko [375] in 1982.

Consider the classE of balanced 2–3 treesdefined as trees whose node degrees
are restricted to the set{0, 2, 3}, with the additional property that all leaves are at the
same distance from the root (Note 57, p. 83). We adopt as notion of size the number
of leaves (also called external nodes), the list of all4 trees of size8 being:

Given an existing tree, a new tree is obtained by substituting in all possible ways to
each external node (2) either a pair(2,2) or a triple(2,2,2), and symbolically,
one has

E [2] = 2 + E
[
2 → (22 + 222)

]
.

In accordance with the specification, the OGF ofE satisfies the functional equation

(56) E(z) = z + E(z2 + z3),

corresponding to the seemingly innocuous recurrence

En =

n∑

k=0

(
k

n− 2k

)
Ek with E0 = 0, E1 = 1.

Let σ(z) = z2 + z3. Equation (56) can be expanded by iteration in the ring of
formal power series,

(57) E(z) = z + σ(z) + σ[2](z) + σ[3](z) + · · · ,
whereσ[j](z) denotes thejth iterate of the polynomialσ: σ[0](z) = z, σ[h+1](z) =
σ[h](σ(z)) = σ(σ[h](z)). Thus,E(z) is nothing but the sum of all iterates ofσ.
The problem is to determine the radius of convergence ofE(z), and by Pringsheim’s
theorem, the quest for dominant singularities can be limited to the positive real line.

Forz > 0, the polynomialσ(z) has a unique fixed point,ρ = σ(ρ), at

ρ =
1

ϕ
where ϕ =

1 +
√

5

2

is the golden ratio. Also, for any positivex satisfyingx < ρ, the iteratesσ[j](x)
do converge to 0; see Figure 16. Furthermore, sinceσ(z) ∼ z2 near0, these iterates
converge to 0 doubly exponentially fast (Note 46). By the triangle inequality,|σ(z)| ≤
σ(|z|), the sum in (57) is a normally converging sum of analytic functions, and is thus
itself analytic. ConsequentlyE(z) is analytic in the whole of the open disk|z| < ρ.
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FIGURE IV.16. The iterates of a pointx0 ∈ (0, 1
ϕ
), herex0 = 0.6, by σ(z) = z2 + z3

converge fast to 0.

It remains to prove that the radius of convergence ofE(z) is exactly equal toρ.
To that purpose it suffices to observe thatE(z), as given by (57), satisfies

E(x) → +∞ as x→ ρ−.

Let N be an arbitrarily large but fixed integer. It is possible to select a positivexN

sufficiently close toρ with xN < ρ, such that theN th iterateσ[N ](xN ) is larger than
1
2 (the functionσ[N ](x) admitsρ as a fixed point and it is continuous and increasing at
ρ). Given the sum expression (57), this entails the lower boundE(xN ) > N

2 for such
anxN < ρ. ThusE(x) is unbounded asx→ ρ− andρ is a singularity.

The dominant positive real singularity ofE(z) is thusρ = ϕ−1, and the Expo-
nential Growth Formula gives:

Proposition IV.6. The number of balanced 2–3 trees satisfies:

(58) [zn]E(z) ⊲⊳
(1 +

√
5

2

)n
.

It is notable that this estimate could be established so simply by a purely qualita-
tive examination of the basic functional equation and of a fixed point of the associated
iteration scheme.

The complete asymptotic analysis of theEn requires the full power of singular-
ity analysis methods to be developed in Chapter VI. Equation(59) below states the
end result, which involves fluctuations that are clearly visible on Figure 17. There is
overconvergence of the representation (57), that is, convergence in certain domains
beyond the disc of convergence ofE(z). Figure 17 displays the domain of analyticity
of E(z) and reveals its fractal nature.

� IV.46. Quadratic convergence.First, forx ∈ [0, 1
2
], one hasσ(x) ≤ 3

2
x2, so thatσ[j](x) ≤

(3/2)2
j−1 x2j

. Second, forx ∈ [0, A], whereA is any number< ρ, there is a numberkA such

thatσ[kA](x) < 1
2
, so thatσ[k](x) ≤ (3/2) (3/4)2

k−kA
. Thus, for anyA < ρ, the series of

iterates ofσ is quadratically convergent whenz ∈ [0, A]. �
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FIGURE IV.17. Left: the circle of convergence ofE(z) and its fractal domain of ana-
lyticity (in gray with darker areas representing slower convergence of iterates ofσ). Right:
the ratioEn/(ϕ

nn−1) plotted againstlog n for n = 1 . . 500 confirms thatEn ⊲⊳ ϕ
n and

illustrates the periodic fluctuations expressed by Equation (59).

� IV.47. The asymptotic number of 2–3 trees.This analysis is from [375, 377]. The number of
2–3 trees satisfies asymptotically

(59) En =
ϕn

n
Ω(log n) +O

„
ϕn

n2

«
,

whereΩ is a periodic function with mean value(ϕ log(4 − ϕ))−1 .
= 0.71208 and period

log(4−ϕ)
.
= 0.86792. Thus oscillations are inherent inEn. A plot of the ratioEn/(ϕ

n/n) is
offered in Figure 17. �

IV. 7.3. Complete asymptotics of a functional equation.George Pólya (1887–
1985) is mostly remembered by combinatorialists for being at the origin of Pólya
theory, a branch of combinatorics that deals with the enumeration of objects invariant
under symmetry groups. However, in his classic article [395, 397] which founded
this theory, Pólya discovered at the same time a number of startling applications of
complex analysis to asymptotic enumeration14 . We detail one of these now.

The combinatorial problem of interest here is the determination of the numberMn

of chemical isomeres of alcoholsCnH2n+1OH without asymmetric carbon atoms.
The OGFM(z) =

∑
nMnz

n that starts as (EISA000621)

(60) M(z) = 1 + z + z2 + 2z3 + 3z4 + 5z5 + 8z6 + 14z7 + 23z8 + 39z9 + · · · ,
is accessible through a functional equation:

(61) M(z) =
1

1 − zM(z2)
.

14In many ways, Pólya can be regarded as the grand father of thefield of analytic combinatorics.
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Iteration of the functional equation leads to a continued fraction representation,

M(z) =
1

1 − z

1 − z2

1 − z4

. . .

,

from which Pólya found:

Proposition IV.7. LetM(z) be the solution analytic around 0 of the functional equa-
tion

M(z) =
1

1 − zM(z2)
.

Then, there exist constantsK, β, andB > 1, such that

Mn = K · βn
(
1 +O(B−n)

)
, β

.
= 1.68136 75244, K

.
= 0.36071 40971.

PROOF. We offer two proofs. The first one is based on direct consideration of the
functional equation and is of a fair degree of applicability. The second one, following
Pólya, makes explicit a special linear structure present in the problem. As suggested
by the main estimate, the dominant singularity ofM(z) is a simple pole.

First proof. By positivity of the functional equation,M(z) dominates coef-
ficientwise any GF(1 − zM<m(z2))−1, whereM<m(z) :=

∑
0≤j<mMnz

n is
the mth truncation ofM(z). In particular, one has the domination relation (use
M<2(z) = 1 + z)

M(z) � 1

1 − z − z3
.

Since the rational fraction has its dominant pole atz
.
= 0.68232, this implies that

the radiusρ of convergence ofM(z) satisfiesρ < 0.69. In the other direction, since
M(z2) < M(z) for z ∈ (0, ρ), then, one has the numerical inequality

M(z) ≤ 1

1 − zM(z)
, 0 ≤ z < ρ.

This can be used to show (Note 48) that the Catalan generatingfunctionC(z) = (1−√
1 − 4z)/(2z) is a majorant ofM(z) on the interval(0, 1

4 ), which implies thatM(z)

is well defined and analytic forz ∈ (0, 1
4 ). In other words, one has14 ≤ ρ < 0.69.

Altogether, the radius of convergence ofM lies strictly between 0 and 1.
� IV.48. Alcohols, trees, and bootstrapping.SinceM(z) starts as1 + z + z2 + · · · while
C(z) starts as1 + z + 2z2 + · · · , there is a small interval(0, ǫ) such thatM(z) ≤ C(z). By
the functional equation ofM(z), one hasM(z) ≤ C(z) for z in the larger interval(0,

√
ǫ).

Bootstrapping then shows thatM(z) ≤ C(z) for z ∈ (0, 1
4
). �

Next, asz → ρ−, one must havezM(z2) → 1. (Indeed, if this was not the
case, we would havezM(z2) < A < 1 for someA. But then, sinceρ2 < ρ, the
quantity(1 − zM(z2))−1 would be analytic atz = ρ, a clear contradiction.) Thus,ρ
is determined implicitly by the equation

ρM(ρ2) = 1, 0 < ρ < 1.
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One can estimateρ numerically (Note 49), and the statement follows withβ = 1/ρ.
(Pólya determinedρ to five decimals by hand!)

The previous discussion also implies thatρ is a pole ofM(z), which must be
simple (since∂z(zM(z2)

∣∣
z=ρ

> 0). Thus

(62) M(z) ∼
z→ρ

K
1

1 − z/ρ
, K :=

1

ρM(ρ2) + 2ρ3M ′(ρ2)
.

The argument shows at the same time thatM(z) is meromorphic in|z| < √
ρ
.
= 0.77.

That ρ is the only pole ofM(z) on |z| = ρ results from the fact thatzM(z2) =
z+z3+ · · · can be subjected to the type of argument encountered in the context of the
Daffodil Lemma (see the discussion of quasi-inverses in theproof of Proposition IV.3,
p. 253). The translation of the singular expansion (62) thenyields the statement.
� IV.49. The growth constant of molecules.The quantityρ can be obtained as the limit of
the ρm satisfying

Pm
n=0Mnρ

2n+1
m = 1, together withρ ∈ [ 1

4
, 0.69]. In each case, only a

few of theMn (provided by the functional equation) are needed. One obtains: ρ10
.
= 0.595,

ρ20
.
= 0.594756, ρ30

.
= 0.59475397, ρ40

.
= 0.594753964. This algorithms constitutes a

geometrically convergent scheme with limitρ
.
= 0.59475 39639. �

Second proof.First, a sequence of formal approximants follows from (61) starting
with

1,
1

1− z ,
1

1− z

1− z2

=
1− z2

1− z − z2
,

1

1− z

1− z2

1− z4

=
1− z2 − z4

1− z − z2 − z4 + z5
,

which permits us to compute any number of terms of the seriesM(z). Closer exami-
nation of (61) suggests to set

M(z) =
ψ(z2)

ψ(z)
,

whereψ(z) = 1 − z − z2 − z4 + z5 − z8 + z9 + z10 − z16 + · · · . Back substitution
into (61) yields

ψ(z2)

ψ(z)
=

1

1 − z
ψ(z4)
ψ(z2)

or
ψ(z2)

ψ(z)
=

ψ(z2)

ψ(z2) − zψ(z4)
,

which showsψ(z) to be a solution of the functional equation

ψ(z) = ψ(z2) − zψ(z4), ψ(0) = 1.

The coefficients ofψ satisfy the recurrence

ψ4n = ψ2n, ψ4n+1 = −ψn, ψ4n+2 = ψ2n+1, ψ4n+3 = 0,

which implies that their values are all contained in the set{0,−1,+1}.
Thus,M(z) appears to be the quotient of two function,ψ(z2)/ψ(z), each analytic

in the unit disc, andM(z) is meromorphic in the unit disc. A numerical evaluation
then shows thatψ(z) has its smallest positive real zero atρ

.
= 0.59475, which is a
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simple root. The quantityρ is thus a pole ofM(z) (since, numerically,ψ(ρ2) 6= 0).
Thus

M(z) ∼ ψ(ρ2)

(z − ρ)ψ′(ρ)
=⇒ Mn ∼ − ψ(ρ2)

ρψ′(ρ)

(
1

ρ

)n

.

Numerical computations then yield Pólya’s estimate. Et voilà! �

The example of Pólya’s alcohols is exemplary, both from a historical point of
view and from a methodological perspective. As the first proof of Proposition IV.7
demonstrates, quite a lot of information can be pulled out ofa functional equation
without solving it. (A similar situation will be encountered in relation to coin foun-
tains, Example V.7, p. 307.) Here, we have made great use of the fact that iff(z) is
analytic in|z| < r and somea priori bounds imply the strict inequalities0 < r < 1,
then one can regard functions likef(z2), f(z3), and so on, as “known” since they are
analytic in the disc of convergence off and even beyond, a situation also evocative
of our earlier discussion of Pólya operators in SubsectionIV. 4. Globally, the lesson
is that functional equations, even complicated ones, can beused to bootstrap the local
singular behaviour of solutions, and one can often do so evenin the absence of any
explicit generating function solution. The transition from singularities to coefficient
asymptotics is then a simple jump.
� IV.50. An arithmetic exercise.The coefficientsψn = [zn]ψ(z) can be characterized simply
in terms of the binary representation ofn. Find the asymptotic proportion of theψn for n ∈
[1 . . 2N ] that assume each of the values0, +1, and−1. �

IV. 8. Perspective

In this chapter, we have started examining generating functions under a new light.
Instead of being merelyformal algebraicobjects—power series—that encodeex-
actly counting sequences, generating functions can be regarded as analyticobjects—
transformations of the complex plane—whose singularitiesprovide a wealth of infor-
mation concerningasymptoticproperties of structures.

Singularities provide a royal road to coefficient asymptotics. We could treat here,
with a relatively simple apparatus, singularities that arepoles. In this perspective,
the two main statements of this chapter are the theorems relative to the expansion of
rational and meromorphic functions, (Theorems IV.9 and IV.10). These are classical
results of analysis. Issai Schur (1875–1941) is to be counted amongst the very first
mathematicians who recognized their rôle in combinatorial enumerations (denumer-
ants, Example 5, p. 244). The complex-analytic thread was developed much further by
George Pólya in his famous paper of 1937 (see [395, 397]), which Read in [397, p. 96]
describes as a “landmark in the history of combinatorial analysis”. There, Pólya laid
the groundwork of combinatorial chemistry, the enumeration of objects under group
actions, as well as the complex-asymptotic theory of graphsand trees.

The present chapter serves as the foundation stone of a rich theory to be devel-
oped in future chapters. In particular the method of singularity analysis exposed in
Chapter VI considerably extends the range of applicabilityof the Second Principle to
functions having singularities appreciably more complicated that poles (e.g., the ones
involving fractional powers, logarithms, iterated logarithms, and so on).
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Basics. The theory of analytic functions benefits from the equivalence between two no-
tions, analyticity and differentiability. It is the basis of a powerful integral calculus, much
different from its real variable counterpart. The following two results can serve as “axioms” of
the theory.

THEOREM IV.1 [Basic Equivalence Theorem] (p. 219): Two fundamentalnotions are equiv-
alent, namely, analyticity (defined by convergent power series) and holomorphy (defined by
differentiability). Combinatorial generating functions, a priori determined by their expansions
at0 thus satisfy the rich set of properties associated with these two equivalent notions.
THEOREM IV.2 [Null Integral Property] (p. 221): The integral of an analytic function along a
simple loop (closed path that can be contracted to a single point) is 0. Consequently, integrals
are largely independent of particular details of the integration contour.

Residues.For meromorphic functions (functions with poles), residues are essential. Co-
efficients of a function can be evaluated by means of integrals. The following two theorems
provide connections between local properties of a function(e.g., coefficients at one point) and
global properties of the function elsewhere (e.g., an integral along a distant curve).

THEOREM IV.3 [Cauchy’s residue theorem] (p. 222): In the realm of meromorphic functions,
integrals of a function can be evaluated based on local properties of the function at a few specific
points, its poles.

THEOREM IV.4 [Cauchy’s Coefficient Formula] (p. 224): This is an almost immediate conse-
quence of Cauchy’s residue theorem: The coefficients of an analytic function admit of a repre-
sentation by a contour integral. Coefficients can then be evaluated or estimated using properties
of the function at points away from the origin.

Singularities and growth.Singularities (places where analyticity stops), provide essential
information on the growth rate of a function’s coefficients.The “First Principle” relates the
exponential growth rate of coefficients to the location of singularities.

THEOREM IV.5 [Boundary singularities] (p. 227): A function (given by its series expansion
at0) always has a singularity on the boundary of its disc of convergence.

THEOREM IV.6 [Pringsheim’s Theorem] (p. 229): This theorem refines the previous one for
functions with non-negative coefficients. It implies that,in the case of combinatorial generating
functions, the search for a dominant singularity can be restricted to the positive real axis.

THEOREM IV.7 [Exponential Growth Formula] (p. 231): The exponential growth rate of co-
efficients is dictated by thelocation of the singularities nearest to the origin—thedominant
singularities.

THEOREM IV.8 [Computability of growth] (p. 237): For any combinatorial class that is nonre-
cursive (iterative), the exponential growth rate of coefficients is invariably a computable number.
This statement can be regarded as the first general theorem ofanalytic combinatorics.

Coefficient asymptotics.The “Second Principle” relates subexponential factors of coef-
ficients to the nature of singularities. For rational and meromorphic functions, everything is
simple.

THEOREM IV.9 [Expansion of rational functions] (p. 243): Coefficients of rational functions
are explicitly expressible in terms of the poles, given their location (values) and nature (multi-
plicity).

THEOREMIV.10 [Expansion of meromorphic functions] (p. 245): Coefficients of meromorphic
functions admit of a precise asymptotic form with exponentially small error terms, given the
location and nature of the dominant poles.

FIGURE IV.18. A summary of the main results of Chapter IV.
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As we hope to convince our reader, a consequence of the theorydeveloped in
Part B is that most combinatorial classes amenable to symbolic descriptions can be
thoroughly analysed, as regards their asymptotic properties, by means of a selected
collection of basic theorems of complex analysis. The case of structures like balanced
trees and molecules, where only a functional equation of sorts is available, is exem-
plary.

This chapter has been designed to serve as a refresher of basic complex analysis, with
special emphasis on methods relevant for analytic combinatorics. See Figure 18 for a concise
summary of results. References most useful for the discussion given here include the books of
Titchmarsh [469] (oriented towards classical analysis), Whittaker and Watson [492] (stressing
special functions), Dieudonné [129], Hille [ 269], and Knopp [299]. Henrici [265] presents com-
plex analysis under the perspective of constructive and numerical methods, a highly valuable
point of view for this book.

De Bruijn’s classic booklet [111] is a wonderfully concrete introduction to effective as-
ymptotic theory, and it contains many examples from discrete mathematics thoroughly worked
out using a complex-analytic approach. The use of such analytic methods in combinatorics
was pioneered in modern times by Bender and Odlyzko, whose first publications in this area
go back to the 1970’s. The state of affairs in 1995 regarding analytic methods in combinatorial
enumeration is superbly summarized in Odlyzko’s scholarlychapter [377]. Wilf devotes his
Chapter 5 ofGeneratingfunctionoloy[496] to this question. The books by Hofri [270] and Sz-
pankowski [458] contain useful accounts in the perspective of analysis of algorithms. See also
our book [434] for a light introduction and the chapter by Vitter and Flajolet [486] for more on
this specific topic.



V

Applications of Rational and
Meromorphic Asymptotics

Analytic methods are extremely powerful and when they apply,
they often yield estimates of unparalleled precision.

— ANDREW ODLYZKO [377]
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The primary goal of this chapter is to provide combinatorialillustrations of the power
of complex analytic methods, and specifically of the rational-meromorphic frame-
work exposed in the previous chapter. At the same time, we shift gears and envisage
counting problems at anew level of generality. Precisely, we organize combinatorial
problems into widefamiliesof combinatorial types amenable to a common treatment
and associated with a common collection of asymptotic properties. Without attempt-
ing a formal definition, we callschemaany such family determined by combinatorial
and analytic conditions that covers an infinity of combinatorial classes.

The first schema comprisesregular specificationsand languages, whicha priori
lead to rational generating functions and thus systematically resort to Theorem IV.9
(p. 243), to the effect that coefficients are described as exponential-polynomials. In the
case of regular specifications, much additional structure is present, especially positiv-
ity. As a consequence, fluctuations can be systematically circumvented. Applications
include the analysis of longest runs, corresponding to maximal sequences of good
(or bad) luck in games of chance, pure birth processes, and the occurrence of hidden
patterns (subsequences) in random texts.

We then consider an important subset of regular specifications, the ones that are
built onnested sequencesand combinatorially correspond to a variety of lattice paths.
Such nested sequences naturally lead to nested quasi-inverses, which are none other
than continued fractions, A wealth of combinatorial, algebraic, and analytic properties
then surround such constructions. A prime illustration is the very explicit analysis of
height in Dyck paths and general Catalan trees; other interesting applications relate to
coin fountain and interconnection networks.

275
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Next, we discuss a general schema of analytic combinatoricsknown as thesu-
percritical sequenceschema, which provides a neat illustration of the power of mero-
morphic asymptotics while being of a very wide applicability. For instance, one can
predict very precisely (and easily) the number of ways in which an integer can be
decomposed additively as a sum of primes (or twin primes), this even though many
details of the distribution of primes are still surrounded in mystery.

Finally, the last two sections examinepositive linear systems of generating func-
tions, starting with the simplest case of graphs and automata and concluding with the
general framework of transfer matrices. Although the resulting generating functions
are once more bound to be rational, there is benefit in examining them as defined im-
plicitly (rather than solving explicitly) and work out singularities directly. The spec-
trum of matrices (the set of eigenvalues) then plays a central rôle. Our treatment is
then close to the Perron-Frobenus theory of nonnegative matrices, whose importance
has been long recognized in the theory of finite Markov chains. A general discus-
sion of singularities can then be conducted, leading to valuable consequences on a
variety of models—paths in graphs, finite automata, and transfer matrices. The last
example discussed in this chapter treats locally constrained permutations, where ra-
tional functions combined with inclusion-exclusion provide an entry to the world of
value-constrained permutations.

In the various combinatorial examples encountered in this chapter, the generating
functions are generally meromorphic in some domain extending beyond their disc of
convergence at 0. As a consequence, the asymptotic estimates of coefficients involve
main terms that are explicit exponential polynomials and error terms that are exponen-
tially smaller. This is a situation which is well summarizedby Odlyzko’s aphorism:
“Analytic methods [. . . ] often yield estimates of unparalleled precision”.

V. 1. A roadmap to rational and meromorphic asymptotics

The key character in this chapter is the combinatorial sequence construction SEQ.
Since its translation into generating functions involves aquasi-inverse, (1− f)−1, the
construction should in many cases be expected to induce polar singularities. Also,
linear systems of equations, of which the simplest case isX = 1 + AX , are solvable
by means of inverses: the solution isX = (1−A)−1 in the scalar case, and it is other-
wise expressible as a quotient of determinants, by Cramer’srule, in the vectorial case.
Consequently, linear systems of equations are also conducive to polar singularities.

This chapter accordingly develops along two main lines. First, we study non-
recursive families of combinatorial problems that are, in asuitable sense, driven by
a sequence construction. Second, we examine families of recursive problems that
are naturally described by linear systems of equations. Clearly, the general theorems
giving the asymptotic forms of coefficients of rational and meromorphic functions
apply. As we see here, the additional positivity structure arising from combinatorics
often entails notable simplifications in the asymptotic form of counting sequences.

Regular specification and languages.This topic is treated in Section V. 2. Reg-
ular specifications are non-recursive specifications that only involve the constructions
(+,×,SEQ). In the unlabelled case, they can always be interpreted as describing a
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regular language in the sense of Chapter I. The main result here is the following:
given a regular specificationR, it is possible to determine constructively a numberD,
so that an asymptotic estimate of the form

(1) Rn = P (n)βn +O(Bn), 0 ≤ B < β, P a polynomial,

holds, once the indexn is restricted to a fixed congruence class moduloD. (Naturally,
the quantitiesP, β,B may depend on the particular congruence class considered.)In
other words, a “pure” exponential polynomial form holds foreach of theD sections
of the counting sequence(Rn)n≥0. In particular, irregular fluctuations, which might
otherwise arise from the existence of several dominant poles sharing the same modu-
lus but having incommensurable arguments (see the discussion in Subsection IV. 6.1,
p. IV. 6.1 dedicated to multiple singularities), are simplynot present in regular speci-
fications and languages. Similar estimates hold for profilesof regular specifications,
where profile of an object is understood as the number of timesany fixed construction
is employed.

Nested sequences, lattice paths, and continued fractions.What is considered
here could be termed the SEQ◦ · · · ◦SEQ schema, corresponding to nested sequences.
The resulting GFs are chains of quasi-inverses, that is, continued fractions. Though
the general theory of regular specifications applies, the additional structure resulting
from nested sequences implies in essence uniqueness and simplicity of the dominant
pole, resulting directly in an estimate of the form

(2) Sn = cβn +O(Bn), 0 ≤ B < β, c ∈ R>0,

for objects enumerated by nested sequences. This schema covers lattice paths of
bounded height, their weighted versions, as well as severalother bijectively equivalent
classes, like interconnection networks. In each case, profiles can be fully character-
ized, the estimates being of a simple form.

The supercritical sequence.This is a schema of the general formF = SEQ(G)
with a simple analytic condition, “supercriticality”, attached to the generating func-
tion G(z) of G. Under this condition, the sequence(Fn) happens to be predictable
and an asymptotic estimate,

(3) Fn = cSn +O(T n), 0 ≤ T < S, c ∈ R>0,

applies withS such thatG(1/S) = 1. Integer compositions, surjections, and align-
ments presented in Chapters I and II can then be treated in a unified manner. The
supercritical sequence schema even covers many situationswhereG is notnecessarily
constructible—this includes compositions into summands that are prime numbers or
twin primes. Parameters, like the number of components and more generally profiles,
are under these circumstances governed by laws that hold with a high probability.

Paths in graphs and automata.The framework of paths in directed graphs is of
considerable generality. In particular, it covers the caseof finite automata introduced
in Chapter I. Although, in the abstract, the descriptive power of this framework is
formally equivalent to the one of regular specifications (APPENDIX A: Regular lan-
guages, p. 678), there is great advantage in considering directly problems whose natu-
ral formulation is recursive and phrased in terms of graphs or automata. (The reduction
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of automata to regular expressions is nontrivial so that it does not tend to preserve the
original combinatorial structure.) The algebraic theory is that of matrices of the form
(I − zT )−1, whereT is a matrix with nonnegative entries. The analytic theory be-
hind the scene is now that of positive matrices and the companion Perron-Frobenius
theory. Uniqueness and simplicity of dominant poles of generating functions can be
guaranteed under easily testable structural conditions—principally, the condition of
irreducibility that corresponds to a strong connectednessof the system. Then a pure
exponential polynomial form of the simplest type holds,

(4) Cn ∼ c · λn
1 +O(Λn), 0 ≤ Λ < λ1, c ∈ R>0,

whereλ1 is the (unique) dominant eigenvalue of the transition matrix T . Applications
include walks over various types of graphs (the interval graph, the devil’s staircase)
and words excluding one or several patterns (walks on the De Bruijn graph).

Transfer matrices.This framework, whose origins lie in statistical physics, is an
extension of automata and paths in graphs. What is retained is the notion of a finite
state system, but transitions can now take place at different speeds. Algebraically,
one is dealing with matrices of the form(I − T (z))−1, whereT is a matrix whose
entries are polynomials (inz) with nonnegative coefficients. Perron-Frobenius theory
can be adapted to cover such cases, that, to a probabilist, involve a mixture of Markov
chain and renewal theory. The consequence is once more an estimate of the type (4)
for this category of models. A striking application of transfer matrices is a study,
with an experimental mathematics flavour, of self-avoidingwalks and polygons in the
plane: it turns out to be possible to predict, with a high degree of confidence (but
no mathematical certainty), what the number of polygons is and which distribution
of area is to be expected. A combination of the transfer matrix approach with a suit-
able use of inclusion-exclusion finally provides (Subsection V. 6.4) a solution to the
classicménage problemof combinatorial theory as well as to many related questions
regarding value-constrained permutations.

Sections V. 2 to V. 6 are organized following a common pattern: first, we discuss
“combinatorial aspects”, then “analytic aspects”, and finally “applications”. Each of
Sections V. 2 to V. 5 is furthermore centred around two analytic-combinatorial theo-
rems, one describingasymptotic enumeration, the other quantifying theasymptotic
profilesof combinatorial structures. The last section (Section V. 6) departs slightly
from this general pattern: transfer matrices are reduciblerather simply to the frame-
work of paths in graphs and automata, presented in the immediately preceding section,
so that, in order to avoid redundancy, the corresponding theorems are not explicitly
stated.

V. 2. Regular specification and languages

The purpose of this section is the general study of the(+,×,SEQ) schema, which
covers all regular specifications. As we show here, pure exponential-polynomial forms
with a single dominating exponential can always be extracted. Theorems V.1 and V.2
thus provide a universal framework for the asymptotic analysis of regular classes.
Additional structural conditions to be introduced in latersections (nested sequences,
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irreducibility of the dependency graph and of transfer matrices) will then be seen to
induce further simplifications in asymptotic formuæ.

V. 2.1. Combinatorial aspects.For convenience and without loss of analytic
generality, we consider here unlabelled structures. According to Chapter I, a com-
binatorial specification isregular if it is nonrecursive (“iterative”) and it involves only
the constructions of Atom, Union, Product, and Sequence. A languageL is S-regular
if it is combinatorially isomorphic to a classM described by a regular specification.
Alternatively, a language isS-regular if all the operations involved in its descrip-
tion (unions, catenation products and star operations) areunambiguous. See Defini-
tion I.10 (p. 48) and the companion Proposition I.2 (p. 48).

The dictionary translating constructions into OGFs is

(5) F + G 7→ F +G, F × G 7→ F ×G, SEQ(F) 7→ (1 − F )−1,

and for languages, under the essential condition ofnon-ambiguity,

(6) L ∪M 7→ L+M, L ·M 7→ L×M, L⋆ 7→ (1 − L)−1.

The rules (5) and (6) then give rise to generating functions that are invariablyrational
functions. Consequently, given a regular classC, the exponential-polynomial form of
coefficients expressed by Theorem IV.9 systematically applies, and one has

(7) Cn ≡ [zn]C(z) =

m∑

j=1

Πj(n)α−n
j ,

for a family of algebraic numbersαj (the poles ofC(z)) and a family of polynomi-
alsΠj .

As we know from the discussion of periodicities in Section IV. 6.1 (p. 250, the
collective behaviour of the sum in (7) depends on whether or not a singleα dominates
all others in modulus. In the case where several dominant singularities coexist, fluc-
tuations of sorts (either periodic or irregular) may manifest themselves. In contrast, if
a singleα dominates, then the exponential-polynomial formula acquires a transparent
asymptotic meaning. Accordingly, we set:

Definition V.1. An exponential-polynomial form
∑m

j=1 Πj(n)α−n
j is said to bepure

if |α1| < |αj |, for all j ≥ 2. In that case, a single exponential dominates all the other
ones.

As we see next for regular languages and specifications, the corresponding count-
ing coefficients can always be described by afinite collectionof pure exponential
polynomial forms. The fundamental reason is that we are dealing with a special sub-
set of rational functions, one that enjoys strong positivity properties.
� V.1. Positive rational functions.Define the classRat+ of positive rational functionsas
the smallest class containing polynomials with positive coefficients (R≥0[z]) and closed under
sum, product, and quasi-inverse, whereQ(f) = (1 − f)−1 is applied to elementsf such that
f(0) = 0. The OGF of any regular class with positive weights attachedto neutral structures
and atoms is inRat+. Conversely, any function inRat+ is the OGF of a positively weighted
regular class. The notion of aRat+ function is for instance useful in the analysis of weighted
word models and Bernoulli trials, as discussed in Section III. 6.1, p. 178. �
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V. 2.2. Analytic aspects.First we need the notion of sections of a sequence.

Definition V.2. Let (fn) be a sequence of numbers. Itssectionof parametersD, r,
whereD ∈ Z>0 andr ∈ Z≥0 is the subsequence(fnD+r). The numbersD andr are
referred to as the modulus and the base respectively.

The main theorem describing the asymptotic behaviour of regular classes is a
consequence of Proposition IV.3 (p. 253) and is originally due to Berstel. (See Soit-
tola’s article [442] as well as the books by Eilenberg [149, Ch VII] and Berstel–
Reutenauer [44] for context and proofs of some of the assertions below.)

Theorem V.1(Asymptotics of regular classes). LetS be a class described by a regular
specification. Then there exists an integerD such that each section of modulusD of
Sn that is not eventually 0 admits a pure exponential polynomial form: for n larger
than somen0, and any such section of baser, one has

Sn = Π(n)βn +

m∑

j=1

Pj(n)βn
j n ≡ r mod D,

whereβ > |βj |, andΠ, Pj are polynomials that depend on the baser, withΠ(x) 6≡ 0.

PROOF. Let α1 be the dominant pole ofS(z) that is positive. Proposition IV.3 as-
serts that any dominant pole,α is such thatα/|α| is a root of unity. LetD0 be
such that the dominant singularities are all contained in the set{α1ω

j−1}D0

j=1, where
ω = exp(2iπ/D0). By collecting all contributions arising from dominant poles in
the general expansion (7) and by restrictingn to a fixed congruence class moduloD0,
namelyn = r +D0ν with 0 ≤ r < D0, one gets

(8) Sr+D0ν = Π[r](n)α−D0ν
1 +O(A−n).

ThereΠ[r] is a polynomial depending onr and the remainder term represents an ex-
ponential polynomial with growth at mostO(A−n) for someA > α1.

The sections with modulusD0 that are not eventually 0 can be categorized into
two classes.

— Let R6=0 be the set of those values ofr such thatΠ[r] is not identically 0.
The setR6=0 is nonempty (else the radius of convergence ofS(z) would be
larger thanα1.) For any baser ∈ R6=0, the assertion of the theorem is then
established withβ = 1/α1.

— Let R0 be the set of those values ofr such thatΠ[r](x) ≡ 0, with Π[r] as
given by (8). Then one needs to examine the next layer of polesof S(z), as
detailed below.

Consider a numberr such thatr ∈ R0, so that the polynomialΠ[r] is identically 0.
First, we isolate in the expansion ofS(z) those indices that are congruent tor modulo
D0. This is achieved by means of a Hadamard product:

g(z) = S(z) ⊙
(

zr

1 − zD0

)
.

A classical theorem [47, 149] from the theory of positive rational functions in the
sense of Note 1 asserts that such functions are closed under Hadamard product. (A
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dedicated construction is also possible.) Then the resulting functionG(z) is of the
form

g(z) = zrγ(zD0),

with the rational functionγ(z) being analytic at 0. Note that we have[zν ]γ(z) =
SνD0+r, so thatγ is exactly the generating function of the section of baser of S(z).
One verifies next thatγ(z), which is obtained by the substitutionz 7→ z1/D0 in
g(z)z−r, is itself a positive rational function. Then, by a fresh application of Berstel’s
Theorem (Proposition IV.3, p. 253), this function, if not a polynomial, has a radius of
convergenceρ with all its dominant polesσ being such thatσ/ρ is aD1 root of unity
for someD1 ≥ 1. The argument originally applied toS(z) can thus be repeated, with
γ(z) replacingS(z). In particular, one finds at least one section (of modulusD1) of
the coefficients ofγ(z) that admits a pure exponential-polynomial form. The other
sections of modulusD1 can themselves be further refined, and so on

In other words, successive refinements of the sectioning process provide at each
stage at least one pure exponential-polynomial form, possibly leaving a few congru-
ence classes open for further refinements. Define thelayer indexof a rational function
f as the integerκ(f), such that

κ(f) = card
{
|ζ|

∣∣ f(ζ) = ∞
}
.

(This index is thus the number of different moduli of poles off .) It is seen that each
successive refinement step decreases by at least 1 the layer index of the rational func-
tion involved, thereby ensuring termination of the whole refinement process. Finally,
the collection of the iterated sectionings obtained can be reduced to a single section-
ing according to a common modulusD, which is the least common multiple of the
collection of all the finite productsD0D1 · · · that are generated by the algorithm.�

For instance the coefficients (Figure 1) of the function

(9) F (z) =
1

(1 − z)(1 − z2 − z4)
+

z

1 − 3z3
,

associated to the regular languagea⋆(bb+ cccc)⋆ + d(ddd+ eee+ fff)⋆, exhibit an
apparently irregular behaviour, with the expansion ofF (z) starting as

1 + 2z + 2z2 + 2z3 + 7z4 + 4z5 + 7z6 + 16z7 + 12z8 + 12z9 + 47z10 + 20z11 + · · · .
However the sections modulo6 each admit a pure exponential-polynomial form and
consequently become easy to describe.
� V.2. Extension toRat+ functions. The conclusions of Theorem V.1 hold for any function
in Rat+ in the sense of Note 1. �

� V.3. Soittola’s Theorem.This is a converse to Theorem V.1 proved in [442]. Assume that
coefficients of anarbitrary rational functionf(z) are nonnegative and that there exists a sec-
tioning such that each section admits a pure exponential-polynomial form. Thenf(z) is in
Rat+ in the sense of Note 1; in particular,f is the OGF of a (weighted) regular class. �

Theorem V.1 is useful for interpreting the enumeration of regular classes and
languages. It serves a similar purpose with regards to structural parameters of regular
classes. Consider a regular specificationC augmented with a marku that is, as usual,
a neutral object of size 0 (see Chapter III). We letC(z, u) be the corresponding BGF
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FIGURE V.1. Plots of logFn with Fn = [zn]F (z) andF (z) as in (9) display fluctua-
tions that disappear as soon as sections of modulus 6 are considered.

of C, so thatCn,k = [znuk]C(z, u) is the number ofC-objects of sizen that beark
marks. A suitable placement of marks makes it possible to record the number of times
any given construction enters an object. For instance, in the augmented specification
of binary words,

C = (SEQ<r(b) + uSEQ≥r(b)) SEQ(a(SEQ<r(b) + uSEQ≥r(b))),

all maximal runs ofb having length at leastr are marked by au. There results the
following BGF for the corresponding parameter “number ofb-runs of length≥ r”,

C(z, u) =

(
1 − zr

1 − z
+

uzr

1 − z

)
· 1

1 − z
(

1−zr

1−z + uzr

1−z

) ,

from which mean and variance can be determined. In a sense, marks make it possible
to analyse profile, with respect to constructions entering the specification, of a random
object.

Theorem V.2 (Profile of regular classes). Consider a regular specificationC aug-
mented with a mark and letχ be the parameter corresponding to the number of occur-
rences of that mark. There exists a sectioning indexd such that for any fixed section
of (Cn) of modulusd, the following hold: Any moment of integral orders ≥ 1 of χ
satisfies an asymptotic formula

(10) ECn [χs] = Q(n)βn +O(Gn),

where1 0 < β ≤ 1,Q(n) is a rational fraction, andG < β.

In this statement, it is tacitly assumed that only sections that are not eventually 0 are
considered.

1The quantitiesβ,Q,G depend on the particular section considered.
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PROOF. The case of expectations suffices to indicate the lines of a general proof. One
possible approach2is to build a derived specificationD such that

ECn [χ] =
Dn

Cn
,

which is also a regular specification. To this purpose, definea transformation on
specifications defined inductively by the rules

∂(A+B) = ∂A+ ∂B, ∂(A×B) = ∂A×B + A× ∂B, ∂ SEQ(A) = SEQ(A)× ∂A× SEQ(A),

together with the initial conditions∂u = 1 and∂Z = ∅. This is a form of combina-
torial differentiation: an objectγ ∈ C corresponds toχ(γ) objects inD, namely, one
for each choice of an occurrence of the mark.

As a consequence,Dn is the cumulated value ofχ overCn, so thatDn/Cn =
ECn [χ]. On the other hand,D is a regular specification to which Theorem V.1 ap-
plies. The result follows upon considering (if necessary) asectioning that refines the
sectionings of bothC andD. The argument extends easily to higher moments.�
� V.4. An example.Consider the regular languageC = a⋆(b + c)⋆d(b + c)⋆. Let χ be the
length of the initial run ofa’s. Then one finds

C(z) =
z

(1− z)(1− 2z)2
, D(z) =

z2

(1− z)2(1− 2z)2
.

Thus the mean ofχ satisfies

ECn [χ] =
Dn

Cn
=

(n− 3)2n + (n+ 3)

(n− 1)2n + 1
=
n− 3

n− 1
+O

„„
3

4

«n«
.

Generally, in the statement of Theorem V.2, letQ(n) = A(n)/B(n) with A,B polynomials
anda = deg(A), b = deg(B). The following combinations prove to be possible (for first
moments):β = 1 and(a, b) any pair such that0 ≤ a ≤ b + 1; β < 1 and(a, b) any pair of
elements≥ 0. �

� V.5. Shuffle products.Let L,M be two languages over two disjoint alphabets. Then, the
shuffle productS of L andM is such thatbS(z) = bL(z) · cM(z), where bS, bL,cM are the
exponential generating functions ofS ,L,M. Accordingly, if the OGFL(z) andM(z) are
rational then the OGFS(z) is also rational. [This technique may be used to analyse generalized
birthday paradox and coupon collector problems; see [181].] �

V. 2.3. Applications. This subsection details several examples that illustrate the
explicit determination of exponential-polynomial forms in regular specifications. Var-
ious types of estimates conforming to Theorems V.1 and V.2 are obtained.

— We start by recapitulating a collection of combinatorial problems (a “pot-
pourri”, Example 1) already encountered in Chapters I–III,where rational
function asymptotics has been useden passant.

— Next, we show how to develop a complete analysis of runs of consecutive
equal letters in random sequences (Example 2): this is in theory a special
case of the analysis of patterns in random texts (Section IV.6.3, p. 257), but
the particular nature of the patterns makes it possible to derive much more
explicit results, including limit distributions for longest runs.

2Equivalently, one may operate at generating function leveland observe that the derivative of aRat+

function isRat+; cf Notes 1 and 2.
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Class Asymptotics
Integer compositions 2n−1

— k summands ∼ nk−1

(k−1)!
(§I. 3.1, p. 42)

— summands≤ r ∼ cβn
r (§I. 3.1, p. 40)

Integer partitions

— k summands ∼ nk−1

k! (k−1)!
(§I. 3.1, p. 42)

— summands≤ r ∼ nr−1

r! (r−1)!
(§I. 3.1, p. 41)

Set partitions,k classes ∼ kn

k!
(§I. 4.3, p. 58)

Words excluding a patternp ∼ cβn
p (§IV. 6.3, p. 257)

FIGURE V.2. A potpourri of regular classes and their asymptotics.

— We then examine walks of the pure birth type (Example 3) thatturn out to
have applications to the analysis of a probabilistic algorithm (Approximate
Counting, Example 4).

— Finally, we present a mean and variance analysis of the occurrence of hidden
patterns in random texts (subsequences, Example 5), which is sufficient to
entail the concentration of distribution property.

EXAMPLE V.1. A potpourri of regular specifications.We gather here a few combinatorial
problems to be found scattered across Chapters I–IV that arereducible to regular specifications;
see also Figure 2 for a summary.

Compositions of integers(Section I. 3, p. 37) are specified byC = SEQ(SEQ≥1(Z)),
whence the OGF(1 − z)/(1 − 2z) and the closed formCn = 2n−1, an especially trivial
exponential-polynomial form. Polar singularities are also present for compositions intok sum-
mands that are described by SEQk(SEQ≥1(Z)) and for compositions whose summands are
restricted to the interval[1 . . r] (i.e., SEQ(SEQ1 . . r(Z)), with corresponding generating func-
tions

zk

(1− z)k
,

1− z
1− 2z + zr+1

.

In the first case, there is an explicit form for the coefficients,
`

n−1
k−1

´
, which constitutes a partic-

ular exponential-polynomial form (with the basis of the exponential being1). The second case
requires a dedicated analysis of the dominant polar singularity. (Example 2 below treats the
closely related problem of determining longest runs in random binary words.)

Integer partitionsinvolve the multiset construction. However, when summandsare re-
stricted to the interval[1 . . r], the specification and the OGF are given by

MSET(SEQ1 . . r(Z)) ≃ SEQ(Z)× SEQ(Z2)× · · ·SEQ(Zr) =⇒
rY

j=1

1

1− zj
.

This case first introduced in Section I. 3 (p. 37) has also served as a leading example in our
discussion of denumerants in Example IV.5 (p. 244), where the analysis of the pole at 1 fur-
nishes the dominant asymptotic behaviour,nr−1/(r!(r − 1)!), for such special partitions. The
enumeration of partitions by number of parts then follows, by duality, from the staircase repre-
sentation.

Set partitionsare typically labelled objects. However, when suitably constrained, they can
be encoded by regular expressions; see Section I. 4.3 (p. 58)for partitions intok classes, where
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the OGF found is

S(k)(z) =
zk

(1− z)(1− 2z) · · · (1− kz) implying S(k)
n ∼ kn

k!
,

and the asymptotic estimate results from the partial fraction decompsoition and the dominant
pole at1/k.

Wordslead to many problems that are prototypical of the regular specification framework.
In Section I. 4 (p. 47), we saw that one could give a regular expression describing the set of
words containing the patternabb, from which the exact and asymptotic forms of counting coef-
ficients derive. For a general patternp, the generating functions of words constrained to include
(or dually exclude)p are rational. The corresponding asymptotic analysis has been given in
Section IV. 6.3 (p. 257).

Words can also be analysed under the Bernoulli model, where letter i is selected with
probabilitypi; cf Section III. 6.1 for a general discussion including the analysis of records in
random words (p. 179). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . END OF EXAMPLE V.1. �

� V.6. Partially commutative monoids. LetW = A⋆ be the set of all words over a finite
alphabetA. Consider a collectionC of commutation rules between pairs of elements ofA. For
instance, ifA = {a, b, c}, thenC = {ab = ba, ac = ca} means thata commutes with bothb
andc, but bc is not a commuting pair:bc 6= cb. LetM = W/[C] be the set of equivalent
classes of words (monomials) under the rules induced byC. The setM is said to be apartially
commutative monoidor a trace monoid [80].

If A = {a, b}, then the two possibilities forC areC = ∅ andC := {ab = ba}. Normal
forms forM are given by the regular expressions(a+b)⋆ anda⋆b⋆ corresponding to the OGFs

1

1− a− b ,
1

1− a− b+ ab
.

If A = {a, b, c}, the possibilities forC, the corresponding normal forms, and the OGFsM are
as follows. IfC = ∅, thenM≃ (a+ b+ c)⋆ with OGF(1− a− b− c)−1; the other cases are

ab = ba ab = ba, ac = ca ab = ba, ac = ca, bc = cb
(a⋆b⋆c)⋆a⋆b⋆ a⋆(b+ c)⋆ a⋆b⋆c⋆

1

1− a− b− c+ ab

1

1− a− b− c+ ab+ ac

1

1− a− b− c+ ab+ ac+ bc− abc .

Cartier and Foata [80] have discovered the general form (based on extended Möbius inversion),

M =

 X

F

(−1)|F |F

!−1

,

where the sum is over all monomialsF composed of distinct letters that all commute pairwise.
Goldwurm and Santini [239] have shown that[zn]M(z) ∼ K · αn for K,α > 0. �

EXAMPLE V.2. Longest runs in wordsLongest runs in words introduced in Section I. 4.1
(p. 47) provide an illustration of the technique of localizing dominant singularities in rational
functions and of the corresponding coefficient extraction process. The probabilistic problem is a
famous one, discussed by Feller in [161], as it represents a basic question in the analysis of runs
of good (or bad) luck in a succession of independent events. Our presentation closely follows
an insightful note of Knuth [303] whose motivation was the analysis of carry propagation in
certain binary adders.

Start from the classW of all binary words over the alphabet{a, b}. Our interest lies in
the lengthL of the longest consecutive block ofa’s in a word. For the propertyL < k, the
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specification and the corresponding OGF are

W〈k〉 = SEQ<k(a) SEQ(bSEQ<k(a)) =⇒ W 〈k〉(z) =
1− zk

1− z ·
1

1− z 1−zk

1−z

,

that is,

(11) W 〈k〉(z) =
1− zk

1− 2z + zk+1
.

This represents a collection of OGFs indexed byk, which contain all the information relative to
the distribution of longest runs in random words. We proposeto prove:

Proposition V.1. The longest run parameterL taken over the set of binary words of lengthn
(endowed with the uniform distribution) satisfies the uniform estimate3

(12) Pn (L < ⌊lg n⌋+ h) = e−α(n)2−h−1

+O

„
log n√
n

«
, α(n) := 2{lg n}.

In particular, the mean satisfies

En(L) = lgn+
γ

log 2
− 3

2
+ P (lgn) +O

„
log2 n√

n

«
,

whereP is a continuous periodic function whose Fourier expansion is given by(20). The
variance satisfiesVn(L) = O(1) and the distribution is concentrated around its mean.

The probability distributions appearing in (12) are known as double exponential distributions
(Figure 3). The formula (12) does not represent a single limit distribution in the usual sense of
Chapter IX, but rather a wholefamily of distributionsindexed by the fractional part oflg n, thus
dictated by the wayn places itself with respect to powers of 2.

PROOF. The proof consists of the following steps: locate the dominant pole; estimate the
corresponding contribution; separate the dominant pole from the other poles in order to derive
constructive error terms; finally approximate the main quantities of interest.

(i) Location of the dominant pole.The OGFW 〈k〉 has, by the first form of (11) a dominant
pole ρk which is a root of the equation1 = s(ρk), wheres(z) = z(1 − zk)/(1 − z). We
considerk ≥ 2. Sinces(z) is an increasing polynomial ands(0) = 0, s( 1

2
) < 1, s(1) = k, the

rootρk must lie in the open interval( 1
2
, 1). In fact, as one easily verifies, the conditionk ≥ 2

guarantees thats(0.6) > 1, hence the refined estimate

(13)
1

2
< ρk <

3

5
(k ≥ 2).

It now becomes possible to derive very precise estimates by bootstrapping. (This technique is a
form of iteration for approaching a fixed point—its use in thecontext of asymptotic expansions
is detailed in De Bruijn’s book [111].) Writing the defining equation forρk as a fixed point
equation,

z =
1

2
(1 + zk+1),

and making use of the rough estimates (13) yields next

(14)
1

2

„
1 + (

1

2
)k+1

«
< ρk <

1

2

„
1 + (

3

5
)k+1

«
.

Thus,ρk is exponentially close to1
2
, and further iteration from (14) shows

(15) ρk =
1

2
+

1

2k+2
+O

„
k

22k

«
,

3The symbollg x denotes the binary logarithm,lgx = log2 x.
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which constitutes a very precise estimate.

(ii) Contribution from the dominant pole.A straightforward calculation provides the value
of the residue,

(16) Rn,k := −Res
h
W 〈k〉(z)z−n−1; z = ρk

i
=

1− ρk
k

2− (k + 1)ρk
k

ρ−n−1
k ,

which is expected to provide the main approximation to the coefficients ofW 〈k〉 asn → ∞.

The quantity in (16) is of the rough form2ne−n/2k+1

: we shall return to such approximations
shortly.

(iii) Separation of the subdominant poles.Consider the circle|z| = 3
4

and take the second
form of the denominator ofW 〈k〉, namely,

1− 2z + zk+1.

In view of Rouché’s theorem, we may regard this polynomial as the sumf(z) + g(z), where
f(z) = 1−2z andg(z) = zk+1. The termf(z) has on the circle|z| = 3

4
a modulus that varies

between1
2

and 5
2
; the termg(z) is at most27

64
for anyk ≥ 2. Thus, on the circle|z| = 3

4
, one

has|g(z)| < |f(z)|, so thatf(z) andf(z) + g(z) have the same number of zeros inside the
circle. Sincef(z) admitsz = 1

2
as only zero there, the denominator must also have a unique

root in |z| ≤ 3
4
, and that root must coincide withρk.

Similar arguments also give bounds on the error term when thenumber of wordsw satis-
fying L(w) < k is estimated by the residue (16) at the dominant pole. On the circle |z| = 3

4
,

the denominator ofW 〈k〉 stays bounded away from 0 (its modulus is at least5
64

whenk ≥ 2,
by previous considerations). Thus, the modulus of the remainder integral isO((4/3)n), and in
fact bounded from above by35(4/3)n . In summary, lettingqn,k represent the probability that
the longest run in a random word of lengthn is less thank, one obtains the main estimate

(17) qn,k := Pn(L < k) =
1− ρk

k

1− (k + 1)ρk
k/2

„
1

2ρk

«n+1

+O

„
(
2

3
)n

«
,

which holdsuniformlywith respect tok. Here is table of the numerical values of the quantities
appearing in the approximation ofqn,k when written under the formck · (2ρk)−n:

k ck · (2ρk)−n

2 1.17082 · 0.80901n

3 1.13745 · 0.91964n

4 1.09166 · 0.96378n

5 1.05753 · 0.98297n

10 1.00394 · 0.99950n

(iv) Final approximations.There only remains to transform the main estimate (17) into
the limit form asserted in the statement. First, the “tail inequalities” (lg x ≡ log2 x)

(18) Pn

„
L <

3

4
lgn

«
= O

“
e−

1
2

4√n
”
, Pn (L ≥ 2 lg n+ y) = O

„
e−2y

n

«
,

describe the tail of the probability distribution ofLn. They derive from simple bounding tech-
niques applied to the main approximation (17) using (15). Thus, for asymptotic purposes, only
a small region aroundlgn needs to be considered.

Regarding the central regime, fork = lgn + x andx in [− 1
4

lg n, lg n], the approxima-
tion (15) ofρk and related quantities applies, and one finds

(2ρk)−n = exp
“
− n

2k+1
+O(kn2−2k)

”
= e−n/2k+1

„
1 +O(

log n√
n

)

«
.
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FIGURE V.3. The double exponential laws: Left, histograms forn at2p (black),2p+1/3

(dark gray), and2p+2/3 (light gray), wherex = k − lg n. Right, empirical histograms for
1000 simulations withn = 100 (top) andn = 140 (bottom).

(This results from standard expansions like(1−a)n = e−na exp(O(na2)).) At the same time,
the coefficient of this quantity in (17) is

1 +O(kρk
k) = 1 +O

„
log n√
n

«
.

Thus a double exponential approximation holds (Figure 3): for k = lg n + x with x in
[− 1

4
lgn, lgn], one has (uniformly)

(19) qn,k = e−n/2k+1
„

1 +O

„
log n√
n

««
.

In particular, upon settingk = ⌊lg n⌋+ h and making use of the tail inequalities (18), the first
part of the statement, namely Equation (12), follows. (The floor function takes into account the
fact thatk must be an integer.)

The mean and variance estimates derive from the fact that thedistribution quickly decays
at values away fromlg n (by (18)) while it satisfies Equation (19) in the central region. The
mean satisfies

En(L) :=
X

h≥1

[1− Pn(L < h)] = Φ(
n

2
)−1+O

„
log2 n

n

«
, Φ(x) :=

X

h≥0

h
1− e−x/2h

i
.

Consider the three casesh < h0, h ∈ [h0, h1], andh > h1 with h0 = lg x − log log x and
h1 = lg x+ log log x, where the general term is (respectively) close to 1, between 0 and 1, and
close to 0. By summing, one finds elementarilyΦ(x) = lg x + O(log log x) asx → ∞. (An
elementary way of catching the nextO(1) term is discussed for instance in [434, p. 403].)

The method of choice for precise asymptotics is to treatΦ(x) as a harmonic sum and apply
Mellin transform techniques (APPENDIX B: Mellin Transform, p. 707). The Mellin transform
of Φ(x) is

Φ⋆(s) :=

Z ∞

0

Φ(x)xs−1 dx =
Γ(s)

1− 2s
ℜ(s) ∈ (−1, 0).
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The double pole ofΦ⋆ at 0 and the simple poles ats = 2ikπ
log 2

are reflected by the asymptotic
expansion:
(20)

Φ(x) = lg x+
γ

log 2
+

1

2
+P (lg x)+O(x−1), P (w) := − 1

log 2

X

k∈Z\{0}
Γ

„
2ikπ

log 2

«
e−2ikπw.

The oscillating functionP (w) has amplitude of the order of10−6. (See [184, 252, 303, 458]
for more on this topic.) The variance is similarly analysed.This concludes the proof of Propo-
sition V.1. �

The double exponential approximation in (12) is typical of extremal statistics. What is
striking here is the existence of a family of distributions indexed by the fractional part oflgn.
This fact is then reflected by the presence of oscillating functions in moments of the random
variableL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .END OF EXAMPLE V.2. �

� V.7. Longest runs in Bernoulli sequences.Consider an alphabetA = {aj} with letteraj

independently chosen with probability{pj}. The OGF of words where each run of equal letters
has length at mostk derives from the construction of Smirnov words (pp. 193 and 249), and it
is found to be

W [k](z) =

 
1−

X

i

piz
1− (piz)

k

1− (piz)k+1

!−1

.

Let pmax be the largest of thepj . Then the expected length of the longest run of any letter is
log n/ log pmax +O(1), and precise quantitative information can be derived from the OGFs by
methods akin to Example IV.9 (Smirnov words and Carlitz compositions, p. 249). �

Walks of the pure birth type.The next two examples develop the analysis of
walks in a special type of graphs. These examples serve two purposes: they illustrate
further cases of modelling by means of regular specifications, and, at the same time,
provide a bridge to the analysis of lattice paths in the next section.

EXAMPLE V.3. Walks of the pure-birth type.Consider a walk on the nonnegative integers
that starts at 0 and is only allowed either to stay at the same place or move by an increment
of +1. Our goal is to enumerate the walks that start from 0 and reachpointm− 1 in n steps. A
step fromj to j + 1 will be encoded by a letteraj ; a step fromj to j will be encoded bycj , in
accordance with the following state diagram:

(21)

a a a0 1 2

c0 c1 c2

The language encoding all legal walks from state 0 to statem can be described by a regular
expression,

H0,m = SEQ(c0)a0 SEQ(c1)a1 · · ·SEQ(cm−1)am−1 SEQ(cm).

Symbolicly using letters as variables, the corresponding ordinary multivariate generating func-
tion is then

H0,m(~a,~c) =
a0a1 · · · am−1

(1− c0)(1− c1) · · · (1− cm)
.

Assume now that the steps are assigned weights, withαj corresponding toaj andγj to cj .
Weights of letters are extended multiplicatively to words in the usual way (cf Section III. 6.1,
p. 178). In addition, upon takingγj = 1−αj , one obtains a probabilistic weighting: the walker
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FIGURE V.4. A simulation of 10 tra-
jectories of the pure-birth process till
n = 1024, with geometric probabili-
ties corresponding toq = 1/2, com-
pared to the curvelog2 x.

starts from position 0, and, if atj, at each clock tick, she either stays at the same place with
probability1− αj or moves to the right with probabilityαj . The OGF of such weighted walks
then becomes

(22) H0,m(z) =
α0α1 · · ·αm−1z

m

(1− (1− α0)z)(1− (1− α1)z) · · · (1− (1− αm)z)
,

and[zn]H0,m is the probability for the walker to be found at positionm at (discrete) timen.
This walk process can be alternatively interpreted as a (discrete-time)pure-birth process4 in
the usual sense of probability theory: There is a populationof individuals and, at each discrete
epoch, a new birth may take place, the probability of a birth beingαj when the population is of
sizej.

The form (22) readily lends itself to a partial fraction decomposition. Assume for simplic-
ity that theαj are all distinct. The poles ofH0,m are at the points(1− αj)

−1 and one finds as
z → (1− αj)

−1:

H0,m(z) ∼ rj,m

1− z(1− αj)
where rj,m :=

α0α1 · · ·αm−1Q
k∈[0,m], k 6=j

(αk − αj)
.

Thus, the probability of being in statem at timen is given by a sum:

(23) [zn]H0,m(z) =
mX

j=0

rj,m(1− αj)
n.

An especially interesting case of the pure-birth walk is when the quantitiesαk are geomet-
ric: αk = qk for someq with 0 < q < 1. In that case, the probability of being in statem
aftern transitions becomes (cf (23))

(24)
mX

j=0

(−1)jq(
j
2)

(q)j(q)m−j
(1− qm−j)n, (q)j := (1− q)(1− q2) · · · (1− qj).

This corresponds to a stochastic progression in a medium with exponentially increasing hard-
ness or, equivalently, to the growth of a population whose size adversely affects fertility in an
exponential manner. On intuitive grounds, we expect an evolution of the process to stay reason-
ably close to the curvey = log1/q x; see Figure 4 for a simulation confirming this fact, which
can be justified by means of formula (24). This particular analysis is borrowed from [172],
where it was initially developed in connection with the “approximate counting” algorithm to be
studied next. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . END OF EXAMPLE V.3. �

4The theory of pure-birth processes is discussed under a calculational and non measure-theoretic an-
gle in the book by Bharucha-Reid [50]. See also theCourseby Karlin and Taylor [290] for a concrete
presentation.
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EXAMPLE V.4. Approximate Counting. Assume you need to keep a counter that is able to
record the number of certain events (say impulses) and should have the capability of keeping
counts till a certain maximal valueN . A standard information-theoretic argument (withℓ bits,
one can only keep track of2ℓ possibilities) implies that one needs⌈log2N +1⌉ bits to perform
the task—a standard binary counter will indeed do the job. However, in 1977, Robert Morris has
proposed a way to maintain counters that only requires of theorder oflog logN bits. What’s
the catch?

Morris’ elegant idea consists in relaxing the constraint ofexactness in the counting process
and, by playing with probabilities, tolerate a small error on the counts obtained. Precisely, his
solution maintains a random quantityQ which is initialized byQ = 0. Upon receiving an
impulse, one updatesQ according to the following simple procedure (withq ∈ (0, 1) a design
parameter):

procedure Update(Q);
with probability qQ+1 do Q := Q+ 1 (else keep Q unchanged).

When asked the number of impulses (number of times the updateprocedure was called) at any
moment, simply use the following procedure to return an estimate:

procedure Answer(Q);

output X =
q−Q − 1

1− q .

LetQn be the value of the random quantityQ aftern executions of the update procedure
andXn the corresponding estimate output by the algorithm. It is easy to verify (by recurrence
or by generating functions; see Note 8 below for higher moments) that

(25) E(q−Qn) = n(1− q) + 1, so that E(Xn) = n.

Thus the answer provided at any instant is anunbiased estimator(in a mean value sense) of
the actual countn. On the other hand, the analysis of the geometric pure-birthprocess in the
previous example applies. In particular, the exponential approximation(1 − α)n ≈ e−nα

in conjunction with the basic formula (24) shows that for largen andm sufficiently near to
log1/q n, one has (asymptotically) thegeometric-birth distribution

(26) P (Qn = m) =
∞X

j=0

(−1)jq(
j+1
2 )

(q)j(q)∞
exp(−qx−j) + o(1), x ≡ m− log1/q n.

(We refer to [172] for details.) Such calculations imply thatQn is with high probability (w.h.p.)
close tolog1/q n. Thus, ifn ≤ N , the value ofQn will be w.h.p. bounded from above by
(1 + ǫ) log1/q N , with ǫ a small constant. But this means that the integerQ, which can itself
be represented in binary, will only require

(27) log2 log n+O(1)

bits for storage, for fixedq.
A closer examination of the formulæ reveals that the accuracy of the estimate improves

considerably whenq becomes close to 1. Thestandard erroris defined as1
n

p
V(Xn) and it

measures (in a mean quadratic sense) the relative error likely to be made. The variance ofQn

is, like the mean, determined by recurrence or generating functions, and one finds

(28) V(q−Qn) =

 
n+ 1

2

!
(1− q)3

q
,

1

n

p
V(Xn) ∼

r
1− q
2q

(see also Note 8 below). This means that accuracy increases as q approaches 1 and, by suitably
dimensioningq, one can make it asymptotically as small as desired. In summary, (25), (28),
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and (27) express the following property:Approximate counting makes it possible to count tillN
using only aboutlog logN bits of storage, while achieving a standard error that is asymptot-
ically a constant and can be set to any prescribed small value. Morris’ trick is now fully
understood.

For instance, withq = 2−1/16, it proves possible to count up to216 = 65536 using only
8 bits (instead of 16), with an error likely not to exceed 20%.Naturally, there’s not too much
reason to appeal to the algorithm when asinglecounter needs to be managed. (Everybody can
afford a few bits!) Approximate Counting turns out to be useful when a very large number of
counts need to be keptsimultaneously. It constitutes one of the early examples of a probabilistic
algorithm in the extraction of information from large volumes of data, an area also known as
data mining; see [177] for a review of connections with analytic combinatorics and references.

Functions akin to those of (26) also surface in other areas ofprobability theory. Guillemin,
Robert, and Zwart [255] have detected them in processes that combine an additive increase and
a multiplicative decrease (AIMD processes), in a context motivated by the adaptive transmis-
sion of “windows” of varying sizes in large communication networks (the TCP protocol of the
internet). Biane, Bertoin, and Yor [48] encountered a function identical to (26) in their study of
exponential functionals of Poisson processes. . . . . . . . . . .. . . . . . . . . END OF EXAMPLE V.4. �

� V.8. Moments ofq−Qn . It is a perhaps surprising fact that any integral moment ofq−Qn is a
polynomial inn andq, like in (25), (28). To see it, define

Φ(w) ≡ Φ(w, ξ, q) :=
X

m≥0

qm(m+1)/2 ξmwm

(1 + ξq)(1 + ξq2) · · · (1 + ξqm+1)
.

By (22), one has
X

m≥0

H0,m(z)wm =
1

1− zΦ

„
w;

z

1− z , q
«
.

On the other hand,Φ satisfiesΦ(w) = 1− qξ(1− w)Φ(qw), hence theq–identity,

Φ(w) =
X

j≥0

(−qξ)j
h
(1−w)(1− qw) · · · (1− qj−1w)

i
,

which resorts toq-calculus5. ThusΦ(q−r; ξ, q) is a polynomial for anyr ∈ Z≥0, as the ex-
pansion terminates. See Prodinger’s study [403] for connections with basic hypergeometric
functions and Heine’s transformation. �

Hidden patterns: Regular expression modelling and moments. We return here
to the analysis of the number of occurrences of a patternp as asubsequencein a
random text. The mean number of occurrences can be obtained by enumerating con-
texts of occurrences: in a sense we are then enumerating the language of all words by
means of a dedicated regular expression where the ambiguitycoefficient (the multi-
plicity) of a word is precisely equal to the number of occurrences of the pattern. This
technique, which gives an easy access to expectations, alsoworks for higher moments.
It supplements the fact that there is no easy way to get a BGF insuch cases.

EXAMPLE V.5. Occurrences of “hidden” patterns in texts.Fix an alphabetA = {a1, . . . , ar}
of cardinalityr and assume a probability distribution onA to be given, withpj the probability
of letteraj . We consider the Bernoulli model onW = SEQ(A), where the probability of a word

5By q–calculus is roughly meant the collection of special function identities relating power series of
the form

P
an(q)zn, wherean(q) is a rational fraction whose degree is quadratic inn. See [11, Ch. 10]

for basics and [230] for more advanced (q–hypergeometric) material.
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is the product of the probabilities of its letters (cf Section III. 6.1, 178). A wordp = y1 · · · yk

called the pattern is fixed. The problem is to gather information on the random variableX
representing the number of occurrences ofp in the setWn, where occurrences as a“hidden
pattern”, i.e., as asubsequence, are counted (Example I.11, p. 51).

The generating function associated toW endowed with its probabilistic weighting is

W (z) =
1

1−P pjz
=

1

1− z .

The regular specification

(29) O = SEQ(A)y1 SEQ(A) · · ·SEQ(A)yk−1 SEQ(A)yk SEQ(A)

describes allcontexts of occurrencesof p as a subsequence in all words. Graphically, this may
be rendered as follows for a pattern of length3, p = y1y2y3:

(30) y1 y2 y3

There the boxes indicate distinguished positions where letters of the pattern appear and the
horizontal lines represent arbitrary separating words (SEQ(A)). The corresponding OGF

(31) O(z) =
π(p)zk

(1− z)k+1
, π(p) := py1 · · · pyk−1pyk

counts elements ofW with multiplicity6, where the multiplicity coefficientλ(w) of a wordw ∈
W is precisely equal to the number of occurrences ofp as a subsequence inw:

O(z) ≡
X

w∈A⋆

λ(w)π(w)z|w|.

There results that the mean number of hidden occurrences ofp in a random word of lengthn is

(32) [zn]O(z) = π(p)

 
n

k

!
,

which is consistent with what a direct probabilistic reasoning would give.
We next proceed to determine the variance ofX overWn. In order to do so, we need

contexts in whichpairsof occurrences appear. LetQ denote the set of all words inW with two
occurrences (i.e., an ordered pair of occurrences) ofp as a subsequence being distinguished.
Then clearly[zn]Q(z) representsEWn [X2]. There are several cases to be considered. Graphi-
cally, a pair of occurrences may share no common position, like in what follows:

(33)

(
y1 y2 y3

y1 y2 y3

But they may also have one or several overlapping positions,like in

(34)

(
y1 y2 y3

y1 y2 y3

(35)

(
y1 y2 y3

y1 y2 y3

(This last situation necessitatesy2 = y3, typical patterns beingabb andaaa.)

6 In language-theoretic terms, we are making use of the regular expression O =
A⋆y1A⋆ · · · yk−1A⋆ykA⋆, that describes a subset ofA⋆ in an ambiguous manner and take into account
theambiguity coefficients.
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In the first case corresponding to (33), where there are no overlapping positions, the con-
figurations of interest have OGF

(36) Q[0](z) =

 
2k

k

!
π(p)2z2k

(1− z)2k+1
.

There, the binomial coefficient
`
2k
k

´
counts the total number of ways of freely interleaving two

copies ofp; the quantityπ(p)2z2k takes into account the2k distinct positions where the letters
of the two copies appear; the factor(1− z)−2k−1 corresponds to all the possible2k+1 fillings
of the gaps between letters.

In the second case, let us start by considering pairs where exactly one position is overlap-
ping, like in (34). Say this position corresponds to therth andsth letters ofp (r ands may be
unequal). Obviously, we needyr = ys for this to be possible. The OGF of the configurations
is now  

r + s− 2

r − 1

! 
2k − r − s
k − r

!
π(p)2(pyr )−1z2k−1

(1− z)2k
.

There, the first binomial coefficient
`

r+s−2
r−1

´
counts the total number of ways of interleaving

y1 · · · yr−1 andy1 · · · ys−1; the second binomial
`
2k−r−s

k−r

´
is similarly associated to the inter-

leavings ofyr+1 · · · yk andys+1 · · · yk; the numerator takes into account the fact that2k − 1
positions are now occupied by predetermined letters; finally the factor(1− z)−2k corresponds
to all the2k fillings of the gaps between letters. Summing over all possibilities for r, s gives the
OGF of pairs with one overlapping position as

(37) Q[1](z) =

0
@ X

1≤r,s≤k

 
r + s− 2

r − 1

! 
2k − r − s
k − r

!
[[yr = ys]]

pyr

1
A π(p)2z2k−1

(1− z)2k
.

Similar arguments show that the OGF of pairs of occurrences with at leasttwo shared
positions (see, e.g., 35)) is of the form, withP a polynomial,

(38) Q[≥2](z) =
P (z)

(1− z)2k−1
,

for the essential reason that, in the finitely many remainingsituations, there are at most(2k−1)
possible gaps.

We can now examine (36), (37), (38) in the light of singularities. The coefficient[zn]Q[0](z)
is seen to cancel to first asymptotic order with the square of the mean as given in (32). The
contribution of the coefficient[zn]Q[≥2](z) appears to be negligible as it isO(n2k−2). The
coefficient[zn]Q[1](z), which isO(n2k−1), is seen to contribute to the asymptotic growth of
the variance. In summary, after a trite calculation, we obtain:

Proposition V.2. The numberX of occurrences of a hidden patternp in a random text of sizen
obeying a Bernoulli model satisfies

EWn [X] = π(p)

 
n

k

!
∼ π(p)

k!
nk, VWn [X] =

π(p)2κ(p)2

(2k − 1)!
n2k−1

„
1 +O(

1

n
)

«
,

where the “correlation coefficient”κ(p)2 is given by

κ(p)2 =
X

1≤r,s≤k

 
r + s− 2

r − 1

! 
2k − r − s
k − r

!„
[[yr = ys]]

pyr

− 1

«
.

In particular, the distribution ofX is concentrated around its mean.
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This example is based on an article by Flajolet, Szpankowski, and Vallée [215]. There the
authors show further that the asymptotic behaviour of moments of higher order can be worked
out. By the moment convergence theorem, this calculation entails thatthe distribution ofX
overWn is asymptotically normal. The method also extends to a much more general notion
of “hidden” pattern, e.g., distances between letters ofp can be constrained in various ways
so as to determine a valid occurrence in the text [215]. It also extends to the very general
framework of dynamical sources [65], which include Markov models as a special case. The
two references [65, 215] thus provide a set of analyses that interpolate between thetwo extreme
notions of pattern occurrence—as a block of consecutive symbols or as a subsequence (“hidden
pattern”). Such studies demonstrate that hidden patterns are with high probability bound to
occur an extremely large number of times in a long enough text—this might cast some doubts
on numerological interpretations encountered in various cultures: see in particular the critical
discussion of the “Bible Codes” by McKayet al. in [354]. . . . . . . . END OF EXAMPLE V.5. �

� V.9. Hidden patterns and shuffle relations.To each pairsu, v of words overA associate
the weighted-shuffle polynomial in the indeterminatesA denoted by

`̀
u
v

´́
t

and defined by the
properties 8

>>>><
>>>>:

  
xu

yv

!!

t

= x

  
u

yv

!!

t

+ y

  
xu

v

!!

t

+ t[[x = y]]x

  
u

v

!!

t  
1

u

!!

t

=

  
u

1

!!

t

= u

wheret is a parameter,x, y are elements ofA, and1 is the empty word. Then the OGF ofQ(z)
above is

Q(z) = σ

»  
p

p

!!

(1−z)

–
1

(1− z)2k+1
,

whereσ is the substitutionaj 7→ pjz. �

V. 3. Nested sequences, lattice paths, and continued fractions.

This section treatsnested sequenceconstructions corresponding to a schema in-
volving a cascade of sequences of the rough form SEQ◦ SEQ◦ · · · ◦ SEQ. Such a
schema covers Dyck and Motzkin path, a particular type of Łukasiewicz paths al-
ready encountered in Section I. 5.3 (p. 68). Equipped with probabilistic weights, these
paths appear as trajectories of birth-and-death processes(the case of pure-birth pro-
cesses has already be dealt with in Example 3 above). They also have great descriptive
power since, once endowed with integer weights, they can encode a large variety of
combinatorial classes, including trees, permutations, set partitions, and surjections.

Since a combinatorial sequence translates into a quasi-inverse,Q(f) = (1−f)−1,
a class described by nested sequences has its generating function expressed by a cas-
cade of fractions, that is, acontinued fraction7. Analytically, these GFs have at most
two dominant poles (the Dyck case) or a single pole (the Motzkin case) on their disc
of convergence, so that the implementation of the process underlying Theorem V.1
is easy: we encounter a pure polynomial form of the simplest type that describes all

7Characteristically, the German term for “continued fraction”, is “Kettenbruch”, literally “ chain-
fraction”.
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counting sequences of interest. The profile of a nested sequence can also be easily
characterized.

This section starts with a statement of the “Continued Fraction Theorem” taken
from an old study of Flajolet [168], which provides the general set up for the rest of
the section. It then proceeds with the general analytic treatment of nested sequences.
A number of examples from various areas of discrete mathematics are then detailed.
Some of these make use of structures that are described as infinitely nested sequences,
that is, infinite continued fractions, to which the finite theory often extends—the anal-
ysis of coin fountains below is typical.

V. 3.1. Combinatorial aspects.We discuss here a special type of lattice paths
connecting points of the discrete Cartesian planeZ × Z.

Definition V.3 (Lattice path). A Motzkin pathυ = (U0, U1, . . . , Un) is a sequence
of points in the discrete quarter planeZ≥0 × Z≥0 such thatUj = (j, yj), and the
jump condition|yj+1 − yj | ≤ 1 is satisfied. An edge〈Uj , Uj+1〉 is called anascentif
yj+1 − yj = +1, a descentif yj+1 − yj = −1, and alevel stepif yj+1 − yj = 0. A
path that has no level steps is called aDyck path.

The quantityn is the length of the path,ini(υ) := y0 is the initial altitude,
fin(υ) := yn is the final altitude. A path is called anexcursionif both its ini-
tial and final altitudes are zero. The extremal quantitiessup{υ} := maxj yj and
inf{υ} := minj yj are called theheightanddepthof the path.

A path can always be encoded by a word witha, b, c representing ascents, de-
scents, and level steps, respectively. What we call thestandard encodingis such a
word in which each stepa, b, c is (redundantly) subscripted by the value of they-
coordinate of its initial point. For instance,

w = c0 a0 a1 a2 b3 c2 c2 a2 b3 b2 b1 a0 c1
encodes a path that connects the initial point(0, 0) to the point(13, 1). Such a path
can also be regarded as the evolution in discrete time of a walk over the integer line
with jumps restricted to{−1, 0,+1}, or equivalently as a path in the graph:

a0 a1 2a

c0 c1 c2

1 2b b

· · · .

Lattice paths can also be interpreted as trajectories of birth-and-death processes, where
a population can evolve at any discrete time by a birth or a death. (Compare with the
pure-birth case in (21) above.)
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As a preparation for later developments, let us examine the description of the
class writtenH[<1]

0,0 of Motzkin excursions of height< 1. We have

H[<1]
0,0

∼= SEQ(c0) =⇒ H
[<1]
0,0 (z) =

1

1 − c0
.

The class of excursions of height< 2 is obtained from there by a substitution

c0 7→ c0 + a0 SEQ(c1)b1,

to the effect that

H[<2] ∼= SEQ(c0 + a0 SEQ(c1)b1)

=⇒ H [<2](z) =
1

1 − c0 −
a0b1

1 − c1

=
1 − c1

1 − c0 − c1 + c0c1 − a0b1
.

Iteration of this simple mechanism lies at the heart of the calculations performed be-
low. Clearly, generating functions written in this way are nothing but a concise de-
scription of usual counting generating functions: for instance if individual weights8

αj , βj , γj are assigned to the lettersaj , bj, cj respectively, then the OGF of multi-
plicatively weighted paths withz marking length is obtained by setting

(39) aj = αjz, bj = βjz, cj = γjz.

The general class of paths of interest in this subsection is defined by arbitrary
combinations offlooring (bym) ceiling (by h), as well as fixing initial(k) and final
(l) altitudes. Accordingly, we define the following subclasses of the classH of all
Motzkin paths:

H[m≤•<h]
k,l := {w ∈ H : ini(w) = k, fin(w) = l, m ≤ inf{w}, sup{w} < h}.

We shall also need the specializations,

H[<h]
k,l = H[0≤•<h]

k,l , H[≥m]
k,l = H[m≤•<∞]

k,l , Hk,l = H[0≤•<∞]
k,l .

(Thus, the supercript indicates the condition that is to be satisfied byall abscissaeof
vertices of the path.) Three simple combinatorial decompositions of paths (Figure 5)
then suffice to derive all the basic formulæ.

— Arch decomposition: An excursion from and to level 0 consists of a sequence
of “arches”, each made of either ac0 or aa0H[≥1]

1,1 b1, so that

(40) H0,0 = SEQ
(
c0 ∪ a0H[≥1]

1,1 b1

)
,

which relativizes to height< h.
— Last passages decomposition.Recording the times at which each level

0, . . . , k is last traversed gives

(41) H0,k = H[≥0]
0,0 a0H[≥1]

1,1 a1 · · · ak−1H[≥k]
k,k

8Throughout this chapter, all weights are assumed to benonnegative.
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FIGURE V.5. The three major decompositions of lattice paths: the arch decomposition
(top), the last passages decomposition (bottom left), and the first passage decomposition
(bottom right).

— First passage decomposition.The quantitiesHk,l with k ≤ l are implicitly
determined by the first passage throughk in a path connecting level 0 tol,
so that

(42) H0,l = H[<k]
0,k−1ak−1Hk,l (k ≤ l),

(A dual decomposition holds whenk ≥ l.)

The basic results express the generating functions in termsof a fundamental con-
tinued fraction and its associated convergent polynomials. They involve the “numera-
tor” and “denominator” polynomials, denoted byPh andQh that are defined as solu-
tions to the second order (or “three-term”) recurrence equation

(43) Yh+1 = (1 − ch)Yh − ah−1bhYh−1, h ≥ 0,

together with the initial conditions(P−1, Q−1) = (−1, 0), (P0, Q0) = (0, 1), and
with the conventiona−1b0 = 1. In other words, settingCj = 1−cj andAj = aj−1bj,
we have:
(44)

P0 = 0, P1 = 1, P2 = C1, P3 = C1C2 −A2

Q0 = 1, Q1 = C0, Q2 = C0C1 −A1, Q3 = C0C1C2 − C2A1 − C0A2.

These polynomials are also known as continuant polynomials[308, 489].

� V.10. Combinatorics of continuant polynomials.The polynomialQh is obtained by the fol-
lowing process: start with the productΠ := C0C1 · · ·Ch−1; then cross out in all possible ways
pairs of adjacent elementsCj−1Cj , replacing each such crossed pair by−Aj . For instance,Q4

is obtained as

C0C1C2C3 +

−A1z }| {
——C0C1 C2C3 + C0

−A2z }| {
——C1C2 C3 + C0C1

−A3z }| {
——C2C3 +

−A1z }| {
——C0C1

−A3z }| {
——C2C3 .

The polynomialsPh are obtained similarly after a shift of indices. (These observations are due
to Euler; see [248, §6.7].) �
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Proposition V.3 (Continued Fraction Theorem [168]). (i) The generating function
H0,0 of all excursions is represented by the fundamental continued fraction:

H0,0 =
1

1 − c0 −
a0b1

1 − c1 −
a1b2

1 − c2 −
a2b3

. . .

.(45)

(ii) The generating function of ceiled excursionH [<h]
0,0 is given by a convergent of the

fundamental continued fraction(45), withPh, Qh as in Equation(43):

H
[<h]
0,0 =

1

1 − c0 −
a0b1

1 − c1 −
a1b2

. . .

1 − ch−1

=
Ph

Qh
.(46)

(iii) The generating function of floored excursions is given by a truncation of the
fundamental fraction:

H
[≥h]
h,h =

1

1 − ch − ahbh+1

1 − ch+1 −
ah+1bh+2

. . .

(47)

=
1

ah−1bh

QhH0,0 − Ph

Qh−1H0,0 − Ph−1
,(48)

PROOF. Repeated use of the arch decomposition (40) provides a formof H [<h]
0,0 with

nested quasi-inverses(1 − f)−1 that is the finite fraction representation (46), for in-
stance,

H[<1]
00

∼= SEQ{c0}, H[<2]
00

∼= SEQ{c0 + a0 SEQ{c1}b1},
H[<3]

00
∼= SEQ{c0 + a0 SEQ{c1 + a1 SEQ{c2}b2}b1}.

The continued fraction representation for basic paths without height constraints (namely
H0,0) is then obtained by lettingh → ∞ in (46). Finally, the continued fraction
form (47) for ceiled excursions is nothing but the fundamental form (45), when the
indices are shifted. The three continued fraction expansions (45), (46), (47) are hence
established.

Finding explicit expressions for the fractionsH [<h]
0,0 andH [≥h]

h,h next requires de-
termining the polynomials that appear in the convergents ofthe basic fraction (45).
By definition, the convergent polynomialsPh andQh are the numerator and denomi-
nator of the fractionH [<h]

0,0 . For the computation ofH [<h]
0,0 andPh, Qh, one classically
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introduces the linear fractional transformations

gj(y) =
1

1 − cj − ajbj+1y
,

so that

(49) H
[<h]
0,0 = g0 ◦ g1 ◦ g2 ◦ · · · ◦ gh−1(0) andH0,0 = g0 ◦ g1 ◦ g2 ◦ · · · , .

Now, linear fractional transformations are representableby 2 × 2-matrices

(50)
ay + b

cy + d
7→
(
a b
c d

)
,

in such a way that composition corresponds to matrix product. By induction on the
compositions that build upH [<h]

0,0 , there follows the equality

(51) g0 ◦ g1 ◦ g2 ◦ · · · ◦ gh−1(y) =
Ph − Ph−1ah−1bhy

Qh −Qh−1ah−1bhy
,

wherePh andQh are seen to satisfy the recurrence (43). Settingy = 0 in (51)
proves (46).

Finally, H [≥h]
h,h is determined implicitly as the rooty of the equationg0 ◦ · · · ◦

gh−1(y) = H0,0, an equation that, when solved using (51), yields the form (48). �

A large number of generating functions can be derived by similar techniques. We
refer to the article [168], where this theory was first systematically developed and
to the exposition given in [244, Chapter 5]. Our presentation also draws upon [188]
where the theory was put to use in order to develop a formal algebraic theory of general
birth-and-death processes in continuous time.
� V.11.Transitions and crossings.The lattice pathsH0,l corresponding to the transitions from
altitude 0 tol andHk,0 (from k to 0) have OGFs

H0,l =
1

Bl
(QlH0,0 − Pl) , Hk,0 =

1

Ak
(QkH0,0 − Pk).

The crossingsH[<h]
0,h−1 andH[<h]

h−1,0 have OGFs,

H
[<h]
0,h−1 =

Ah−1

Qh
, H

[<h]
h−1,0 =

Bh−1

Qh
.

(Abbreviations used here are:Am = a0 · · · am−1, Bm = b1 · · · bm.) These extensions pro-
vide combinatorial interpretations for fractions of the form 1/Q. They result from the basic
decompositions combined with Proposition V.3; see [168, 188] for details. �

� V.12. Denominator polynomials and orthogonality. Let Hn = [zn]H0,0(z) represent
the number of all excursions of lengthn equipped withnonnegativeweights. Define a linear
functionalL on the spaceC(z) of polynomials byL[zn] = Hn. Introduce the reciprocal
polynomials:Qh(z) = zhQ(1/z). The fact deducible from Note 11 thatQlH0,0−Pl = O(zl)

corresponds to the propertyL[zjQl) = 0 for all 0 ≤ j < l. In other words, the polynomials
Ql are orthogonal with respect to the special scalar product〈f, g〉 := L[fg]. (Historically, the
theory of orthogonal polynomials evolved from the theory ofcontinued fractions before living
a life of its own; see [88, 277, 457] for its many facets.) �



V. 3. NESTED SEQUENCES, LATTICE PATHS, AND CONTINUED FRACTIONS. 301

� V.13.Discrete time birth-and-death processes.Assume that, at discrete timesn = 0, 1, 2, . . .,
a population of sizej can grow by one element [a birth] with probabilityαj , decrease by one
element [a death] with probabilityβj , and stay the same with probabilityγj = 1 − αj − βj .
Let ωn be the probability that an initially empty population is again empty at timen. Then the
GF of the sequence(ωn) is

X

n≥0

ωnz
n =

1

1− γ0z −
α0β1z

2

1− γ1z −
α1β2z

2

· · ·

.

This result was found by I. J. Good in 1958: see [243]. �

� V.14. Continuous time birth-and-death processes.Consider a continuous time birth-and-
death process, where a transition from statej to j + 1 takes place according to an exponential
distribution of rateλj and a transition fromj to j − 1 has rateµj . Let̟(t) be the probability
to be in state 0 at timet starting from state 0 at time 0. One has

Z ∞

0

e−st̟(t) dt =
1

s+ λ0 −
λ0µ1

s+ λ1 + µ1 −
λ1µ2

· · ·

=
1

s+
λ0

1 +
µ1

s+
λ1

· · ·

.

Thus, continued fractions and orthogonal polynomials may be used to analyse birth-and-death
processes. (This fact was originally discovered by Karlin and McGregor [289], with later ad-
ditions due to Jones and Magnus [285]. See [188] for a systematic discussion in relation to
combinatorial theory.) �

V. 3.2. Analytic aspects.We now consider the general asymptotic properties of
lattice paths of height bounded from above by a fixed integerh ≥ 1. Letters denoting
elementary steps are weighted, as previously indicated, with

aj = αjz, bj = βjz, cj = γjz,

the weights being invariably nonnegative. We shall limit the discussion to excursions,
which are often the most interesting objects from the combinatorial point of view.

As a preamble, in the Dyck case, where allγj are 0 (level steps are disallowed),
the GFH [<h] is a function ofz2 only, since it takes an even number of steps to return
to altitude 0 when starting from altitude 0. In such a case, weshall systematically
assume that, when considering[zn]H [<h], the indexn = 2ν is even. In order to
avoid trivialities, we also assume that none of the coefficients attached to ascents and
descents are 0.

Theorem V.3(Asymptotics of nested sequences). Consider the classH[<h]
0,0 of weighted

Motzkin excursions of height< h. Their number satisfies a pure exponential-polynomial
formula,

H
[<h]
0,0,n = cBn +O(Cn),

whereB > 0 and0 ≤ C < B. In the Dyck case, it is assumed furthermore thatn ≡ 0
(mod 2).
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PROOF. The proof9 proceeds by induction according to the depth of nesting of the
sequence constructions. Write

fj(z) := H
[<h]
h−j−1,h−j−1(z),

and letρj denote the dominant singularity offj that is positive (existence is guaranteed
by Pringsheim’s Theorem).

For ease of discussion, we first examine the case where allγj are nonzero. The
functionf0(z) is

f0(z) =
1

1 − γh−1z
,

and one hasρ0 = 1/γh−1. The functionf1 is given by

f1(z) =
1

1 − γh−2z − αh−2βh−1z2f0(z)
.

The quantityγh−2z + αh−2βh−1z
2f0(z) in its denominator increases continuously

from 0 to+∞ asz increases from0 to ρ0; consequently, it crosses the value 1 at some
point which must beρ1. In particular, one must haveρ1 < ρ0. Our assumption that
all the γj are nonzero implies the absence of periodicities, so thatρ1 is the unique
dominant singularity. The argument can be repeated, implying that the sequence of
radii is decreasingρ0 > ρ1 > ρ2 > · · · , the corresponding poles are all simple, and
they are uniquely dominating. The statement is thus established in the case that all the
γj are nonzero.

Dually, in the Dyck case where all theγj are zero, one can reason in a similar
manner, operating with the collection of “condensed” series fj(

√
z), which are seen

to have a unique dominant singularity. This implies thatfj(z) itself has exactly two
dominant singularities, namelyρh and−ρh, both being simple poles.

In the mixed case, thefj are initially of the Dyck type, till a certainγh−1−j0 6= 0
is encountered. In that case the functionfj0 is aperiodic (its span in the sense of
Chapter IV is 1). The reasoning then continues like in the Motzkin case, with all the
subsequentfj (for j ≥ j0) includingfh−1(z) ≡ H

[<h]
0,0 (z) having a unique dominant

singularity. �

Similar devices yield a characterization of the profile of a random path, that is,
the number of times a given step appears in a random excursion.

Theorem V.4 (Profile of nested sequences). LetXn be the random variable repre-
senting the number of times a given step (of typeaj , bj, or cj) with nonzero weight
appears in a random excursion of lengthn and height< h. The moments ofXn satisfy

E(Xn) = c1n+ d1 +O(Dn), V(Xn) = c2n+ d2 +O(Dn),

for constantsc1, c2, d1, d2, D, with c1, c2 > 0 and 0 ≤ D < 1. In particular the
distribution ofXn is concentrated.

9The present discussion is also related to the analysis of thesupercritical sequence schema in the next
section.
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PROOF. Introduce an auxiliary variableu with u marking the number of designated
steps, and form the corresponding BGFH(z, u). We only discuss the expectation.
The functionH is a linear fractional transformation inu of the form

H(z, u) = A(z) +
1

C(z) + uD(z)
.

(The coefficientsA,B,C are a priori inC(z); they are in fact computable from Propo-
sition V.3.) Then, one has

∂

∂u
H(z, u)

∣∣∣∣
u=1

= − D(z)

(C(z) +D(z))2
.

This function resemblesH(z, 1)2. An application of the chain rule permits us to verify
that indeed

∂

∂u
H(z, u)

∣∣∣∣
u=1

= E(z)H(z, 1)2,

whereE(z) is analytic in disc larger than the disc of analyticity ofH(z, 1). The
analysis of the dominant double pole then yields the result.(The determination of the
second moment follows along similar lines, though the computations become more
intricate.) �

� V.15.All poles are real.Assume againαjβj+1 > 0 andγj ≥ 0. By Note 12, the denomina-
tor polynomialsQh are reciprocals of a family of polynomialsQh that are formally orthogonal
with respect to a scalar product. Thus the zeros of any of theQh are all real, and so are the
zeros ofQh. Consequently:The poles of the OGF of ceiled excursionsH [<h]

0,0 are all real. (See
for instance [457, §3.3] for the basic argument.) �

V. 3.3. Applications. Lattice paths corresponding to nested sequences have a
quite a wide range of descriptive power, especially when weights are allowed. We
illustrate this fact by three types of examples.

— Example 6 provides a complete analysis of height in Dyck paths and general
plane rooted trees, as regards moments as well as distribution. This is the
simplest case of a continued fraction with constant coefficients attached to
the OGF of Catalan numbers and Fibonacci-Chebyshev polynomials.

— Example 7 discusses coin fountains. There, we are dealing with an infinite
continued fraction to which the techniques of the previous subsection can be
extended. The developments also takes us close to the realm of q-calculus
and to the analysis of alcohols seen in Chapter IV.

— Example 8 constitutes a typical application of the possibility of encoding
combinatorial structures—here we examine interconnection networks—by
means of lattice path weighted by integers. The enumerationinvolves Her-
mite polynomials. Other examples related to set partitionsand permutations
are described in the accompanying notes.

EXAMPLE V.6. Height of Dyck paths and plane rooted trees.In order to count lattice paths of
the Dyck (D) or Motzkin (M ) type, it suffices to effect one of the substitutions,

σM : aj 7→ z, bj 7→ z, cj 7→ z; σD : aj 7→ z, bj 7→ z, cj 7→ 0.
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FIGURE V.6. Three random Dyck paths of length2n = 500 have heights resp. 20, 31,
24: the distribution is spread, see Proposition V.4.

We henceforth restrict attention to the case of Dyck paths. See Figure 6 for three simulations
suggesting that the distribution of height is somewhat spread. Given the parenthesis system
representation (Note I.45, p.73), the height of a Dyck path automatically translates into as height
of the corresponding plane rooted tree.

The continued fraction expressingH0,0 results immediately from Proposition V.3 and is in
this case periodic (here, in the sense that its stages are allalike), so that it represents a quadratic
function,

H0,0(z) =
1

1− z2

1− z2

1− . . .

=
1

2z2

“
1−

p
1− 4z2

”
,

sinceH0,0 satisfiesy = (1−z2y)−1. The families of polynomialsPh, Qh are in this case deter-
mined by a recurrence with constant coefficients. Define classically the Fibonacci polynomials
by the recurrence

(52) Fh+2(z) = Fh+1(z)− zFh(z), F0(z) = 0, F1(z) = 1.

One findsQh = Fh+1(z
2) andPh = Fh(z2). (The Fibonacci polynomials are reciprocals of

Chebyshev polynomials; see Note 16.) By Proposition V.3, the GF of paths of height< h is
then

H
[<h]
00 (z) =

Fh(z2)

Fh+1(z2)
.

(We get more and, for instance, the number of ways of crossinga strip of widthh − 1 is
H

[<h]
0,h−1(z) = zh−1/Fh+1(z

2).) Note that the polynomials have an explicit form,

Fh(z) =

⌊(h−1)/2⌋X

k=0

 
h− 1− k

k

!
(−z)k,

as follows from the generating function expression:
P

h Fh(z)yh = y/(1− y + zy2).
The equivalence between Dyck paths and (general) plane treetraversals discussed in Chap-

ter I implies that trees of height at mosth and sizen+ 1 are equinumerous with Dyck paths of
length2n and height at mosth. Set for convenience

G[h](z) = zH
[<h+1]
00 (z1/2) = z

Fh+1(z)

Fh+2(z)
,

which is precisely the OGF of general plane trees having height ≤ h. (This is otherwise in
agreement with the continued fraction forms obtained directly in Chapter III: cf (52), p. 184
and (75), p. 205.) It is possible to go much further as first shown by De Bruijn, Knuth, and Rice
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in a landmark paper [113], which also constitutes the historic application of Mellin transforms
in analytic combinatorics. (We refer to this paper for historical context and references.)

First, solving the linear recurrence (52) withz treated as a parameter yields the alternative
closed form expression

(53) Fh(z) =
Gh −Gh

G−G
, G =

1−√1− 4z

2
, G =

1 +
√

1− 4z

2
.

There,G(z) is the OGF of all trees, and an equivalent form ofG[h] is provided by

(54) G−G[h−2] =
√

1− 4z
uh

1− uh
, where u =

1−√1− 4z

1 +
√

1− 4z
=
G2

z
,

as is easily verified. ThusG[h] can be expressed in terms ofG(z) andz:

G−G[h−2] =
√

1− 4z
X

j≥1

z−jhG(z)2jh.

The Lagrange-Bürmann inversion theorem then gives after asimple calculation

(55) Gn+1 −G[h−2]
n+1 =

X

j≥1

∆2

 
2n

n− jh

!
,

where

∆2

 
2n

n−m

!
:=

 
2n

n+ 1−m

!
− 2

 
2n

n−m

!
+

 
2n

n− 1−m

!
.

Consequently, the number of trees of height≥ h − 1 admits a closed form: it is a “sampled”
sum, by steps ofh, of the2nth line of Pascal’s triangle (upon taking second order differences).

The relation (55) leads easily to the asymptotic distribution of height in random trees of
sizen. Stirling’s formula yields the Gaussian approximation of binomial numbers: fork =
o(n3/4) and withw = k/

√
n, one finds

(56)

`
2n

n−k

´
`
2n
n

´ ∼ e−w2
„

1− w4 − 3w2

6n
+

5w8 − 54w6 + 135w4 − 60w2

360n2
+ · · ·

«
.

The use of the Gaussian approximation (56) inside the exact formula (55) then implies:The
probability that a tree of sizen + 1 has height at leasth − 1 satisfies uniformly forh ∈
[α
√
n, β
√
n] (for anyα, β such that0 < α < β <∞) the estimate

(57)
Gn+1 −G[h−2]

n+1

Gn+1
= Θ

„
h√
n

«
+O

„
1

n

«
, Θ(x) :=

X

j≥1

e−j2x2

(4j2x2 − 2).

The functionΘ(x) is a “theta function” which classically arises in the theoryof elliptic func-
tions [492]. Since binomial coefficients decay fast away from the center, simple bounds also
show that the probability of height to be at leastn1/2+ǫ decays likeexp(−n2ǫ), hence is expo-
nentially small. Note also that the probability distribution of heightH itself admits of an exact
expression obtained by differencing (55), which is reflected asymptotically by differentiation of
the estimate of (57):
(58)

PGn+1

ˆ
H = ⌊x√n⌋

˜
= − 1√

n
Θ′ (x)+O

„
1

n

«
, Θ′(x) :=

X

j≥1

e−j2x2

(12j2x−8j4x3).
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FIGURE V.7. The limit density of the distribution of height−Θ′(x).

The forms (57) and (58) also give access to moments of the distribution of height. We find

EGn+1

ˆ
Hr˜ ∼ 1√

n
Sr

„
1√
n

«
, where Sr(y) := −

X

h≥1

hrΘ′(hy).

The quantityyr+1Sr(y) is a Riemann sum relative to the function−xrΘ′(x), and the step
y = n−1/2 decreases to 0 asn→∞. Approximating the sum by the integral, one gets:

EGn+1

ˆ
Hr
˜
∼ nr/2µr where µr := −

Z ∞

0

xrΘ′(x) dx.

The integral givingµr is a Mellin transform in disguise (sets = r + 1) to which the treatment
of harmonic sums applies. We then get upon replacingn+ 1 by n:

Proposition V.4. The expected height of a random plane rooted tree comprisingn+1 nodes is

(59)
√
πn− 3

2
+ o(1).

More generally, the moment of orderr of height is asymptotic to

(60) µrn
r/2 where µr = r(r − 1)Γ(r/2)ζ(r).

The random variableH/
√
n obeys asymptotically a Theta distribution, in the sense of both the

“central” estimate (57) and the “local” estimate (58). The same asymptotic estimates hold for
height of Dyck paths having length2n.

The improved estimate of the mean (59) is from [113]. The general form of moments
in (60) is in fact valid for any realr (not just integers). An alternative formula for the Theta func-
tion appears in the Note below. Figure 7 plots the limit density−Θ′(x). END OF EXAMPLE V.6. �

� V.16. Height and Fibonacci–Chebyshev polynomials.The reciprocal polynomialsFh(z) =

Fh−1(z) = zh−1Fh(1/z2) are related to the classical Chebyshev polynomials byFh(2z) =
Uh(z), whereUh(cos(θ)) = sin((h + 1)θ)/ sin(θ). (This is readily verified from the recur-
rence (52) and elementary trigonometry.) Thus, the roots ofFh(z) are(4 cos2 jπ/(h + 1))−1

and the partial fraction expansion ofG[h](z) can be worked out explicitly [113]. There results,
for n ≥ 1,

(61) G
[h−2]
n+1 =

4n+1

h

X

1≤j<h/2

sin2 jπ

h
cos2n jπ

h
,
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which provides in particular an asymptotic form for any fixedh. (This formula can also be
found directly from the sampled sum (55) by multisection of series.) Asymptotic analysis of
this last expression whenh = x

√
n yields the alternative expression

lim
n→∞

PGn+1

ˆ
H ≤ x√n

˜
= 4π5/2x−3

X

j≥0

j2e−j2π2/x2

( ≡ 1−Θ(x)),

which, when compared with (57), reflects an important transformation formula of elliptic func-
tions [492]. See the study by Biane, Pitman, and Yor [52] for fascinating connections with
Brownian motion and the functional equation of the Riemann zeta function. �

� V.17. Motzkin paths.The OGF of Motzkin paths of height< h is 1
1−z
· DH [<h]

0,0

“
z

1−z

”
,

whereDH
[<h]
0,0 refers to Dyck paths. Therefore, such paths of lengthn can be enumerated

exactly by formulæ derived from (55–61). In particular, themean height is∼
p
πn/3. �

� V.18. Height in simple varieties of trees.Consider a simple variety of trees corresponding
to the GF equationY (z) = zφ(Y (z)) (see Chapter III) and values ofn such that there exists
a tree of sizen. Assume that there exists a positiveτ strictly within the disc of convergence
of φ such thatτφ′(τ ) − φ(τ ) = 0. Then, therth moment of height (H) is asymptotically
ξr/2r(r − 1)Γ(r/2)ζ(r)nr/2. The normalized quantityH = H/ξ obeys asymptotically a
Theta distribution in the sense of both the central estimate(57) and the local estimate (58).
[This is from [197] and [180] respectively.] For instance,ξ = 2 for plane binary trees and
ξ =
√

2 for Cayley trees. �

EXAMPLE V.7. Area under Dyck path and coin fountains.Consider Dyck paths and the
parameter equal to area below the path.Area under a lattice path is taken here as the sum of
the indices (i.e., the starting altitudes) of all the variables that enter the standard encoding of the
path. Thus, the BGFD(z, q) of Dyck path withz marking half-length andq marking area is
obtained by the substitution

aj 7→ qjz, bj 7→ qj , cj 7→ 0

inside the fundamental continued fraction (45). (We rederive here Equation (53) of Chapter III,
p. 184.) It proves convenient to operate with the continued fraction

(62) F (z, q) =
1

1− zq

1− zq2

. . .

,

so thatD(z, q) = F (q−1z, q2). SinceF andD satisfy difference equations, for instance,

(63) F (z, q) =
1

1− zqF (qz, q)
,

moments of area can be determined by differentiating and setting q = 1 (see Chapter III for
such a direct approach).

A general trick fromq–calculus is effective for deriving an alternative form ofF . Attempt
to express the continued fractionF of (62) as a quotientF (z, q) = A(z)/B(z). Then, the
relation (63) implies

A(z)

B(z)
=

1

1− qz A(qz)
B(qz)

, henceA(z) = B(qz), B(z) = B(qz)− qzB(q2z),
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whereq is treated as a parameter. The difference equation satisfiedby B(z) is then readily
solved by indeterminate coefficients. (This classical technique was introduced in the theory of
integer partitions by Euler.) WithB(z) =

P
bnz

n, the coefficients satisfy the recurrence

b0 = 1, bn = qnbn − q2n−1bn−1.

This is a first order recurrence onbn that unwinds to give

bn = (−1)n qn2

(1− q)(1− q2) · · · (1− qn)
.

In other words, introducing the “q-exponential function”,

(64) E(z, q) =
∞X

n=0

(−z)nqn2

(q)n
, where (q)n = (1− q)(1− q2) · · · (1− qn),

one finds

(65) F (z, q) =
E(qz, q)

E(z, q)
.

Given the importance of the functions under discussion in various branches of mathemat-
ics, we cannot resist a quick digression. The name of theq-exponential comes form the obvious
property thatE(z(1 − q), q) reduces toe−z asq → 1−. The explicit form (64) constitutes in
fact the “easy half” of the proof of the celebrated Rogers-Ramanujan identities, namely,

(66)

E(−1, q) =
∞X

n=0

qn2

(q)n
=

∞Y

n=0

(1− q5n+1)−1(1− q5n+4)−1

E(−q, q) =

∞X

n=0

qn(n+1)

(q)n
=

∞Y

n=0

(1− q5n+2)−1(1− q5n+3)−1,

that relate theq-exponential to modular forms. See Andrews’ book [10, Ch. 7] for context.
Here is finally a cute application of these ideas to the asymptotic enumeration of some

special polyominoes. Odlyzko and Wilf define in [377, 380] an (n,m) coin fountain as an
arrangement ofn coins in rows in such a way that there arem coins in the bottom row, and
that each coin in a higher row touches exactly two coins in thenext lower row. LetCn,m be
the number of(n,m) fountains andC(z, q) be the corresponding BGF withq markingn and
z markingm. SetC(q) = C(1, q). The question is to determine the total number of coin
fountains of arean, [qn]C(q). The series starts as (this isEISA005169)

C(q) = 1 + q + q2 + 2q3 + 3q4 + 5q5 + 9q6 + 15q7 + 26q8 + · · · ,

as results from inspection of the first few cases.

There is a clear bijection with Dyck paths that takes area into account: a coin fountain of
sizen withm coins on its base is equivalent to a Dyck path of length2m and area2n−m (with
our ealier definition of area of Dyck paths). From this bijection, one hasC(z, q) = F (z, q)
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Objects Weights(αj , βjγj) Counting Orth. pol.

Simple paths 1, 1, 0 Catalan # Chebyshev
Permutations j + 1, j, 2j + 1 Factorial # Laguerre
Alternating perm. j + 1, j, 0 Secant # Meixner
Involutions 1, j, 0 Odd factorial # Hermite
Set partition 1, j, j + 1 Bell # Poisson-Charlier
Nonoverlap. set part. 1, 1, j + 1 Bessel # Lommel

FIGURE V.8. Some special families of combinatorial objects together with correspond-
ing weights, counting sequences, and orthogonal polynomials. (See also Notes 20— 22.)

(with F as defined earlier) and, in particular,C(q) = F (1, q). Consequently,

C(q) =
1

1− q

1− q2

1− q3

. . .

,

which is (62) withz = 1. The identity (65) implies next:

C(q) =
E(q, q)

E(1, q)
.

The rest of the discussion is analogous to Section IV. 7.3 (p.269) relative to alcohols. The
functionC(q) is a priori meromorphic in|q| < 1. An exponential lower bound of the form
1.6n holds for[qn]C(q), since(1 − q)/(1 − q − q2) is dominated byC(q) for q > 0. At the
same time, the number[qn]C(q) is majorized by the number of compositions, which is2n−1.
Thus, the radius of convergence ofC(q) has to lie somewhere between0.5 and0.61803 . . . . It
is then easy to check by numerical analysis the existence of asimple zero of the denominator,
E(1, q), nearρ

.
= 0.57614. Routine computations based on Rouché’s theorem then makeit

possible to verify formally thatρ is the only pole in|q| ≤ 3/5 and that this pole is simple (the
process is detailed in [377]). Thus, singularity analysis of meromorphic functions applies:

Proposition V.5. The number of coin fountains made ofn coins satisfies asymptotically

[qn]C(q) = cAn +O((5/3)n), c
.
= 0.31236, A = ρ−1 .

= 1.73566.

This example illustrates the power of modelling by continued fractions as well as the
smooth articulation with meromorphic function asymptotics. . . . . . END OF EXAMPLE V.7. �

Lattice path encodings of classical structures.The systematic theory of lattice
path enumerations and continued fractions was developed initially because of the need
to count weighted lattice paths, notably in the context of the analysis of dynamic data
structures in computer science [179]. In this framework, a system of multiplicative
weightsαj , βj , γj is associated with the stepsaj, bj , cj , each weight being an integer
that represents a number of “possibilities” for the corresponding step type. A sys-
tem of weighted lattice paths has counting generating functions given by the usual
specialization of the corresponding multivariate expressions we have just developed,
namely,

(67) aj 7→ αjz, bj 7→ βjz, cj 7→ γjz,
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FIGURE V.9. An interconnection network on2n = 12 points.

wherez marks the length of paths. One can then sometimes solve an enumeration
problem expressible in this way by reverse-engineering theknown collection of con-
tinued fractions as found in a reference book like Wall’s treatise [489]. Next, for
general reasons, the polynomialsP,Q are always elementary variants of a family of
orthogonal polynomials that is determined by the weights (see Note 12 and [88, 457]).
When the multiplicities have enough structural regularity, the weighted lattice paths
are likely to correspond to classical combinatorial objects and to classical families of
orthogonal polynomials; see [168, 179, 238, 244] and Figure 8 for an outline. We
illustrate this by a simple example due to Lagarias, Odlyzko, and Zagier [322], which
is relative to involutions without fixed points.

EXAMPLE V.8. Interconnection networks and involutions. The problem treated here has
been introduced by Lagarias, Odlyzko, and Zagier in [322]: There are2n points on a line, with
n point-to-point connections between pairs of points. What is the probable behaviour of the
width of such an interconnection network?Imagine the points to be1, . . . , 2n, the connections
as circular arcs between points, and let a vertical line sweep from left to right; width is defined
as the maximum number of edges encountered by such a line. Onemay freely imagine a tunnel
of fixed capacity (this corresponds to the width) inside which wires can be placed to connect
points pairwise. See Figure 9.

Let J2n be the class of all interconnection networks on2n points, which is precisely
the collection of ways of grouping2n elements inton pairs, or, equivalently, the class of all
involutions without fixed points, i.e., permutations with cycles of length2 only. The number
J2n equals the “odd factorial”,

J2n = 1 · 3 · 5 · · · (2n− 1),

whose EGF isez2/2 (see Chapter II, p. 113). The problem calls for determining the quantity
J

[h]
2n that is the number of networks corresponding to a width≤ h.

The relation to lattice paths is as follows. First, when sweeping a vertical line across a
network, define an active arc at an abscissa as one that straddles that abscissa. Then build
the sequence of active arcs counts at half-integer positions 1

2
, 3

2
, . . . , 2n − 1

2
, 2n + 1

2
. This

constitutes a sequence of integers where each member is±1 the previous one, that is, a lattice
path without level steps. In other words, there is an ascent in the lattice path for each element
that is smaller in its cycle and a descent otherwise. One may view ascents as associated to
situations where a node “opens” a new cycle, while descents correspond to “closing” a cycle.

Involutions are much more numerous than lattice paths, so that the correspondence from
involutions to lattice paths has to be many-to-one. However, one can easily enrich lattice paths,
so that the enriched objects are in one-to-one correspondence with involutions. Consider again
a scanning position at a half-integer where the vertical line crossesℓ (active) arcs. If the next
node is of the closing type, there areℓ possibilities to choose from. If the next node is of
the opening type, then there is only one possibility, namely, to start a new cycle. A complete
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FIGURE V.10. Three simulations of random networks with2n = 1000 illustrate the
tendency of the profile to conform to a parabola with height close ton/2 = 250.

encoding of a network is obtained by recording additionallythe sequence of then possible
choices corresponding to descents in the lattice path (somecanonical order is fixed, for instance,
oldest first). If we write these choices as superscripts, this means that the set of all enriched
encodings of networks is obtained from the set of standard lattice path encodings by effecting
the substitutions

bj 7→
jX

k=1

b
(k)
j .

The OGF of all involutions is obtained from the generic continued fraction of Proposi-
tion V.3 by the substitution

aj 7→ z, bj 7→ j · z,
wherez records the number of steps in the enriched lattice path, or equivalently, the number
of nodes in the network. In other words, we have obtained combinatorially aformal continued
fraction representation,

∞X

n=0

(1 · 3 · · · (2n− 1))z2n =
1

1− 1 · z2

1− 2 · z2

1− 3 · z2

. . .

,

which was originally discovered by Gauß [489]. Proposition V.3 also gives immediately the
OGF of involutions of width at mosth as a quotient of polynomials. Define

J [h](z) :=
X

n≥0

J
[h]
2n z

2n.

One has

J [h](z) =
1

1− 1 · z2

1− 2 · z2

. . .

1− h · z2

=
Ph+1(z)

Qh+1(z)

wherePh andQh satisfy the recurrence

Yh+1 = Yh − hz2Yh−1.

The polynomials are readily determined by their generatingfunctions that satisfies a first-order
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linear differential equation reflecting the recurrence. Inthis way, the denominator polynomials
are identified to be reciprocals of the Hermite polynomials,

Hh(z) = (2z)hQh

„
1

z
√

2

«
,

themselves defined classically [2, Ch. 22] as orthogonal with respect to the measuree−x2

dx
on (−∞,∞) and expressible via

Hm(x) =

⌊m/2⌋X

m=0

(−1)jm!

j!(m− 2j)!
(2x)m−2j ,

X

m≥0

Hm(x)
tm

m!
= e2xt−t2 .

In particular, one finds

J [0] = 1, J [1] =
1

1− z2
, J [2] =

1− 2z2

1− 3z2
, J [3] =

1− 5z2

1− 6z2 + 3z4
, &c.

The interesting analysis of the dominant poles of the rational GF’s, for any fixedh, is
discussed in the paper [322]. Furthermore, simulations strongly suggest that the width of a
random interconnection network on2n nodes is tightly concentrated aroundn/2; see Figure 10.
Louchard [341] succeeded in proving this fact and a good deal more: With high probability,
the altitude (the altitude is defined here as the number of active arcs as time evolves) of a
random network conforms asymptotically to a deterministicparabola2nx(1 − x) (with x ∈
[0, 1]) to which are superimposed random fluctuations of a smaller amplitude,O(

√
n), well-

characterized by a Gaussian process. In particular,the width of a random network of2n nodes
converges in probability ton

2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . END OF EXAMPLE V.8. �

� V.19. Bell numbers and continued fractions.With Sn = n![zn]eez−1 a Bell number:
X

n≥0

Snz
n =

1

1− 1z − 1z2

1− 2z − 2z2

· · ·

.

[Hint: Define an encoding like for networks, with level stepsrepresenting intermediate elements
of blocks [168].] Refinements include Stirling partition numbers and involution numbers. �

� V.20. Factorial numbers and continued fractions.One has
X

n≥0

n!zn =
1

1− 1z − 12z2

1− 3z − 22z2

· · ·

.

Refinements include tangent and secant numbers, as well as Stirling cycle numbers and Eulerian
numbers. (This continued fraction is due to Euler; see [168] for a proof based on a bijection of
Françon and Viennot [221] and Biane’s paper [51] for alternative combinatorics.) �

� V.21. Surjection numbers and continued fractions.LetRn = n![zn](2− ez)−1. Then
∞X

n=0

Rnz
n =

1

1− 1z − 2 · 12z2

1− 4z − 2 · 22z2

1− 7z − · · ·

.

This continued fraction is due to Flajolet [170]. �
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� V.22. The Ehrenfest2 two-chambers model.See Note II.11, p. 109 for context. The OGF of
the number of evolutions that lead to chamberA full satisfies

X

n≥0

E[N]
n zn =

1

1− 1Nz2

1− 2(N − 1)z2

· · ·

=
1

2N

NX

k=0

`
N
k

´

1− (N − 2k)z
.

This results from the EGF of Note II.11, the Continued Fraction Theorem, and basic properties
of the Laplace transform. (This continued fraction expansion is originally due to Stieltjes and
Rogers. See [245] for additional formulæ.) �

V. 4. The supercritical sequence and its applications

This schema is combinatorially the simplest of all the ones treated in this chapter,
since it plainly deals with the sequence construction. An auxiliary analytic condition,
named “supercriticality” ensures that meromorphic asymptotics applies and entails
strong statistical regularities. This paradigm of supercritical sequences unifies the as-
ymptotic properties of a number of seemingly different combinatorial types, including
integer compositions, surjections, and alignments.

V. 4.1. Combinatorial aspects.We consider a sequence construction,F = SEQ(G),
which may be taken in either the unlabelled or the labelled universe. In either case,
we have for the corresponding generating functions the relation

F (z) =
1

1 −G(z)
,

with as usualG(0) = 0. It will prove convenient to set

fn = [zn]F (z), gn = [zn]G(z),

so that the number ofFn structures isfn in the unlabelled case andn!fn otherwise.
From Chapter III, the BGF ofF -structures withu marking the number ofG-

components is

(68) F (z, u) =
1

1 − uG(z)
.

We also have access to the BGF ofF with u marking the number ofGk-components:

(69) F 〈k〉(z, u) =
1

1 − (G(z) + (u− 1)gkzk)
.

V. 4.2. Analytic aspects.We restrict attention to the case where the radius of
convergenceρ of G(z) is nonzero, in which case, the radius of convergence ofF (z)
is also nonzero by virtue of closure properties of analytic functions. Here is the basic
notion of this section.

Definition V.4. Let F,G be generating functions with nonnegative coefficients that
are analytic at 0, withG(0) = 0. The analytic relationF (z) = (1 −G(z))−1 is said
to besupercriticalif G(ρ) > 1, whereρ = ρG is the radius of convergence ofG. A
combinatorial schemaF = SEQ(G) is said to be supercritical if the relationF (z) =
(1 −G(z))−1 between the corresponding generating functions is supercritical.
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Note thatG(ρ) is well defined inR ∪ {+∞} as the limitlimx→ρ− G(x) since
G(x) increases along the positive real axis, forx ∈ (0, ρ). (The valueG(ρ) corre-
sponds to what has been denoted earlier byτG when discussing “signatures” in Sec-
tion IV. 4, p. 236.) From now on we assume thatG(z) is aperiodicin the sense that
there does not exist an integerd ≥ 2 such thatG(z) = h(zd) for someh analytic at 0.
Put otherwise, the span ofG(z) as defined on p. 252 is equal to 1. (This condition
entails no loss of analytic generality.)

Theorem V.5 (Asymptotics of supercritical sequence). Let the schemaF = SEQ(G)
be supercritical and assume thatG(z) is aperiodic. Then, one has

[zn]F (z) =
1

σG′(σ)
· σ−n (1 +O(An)) ,

whereσ is the root in(0, ρG) of G(σ) = 1 andA is a number less than 1. The
numberX ofG–components in a randomC–structure of sizen has mean and variance
satisfying

En(X) =
1

σG′(σ)
· (n+ 1) − 1 +

G′′(σ)

G′(σ)2
+O(An)

Vn(X) =
σG′′(σ) +G′(σ) − σG′(σ)2

σ2G′(σ)3
· n+O(1).

In particular, the distribution ofX onFn is concentrated.

PROOF. See also [212, 443]. The basic observation is thatG increases continuously
fromG(0) = 0 toG(ρG) = τG (with τG > 1 by assumption) whenx increases from
0 to ρG. Therefore, the positive numberσ, which satisfiesG(σ) = 1 is well defined.
Then,F is analytic at all points of the interval(0, σ). The functionG being analytic
atσ, satisfies, in a neighbourhood ofσ

G(z) = 1 +G′(σ)(z − σ) +
1

2!
G′′(σ)(z − σ)2 + · · · .

so thatF (z) has a pole atz = σ; also, this pole is simple sinceG′(σ) > 0, by
positivity of the coefficients ofG. Pringsheim’s theorem then implies that the radius
of convergence ofF must coincide withσ.

There remains to show thatF (z) is meromorphic in a disc of some radiusR > σ
with the pointσ as the only singularity inside the disc. This results from the assump-
tion thatG is aperiodic. In effect, by the Daffodil Lemma (Lemma IV.3, p. 253), one
has|G(σeiθ)| < 1 for all θ 6≡ 0 (mod 2π) . Thus, by compactness, there exists a disc
of radiusR > σ in which F is analytic except for a unique pole atσ. Taker such
thatσ < r < R and apply the main theorem of meromorphic function asymptotics to
deduce the stated formula withA = σ/r.

Consider next the number ofG-components in a randomF structure of sizen.
Bivariate generating functions give access to the expectation of this random variable:

En(X) =
1

fn
[zn]

∂

∂u

1

1 − uG(z)

∣∣∣∣
u=1

=
1

fn
[zn]

G(z)

(1 −G(z))2
.
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The problem is now reduced to extracting coefficients in a univariate generating func-
tion with a double pole atz = σ, and it suffices to expand the GF locally atσ. The
variance calculation is similar though it involves a triplepole. �

When a sequence construction is supercritical, the number of components is in
the mean of ordern while its standard deviation isO(

√
n). Thus, the distribution is

concentrated (see Section III. 2.2, p. 150). In fact, there results from a general theorem
of Bender [28] that the distribution of the number of components is asymptotically
Gaussian; see Chapter IX for details.

Profiles of supercritical sequences.We have seen in Chapter III that integer
compositions and integer partitions, when sampled at random, tend to assume rather
different aspects. Given a sequence construction,F = SEQ(G), the profile of an
elementα ∈ F is the vector(X〈1〉, X〈2〉, . . .) whereX〈j〉(α) is the number ofG–
components inα that have sizej. In the case of (unrestricted) integer compositions,
it could be proved elementarily that, on average and for sizen, the number of1 sum-
mands is∼ n/2, the number of2 summands is∼ n/4, and so on. Now that mero-
morphic asymptotics is available, such a property can be placed in a much wider
perspective.

Theorem V.6(Profiles of supercritical sequences). Consider a supercritical sequence
construction,F = SEQ(G), with the aperiodicity condition. The number ofG–
components of any fixed sizek in a randomF–object of sizen satisfies

(70) En(X〈k〉) =
gkσ

k

σG′(σ)
n+O(1), Vn(X〈k〉) = O(n),

whereσ in (0, σG) is such thatG(σ) = 1, andgk = [zk]G(z).

PROOF. The bivariate GF withu marking the number ofG–components of sizek is

F (z, u) =
1

1 − (G(z) + (u− 1)gkzk)
,

as results from the theory developed in Chapter III. The meanvalue is then given by a
quotient,

En(X〈k〉) =
1

fn
[zn]

∂

∂u
F (z, u)

∣∣∣∣
u=1

=
1

fn
[zn]

gkz
k

(1 −G(z))2
.

The GF of cumulated values has a double pole atz = σ, and the estimate of the mean
value follows. The variance is estimated similarly, after two successive differentiations
and the analysis of a triple polar singularity. �

The total number of componentsX satisfiesX =
∑
X〈k〉, and, by Theorem V.5,

its mean is asymptotic ton/(σG′(σ)). Thus, Equation (70) indicates that, at least
in some average-value sense, the “proportion” of components of sizek amongst all
components is given bygkσ

k.
� V.23. Proportion ofk–components and convergence in probability.For any fixedk, the
random variableX〈k〉

n /Xn converges in probability to the valuegkσ
k,

X
〈k〉
n

Xn

P−→ gkσ
k, i.e., lim

n→∞
P

(
gkσ

k(1− ǫ) ≤ X
〈k〉
n

Xn
≤ gkσ

k(1 + ǫ)

)
= 1,
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for anyǫ > 0. The proof is an easy consequence of the Chebyshev inequalities (the distributions
of Xn andX〈k〉

n are both concentrated). �

V. 4.3. Applications. We examine here two types of applications of the super-
critical sequence schema.

— Example 9 makes explicit the asymptotic enumeration and the analysis of
profiles of compositions, surjections and alignments. Whatstands out is the
way the mean profile of a structure reflects the underlying inner construction
K in schemas of the form SEQ(K(Z)).

– Example 10 discusses compositions into restricted summands, including the
striking case of compositions into primes.

EXAMPLE V.9. Compositions, surjections, and alignments. The three classes of interest here
are integer compositions (C), surjections (R) and alignments (O), which are specified as

C = SEQ(SEQ≥1(Z)), R = SEQ(SET≥1(Z)), C = SEQ(CYC(Z))

and belong to either the labelled universe (C) or to the labelled universe (R andO). The
generating functions (of type OGF, EGF, and EGF, respectively) are

C(z) =
1

1− z
1−z

, R(z) =
1

1− (ez − 1)
, O(z) =

1

1− log(1− z)−1
.

A direct application of Theorem V.5 gives us the already known results

Cn = 2n−1,
1

n!
Rn ∼ 1

2
(log 2)−n−1,

1

n!
On = e−1(1− e−1)−n−1,

corresponding toσ equal to1
2
, log 2, and1− e−1, respectively.

Similarly, the expected number of summands in a random composition of the integern
is ∼ n+1

2
. The expected cardinality of the range of a random surjection whose domain has

cardinalityn is asymptotic toβn with β = 1/(2 log 2); The expected number of components
in a random alignment of sizen is asymptotic ton/(e− 1).

Theorem V.6 also applies and gives the mean number of components of sizek in each case.
The following table summarizes the conclusions:

Structures Specif. Law (gkσ
k) Type σ

Compositions SEQ(SEQ≥1(Z))
1

2k
Geometric

1

2

Surjections SEQ(SET≥1(Z))
1

k!
(log 2)k Poisson log 2

Alignments SEQ(CYC(Z))
1

k
(1− e−1)k Logarithmic 1− e−1

Note that the stated laws necessitatek ≥ 1. The geometric and Poisson law are classical;
the logarithmic distribution(also called “logarithmic-series distribution”) of parameterλ is by
definition the law of a discrete random variableY such that

P(Y = k) =
1

log(1− λ)−1

λk

k
, k ≥ 1.

The way the internal constructionK in the schema SEQ(K(Z)) determines the law of compo-
nent sizes,

Sequence7→Geometric; Set7→Poisson; Cycle7→Logarithmic,
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FIGURE V.11. Profile of structures drawn at random represented by the sizes of their
components in sorted order: (from left to right) a random surjection, alignment, and com-
position of sizen = 100.

stands out. Figure 11 exemplifies the phenomenon by displaying components sorted by size and
represented by vertical segments of corresponding lengthsfor three randomly drawn objects of
sizen = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . END OF EXAMPLE V.9. �

EXAMPLE V.10. Compositions with restricted summands, compositions intoprimes. Un-
restricted integer compositions are well understood as regards enumeration: their number is
exactlyCn = 2n−1, their OGF isC(z) = (1 − z)/(1 − 2z), and compositions withk sum-
mands are enumerated by binomial coefficients. Such simple exact formulæ disappear when
restricted compositions are considered, but, as we now show, asymptotics is much more robust
to changes in specifications.

Let S be a subset of the integersZ≥1 such thatgcd(S) = 1, i.e., not all members ofS
are multiples of a common divisord ≥ 2. In order to avoid trivialities, we also assume that
S 6= {1}. The classCS of compositions with summands constrained to the setS then satisfies:

Specification: CS = SEQ(SEQS(Z));

OGF: CS(z) =
1

1− S(z)
, S(z) =

X

s∈S

zs.

By assumption,S(z) is aperiodic, so that Theorem V.5 applies directly. There isa well-defined
numberσ such that

S(σ) = 1, 0 < σ < 1,

and the number ofS–restricted compositions satisfies

(71) CS
n := [zn]CS(z) =

1

σS′(σ)
· σ−n (1 +O(An)) .

Amongst the already discussed cases,S = {1, 2} gives rise to Fibonacci numbers and, more
generally,S = {1, . . . , r} corresponds to partitions with summands at mostr. In this case, the
OGF,

C{1,...,r}(z) =
1

1− z 1−zr

1−z

=
1− z

1− 2z + zr+1

is a simple variant of the OGF associated to longest runs in strings. The treatment of the latter
can be copied almost verbatim to the effect that the largest component in a random composition
of n is found to belg n+O(1), both on average and with high probability.
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10 16 15
20 732 734
30 3603936057
40 17722071772261
50 8710926387109248
60 42815500474281549331
70 210444532770210444530095
80 1034366226718710343662265182
90 508406414757253508406414781706

100 2498893292949083824988932929612479

FIGURE V.12. The pyramid relative to compositions into prime summands for n =
10 . . 100: (left: exact values; right: asymptotic formula rounded).

Here is a surprising application of the general theory. Consider the case whereS is taken
to be the set of prime numbers,Prime = {2, 3, 5, 7, 11, . . .}, thereby defining the class of
compositions into prime summands. The sequence starts as

1, 0, 1, 1, 1, 3, 2, 6, 6, 10, 16, 20, 35, 46, 72, 105,

corresponding toG(z) = z2 + z3 + z5 + · · · , and isEISA023360in Sloane’s encyclopedia.
The formula (71) provides the asymptotic form of the number of such compositions. It is also
worth noting that the constants appearing in (71) are easilydetermined to great accuracy, as we
now explain.

By (71) and the preceding equation, the dominant singularity of the OGF of compositions
into primes is the positive rootσ < 1 of the characteristic equation

S(z) ≡
X

p Prime

zp = 1.

Fix a threshold valuem0 (for instancem0 = 10 or 100) and introduce the two series

S−(z) :=
X

s∈S, s<m0

zs, S+(z) :=

 X

s∈S, s<m0

zs

!
+

zm0

1− z .

Clearly, forx ∈ (0, 1), one hasS−(x) < S(x) < S+(x). Define then two constantsσ−, σ+

by the conditions

S−(σ−) = 1, S+(σ+) = 1, 0 < σ−, σ+ < 1.

These constants are algebraic numbers that are accessible to computation. At the same time,
they satisfyσ+ < σ < σ−. As the order of truncation,m0, increases, the values ofσ+, σ−

provide better and better approximations toσ, together with an interval in whichσ provably
lies. For instance,m0 = 10 is enough to determine that0.66 < σ < 0.69, and the choice
m0 = 100 givesσ to 15 guaranteed digits of accuracy, namely,σ

.
= 0.67740 17761 30660.

Then, the asymptotic formula (71) instantiates as

(72) CPrime
n ∼ g(n), g(n) := 0.30365 52633 · 1.47622 87836n .

The constantσ−1 .
= 1.47622 is akin to the family of Backhouse constants described in [165].

Once more, the asymptotic approximation is very good as exemplified by the pyramid of
Figure 12. The difference betweenCPrime

n and its approximationg(n) from Eq. (72) is plotted
on the left of Figure 13. The seemingly haphazard oscillations that manifest themselves are well
explained by the principles discussed in Section IV. 6.1 (p.250). It appears that the next poles
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FIGURE V.13. Errors in the approximation of the number of compositions into primes
for n = 70 . . 100: left, the values ofCPrime

n − g(n); right, the correctiong2(n) arising
from the next two poles, which are complex conjugate and the continuous extrapolation of
this approximation.

of the OGF are complex conjugate and lie near−0.76 ± 0.44i, having modulus about0.88.
The corresponding residues then jointly contribute a quantity of the form

g2(n) = c · An sin(ωn+ ω0), A
.
= 1.13290,

for some constantsc, ω, ω0. Comparing the left and right parts of Figure 13, we see that this
next layer of poles explains quite well the residual errorCPrime

n − g(n).
Here is a final example that demonstrates in a striking way thescope of the method. Define

the setPrime2 of “twinned primes” as the set of primes that belong to a twin prime pair, that is,
p ∈ Prime2 if one ofp−2, p+2 is prime. The setPrime2 starts as3, 5, 7, 11, 13, 17, 19, 29, 31, . . .
(numbers like23 or 37 are thus excluded). The asymptotic formula for the number ofcomposi-
tions of the integern into summands that are twinned primes, is

CPrime2
n ∼ 0.18937 · 1.29799n ,

where the constants are found by methods analogous to the case of all primes. It is quite
remarkable that the constants involved are still computable real numbers (and of low complexity,
even), this despite the fact that it is not known whether the set of twinned primes is finite or
infinite. Incidentally, a sequence that starts likeCPrime2

n ,

1, 0, 0, 1, 0, 1, 1, 1, 2, 1, 3, 4, 3, 7, 7, 8, 14, 15, 21, 28, 33, 47, 58, . . .

and coincides till index 22 included (!), but not beyond, wasencountered by P. A. MacMahon10,
as the authors discovered, much to their astonishment, fromscanning Sloane’s Encyclopedia,
where it appears asEISA002124. . . . . . . . . . . . . . . . . . . . . . . . . . . . END OF EXAMPLE V.10. �

10See “Properties of prime numbers deduced from the calculus of symmetric functions”,Proc. London
Math. Soc., 23 (1923), 290-316). MacMahon’s sequence corresponds to compositions into arbitraryodd
primes, and 23 is the first such prime that is not twinned.
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� V.24. Random generation of supercritical sequences.Let F = SEQ(G) be a supercritical
sequence scheme. Consider a sequence of i.i.d. (independently identically distributed) random
variablesY1, Y2, . . . each of them obeying the discrete law

P(Y = k) = gkσ
k, k ≥ 1.

A sequence is said to be hittingn if Y1+ · · ·+Yr = n for somer ≥ 1. The vector(Y1, . . . , Yr)
for a sequence conditioned to hitn has the same distribution as the sequence of the lengths of
components in a randomF–object of sizen.

For probabilists, this explains the shape of the formulæ in Theorem V.5, which resemble
renewal relations [161, Sec. XIII.10]. It also implies that, given a uniform randomgenerator for
G–objects, one can generate a randomF–object of sizen in O(n) steps on average [139]. This
applies to surjections, alignments, and compositions in particular. �

� V.25. Largest components in supercritical sequences.Let F = SEQ(G) be a supercritical
sequence. Assume thatgk = [zk]G(z) satisfies the asymptotic “smoothness” condition

gk ∼
k→∞

cρ−kkβ, c, ρ ∈ R>0, β ∈ R.

Then the sizeL of the largestG component in a randomF object satisfies, for sizen,

EFn(X) =
1

log(ρ/σ)
(log n+ β log log n) + o(log log n).

This covers integer compositions (ρ = 1, β = 0) and alignments (ρ = 1, β = −1). [The anal-
ysis generalizes the case of longest runs in Example 2 and is based on similar principles. The

GF ofF objects withL ≤ m isF 〈m〉(z) =
“
1−Pk≤m gkz

k
”−1

, according to Section III.7.

Form large enough, this has a dominant singularity which is a simple pole atσm such that
σm − σ ∼ c1(σ/ρ)mmβ . There follows a double-exponential approximation

PFn(L ≤ m) ≈ exp
“
−c2nmβ(σ/ρ)m

”

in the “central” region. See Gourdon’s study [246] for details.] �

V. 5. Paths in graphs and automata

In this section, we develop the framework ofpaths in graphs: given a graphΓ,
a source node, and a destination node, the problem is to enumerate all paths from
the source to the destination. Nonnegative weights acting multiplicatively (probabil-
ities, multiplicities) may be attached to edges. Applications include the analysis of
walks in various types of graphs as well as languages described by finite automata.
Under a fundamental structural condition, known asirreducibility and correspond-
ing to strong-connectedness of the graph, generating functions of paths all have the
same dominant singularity, which is asimple pole. This essential property implies
simple exponential forms for the asymptotics of coefficients (possibly tempered by
explicit congruence conditions in the periodic case). The corresponding results can
equivalently be formulated in terms of the set ofeigenvalues(the spectrum) of the
corresponding adjacency matrix and are related to the classical Perron-Frobenius the-
ory of nonnegative matrices—under irreducibility, only the largest positive eigenvalue
matters asymptotically.
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V. 5.1. Combinatorial aspects.A directed graphor digraphΓ is determined by
the pair(V,E) of its vertex setV and its edge setE ⊆ V × V . Here, self loops
corresponding to edges of the form(v, v) are allowed. Given an edge,e = (a, b),
we denote its origin byorig(e) := a and its destination bydestin(e) := b. For Γ a
digraph with vertex set identified to the set{1, . . . ,m}, we allow each edge(a, b) to
be weighted by a quantityga,b, which we may take as a formal indeterminate, and for
which allow ourselves to substitute positive weight values. The matrixG such that

(73) Ga,b = ga,b if the edge(a, b) ∈ Γ, Ga,b = 0 otherwise,

is called theweighted adjacency matrixof the (weighted) graphΓ. The usual adja-
cency matrix ofΓ is obtained by the substitutionga,b 7→ 0.

A path is a sequence of edges,̟ = (e1, . . . , en), such that, for allj with 1 ≤
j < n, one hasdestin(ej) = orig(ej+1). The parametern is called the length of the
path and we define:orig(̟) := orig(e1), destin(̟) := destin(en). A circuit is a
path whose origin and destination are the same vertex. Note that, with our definition,
a circuit has its origin that is distinguished. We donot identify here two circuits such
that one is obtained by circular permutation from the other and also refer to circuits
with such a root distinguished asrooted circuits.

From the standard definition of matrix products, the powersG
n have elements

that are path polynomials. More precisely, one has the simple but essential relation,

(74) (G)n
i,j =

∑

w∈F〈i,j〉
n

w,

whereF 〈i,j〉
n is the set of paths inΓ that connecti to j and have lengthn, and a path

w is identified with the monomial in indeterminates{gi,j} that represents multiplica-
tively the succession of its edges; for instance:

(G)3i,j =
∑

ν1=i,ν2,ν3,ν4=j

gν1,ν2gν2,ν3gν3,ν4 .

In other words:powers of the matrix associated to a graph generate all pathsin
graph, the weight of a path being theproductof the weights of the individual edges
it comprises. (This fact probably constitutes the most basic result of algebraic graph
theory [53, p. 9].) One may then treat simultaneously all lengths of paths (and all
powers of matrices) by introducing the variablez to record length.

Proposition V.6. (i) Let Γ be a digraph and letG be the formal adjacency matrix
of Γ as given by(73). The OGFF 〈i,j〉(z) of the set of all paths fromi to j in Γ, with
z marking length andga,b the weight associated to edge(a, b), is the entryi, j of the
matrix (I − zG)−1, namely

(75) F 〈i,j〉(z) =
(
(I − zG)−1

)
i,j

= (−1)i+j ∆〈i,j〉(z)

∆(z)
,

where∆(z) = det(I − zG) is the reciprocal polynomial of the characteristic poly-
nomial ofG and∆〈j,i〉(z) is the determinant of the minor of indexj, i of I − zG.
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(ii) The generating function of (rooted) circuits is expressible in terms of a loga-
rithmic derivative,

(76)
∑

i

(F 〈i,i〉(z) − 1) = −z∆′(z)

∆(z)
.

In this algebraic statement, if one takes the{ga,b} as formal indeterminates, then
F 〈i,j〉(z) is a multivariate GF of paths inz with the variable{ga,b} marking the num-
ber of occurrences of edge(a, b). The result specializes to the case where thega,b are
assigned numerical values, in which case[zn]F 〈i,j〉(z) becomes the total weight of
paths of lengthn, which we also refer to as “number of paths” in the weighted graph.
PROOF. For the proof, it is convenient to assume that the quantitiesga,b are assigned
arbitrary real numbers, so that usual matrix operations (triangularization, diagonaliza-
tion, and so on) can be easily applied. Since the properties expressed by the statement
are utimately equivalent to a collection of multivariate polynomial identities, their
general validity is implied by the fact that they hold for allreal assignments of values.

Part(i) results from the fundamental equivalence between paths andmatrix prod-
ucts (74), which implies

F 〈i,j〉(z) =

∞∑

n=0

zn (Gn)i,j =
(
(I − zG)

−1
)

i,j
,

and from the cofactor formula of matrix inversion.
Part(ii) results from elementary properties of the matrix trace11 functional. Withm

the dimension ofG and{λ1, . . . , λm} the multiset of its eigenvalues, we have

(77)
m∑

i=1

F 〈i,i〉
n = TrGn =

m∑

j=1

λn
j ,

whereF 〈i,j〉
n = [zn]F 〈i,j〉(z). Upon taking a generating function, there results that

(78)
m∑

i=1

∞∑

n=1

F 〈i,i〉
n zn =

m∑

j=1

λjz

1 − λjz
,

which, up to a factor of−z, is none other than the logarithmic derivative of∆(z). �

� V.26. Positivity of inverses of characteristic polynomials.Let G have nonnegative coeffi-
cients. Then, the rational functionZG(z) := 1/ det(I − zG) has nonnegative Taylor coef-
ficients. More generally, ifG = (ga,b) is a matrix in the formal indeterminatesga,b, then
[zn]ZG(z) is a polynomial in thega,b with nonnegative coefficients. (Hint: The proof proceeds
by integration from (76): we have, for1/∆(z), the equivalent expressions

1

∆(z)
≡ exp

„
−
Z z

0

∆′(t)

∆(t)
dt

«
= exp

 Z z

0

mX

i=1

(F 〈i,i〉(t)− 1)
dt

t

!
= exp

0
@X

n≥1

zn

n
TrGn

1
A,

which ensure positivity of the coefficients ofZG.) �

11If H is anm × m matrix with multiset of eigenvalues{µ1, . . . , µm}, the trace is defined by
TrH :=

Pm
i=1(H)ii and, by triangularization (Jordan form), it satisfiesTrH =

Pm
j=1 µj .



V. 5. PATHS IN GRAPHS AND AUTOMATA 323

� V.27. MacMahon’s Master Theorem.Let J be the determinant

J(z1, . . . , zm) :=

˛̨
˛̨
˛̨
˛̨

1− z1g11 −z2g12 · · · −zmg1m

−z1g21 1− z2g22 · · · −zmg2m

...
...

. . .
...

−zmgm1 −zmg2m · · · 1− zmgmm

˛̨
˛̨
˛̨
˛̨
.

MacMahon’s “Master Theorem” asserts the identity of coefficients,

[zα1
1 · · · zαm

m ]
1

J(z1, . . . , zm)
= [zα1

1 · · · zαm
m ]Y α1

1 · · ·Y αm
m , where Yj =

X

i

gijzj .

This result can be obtained by a simple change of variables ina multivariate Cauchy integral and
is related to multivariate Lagrange inversion [244, pp. 21–23]. Cartier and Foata [80] provide a
general combinatorial interpretation related to trace monoids of Note 6, p. 285. �

� V.28. The Jacobi trace formula.Jacobi’s trace formula [244, p. 11] for square matrices is

(79) det ◦ exp(M) = exp ◦Tr(M)

or equivalently, with due care paid to determinations,log ◦det(M) = Tr ◦ log(M)) which
generalizes the scalar identitieseaeb = ea+b and log ab = log a + log b. (Hint: recycle the
computations of Note 26.) �

� V.29. Fast computation of the characteristic polynomial.The following algorithm is due
to Leverrier (1811–1877), the astronomer and mathematician who, together with Adams, first
predicted the position of the planet Neptune. Since, by (77)and (78), one has

X

n≥1

zn Tr G
n =

mX

j=1

λz

1− λjz
,

it is possible to deduce an algorithm that determines the characteristic polynomial of a matrix
of dimensionm in O(m4) arithmetic operations. [Hint: computing the quantitiesTr Gj for
j = 1, . . . ,m is sufficient and requires preciselym matrix multiplications.] �

� V.30. The matrix tree theorem. Let Γ be a directed graph without loops and associated
matrixG, with ga,b the weight of edge(a, b). The Laplacian matrixL[G] is defined by

L[G]i,j = −gi,j + [[i = j]]δi, where δi :=
X

k

gi,k.

Let L1[G] be the matrix obtained by deleting the first row and first column of L[G]. Then, the
“tree polynomial”

T1[G] := detL1[G]

enumerates all (oriented) spanning trees ofΓ rooted at node 1. [This classic result belongs to a
circle of ideas initiated by Kirchhoff, Sylvester, Borchardt and others in the 19th century. See,
e.g., the discussions by Knuth [306, p. 582–583] and Moon [364].] �

Weighted graphs, word models, and finite automata.The numeric substitution
σ : ga,b 7→ 1 transforms the formal adjacency matrixG of Γ into the usualadjacency
matrix. In particular, the number of paths of lengthn is obtained, under this substitu-
tion, as[zn](1− zG)−1. As already noted, it is possible to consider weighted graphs,
where thega,b are assignedpositive real-valued weights; with the weight of a path be-
ing defined by the product of its edges weights. One finds that[zn](I − zG)−1 equals
the total weight of all paths of lengthn. If furthermore the assignment is made in
such a way that

∑
b ga,b = 1, for all a, then the matrixG, which is called astochastic

matrix, can be interpreted as the transition matrix of a Markov chain. Naturally, the
formulae of Proposition V.6
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Word problems corresponding to regular languages can be treated by the theory
of regular specifications whenever they have enough structure and an unambiguous
regular expression description is of tractable form. (Thisis the main theme that has
been pursued in Sections V. 2 and V. 3.) The dual point of view of automata theory
introduced in Section I. 4.2 (p. 52) proves useful whenever no such direct description
is in sight. Finite automata can resort to the theory of pathsin graphs, so that Proposi-
tion V.6 is applicable to them. Indeed, the languageL accepted by a finite automaton
A, with set of statesQ, initial stateq0, andQf the set of final states, decomposes as

L =
∑

q∈Qf

F 〈q0,q,

whereF 〈q0,q is the set of path from the initial stateq0 to one of the final state,q.
(The corresponding graphΓ is obtained fromA by collapsing multiple edges between
any two vertices,i andj, into a single edge equipped with a weight that is thesum
of the weights of all the letters leading fromi to j.) Proposition V.6 is then clearly
applicable.

Profiles. By profile of a set of paths is meant here the collection of them2 statis-
ticsN = (N1,1, . . . , Nm,m) whereNi,j is the number of times the edge(i −→ j) is
traversed. This notion is for instance consistent with the notion of profile given earlier
for lattice paths in Section V. 3. It also contains the information regarding the letter
composition of words in a regular language and is thus compatible with the notion of
profile introduced in Section V. 2.

Let Γ be a graph with edge(a, b) weighted byγa,b. Then, the BGF of paths with
u marking the number of times a particular edge(c, d) is traversed is in matrix form

(I − zG̃)−1, with G̃ = G

[
ga,b 7→ ga,bu

[[(a,b)=(c,d)]]
]
.

The entry(i, j) in this matrix gives the BGF of paths with origini and destinationj.
The GF of cumulated values (moments of order 1) is then obtained from there in the
usual way, by differentiation followed by the substitutionu = 1. Higher moments are
similarly attainable by successive differentiations.

V. 5.2. Analytic aspects.In full generality, the components of a linear system
of equations may exhibit the whole variety of behaviours obtained for the OGFs of
regular languages in Section V. 2, p. 278. However, positivity coupled with some
simple ancillary conditions (irreducibility and aperiodicity defined below) entails that
the GFs of interest closely resemble the extremely simple rational function,

1

1 − z/ρ
≡ 1

1 − λ1z
,

whereρ is the dominant positive singularity andλ1 = 1/ρ is a well-characterized
eigenvalue ofT . Accordingly, the asymptotic phenomena associated with such sys-
tems are highly predictable and coefficients are of the pure exponential formc · ρ−n.
We propose to expose here the general theory and treat in the next section classical ap-
plications to statistics of paths in graphs and languages recognized by finite automata.
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FIGURE V.14. Irreducibility conditions. Left: a strongly connected digraph. Right: a
weakly connected digraph that is not strongly connected is acollection of strongly con-
nected components linked by a directed acyclic graph.

Irreducibility and aperiodicity of matrices and graphs.From this point on in
this section, we consider matrices with nonnegative entries. Two notions are essential,
irreducibility and aperiodicity (the terms are borrowed from Markov chain theory and
matrix theory).

ForA a scalar matrix of dimensionm ×m (with nonnegative entries), a crucial
rôle is played by thedependency graph; this is the (directed) graph with vertex set
V = {1 . .m} and edge set containing the directed edge(a → b) iff Aa,b 6= 0. The
reason for this terminology is the following: LetA represent the linear transformation{
y⋆

i =
∑

j Ai,jyj

}

i
; then, the fact that an entryAi,j is nonzero means thaty⋆

i depends

effectively onyj and is translated by the directed edge(i → j) in the dependency
graph.

Definition V.5. The nonnegative matrixA is calledirreducibleif its dependency graph
is strongly connected (i.e., any two vertices are connectedby a directed path).

By considering only simple paths, it is then seen that irreducibility is equivalent
to the condition that(I+A)m has all its entries that are strictly positive. See Figure 14
for a graphical rendering of irreducibility and for the general structure of a (weakly
connected) digraph.

Definition V.6. A strongly connected digraphΓ is said to beperiodicwith parameter
d iff the vertex setV can be partitioned intod classes,V = V0 ∪ · · · ∪Vd−1, in such a
way that any edge whose source is an element of aVj has its destination inVj+1 mod d.

The largest possibled is called theperiod. If no decomposition exists withd ≥ 2,
so that the period has the trivial value 1, then the graph and all the matrices that admit
it as their dependency graph are calledaperiodic.

For instance, a directed10-cycle is periodic with parametersd = 1, 2, 5, 10 and
the period is 10. Figure 15 illustrates the notion. Periodicity implies that the existence
of paths of lengthn between any two given nodesi, j is constrained by the congruence
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V0

V1

V2

V3

FIGURE V.15. Periodicity notions: the overall structure of a periodic graph withd = 4
(left), an aperiodic graph (middle) and a periodic graph of period 2 (right).

classn mod d. Conversely, aperiodicity entails the existence, for alln sufficiently
large, of paths of lengthn connectingi, j.

From the definition, a matrixAwith periodd has, up to simultaneous permutation
of its rows and columns, a cyclic block structure




0 A0,1 0 · · · 0

0 0 A1,2 · · · 0

...
...

...
. . .

...
0 0 0 · · · Ad−2,d−1

Ad−1,0 0 0 · · · 0




where the blocksAi,i+1 are reflexes of the connectivity betweenVi andVi+1. In
the case of a periodd, the matrixAd admits a diagonal square block decomposition
where each of its diagonal block is aperiodic (and of a smaller dimension than the
original matrix). Then, the matricesAνd can be analysed block by block, and the
analysis reduces to the aperiodic case. Similarly for powersAνd+r for any fixedr as
ν varies. In other words,the irreducible periodic case with periodd ≥ 2 can always
be reduced to a collection ofd irreducible aperiodic subproblems.For this reason, we
usually postulate in our statements both an irreducibilityconditionandan aperiodicity
condition.
� V.31. Sufficient conditions for aperiodicity.Any one of the following conditions suffices to
guarantee aperiodicity of the nonnegative matrixT :

(i) T has (strictly) positive entries;
(ii) some powerT s has (strictly) positive entries;

(iii) T is irreducible and at least one diagonal element ofT is nonzero;
(iv) T is irreducible and the dependency graph ofT is such that there exist two circuits

(closed paths) that are of relatively prime lengths.

(Any such condition implies in turn the existence of a uniquedominant eigenvalue ofT , which
is simple, according to Theorem V.7 and Note 34 below.) �

� V.32.Computability of the period.There exists a polynomial time algorithm that determines
the period of a matrix. (Hint: in order to verify thatΓ is periodic with parameterd, develop a
breadth-first search tree, label nodes by their level, and check that edges satisfy suitable con-
gruence conditions modulod.) �
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Paths in strongly connected graphs.For analytic combinatorics, the importance
of irreducibility and aperiodicity conditions stems from the fact that they guarantee
uniqueness and simplicity of a dominant pole of path generating functions.

Theorem V.7 (Asymptotics of paths in graphs). Consider the matrix

F (z) = (I − zT )−1,

whereT is a scalar nonnegative matrix, in particular, the adjacency matrix of a graph
Γ equipped with positive weights. Assume thatT is irreducible. Then all entries
F 〈i,j〉(z) ofF (z) have the same radius of convergenceρ, which can be defined in two
equivalent ways:

(i) asρ = λ−1
1 with λ1 the largest positive eigenvalue ofT ;

(ii) as the smallest positive root of the determinantal equation: det(I−zT ) = 0.

Furthermore, the pointρ = λ−1
1 is a simple pole of eachF 〈i,j〉(z).

If T is irreducibleandaperiodic, thenρ = λ−1
1 is the unique dominant singularity

of eachF 〈i,j〉(z), and

[zn]F 〈i,j〉(z) = ϕi.jλ
n
1 +O(Λn), 0 ≤ Λ < λ1,

for computable constantsϕi,j > 0.

PROOF. The proof proceeds by stages, building up properties of theF 〈i,j〉 by means
of the relations that bind them, with suitable exploitationof Proposition V.6, p. 321 in
conjunction withPringsheim’s Theorem(p. 229). In Parts(i)–(v), weassume that the
matrixT is aperiodic. Periodicity is finally examined in Part(vi).

(i) All F 〈i,j〉 have the same radius of convergence.Simple upper and lower
bounds show that eachF 〈i,j〉 has a finite nonzero radius of convergenceρi,j . By
Pringsheim’s Theorem, thisρi,j is necessarily a singularity of the functionF 〈i,j〉.
Since eachF 〈i,j〉 is a rational function, it then has a pole atρi,j , hence becomes infi-
nite asz → ρi,j . Now, the matrixF satisfies the identities

(80) F = I + zTF, and F = I + zFT.

Thus, given thatT is irreducible, eachF 〈i,j〉 is positively linearly related to any other
F 〈k,ℓ〉. Thus, theF 〈i,j〉 must all become infinite as soon as one of them does. Conse-
quently, all theρi,j are equal—we letρ denote their common value.

(ii) All poles are of the same multiplicity.By a similar argument, we see that all
theF 〈i,j〉 must have the same multiplicityκ of their common poleρ, since otherwise,
one function would be of slower growth, and a contradiction would result with the
linear relations stemming from (80). We thus have, for someϕi,j > 0:

F 〈i,j〉(z) ∼
z→ρ

ϕi,j

(1 − z/ρ)κ
.

(iii) The common multiplicity of poles isκ = 1. This property results from
the expression of the GF of all rooted circuits (PropositionV.6, Part(ii)) in terms of a
logarithmic derivative, which has by construction only simple poles. Hence, a positive
linear combination of some of theF 〈i,j〉 has only a simple pole, so thatκ = 1 and

(81) F 〈i,j〉(z) ∼
z→ρ

ϕi,j

1 − z/ρ
.
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Another consequence is that we haveρ = 1/λ1, whereλ1 is an eigenvalue of matrix
T , which then satisfies the property thatλ1 ≥ |λ| for any eigenvalueλ of T : in matrix
theory terminology, such an eigenvalue is called “dominant”12.

(iv) There are positive dominant eigenvectors.From the relations (80) satisfied
by theF 〈i,j〉(z) with j fixedand from (81), one finds asz → ρ

(82)
ϕi,j

1 − z/ρ
∼ ρ

∑

k

ti,kϕk,j

1 − z/ρ
, where T = (Ti,j).

This expresses the fact that the column vector(ϕ1,j , . . . , ϕm,j)
t is a right eigenvector

corresponding to the eigenvalueλ1 = ρ−1. Similarly, for each fixedi, the row vec-
tor (ϕi,1, . . . , ϕi,m) is found to be a left eigenvector. By Part(ii), these eigenvector
have all their components strictly positive.

(v) The eigenvalueλ1 is simple.This property is needed in order to identify the
ϕi,j coefficients. We base our proof on the Jordan normal form and simple inequali-
ties.

Assume first that there are two different Jordan blocks corresponding to the eigen-
valueλ1. Then there exist two vectors,v = (v1, . . . , vm)t andw = (w1, . . . , wm)t,
such that

Tv = λ1v, Tw = λ1w,

where we may assume that the eigenvectorv has positive coordinates, given Part(iv).
Let j0 be an index such that

|wj0 |
vj0

= max
j=1 . . m

|wj |
vj

.

By possibly changingw to −w and by rescaling, we may freely assume thatwj0 =
vj0 . Also, sincev andw are not collinear, there must existj1 such that|wj1 | < vj1 .
In summary:

(83) wj0 = vj0 , |wj1 | < vj1 , ∀j : |wj | ≤ vj .

Consider finally the two relationsTmv = λm
1 v andTmw = λm

1 w, and examine
consequences for thej0 components. One has

(84) vj0 =

m∑

k=1

Uj0,kvk, wj0 =

m∑

k=1

Uj0,kwk,

where eachUj,k, the (j, k) entry of Tm, is positive, by the irreducibility and ape-
riodicity assumptions. But then, by the triangle inequality, there is a contradiction
between (84) and (83). Thus, there cannot be two distinct Jordan blocks correspond-
ing toλ1.

There only remains to exclude the existence of a Jordan blockof dimension≥ 2
associated toλ1. If such a Jordan block were present, there would exists a vector w

12In matrix theory, a dominant eigenvalue (λ1) is one that islargestin modulus, while, for an analytic
function, a dominant singularity (ρ) is one that issmallestin modulus. The two notions are reconciled by
the fact that here singularities areinversesof eigenvalues (ρ = 1/λ1).
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such that

(85)

{
Tv = λ1w
Tw = λ1w + v

implying

{
T νmv = λνm

1 w,
T νmw = λνm

1 w + νmλνm−1
1 v.

By simple bounds obtained from comparingw to v componentwise, it is found that
the vectorT νmw must have all its coordinates that areO(λνm

1 ). Upon takingν → ∞,
a contradiction is reached with the last relation of (85), where the growth of these
coordinates is of the formνλνm

1 . Thus, a Jordan block of dimension≥ 2 is also
excluded, and the eigenvalueλ1 is simple.

(vi) Aperiodicity ofT is equivalent to the existence of a uniquely dominant eigen-
value. If λ1 uniquely dominates, meaning thatλ1 > |λ| for all eigenvaluesλ 6= λ1,
then eachF 〈i,j〉 has a simple pole atρ that is its unique dominant singularity. Hence
the coefficients[zn]F 〈i,j〉(z) are nonzero forn large enough, since they are asymp-
totic toϕi,jρ

−n by (81). This last property ensures aperiodicity.
Conversely, ifT is aperiodic, thenλ1 uniquely dominates. Indeed, suppose that

µ be an eigenvalue ofT such that|µ| = λ1, with w a corresponding eigenvector. We
would haveTmv = λm

1 v andTmw = µmw. But then, by an argument similar to the
one used in Part(v), upon making use of inequalities (83), we would need to havew
andv collinear, which is absurd.

We leave it as an exercise to the reader to verify the strongerproperty that identi-
fies the period with the number of dominant eigenvalues: see Note 33. �

Several of these arguments will inspire the discussion, in Chapter VII, of the
harder problem of analysing coefficients of algebraic functions defined by positive
polynomial systems (Subsection VII. 6.3, p. 464).
� V.33. Periodicities.If T has periodd, then the support of eachF 〈j,j〉(z) is included indZ,
hence there are at leastd conjugate singularities, corresponding to eigenvalues ofthe form
λ1e

2ikπ/d. There are no other eigenvalues sinceT d is built out of irreducible blocks, each with
the unique dominant eigenvalueλd

1. �

� V.34. The classical Perron-Frobenius Theorem.The proof of Theorem V.7 immediately
gives:

Theorem. LetA be a matrix withnonnegative elementsthat is assumed to beirreducible.
The eigenvalues ofA can be ordered in such a way that

λ1 = |λ2| = · · · = |λd| > |λd+1| ≥ |λd+2| ≥ · · · ,
and all the eigenvalues of largest modulus are simple. Furthermore, the quantityd is precisely
equal to the period of the dependency graph. In particular, in theaperiodic cased = 1, there
is unicity of the dominant eigenvalue. In theperiodic cased ≥ 2, the whole spectrum has a
rotational symmetry: it is invariant under the set of transformations

λ 7→ λe2ijπ/d, j = 0, 1, . . . , d− 1.

The properties of positive and of nonnegative matrices havebeen superbly elicited by Per-
ron [392] in 1907 and by Frobenius [222] in 1908–1912. The corresponding theory has far-
reaching implications: it lies at the basis of the theory of finite Markov chains and it extends
to positive operators in infinite-dimensional spaces [318]. Excellent treatments of Perron-
Frobenius theory are to be found in the books of Bellman [26, Ch. 16], Gantmacher [225,
Ch. 13], as well as Karlin and Taylor [290, p. 536–551]. �

� V.35. Unrooted circuits. Consider a strongly connected weighted graphΓ with adjacency
matrix G = (gi,j). LetRC be the class of allrootedcircuits andPRC the subclass of those
that are primitive (i.e., they differ from all their cyclic shifts). Let alsoUC be the class of all
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unrootedcircuits (no origin distinguished) andPUC the subclass of those that are primitive.
Define the adjacency matrixG⊙s := ((gi,j)

s) obtained by raising each entry ofG to thesth
power. Set finally∆G(z) := det(I − zG). We find
8
>><
>>:

RC(z,G) =
X

k≥1

PRC(zk,G⊙k), PUC(z,G) =

Z z

0

PRC(t,G)
dt

t
,

UC(z,G) =
X

k≥1

PUC(zk,G⊙k),

upon mimicking the reasoning of APPENDIX A: Cycle construction, p. 674. This results in

UC(z) =
X

k≥1

ϕ(k)

k
log ∆G⊙k(z),

[zn]UC(z) =
λn

1

n
+O(Λn), [zn]PUC(z) =

λn
1

n
+O(Λn),

where the two asymptotic estimates hold under irreducibility and aperiodicity conditions. These
estimates can be regarded as a Prime Number Theorem for walksin graphs. (See [450] for
related facts and zeta functions of graphs.) �

Profiles. The proof of Theorem V.7 provides the form of a certain “residue ma-
trix”, from which several probabilistic properties of paths follow.

Lemma V.1 (Iteration of irreducible matrices). Let the nonnegative matrixT be ir-
reducible and aperiodic, withλ1 its dominant eigenvalue. Then the residue matrixΦ
such that

(86) (I − zT )−1 =
Φ

1 − zλ1
+O(1) (z → λ−1

1 )

has entries given by (〈x, y〉 represents the scalar product
∑

i xiyi)

ϕi,j =
riℓj
〈r, ℓ〉 ,

wherer and ℓ are respectively right and left eigenvectors ofT corresponding to the
eigenvalueλ1.

PROOF. We have seen that the matrixΦ = (ϕi,j) has its rows and columns respec-
tively proportional to right and left eigenvectors belonging to the eigenvalueλ1. Thus,
we have

ϕi,j

ϕ1,j
=
ϕi,1

ϕ1,1
,

while theϕ1,j (respectively,ϕi,1) are the coordinates of a left (respectively, right)
eigenvector. There results that there exists a normalization constantξ such that

ϕi,j = ξriℓj.

That normalization constant is then determined by the fact that GF of circuits has
residue equal toρ = λ−1

1 at z = ρ, so that
∑

i ϕj,j = 1, leading to

1 = ξ
∑

j

rjℓj,

which implies the statement. �

Equipped with the lemma, we can now state:
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Theorem V.8 (Profiles of paths in graphs). Let G be a nonnegative matrix associ-
ated to a weighted digraphΓ, assumed to be irreducible and aperiodic. Letℓ, r be
respectively the left and right eigenvectors corresponding to the dominant (Perron-
Frobenius) eigenvalueλ1. Consider the collectionF 〈a,b〉 of (weighted) paths inΓ
with fixed origina and final destinationb. Then, the number of traversals of edge
(s, t) in a random element ofF 〈a,b〉

n has mean

(87) τs,tn+O(1) where τs,t :=
ℓsgs,trt
〈ℓ, r〉 .

In other words, a long random path tends to spend asymptotically a fixed (nonzero)
fraction of its time traversing any given edge. Accordingly, the number of visits to
vertexs is also proportional ton and obtained by summing the expression of (87)
according to all the possible values oft.
PROOF. First, the total weight (“number”) of paths inFa,b satisfies

(88) [zn]
[
(I − zG)−1

]
a,b

∼ raℓb
〈ℓ, r〉 ,

as follows from Lemma V.1. Next, introduce the modified matrix H = (hi,j) defined
by

hi,j = gi,j u
[[i=s∧j=t]].

In other words, we mark each traversal of edgei, j by the variableu. Then, the
quantity

(89) [zn]

[
∂

∂u
(I − zH)−1

∣∣∣∣
u=1

]

a,b

represents the total number of traversals of edge(s, t), with weights taken into ac-
count. Simple algebra13 shows that

(90)
∂

∂u
(I − zH)−1

∣∣∣∣
u=1

= (I − zG)−1 (zH′) (I − zG),

whereH′ := (∂uH)u=1 has all its entries equal to 0, except for thes, t entry whose
value isgs,t. By the calculation of the residue matrix in Lemma V.1, the coefficient
of (89) is then asymptotic to

(91) [zn]
ϕa,s

1 − λ1z
gs,tz

ϕt,b

1 − λ1z
∼ υnλn

1 , υ :=
raℓsgs,trtℓb

〈ℓ, r〉2 .

Comparison of (91) and (88) finally yields the result since the relative error terms are
O(n−1) in each case. �

Another consequence of this last proof and Equation (88) is that the numbers of
paths starting ata and ending at eitherb or c satisfy

(92) lim
n→∞

F
〈a,b〉
n

F
〈a,c〉
n

=
ℓb
ℓc
.

13If A is an operator depending onu, one has∂u(A−1) = −A−1(∂uA)A−1, which is a noncom-
mutative generalization of the usual differentiation rulefor inverses.
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In other words, the quantity
ℓb∑
j ℓj

is the asymptotic probability that a random path with originfixed at some pointa but
otherwise unconstrained will end up at pointb after a large number of steps. Such
properties are strongly evocative of Markov chain theory discussed below in Exam-
ple 13.
� V.36. Residues and projections.Let E = Cm be the ambient space, wherem is the dimen-
sion ofT , assumed to be irreducible and aperiodic. There exists a direct sum decomposition
E = F1 + F2 whereF1 is the 1-dimensional eigenspace generated by the eigenvector (r)
corresponding to eigenvalueλ1 andF2 is the supplementary space which is the direct sum of
characteristic spaces corresponding to the other eigenvaluesλ2, . . . . (For the purposes of the
present discussion, one may freely think of the matrix as diagonalizable, withF2 the union of
eigenspaces associated toλ2, . . . .) ThenT as a linear operator acting onF admits the decom-
position

T = λ1P + S,
whereP is the projector onF1 andS acts onF2 with spectral radius|λ2|, as illustrated by the
diagram:

(93)

O

~v
P~v

(r)

F2S~v

By standard properties of projections,P 2 = P andPS = SP = 0 so thatTn = λn
1P + Sn.

Consequently, there holds,

(94) (I − zT )−1 =
X

n≥0

(znλn
1P + znSn) =

P

1− λ1z
+ (I − zS)−1.

Thus, the residue matrixΦ coincides with the projectorP .
From there, one finds also

(95) (I − zT )−1 =
Φ

1− λ1z
+
X

k≥0

Rk

`
z − λ−1

1

´k
, Rk := Sk(I − λ−1

1 S)−k−1,

which provides a full expansion. �

� V.37.Algebraicity of the residues.One only needs to solve one polynomial equation in order
to determineλ1. Then the entries ofΦ and theRk in (95) are all obtained by rational operations
in the field generated by the entries ofT extended by the algebraic quantityλ1: for instance, in
order to get an eigenvector, it suffices to replace one of the equations of the systemTr = λ1r
by a normalization condition, liker1 + · · ·+ rm = 1. (Numerical procedures are likely to be
used instead for large matrices.) �

Automata and words.By proposition V.6 (p. 321), the OGF of the language de-
fined by a deterministic finite automaton is expressible in terms of the quasi-inverse
(1 − zT )−1, where the matrixT is a direct encoding of the automaton’s transitions.
Corollary V.7 and Lemma V.1 have been precisely custom-tailored for this situation.
As is by now usual, we shall allow weights on letters of the alphabet, corresponding to
a Bernoulli model on words. We say that an automaton is irreducible (resp. aperiodic)
if the underlying graph and the associated matrix are irreducible (resp. aperiodic).
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Proposition V.7 (Random words and automata). LetL be a language recognized by
a deterministic finite automatonA whose graph is irreducible and aperiodic. The
number of words ofL satisfies

Ln ∼ cλn
1 +O(Λn),

whereλ1 is the dominant (Perron-Frobenius) eigenvalue of the transition matrix ofA
andc,Λ are real constants withc > 0 and0 ≤ Λ < λ1.

In a random word ofLn, the number of traversals of a designated vertex or edge
has a mean that is asymptotically linear inn and is given by Theorem V.8.

� V.38. Unambiguous automata.A nondeterministic finite state automaton is said to be un-
ambiguous if the set of accepting paths for any given words comprises at most one element.
The translation into generating function as described above also applies to such automata, even
though they are nondeterministic. �

� V.39. Concentration of distribution for the number of passages.Under the conditions of
the theorem, the standard deviation of the number of traversals of a designated node or edge
is O(

√
n). Thus in a random long path, the distribution of the number ofsuch traversals is

concentrated. [Compared to (90), the calculation of the second moment requires taking a further
derivative, which leads to a triple pole. The second moment and the square of the mean, which
are eachO(n2), are then found to cancel to main asymptotic order.] �

V. 5.3. Applications. We now provide a few application of Theorems V.7 and V.8.

— First, two simple applications are discussed. Example 11 studies briefly the
case of words that are locally constrained in the sense that certain transitions
between letters are forbidden. Example 12 revisits walks onan interval and
develops an alternative matrix view of a problem otherwise amenable to
continued fraction theory.

— Example 13 makes explicit the way the fundamental theorem of finite Markov
chain theory can be derived effortlessly as a consequence ofthe more gen-
eral Theorem V.8. Example 14 compares on a simple problem, the devil’s
staircase, the combinatorial and the Markovian approaches.

— Example 15 comes back to words and develops simple consequence of an
important combinatorial construction, that of De Bruijn graphs. This graph
is precious in predicting in many cases theshapeof the asymptotic results
that are to be expected when confronted with word problems. Example 16
concludes this section with a brief discussion of special case of words with
excluded patterns, thereby leading to a quantitative version of Borges’ The-
orem (Note I.32, p. 58).

In all these examples, the counting estimates are of the formcλn
1 , while the expecta-

tions of parameters of interest have a linear growth.

EXAMPLE V.11. Locally constrained words.Consider a fixed alphabetA = {a1, . . . , am}
and a setF ⊆ A2 of forbidden transitions between consecutive letters. Theset of words
overA with no such forbidden transition is denoted byL and is called a locally constrained
language. (The particular case where exactly all pairs of equal letters are forbidden corresponds
to Smirnov words and has been discussed on p. 249.)
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0
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1 1 0 0
1 0 1 1
1 0 0 0
0 0 1 1

1
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a b
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d c
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FIGURE V.16. Locally constrained words: The transition matrix (T ) associated to the
forbidden pairsF = {ac, ad, bb, cb, cc, cd, da, db}, the corresponding automaton, and the
graph with widths of vertices and edges drawn in proportion to their asymptotic frequen-
cies.

Clearly, the words ofL are recognized by an automaton whose state space is isomorphic
toA: stateq simply memorizes the fact that the last letter read was aq. The graph of the au-
tomaton is then obtained by the collection of allowed transitions(q, r) 7→ a, with (q, r) 6∈ F .
(In other word, the graph of the automaton is the complete graph in which all edges that corre-
spond to forbidden transitions are deleted.) Consequently, the OGF of any locally constrained
language is a rational function. Its OGF is given by

(1, 1, . . . , 1)(I − zT )−1(1, 1, . . . , 1)t,

whereTij is 0 if (ai, aj) ∈ F and 1 otherwise. If each letter can follow any other letter inan
accepted word, the automaton is irreducible. The graph is aperiodic except in a few degenerate
cases (e.g., in the case where the allowed transitions wouldbea→ b, c, b→ d, c→ d, d→ a).
Under irreducibility and aperiodicity, the number of wordswill be ∼ cλn

1 and each letter will
have on average an asymptotic constant frequency. (See (34)and (35) of Chapter IV for the
case of Smirnov words.)

For the example of Figure 16, the alphabet isA = {a, b, c, d}. There are eight forbidden
transitions and the characteristic polynomialχG(λ) := det(λI−G) is found to beλ3(λ−2).
Thus, one hasλ1 = 2. The right and left eigenvectors are found to be

r = (2, 2, 1, 1)t, ℓ = (2, 1, 1, 1).

Then, the matrixτ , whereτs,t represents the asymptotic frequency of transitions from letter s
to lettert, is found in accordance with Theorem V.8:

τ =

0
BB@

1
4

1
4

0 0
1
8

0 1
16

1
16

1
8

0 0 0
0 0 1

16
1
16

1
CCA .

This means that a random path spends a proportion equal to1
4

of its time on a transition between
ana and ab, but much less (1

16
) on transitions between pairs of lettersbc, bd, cc, ca. The letter

frequencies in a random word ofL are( 1
2
, 1

4
, 1

8
, 1

8
), so that ana is four times more frequent

than ac or ad, and so on. See Figure 16 (right) for a rendering.
Various specializations, including multivariate GF’s andnonuniform letter models are

readily treated by this method. Bertoniet al. develop in [49] related variance and distribu-
tion calculations in the case of the number of occurrences ofa symbol in an arbitrary regular
language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . END OF EXAMPLE V.11. �
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EXAMPLE V.12. Walks on the interval revisited.As a direct illustration, consider the walks
associated to the graphΓ(5) with vertex set1, . . . , 5 and edges being formed of all pairs(i, j)
such that|i− j| ≤ 1. The matrix is

G(5) =

0
B@

1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1

1
CA.

The characteristic polynomialχG(z) := det(zI −G) factorizes as

χG(5)(z) = z(z − 1)(z − 2)(z2 − 2z − 2),

and its dominant root isλ1 = 1 +
√

3. From there, one finds a left eigenvector (which is also a
right eigenvector since the matrix is symmetric):

r = ℓt = (1,
√

3, 2,
√

3, 1).

Thus a random path (with the uniform distribution over all paths corresponding to the weights
being equal to 1) visits nodes1, . . . , 5 with frequencies proportional to

1, 1.732, 2, 1.732, 1,

implying that the non-extremal nodes are visited more often—such nodes have higher degrees
of freedom, so that there tend to be more paths that traverse them.

In fact, this example has structure. For instance, the graphΓ(11) defined by an interval of
length 10, leads to a matrix with a highly factorable characteristic polynomial

χG(11) = z (z − 1) (z − 2)
`
z2 − 2 z − 2

´ `
z2 − 2 z − 1

´ `
z4 − 4 z3 + 2 z2 + 4 z − 2

´
.

The reader may have recognized a particular case of lattice paths which resort to the theory
exposed in Section V. 3. Indeed, according to Proposition V.3, the OGF of paths from vertex 1
to vertex 1 in the graphΓ(k) with vertex set{1, . . . , k} is given by the continued fraction

1

1− z − z2

1− z − z2

. . .

1− z − z2

1− z

.

(The number of fraction bars isk.) From this it can be shown that the characteristic polynomial
of G is an elementary variant of the Fibonacci–Chebyshev polynomial of Example 6, p. 303.
The analysis based on Theorem V.8 is simpler, albeit more rudimentary, as it only provides a
first-order asymptotic solution to the problem.

This example is typical: in many cases combinatorial problems have some amount of
regularity. In such situations, all the resources of linearalgebra are available, including the
vast body of knowledge gathered over years on calculations of structured determinants; see for
instance Krattenthaler’s survey [319] and the book [483]. . . . . . . . END OF EXAMPLE V.12. �

EXAMPLE V.13. Elementary theory of finite Markov chains.Consider the case where the row
sums of matrixG are all equal to 1, that is,

P
j gi,j = 1. Such a matrix is called astochastic

matrix. The quantitygi,j can then be interpreted as the probability of leaving statei for statej,
assuming one is in statei. Assume that the matrixG is irreducible and aperiodic. Clearly, the
matrixG admits the column vectorr = (1, 1, . . . , 1)t as a right eigenvector corresponding to
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G =

0
BB@

1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 0 0 0

1
CCA eG =

0
BBBBB@

1
2

1
2

0 0 0 0
1
2

0 1
2

0 0 0
1
2

0 0 1
2

0 0
1
2

0 0 0 1
2

0
1
2

0 0 0 0 1
2

1 0 0 0 0 0

1
CCCCCA

FIGURE V.17. The devil’s staircase (m = 6) and the two matrices that can model it.

the dominant eigenvalueλ1 = 1. The left eigenvectorℓ normalized so that its elements sum
to 1 is called the (row) vector of stationary probabilities.It must be calculated by linear algebra
and its detrmination involves finding an element of the kernel of matrix I −G, which can be
done in a standard way.

Application of Theorem V.8 and Equation (88) shows immediately the following:

Proposition V.8 (Stationary probabilities of Markov chains). Consider a weighted graph cor-
responding to a stochastic matrixG which is irreducible and aperiodic. Letℓ be the normalized
left eigenvector corresponding to the eigenvalue 1. A random (weighted) path of lengthn with
fixed origin and destination visits nodes a mean number of times asymptotic toℓsn and tra-
verses edge(s, t) a mean number of times asymptotic toℓsgs,tn. A random path of lengthn
with fixed origin ends at vertexs with probability asymptotic toℓs.

The vectorℓ is also known as the vector ofstationary probabilities. The first-order asymp-
totic property expressed by Proposition V.8 certainly constitutes the most fundamental result in
the theory of finite Markov chains. . . . . . . . . . . . . . . . . . . . . . .. . . . . END OF EXAMPLE V.13. �

EXAMPLE V.14. The devil’s staircase. This example illustrates an elementary technique
often employed in calculations of eigenvalues and eigenvectors. It presupposes that the matrix
to be analysed can be reduced to a sparse form and has a regularenough structure.

You live in a house that has a staircase withm steps. You come back home a bit loaded
and at each second, you can either succeed in climbing a step or fall back all the way down. On
the last step, you always stumble and fall back down (Figure 17). Where are you likely to be
found at timen?

Precisely, two slightly different models correspond to this informally stated problem. The
probabilistic model views it as a Markov chain with equally likely possibilities at each step
and is reflected by matrixeG in Figure 17. The combinatorial model just assumes all possible
evolutions (“histories”) of the system as equally likely and it corresponds to matrixG. We opt
here for the latter, keeping in mind that the same method basically applies to both cases.

We first write down the constraints expressing the joint properties of an eigenvalueλ and
its right eigenvectorx = (x1, . . . , xm)t. The equations corresponding to(λI −G)x = 0 are
formed of a first batch ofm− 1 relations,

(96) (λ− 1)x1 − x2 = 0, −x1 + λx2 − x3 = 0, · · · ,−x1 + λxm−1 − xm = 0,

together with the additional relation (one cannot go higherthan the last step):

(97) −x1 + λxm = 0.
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The solution to (96) is readily found by pulling out successively x2, . . . , xm as functions ofx1:

(98) x2 = (λ−1)x1, x3 = (λ2−λ−1)x1, · · · , xm = (λm−1−λm−2−· · ·−1)x1.

Combined with the special relation (97), this last relationshows thatλmust satisfy the equation

(99) 1− 2λm + λm+1 = 0.

Let λ1 be the largest positive root of this equation, existence anddominance being guaranteed
by Perron-Frobenius properties. Note that the quantityρ := 1/λ1 satisfies the characteristic
equation

1− 2ρ+ ρm+1 = 0,

already encountered when discussing longest runs in words;the discussion of Example 2 then
grants us the existence of an isolatedρ near1

2
, hence the fact thatλ1 is slightly less than 2.

Similar devices yield the left eigenvectory = (y1, . . . , ym). It is found easily thatyj must
be proportional toλ−j

1 . We thus obtain from Theorem V.8 and Equation (92):The probability
of being in statej (i.e., being on stepj of the stair) at timen tends to the limit

̟j = γλ−j
1

whereλ1 is the root near 2 of the polynomial(99) and the normalization constantγ is deter-
mined by

P
j ̟j = 1. In other words, the distribution of the altitude at timen is a truncated

geometric distribution with parameter1/λ1. For instance,m = 6 leads toλ1 = 1.98358, and
the asymptotic probabilities of being in states1, . . . , 6 are

(100) 0.50413, 0.25415, 0.12812, 0.06459, 0.03256, 0.01641,

exhibiting a clear geometric decay. Here is the simulation of a random trajectory forn = 100:

5

0 20 40 60 80 100

In this case, the frequencies observed are0.44, 0.26, 0.17, 0.08, 0.04, 0.01, pretty much in
agreement with what is expected.

Finally, the similarity with the longest run problem is easily explained. Letu andd be
letters representing steps upwards and downwards respectively. The set of paths from state 1 to
state 1 is described by the regular expression

P1,1 =
`
d+ ud + · · ·+ um−1d

´⋆
,

corresponding to the generating function

P1,1(z) =
1

1− z − z2 − · · · − zm
,

a variant of the OGF of words withoutm-runs of the letteru, which also corresponds to the
enumeration of compositions with summands≤ m. The case of the probabilistic transition
matrix eG is left as an exercise to the reader. . . . . . . . . . . . . . . . . . . END OF EXAMPLE V.14. �

EXAMPLE V.15. De Bruijn graphs. Two thieves want to break into a house whose entrance is
protected by digital lock with an unknown four-digit code. As soon as the four digits of the code
are typed consecutively, the gate opens. The first thief proposes to try in order all the four-digit
sequences, resulting in as much as 40,000 key strokes in the worst-case. The second thief, who
is a mathematician, says he can tryall four-digit combinations with only 10,003 key strokes.
What is the mathematician’s trade secret?
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FIGURE V.18. The de Bruijn graph: (left)ℓ = 3; (right) ℓ = 7.

Clearly certain optimizations are possible: for instance,for an alphabet of cardinality 2
and codes of 2 letters, the sequence00110 is better than the naı̈ve one,00 01 10 11, which
is redundant; a few more attempts will lead to an optimal solution for 3–digit codes that has
length 10 (rather than 24), for instance,

0001110100.

The general question is then: How far can one go and how to construct such sequences?
Fix an alphabet of cardinalitym. A sequence that contains as factors (contiguous blocks)

all the k letter words is called ade Bruijn sequence. Clearly, its length must be at least
δ(m,k) = mk + k− 1, as it must have at leastmk positions at distance at leastk− 1 from the
end. A sequence of smallest possible lengthδ(m,k) is called aminimal de Bruijn sequence.
Such sequences were discovered by N. G. de Bruijn [109] in 1946, in response to a question
coming from electrical engineering, where all possible reactions of a device presented as a black
box must be tested at minimal cost. We shall expose here the case of a binary alphabet,m = 2,
the generalization tom > 2 being obvious.

Let ℓ = k−1 and consider the automatonBℓ that memorizes the last block of lengthℓ read
when scanning the input text from left to right. A state is thus assimilated to a string of lengthℓ
and the total number of states is2ℓ. The transitions are easily calculated: letq ∈ {0, 1}ℓ be
a state and letσ(w) be the function that shifts all letters of a wordw one position to the left,
dropping the first letter ofw in the process (thusσ maps{0, 1}ℓ to {0, 1}ℓ−1); the transitions
are

q
07→ σ(q)0, q

17→σ(q)1.

If one further interprets a stateq as the integer in the interval[0 . . 2ℓ− 1] that it represents, then
the transition matrix assumes a remarkably simple form:

Ti,j = [[(j ≡ 2i mod 2ℓ) or (j ≡ 2i+ 1 mod 2ℓ)]].

See Figure 18 for a rendering borrowed from [215].
Combinatorially, the de Bruijn graph is such that each node has indegree 2 and outdegree 2.

By a well known theorem going back to Euler:A necessary and sufficient condition for an
undirected connected graph to have an Eulerian circuit (that is, a closed path that traverses
each vertex exactly once) is that every node has even degree.For a strongly connected digraph,
the condition is that each node has an outdegree equal to its indegree.This last condition is
obviously satisfied here. Take an Eulerian circuit startingand ending at node0ℓ; its length is
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2ℓ+1 = 2k. Then, clearly, the sequence of edge labels encountered when prefixed with the word
0k−1 = 0ℓ constitutes a minimal de Bruijn sequence. In general, the argument gives a de Brujin
sequence with minimal lengthmk +k−1. Et voilà! The trade secret of the thief-mathematician
is exposed.

Back to enumeration. The de Bruijn matrix is irreducible since a path labelled by suffi-
ciently many zeros always leads any state to the state0ℓ, while a path ending with the letters
of w ∈ {0, 1}ℓ leads to statew. The matrix is aperiodic since it has a loop on states0ℓ and1ℓ.
Thus, by Perron Frobenius properties, it has a unique dominant eigenvalue, and it is not hard to
check that its value isλ1 = 2, corresponding to the right eigenvector(1, 1, . . . , 1)t. If one fixes
a patternw ∈ {0, 1}ℓ, Theorem V.8 yields back the known fact that a random word contains
on average∼ n

2ℓ occurrences of patternw, while Note 39 further implies that the distribution
of the number of occurrences is concentrated around the mean, as the variance isO(n). The
de Bruijn graph may be used to quantify many properties of occurrences of patterns in random
words: see for instance [35, 192, 215]. . . . . . . . . . . . . . . . . . . . . . . . END OF EXAMPLE V.15. �

EXAMPLE V.16. Words with excluded patterns.Fix a finite set of patternsΩ = {w1, . . . , wr},
where eachwj is a word ofA⋆. The languageE ≡ EΩ of words that contain no factor inΩ is
described by the extended regular expression

E = A⋆ \
r[

j=1

(A⋆wjA
⋆),

which constitutes a concise but highly ambiguous description. By closure properties of regular
languages,E is itself regular and there must exist a deterministic automaton that recognizes it.

An automaton recognizingE can be constructed starting from the de Bruijn automaton of
indexk = −1 + max |wj | and deleting all the vertices and edges that correspond to a word
of Ω. Precisely, vertexq is deleted wheneverq contains a factor inΩ; the transition (edge) from
q associated with letterα gets deleted whenever the wordqα contains a factor inΩ. The pruned
de Bruijn automaton, call itB◦

k, accepts all words of0kE , when it is equipped with the initial
state0k and all states are final. Thus, the OGFE(z) is in all cases a rational function.

The matrix ofB◦
k is the matrix ofBk with some nonzero entries replaced by 0. Assume that

B◦
k is irreducible. This assumption only eliminates a few pathological cases (e.g.,Ω = {01}

on the alphabet{0, 1}). Then, the matrix ofB◦
k admits a simple Perron-Frobenius eigenvalue

λ1. By domination properties (Ω 6= ∅), we must haveλ1 < m, wherem is the cardinality
of the alphabet. Aperiodicity is automatically granted. Wethen get by a purely qualitative
argument:The number of words of lengthn excluding patterns from the finite setΩ is, under
the assumption of irreducibility, asymptotic tocλn

1 , for somec > 0 andλ1 < ||A||. This gives
us in a simple manner a strong version of what has been earliernicknamed “Borges’s Theorem”
(Note 32, p. 58):Almost every sufficiently long text containsall patterns of some predetermined
lengthℓ.

The construction of a pruned automaton is clearly a generalization of the case of words
obeying local constraints in Example 11 above. . . . . . . . . . . .. . . . END OF EXAMPLE V.16. �

� V.40.Walks on undirected graphs.Consider an undirected graphΓ, where one moves by fol-
lowing at each step a random edge of the graph, uniformly at random from the current position.
Then, the transition matrixP = (pij) of the associated Markov chain is:pi,j = 1/deg(i) if
(i, j) is an edge, wheredeg(i) is the degree of vertexi. The stationary distribution is given by
πi = (deg(i))/(2||E||), where||E|| is the number of edges ofΓ. In particular, if the graph is
regular, the stationary distribution is uniform. (See Aldous and Fill’s forthcoming book [8] for
(much) more.) �
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� V.41. Words with excluded patterns and digital trees.Let S be a finite set of words. An
automaton recognizingS, considered as a finite language, can be constructed as a tree. The tree
obtained is akin to the classicaldigital treeor trie that serves as a data structure for maintaining
dictionaries [307].

A modification of the construction yields an automaton of size linear in the total number of
characters that appear in words ofS. [Hint. The construction can be based on the Aho–Corasick
automaton [4]). �

V. 6. Transfer matrix models

There exists a cluster of applications of rational functions to problems that are nat-
urally described as paths in digraphs, but with edges that may be of different sizes. In
physics, such models lie at the heart of what is known as the “transfer matrix method”.
Technically, the theory is a simple extension of the standard case of paths in graphs
developed in the previous section to which it reduces when all edges have the same
length. Its main interest lies in its expressiveness as regards a number of combinato-
rial problems, including trees of bounded width, models of self-avoiding walks, and
certain constrained permutation problems.

V. 6.1. Combinatorial aspects.The transfer matrix method constitutes a variant
of the modelling by deterministic automata and by paths in standard graphs. The
general framework is summarized in Figure 19.

Usually, when setting up such a system, one has to invent a finite collection of
properties (“states”) describing theCj , which are of the same nature as the original
classC. The combinatorial system (102) can be visualized as a graphwith the objects
of theΩj,k classes attached to edges (“transitions between states”) that are generally
of different sizes.

Definition V.7. Given a directed multigraphΓ with vertex setV and edge setE, a
size functiononΓ is any functionσ : E → Z≥1. Asized graphis a pair(G, σ), where
σ is a size function.

Paths are defined in the same way as in Section V. 5. Thelengthof a path is, as
usual, the number of edges it comprises; thesizeof a path is defined to be the sum
of the sizes of its edges. Like in the basic case treated in theprevious section, we
also allow edges to carry positive weights (multiplicities, probability coefficients), the
weightof a path being the product of the weights of its edges.

Definition V.8. A matrixT (z) is a transfer matrixif each of its entries is a polynomial
in z with nonnegative coefficients. A transfer matrixT (z) is said to beproperif T (0)
is nilpotent, that is,T (0)r = 0 for somer ≥ 1.

Examples of transfer matrices are

z

(
1
4

3
4

1
2

1
2

)
,

(
0 1
z3 z + z2

)
,

and both are proper. For the graphs and automata considered in Section V. 5, all edges
were taken to be of unit size. In that case, the associated (weighted) adjacency matrices
are invariably of the formT (z) = zS, with S a scalar matrix having nonnegative
entries, and thus are very particular cases of proper transfer matrices.
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Transfer Matrix Method.Let C be a combinatorial class to be enumerated.
— Determine a collectionC1, C2, . . . , Cm of classes, withC1 ≡ C such that the following
system of equation holds:

(102) Cj =
X

k∈{1,2,...,m}
Ωj,kCk + Ij , j = 1, 2, . . . ,m,

where eachΩj,k and eachIj is a finite class.
— The OGFC(z) ≡ C1(z) is then given by the solution of the linear system

Cj(z) =
X

j

Ωj,k(z)Ck(z) + Ij(z), j = 1, . . . ,m,

whereΩj,k(z) andIj(z) are the generating polynomials ofΩj,k andIj , respectively. Accord-
ingly, C(z) is a linear combination of entries of the quasi-inverse matrix (I − Ω(z))−1.

FIGURE V.19. A Summary of the basic Transfer Matrix Method.

Given a sized graphΓ equipped with weight functionw : E → R>0 (with
w(e) ≡ 1 in the pure enumerative case), we can associate to it a transfer matrixT (z)
as follows:

(101) Ta,b(z) =
∑

e∈Edge(a,b)

w(e)z|e|.

There,Edge(a, b) represents the set of all edges connectinga to b; w(e) and |e| ≡
σ(e) represent respectively the weight and the size of edgee. The matrixT (z) whose
a, b-entry is the polynomialTa,b(z), as given in (101), is called thetransfer matrix
of the (weighted, sized) graph. Clearly, the transfer matrix of a sized graph is always
proper. SinceT (z)m describes all paths in the graph withz marking size, the proof
techniques of Proposition V.6 (p. 321) immediately provide:

Proposition V.9. Given a sized graph with associated transfer matrixT (z), the OGF
F 〈i,j〉(z) of the set of paths fromi to j, wherez marks size, is the entryi, j of the
matrix (I − T (z))−1:

F 〈i,j〉(z) =
(
(I − T (z))−1

)∣∣
i,j
.

V. 6.2. Analytic aspects.In order to apply the general results from the previous
section to transfer matrices, we must first take note of an easy reduction of transfer
matrices to the standard case of paths in graphs where all edges have size 1.

Given a sized graphΓ, one can build as follows a standard graphĜ where all
edges of̂G have unit size. The set of vertices ofĜ is the set of vertices ofΓ augmented
by additional vertices calledrelay nodes. For each edgee of sizeσ(e) = m in Γ,
introducem− 1 additional relay nodes and connect these inĜ by a simple path from
a to b, with edges all of size 1. Here is for instance the transcription of an edge of
length 4 inΓ by means of three relay nodes in̂G:

Clearly, the vertices ofΓ are a subset of the vertices ofĜ and all paths ofΓ correspond
to paths ofĜ. Let T̂ be the (scalar) adjacency matrix ofΓ. Then, the quasi-inverse
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(I − zT̂ )−1 describes all the paths inΓ, with size taken into account, in the sense that
the entry of index(i, j) in this quasi-inverse is the OGF of paths from node numberedi
to node numberedj in the sized graphΓ.

This construction permits us to apply the main results of Section V. 5 to transfer
matrices and sized graphs. Let us say that the sized graphΓ and its transfer matrix
T (z) areirreducible(respectivelyaperiodic) if Ĝ andT̂ are irreducible (respectively
aperiodic). We can then transcribe immediately Theorems V.7 and V.8 as follows.

Corollary V.1. (i) Consider a sized graphΓ that is irreducible and aperiodic. Then,
there exist a computable constantλ1 and numbersϕi,j such that the OGF of paths
from i to j in Γ satisfies

(103) [zn]F 〈i,j〉(z) = ϕi,jλ
n
1 +O(Λn), 0 ≤ Λ < λ1.

(ii) In a random path froma to b of large size, the number of occurrences of a
designated edge(s, t) is asymptotically

(104) ̟s,tn+O(1),

for a computable constant̟s,t.

Thus, on general grounds, the behaviour of paths is predictable. The notes be-
low explore some further properties that make it possible tooperate directly with the
transfer matrix and the sized graph, without necessitatingthe explicit construction of
T̂ andĜ.
� V.42. Irreducibility for sized graphs.The sized graphΓ is irreducible (in the sense above) if
and only if the graphG1 where all edges ofΓ are taken to be of size 1 is strongly connected. The
transfer matrixT (z) of Γ is irreducible (in the sense above) if and only ifT (1) is irreducible in
the usual sense of scalar transfer matrices. �

� V.43. Aperiodicity for sized graphs.A polynomial p(z) =
P

j cjz
ej , with everycj 6= 0,

is said to be primitive if the quantityδ = gcd({ej}) is equal to 1; it is imprimitive otherwise.
Equivalently,p(z) is imprimitive iff p(z) = q(zδ) for somebona fidepolynomialq and some
δ > 1. An irreducible sized graph is aperiodic (in the sense above) if and only if at least one
diagonal entry of some powerT (z)e is a primitive polynomial. Equivalently: there exist two
circuits of the same length, whose sizes,s1, s2, satisfygcd(s1, s2) = 1. �

� V.44. Direct determination of the asymptotic growth constant.Let Γ be a sized graph as-
sumed to be irreducible and aperiodic. Then, one hasλ1 = 1/ρ, whereρ is the smallest
positive root ofdet(I − T (z)) = 0, with T (z) the transfer matrix ofΓ. �

V. 6.3. Applications. The quantitative properties summarized by (103) and (104)
apply with full strength to classes that are amenable to the transfer matrix method. We
shall first illustrate the situation by the width of trees following an early article by
Odlyzko and Wilf [379], then continue with an example that draws its inspiration
from the insightful exposition of domino tilings and generating functions in the book
of Graham, Knuth, and Patashnik [248], and conclude with an exactly solvable poly-
omino model.

EXAMPLE V.17. Width of trees.The width of a tree is defined as the maximal number of nodes
that can appear on any layer at a fixed distance from the root. If a tree is drawn in the plane,
then width and height can be seen as the horizontal and vertical dimensions of the bounding
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FIGURE V.20. The sized graph corresponding to general plane trees of width at most 3
and its transfer matrix. (For readability, the transitionsfrom a node to itself are omitted.)

rectangle. Also, width is an indicator of the complexity of traversing the tree in breadth-first
search (by a queue), while height is associated to depth-first search (by a stack).

Transfer matrices are ideally suited to the problem of analysing the number of trees of fixed
width. Consider a simple variety of treesY corresponding to the equationY (z) = zφ(Y (z)),
where the “generator”φ describes the formation of trees. LetC := Y [w] be the subclass of
trees of width at mostw. Such trees are easily built layer by layer. Indeed, with reference
to our general description of the transfer matrix method at the beginning of the section, let
us introduce a collection of classesCk, where eachCk (k = 1, . . . , w) comprises all trees of
width≤ w having exactlyk nodes at the deepest level. We then haveC =

Pw
k=1 Ck (this is a

trivial variant of the case considered in our general description). Thus the states of the transfer
matrix model, equivalently the nodes of the size graph, correspond to the number of nodes on
the deepest layer of the tree. The transition between configurationsCj corresponding to state
j and configurationsCk corresponding to statek is effected by grafting in all possible ways a
forest ofj trees, of total height equal to1, havingk leaves. See Figure 20 for the case of width
w = 3.

The number ofj-forests of depth 1 havingk leaves is the quantity

tj,k = [uk]φ(y)j .

Let T be thew × w matrix with entryTj,k = zktj,k. Then, clearly, the quantityzi(T h)i,j

(with 1 ≤ i, j ≤ w) is the number ofi-forests of heighth and width at mostw, havingj nodes
on levelh. Thus, the GF ofY-trees having width at mostw is

Y [w](z) = (z, 0, 0, . . .)(I − T )−1(1, 1, 1, . . .)t.

For instance, in the case of general Catalan trees, the matrix T has the shape,

T [w](z) =

0
BB@

z
`
1
0

´
z2
`
2
0

´
z3
`
3
0

´
z4
`
4
0

´

z
`
2
1

´
z2
`
3
1

´
z3
`
4
1

´
z4
`
5
1

´

z
`
3
2

´
z2
`
4
2

´
z3
`
5
2

´
z4
`
6
2

´

z
`
4
3

´
z2
`
5
3

´
z3
`
6
3

´
z4
`
7
3

´

1
CCA ,

for width 4. The analysis of dominant poles provides asymptotic formulae for[zn]Y [w](z):

w = 2 w = 3 w = 4 w = 5 w = 6
0.0085 · 2.1701n 0.0026 · 2.8050n 0.0012 · 3.1638n 0.0006 · 3.3829n 0.0004 · 3.5259n

Irreducibility is granted since all entries in the transfermatrix are nonzero. Aperiodicity derives
from aperiodicity of the generatorφ, as verified by a simple argument (e.g., using Note 43).
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Proposition V.10. The number of trees of width at mostw in a simple family of trees satisfies
an asymptotic estimate of the form

Y [w]
n = cwρ

−n
w +O(n),

for some computable positive constantscw, ρw.

In addition, the exact distribution of height in trees of sizen becomes computable in poly-
nomial time (though with a somewhat high exponent).

The character of these generating functions has not been investigated in detail since the
original work [379], so that, at the moment, analysis stops there. Fortunately, probability theory
can take over. Chassaing and Marckert [82] have shown, for Cayley trees, that the width satisfies

En(W ) =

r
πn

2
+O

“
n1/4

p
log n

”
, Pn(

√
2W ≤ x)→ 1−Θ(x),

whereΘ(x) is the Theta function defined in (57), p. 305. This answers very precisely an open
question of Odlyzko and Wilf [379]. The distributional results of [82] extend to trees in any
simple variety (under mild and natural analytic assumptions on the generatorφ): see the paper
by Chassaing, Marckert, and Yor [83], which builds upon earlier results of Drmota and Gitten-
berger [136]. In essence, the conclusion of these works is that the breadth first search traversal
of a large tree in a simple variety gives rise to a queue whose size fluctuates asymptotically
like a Brownian excursion, and is thus, in a strong sense, of acomplexity comparable to depth-
first search: trees taken uniformly don’t have much of a preference as to the way they may be
traversed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . END OF EXAMPLE V.17. �

� V.45. A question on width polynomials.It is unknown whether the following assertion is
true. The smallest positive rootρk of the denominator ofY [k](z) satisfies

ρk = ρ+
c

k2
+ o(k−2),

for somec > 0. If such an estimate holds together with suitable companionbounds, it would
yield a purely analytic proof of the fact that expected widthof n–trees isΘ(

√
n), as well as

detailed probability estimates. (The classical theory of Fredholm equations may be useful in
this context.) �

EXAMPLE V.18. Monomer-dimer tilings of a rectangle.Suppose one is given pieces that may
be one of the three forms: monomers (m) that are1× 1 squares, and dimers that are dominoes,
either vertically(v) oriented1× 2, or horizontally (h) oriented2× 1. In how many ways can
ann× 3 rectangle be covered completely and without overlap (‘tiled’) by such pieces?

The pieces are thus of the following types,

m = , h = , v = ,

and here is a particular tiling of a5× 3 rectangle:
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In order to approach this counting problem, one defines a classC of combinatorial objects
called configurations. A configuration relative to ann× k rectangle is a partial tiling, such that
all the firstn− 1 columns are entirely covered by dominoes while between zeroand three unit
cells of the last column are covered. Here are for instance, configurations corresponding to the
example above.

These diagrams suggest the way configurations can be built bysuccessive addition of
dominoes. Starting with the empty rectangle0 × 3, one adds at each stage a collection of
at most three dominoes in such a way that there is no overlap. This creates a configuration
where, like in the example above, the dominoes may not be aligned in a flush-right manner.
Continue to add successively dominoes whose left border is at abscissa1, 2, 3, etc, in a way
that creates no internal “holes”.

Depending on the state of filling of their last column, configuration can thus be classified
into 8 classes that we may index in binary asC000, . . . , C111. For instanceC001 represent con-
figurations such that the first two cells (from top to bottom, by convention) are free, while the
third one is occupied. Then, a set of rules describes the new type of configuration obtained,
when the sweep line is moved one position to the right and dominoes are added. For instance,
we have

C010 ⊙ =⇒ C101.

In this way, one can set up a grammar (resembling a deterministic finite automaton) that
expresses all the possible constructions of longer rectangles from shorter ones according to the
last layer added. The grammar comprises productions like

C000 = ǫ+mmmC000 +mvC000 + vmC000

+ ·mmC100 +m·mC010 +mm·C001 + v·C001 + ·vC100

+m··C011 + ·m·C101 + ··mC110 + ···C111 .

In this grammar, a “letter” likemv represent the addition of dominoes, in top to bottom order,
of typesm, v respectively; the letterm·mmeans adding twom-dominoes on the top and on the
bottom, etc.

The grammar transforms into a linear system of equations with polynomial coefficients.
The substitution,

m 7→ z, h 7→ z2, v 7→ z2,

then gives the generating functions of configurations withz marking the area covered:

C000(z) =
(1− 2z3 − z6)(1 + z3 − z6)

(1 + z3)(1− 5z3 − 9z6 + 9z9 + z12 − z15)
.

In particular, the coefficient[z3n]C000(z) is the number of tilings of ann× 3 rectangle:

C000(z) = 1 + 3z3 + 22z6 + 131z9 + 823z12 + 5096z15 + · · · .
The sequence grows likec αn (for n ≡ 0 (mod 3)) whereα

.
= 1.83828 (α is the cube root

of an algebraic number of degree 5). (See [81] for a computer algebra session.) On average,
for largen, there is a fixed proportion of monomers and the distributionof monomers in a
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random tiling of a large rectangle is asymptotically normally distributed, as results from the
developments of Chapter IX. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . END OF EXAMPLE V.18. �

The tiling example is a typical illustration of the transfermatrix method as de-
scribed at the beginning of this section (p. 340). One seeks to enumerate a “special”
set of configurationsCf . (In the example above, this isC000 representing complete
rectangle coverings.) One determines an extended set of configurationsC (the partial
coverings, in the example) such that:(i) C is partitioned into finitely many classes;
(ii) there is a finite set of “actions” that operate on the classes;(iii) size is affected
in a well-defined additive way by the actions. The similaritywith finite automata is
apparent: classes play the rôle of states and actions the rˆole of letters.

Often, the method of transfer matrices is used to approximate a hard combinato-
rial problem that is not known to decompose, the approximation being by means of a
family of models of increasing “widths”. For instance, the enumeration of the number
Tn of tilings of ann× n square by monomers and dimers remains a famous unsolved
problem of statistical physics. Here, transfer matrix methods may be used to solve the
n × w version of the monomer–dimer coverings, in principle at least, for any fixed
width w: the result will always be a rational function, though its degree, dictated by
the dimension of the transfer matrix, will grow exponentially with w. (The “diagonal”
sequence of then × w rectangular models corresponds to the square model.) It has
been at least determined by computer search that the diagonal sequenceTn starts as
(this isEISA028420):

1, 7, 131, 10012, 2810694, 2989126727, 11945257052321, . . . .

From this and other numerical data, one estimates numerically that (Tn)1/n2 →
1.94021 . . ., but no expression for the constant is known to exist. The difficulty of
coping with the finite-width models is that their complexity(as measured , e.g., by
the number of states) blows up exponentially withw—such models are best treated
by computer algebra; see [514]—and no law allowing to take a diagonal is visible.
However, the finite width models have the merit of providing at least provable upper
and lower bounds on the exponential growth rate of the hard “diagonal problem”.

In contrast, for coverings by dimers only, a strong algebraic structure is available
and the number of covers of ann×n square by horizontal and vertical dimers satisfies
a beautiful formula originally discovered by Kasteleyn (n even):

(105) Un = 2n2/2

n/2∏

j=1

n/2∏

k=1

(
cos2

jπ

n+ 1
+ cos2

kπ

n+ 1

)
.

This sequence isEISA004003,

1, 2, 36, 6728, 12988816, 258584046368, 53060477521960000, . . . .

It is elementary to prove from (105) that

lim
n→+∞

(Un)
1/n2

= exp

(
1

π

∞∑

n=0

(−1)n

(2n+ 1)2

)
= eG/π .

= 1.33851 . . . ,
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FIGURE V.21. A self-avoiding polygon or SAP (left) and a self-avoiding walk or SAW
(right).

whereG is Catalan’s constant. This means in substance that each cell has a number of
degrees of freedoms equivalent to1.33851. See Percus’ monograph [391] for proofs
of this famous result and Finch’s book [165, Sec. 5.23] for context and references.
� V.46. Powers of Fibonacci numbers.Consider the OGFs

G(z) :=
1

1− z − z2
=
X

n≥0

Fn+1z
n, G[k](z) :=

X

n≥0

(Fn+1)
k zn,

whereFn is a Fibonacci number. The OGF of monomer–dimer placements on ak × n board
when only monomers (m) and horizontal dimers(h) are allowed is obviouslyG[k](z). On the
other hand, it is possible to set up a transfer matrix model with statei (0 ≤ i ≤ k) correspond-
ing to i positions of the current column occupied by a previous domino. Consequently,

G[k](z) = coeffk,k

`
(I − zT )−1´ , where Ti,j =

 
i

i+ j − k

!
,

for 0 ≤ i, j ≤ k. [The denominator ofG[k](z) is otherwise known exactly: see [306,
Ex. 1.2.8.30].] �

� V.47.Tours on chessboards.The OGF of Hamiltonian tours on ann×w rectangle is rational
(one is allowed to move from any cell to any other vertically or horizontally adjacent cell). The
same holds for king’s tours and knight’s tours. �

� V.48. Cover time of graphs.Given a fixed digraphΓ assumed to be strongly connected, and
a designated start vertex, one travels at random, moving at each time to any neighbour of the
current vertex, making choices with equal likelihood. The expectation of the time to visit all the
vertices is a rational number that is effectively (though perhaps not efficiently!) computable.
[Hint: set up a transfer matrix, a state of which is a subset ofvertices representing those vertices
that have been already visited. For an interval[0, . .m], this can be treated by the dedicated
theory of walks on the integer interval, as in Section V. 3; for the complete graph, this is equiva-
lent to the coupon collector problem. Most other cases are “hard” to solve analytically and one
has to resort to probabilistic approximations; see Aldous and Fill’s forthcoming book [8] for a
probabilistic approach.] �

EXAMPLE V.19. Self-avoiding walks and polygons.A long standing open problem shared by
statistical physics, combinatorics, and probability theory alike is that of quantifying properties
of self-avoiding configurations on the square lattice (Figure 21). Here we consider objects that,
starting from the origin (the “root”), follow a path, and aresolely composed of horizontal and
vertical steps of length±1. Theself-avoiding walkor SAWcan wander but is subject to the
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condition that it never crosses nor touches itself. Theself-avoiding polygonsor SAPs, whose
class is denoted byP , are self-avoiding walks, with only an exception at the end,where the end-
point must coincide with the origin. We shall focus here on polygons. It proves convenient also
to considerunrooted polygons(also called simply-connectedpolyominoes), which are polygons
where the origin is discarded, so that they plainly represent the possible shapes of SAPs up to
translation. For length2n, the numberpn of unrooted polygons satisfiespn = Pn/(4n) since
the origin (2n possibilities) and the starting vertex (2 possibilities) of the corresponding SAPs
are disregarded in that case. Here is a table, for small values ofn, listing polyominoes and the
corresponding counting sequencespn, Pn.

n: 2 3 4 5 6 7 8 9 10
pn (EISA002931): 1 2 7 28 124 588 2938 15268 81826
Pn (EISA010566): 8 24 112 560 2976 16464 94016 549648 3273040

Take the (widely open) problem of determining the numberPn of SAPs of perimeter2n.
This (intractable) problem can be approached as a limit of the (tractable) problem14 that con-
sists in enumerating the collectionP [w] of SAPs of widthw, for increasing values ofw. The
latter problem is amenable to the transfer matrix method, asfirst discovered by Enting in 1980;
see [152]. Indeed, take a polygon and consider a sweepline that movesfrom its left to its right.
Once width is fixed, there are at most22w+2 possibilities for the ways a vertical sweepline
may intersect the polygon’s edges at half integer abscissæ.(There arew + 1 edges and for
each of these, one should “remember” whether they connect with the upper or lower boundary.)
The transitions are then themselves finitely described. In this way, it becomes possible to set
up a transfer matrix for any fixed widthw. For fixedn, by computing values ofP [w]

n with
increasingw, one finally determines (in principle) the exact value of anyPn.

The program suggested above has been carried out to record values by the “Melbourne
School” under the impulse of Tony Guttmann. For instance, Jensen [284] found in 2003 that
the number of unrooted polygons of perimeter 100 is

p50 = 7545649677448506970646886033356862162.

Attaining such record values necessitates algorithms thatare much more sophisticated than the
naı̈ve approach we have just described, as well as a number ofhighly ingenious programming
optimizations.

It is an equally open problem to estimate asymptotically thenumber of SAPs of perime-
tern. Given the exact values till perimeter 100 or more, a batteryof fitting tests for asymptotic
formula can be applied, leading to highlyconvincing(though still heuristic) formulæ. Thanks
to several workers in this area, we can regard the final answeras “known”. From the works of
Jensen and his predecessors, it results that a reliable empirical estimate is of the form

(
pn = Bµ2n(2n)−β(1 + o(1)),

µ
.
= 2.63815 85303, β = −5

2
± 3 · 10−7, B

.
= 0.5623013.

14In this version of the text, we limit ourselves to a succinct description and refer to the original
papers [152, 284] for details.



V. 6. TRANSFER MATRIX MODELS 349

FIGURE V.22. Five horizontally convex polyominoes of sizen = 50 drawn uniformly
at random.

Thus, the answer is almost certainly of the formpn ≍ µ2nn−5/2 for unrooted polygons and
Pn ≍ µ2nn−3/2 for rooted polygons. It is believed that the same connectiveconstantµ dictates
the exponential growth rate of self-avoiding walks. See Finch’s book [165, Sec. 5.10] for a
perspective and numerous references.

There is also great interest in the numberpm,n of polyominoes with perimeter2n and
aream, with area defined as the number of square cells composing thepolyomino. Studies
conducted by the Melbourne school yield numerical data thatare consistent to an amazing
degree (e.g., moments till order ten and small–n corrections are considered) with the following
assumption:The distribution of area in a fixed-perimeter polyomino obeys in the asymptotic
limit an “Airy area distribution”. This distribution is defined as the limit distribution of the
area under Dyck paths, a problem that was briefly discussed onp. 307 and to which we propose
to return in Chapter IX. See [284, 411] and references therein for a discussion of polyomino
area. It is finally of great interest to note that the interpretation of data was strongly guided by
what is already known for exactly solvable models of the typewe are repeatedly considering in
this book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . END OF EXAMPLE V.19. �

EXAMPLE V.20. Horizontally convex polyominoes.Pólya [396] and Temperley [466] inde-
pendently discovered an exactly solvable polyomino model.(See also the text by van Rens-
burg [482] for more.) Define as usual a polyomino as a collection of unitsquares with vertices
in Z≥0 × Z≥0 that forms a connected set without articulation points. Such a polyomino is said
to behorizontally convex(H.C.) if its intersection with any horizontal line is either empty or
an interval. An H.C. polyomino is thus a stack of a certain number of rows of squares, where
each row has a segment of length≥ 1 in common with the next row up. (We imagine H.C.
polyominoes growing from bottom to top.) The enumeration ofsuch polyominoes, following
Temperley [466, p. 66] constitutes a nice illustration of the transfer matrix method in the case
when the set of states isinfinite.

Let T [k] be the class of polyominoes with exactlyk square cells on their top row. Size of
a polyomino is its number of cells. We wish to enumerate the classT :=

S
k T [k]. In order to

do so, according to the transfer matrix method, one needs to relate theT [k] to one another. Let
z be the variable marking size and letx mark the size of the top row. The transition from one
T [k] to aT [ℓ] has a multiplicity equal tok+ ℓ−1. Thus the generating functionstk := T [k](z)
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satisfy the infinite system of equations

(106)
t1 = z + z (t1 + 2t2 + 3t3 + · · · )
t2 = z2 + z2 (2t1 + 3t2 + 4t3 + · · · )
t3 = z3 + z3 (3t1 + 4t2 + 5t3 + · · · )

This corresponds to an infinite transfer matrix which is highly structured:

M(z)k,ℓ = (k + ℓ− 1)zℓ,

and, as shown by Temperley [466, p. 66], the system can be solved by elementary manipula-
tions.

In a case like this, it is well worth trying a bivariate generating function. Define

T (z, u) =
X

n,k

T [k](z)uk.

The action of “adding a slice” on the top row of a polyomino is reflected by a linear operator
L that transformsuk representing the top row of the polyomino before addition into a sum of
monomialsuℓzℓ with the proper multplicites:

L[uk] = k(uz)k + (k + 1)(uz)k+1 + · · · = (k − 1)
uz

1− uz +
uz

(1− uz)2 .

A better formula results if one expresses more generally thequantityL[f(u)]:

(107) L[f(u)] =
uz

(1− uz)2 f(1) +
uz

1− uz
`
f ′(1)− f(1)

´
.

Treat now the BGFT (z, u) as a function ofu, keepingz as a parameter, and write for readability
τ (u) := T (z, u). A horizontally convex polyomino is obtained by starting from a bottom row
that can have any number of cells and repeatedly adding a slice15. This construction is thus
reflected by the main functional equation

(108)
τ (u) =

zu

1− zu + L[τ (u)]

=
zu

1− zu +
zu

1− zuτ
′(1) +

z2u2

(1− zu)2 τ (1),

upon making use of (107). Instantiating atu = 1 provides the first relation

(109) τ (1) =
z

1− z +
z

1− z τ
′(1) +

z2

(1− z)2 τ (1),

while differentation of (108) with respect tou followed by the specializationu = 1 provides
the second relation

(110) τ ′(1) =
z

(1− z)2 +
z

(1− z)2 τ
′(1) + 2

z

(1− z)3 τ (1).

We now have a linear system of two equations in two unknowns, resulting in an expression of
τ (1) = T (z) = T (z, 1), which enumerates all horizontally convex polyominoes:

(111) T (z) =
z(1− z)3

1− 5z + 7z2 − 4z3
.

From (108) to (111), the whole calculation is barely three lines of code under a decent computer
algebra system. Note that, the original system being infinite, it is far from obviousa priori that
the generating function should be rational. (In the presentcontext, rationality devolves from the
very regular structure of the transfer matrix.)

15An earlier instance of the technique of “adding a slice” appears in the context of constrained com-
positions, Example III.21, p. 187.



V. 6. TRANSFER MATRIX MODELS 351

The counting sequence obtained by expansion,

T (z) = z + 2 z2 + 6 z3 + 19 z4 + 61 z5 + 196 z6 + 629 z7 + 2017 z8 + · · ·

is EISA001169(“Number of board-pile polyominoes withn cells”). The asymptotic form is
also easily obtained: we find

Tn ∼ CAn, C
.
= 0.18091, A

.
= 3.20556,

with A a cubic irrational.
An alternative derivation, which is more sophisticated, isdue to Klarner and is presented

in Stanley’s book [447, §4.7]. Hickerson [267] has found a direct construction, which explains
the rationality of the GF by means of a regular language encoding. (The drawings of Figure 22
have been obtained by an application of the recursive method[216] to Hickerson’s specifica-
tion.) Louchard [343] has conducted an in-depth study of probabilistic properties of several
parameters of H.C. polyominoes, using generating functions. . . . END OF EXAMPLE V.20. �

� V.49. Height of H.C. polyominoes.It is possible to introduce an extra variablev to encode
height. It is found that height grows on average linearly withn and that the distribution of height
is concentrated [343]. (This explains the skinny aspects of polyominoes drawn inFigure 22.)
�

� V.50. A transfer matrix model for lattice paths.Consider the general context of weighted
lattice paths in Section V. 3. Letαj , βj , γj be the weights of ascents, descents, and level steps
repsectively, when the starting altitude isj. The infinite transfer matrix,

T =

0
BB@

γ0 α0 0 0 0 · · ·
β1 γ1 α1 0 0 · · ·
0 β2 γ2 α2 0 · · ·
...

...
...

...
...

. . .

1
CCA ,

which has a tridiagonal form, “generates” all lattice pathsvia the quasi-inverse(I − zT )−1.
In particular, any exactly solvable weighted lattice path model is equivalent to an explicit struc-
tured matrix inversion. �

V. 6.4. Value-constrained permutations.We conclude this chapter with a dis-
cussion of a construction that combines transfer matrix methods with an inclusion-
exclusion argument. We treat a collection of constrained permutation problems whose
origin lies in nineteenth century recreational mathematics. For instance, theménage
problem solved and popularized byÉdouard Lucas in 1891, see [98], has the following
quaint formulation:What is the number of possible ways one can arrangen married
couples (‘ménages’) around a table in such a way that men and women alternate, but
no woman sits next to her husband?

The ménage problem is equivalent to a permutation enumeration problem. Sit
first conventionally the men at places numbered1, 2, . . . , n and the wives at positions
3
2 ,

5
2 , . . . , n+ 1

2 . Letσi be such that theith wife is placed atσi + 1
2 . Then, a ménage

placement imposes the conditionsσi 6= i andσi 6= i+ 1 for eachi. We consider here
a linearly arranged table (see remarks at the end for the other classical formulation
that considers a round table), so that the conditionσi 6= i+ 1 becomes vacuous when
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i = n. Here is a ménage placement forn = 6 and its corresponding permutation

61 2 3 4 5

σ =

[
1 2 3 4 5 6
4 5 6 2 1 3

]

Clearly, this is a generalization of the derangement problem (for which only the
weaker conditionσi 6= i is imposed), where the cycle decomposition of permutations
suffices to provide a direct solution (see Example II.14, p. 113).

Definition V.9. Given a permutationσ = σ1 · · ·σn, any quantityσi − i is called an
exceedanceof σ. Given a finite set of integersΩ ⊂ Z≥0, a permutation is said to be
Ω-avoiding if none of its exceedances lies inΩ.

Inclusion-exclusion. The setΩ being fixed, consider first for allj the class of
augmented permutationsPn,j that are permutations of sizen such thatj of the po-
sitions are distinguished and the corresponding exceedances lie inΩ, the remaining
positions having arbitrary values (but with the permutation property being satisfied!).
Loosely speaking, the objects inPn,j can be regarded as permutations with “at least”
j exceedances inΩ. For instance, withΩ = {1} and

σ =

(
1 2 3 4 5 6 7 8 9
2 3 4 8 6 7 1 5 9

)
,

there are 5 exceedances that lie inΩ (at positions1, 2, 3, 5, 6) and with3 of these
distinguished (say by enclosing them in a box), one obtains an element counted by
P9,3 like

2 3 4 8 6 7 1 5 9.

LetPn,j be the cardinality ofPn,j . We claim that the numberQn = QΩ
n of Ω-avoiding

permutations of sizen satisfies

(112) Qn =

n∑

j=0

(−1)jPn,j .

Equation (112) is typically aninclusion-exclusionrelation. To prove it formally16,
define the numberRn,k of permutations that have exactlyk exceedances inΩ and the
generating polynomials

Pn(w) =
∑

j

Pn,jw
j , Rn(w) =

∑

k

Rn,kw
k.

The GF’s are related by

Pn(w) = Rn(w + 1) or Rn(w) = Pn(w − 1)..

16See also the discussion in Subsection III. 7.4, p. 195.
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FIGURE V.23. A graphical rendering of the legal template20?02?11?relative toΩ =
{0, 1, 2}.

(The relationPn(w) = Rn(w + 1) simply expresses symbolically the fact that each
Ω-exceedance inR may or may not be taken in when composing an element ofP .) In
particular, we havePn(−1) = Rn(0) = Rn,0 = Qn as was to be proved.

Transfer matrix model.The preceding discussion shows that everything relies on
the enumerationPn,j of permutations with distinguished exceedances inΩ. Introduce
the alphabetA = Ω ∪ {‘?’}, where the symbol ‘?’ is called the ‘don’t-care symbol’.
A word onA, an instance withΩ = {0, 1, 2} being 20?02?11?, is called atemplate.
To an augmented permutation, one associates a template as follows: each exceedance
that is not distinguished is represented by a don’t care symbol; each distinguished
exceedance (thereby an exceedance with value inΩ) is represented by its value. A
template is said to be legal if it arises from an augmented permutation. For instance a
template2 1 · · · cannot be legal since the corresponding constraints, namely σ1 − 1 =
2, σ2 − 2 = 1, are incompatible with the permutation structure (one would have
σ1 = σ2 = 3). In contrast, the template 20?02?11? is seen to be legal. Figure 23 is
a graphical rendering; there, letters of templates are represented by dominoes, with a
cross at the position of a numeric value inΩ, and with the domino being blank in the
case of a don’t-care symbol.

LetTn,j be the set of legal templates relative toΩ that have lengthn and comprise
j don’t care symbols. Any such legal template is associated toexactlyj! permutations,
sincen − j position-value pairs are fixed in the permutation, while thej remaining
positions and values can be taken arbitrarily. There results that

(113) Pn,n−j = j!Tn,j and Qn =

n∑

j=0

(−1)n−jj!Tn,j,

by (112). Thus, the enumeration of avoiding permutations rests entirely on the enu-
meration of legal templates.

The enumeration of legal templates is finally effected by means of a transfer ma-
trix method, or equivalently, by a finite automaton. If a templateτ = τ1 · · · τn is legal,
then the following condition is met,

(114) τj + j 6= τi + i,
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for all pairs(i, j) such thati < j and neither ofτi, τj is the don’t-care symbol. (There
are additional conditions to characterize templates fully, but these only concern a few
letters at the end of templates and we may ignore them in this discussion.) In other
words, aτi with a numerical value preempts the valueτi + i. Figure 23 exemplifies
the situation in the caseΩ = {0, 1, 2}. The dominoes are shifted one position each
time (since it is the value ofσ − i that is represented) and the compatibility con-
straint (114) is that no two crosses should be vertically aligned. More precisely the
constraints (114) are recognized by a deterministic finite automaton whose states are
indexed by subsets of{0, . . . , b− 1} where the “span”b is defined asb = maxω∈Ω ω.
The initial state is the one associated with the empty set (noconstraint is present ini-
tially), the transitions are of the form (j ∈ {0, . . . , b}):

{
(qS , j) 7→ qS′ whereS′ = ((S − 1) ∪ {j − 1}) ∩ {0, . . . , b− 1}
(qS , ?) 7→ qS′ whereS′ = (S − 1) ∩ {0, . . . , b− 1}.

The initial state (isq{} and it is equal to the final state (this translates the fact that
no domino can protrude from the right, and is implied by the linear character of the
ménage problem under consideration). In essence, the automaton only needs a finite
memory since the dominoes slide along the diagonal and, accordingly, constraints
older than the span can be forgotten. Notice that the complexity of the automaton, as
measured by its number of states, is2b.

Here are the automata corresponding toΩ = {0} (derangements) and toΩ =
{0, 1} (ménages).

{0} { } { }

For the ménage problem, there are two states depending on whether or not the cur-
rently examined value has been preempted at the preceding step.

From the automaton construction, the bivariate GFTΩ(z, u) of legal templates,
with u marking the position of don’t care symbols, is a rational function that can
be determined in an automatic fashion fromΩ. For the derangement and ménage
problems, one finds

T {0}(z, u) =
1

1 − z(1 + u)
, T {0,1}(z, u) =

1 − z

1 − z(2 + u) + z2
.

In general, this gives access to the OGF of the correspondingpermutations. Consider
the partial expansion ofTΩ(z, u) with respect tou, taken under the form

(115) TΩ(z, u) =
∑

r

cr(z)

1 − uur(z)
,
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assuming for simplicity only simple poles. There the sum is finite and it involves
algebraic functionscr andur of the variablez. Finally, the OGF ofΩ-avoiding per-
mutations is obtained fromTΩ by the transformation

znuk 7→ (−z)nk!,

which is the transcription of (113). Define the (divergent) OGF of all permutations,

F (y) =

∞∑

n=0

n! yn = 2F0[1, 1; y],

in the terminology of hypergeometric functions. Then, by the remarks above and (115),
we find

QΩ(z) =
∑

r

cr(−z)F (−uj(−z)).

In other words,the OGF ofΩ-avoiding permutations is a composition of the OGF of
the factorial series with algebraic functions.

The expressions simplify much in the case of ménages and derangements where
the denominators ofT are of degree 1 inu. One has

Q{0}(z) =
1

1 + z
F (

z

1 + z
) = 1 + z2 + 2z3 + 9z4 + 44z5 + 265z6 + 1854z7 + · · · ,

for derangements, whence a new derivation of the known formula,

Q{0}
n =

n∑

k=0

(−1)k

(
n

k

)
(n− k)!.

Similarly, for (linear) ménage placements, one finds

Q{0,1}(z) =
1

1 + z
F (

z

(1 + z)2
) = 1 + z3 + 3z4 + 16z5 + 96z6 + 675z7 + · · · ,

which isEISA00027and corresponds to the formula

Q{0,1}
n =

n∑

k=0

(−1)k

(
2n− k

k

)
(n− k)!.

Finally, the same techniques adapts to constraints that “wrap around”, that is, con-
straints taken modulon. (This corresponds to a round table in the ménage problem.)
In that case, what should be considered is the loops in the automaton recognizing tem-
plates (see also the discussion of the zeta function of graphs, p. 321). One finds in this
way the OGF of the circular (i.e., classical) ménage problem to beEISA000179,

Q̂{0,1}(z) =
1 − z

1 + z
F (

z

(1 + z)2
)+2z = 1+z+z3+2z4+13z5+80z6+579z7+· · · ,

which yields the classical solution of the (circular) ménage problem,

Q̂{0,1}
n =

n∑

k=0

(−1)k 2n

2n− k

(
2n− k

k

)
(n− k)!,

a formula that is due to Touchard; see [98, p. 185] for pointers to the vast classical
literature on the subject. The algebraic part of the treatment above is close to the
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inspiring discussion found in Stanley’s book [447]. An application to robustness of
interconnections in random graphs is presented in [190].

Asymptotic analysis.For asymptotic analysis purposes, the following general
property proves useful:LetF be the OGF of factorial numbers and assume thaty(z)
is analytic at the origin where it satisfiesy(z) = z− λz2 +O(z3); then the following
estimate holds:

(116) [zn]F (y(z)) ∼ [zn]F (z(1 − λz)) ∼ n!e−λ.

(The proof results from simple manipulations of divergent series in the style of [29].)
This gives at sight the estimates

Q{0}
n ∼ ne−1, Q{0,1}

n ∼ ne−2.

More generally, for any setΩ containingλ elements, one has

Q{Ω}
n ∼ ne−λ.

Furthermore, the numberRΩ
n,k of permutations having exactlyk occurrences (k fixed)

of an exceedance inΩ is asymptotic to

Q{Ω}
n ∼ ne−λλ

k

k!
.

In other words, the rare event that an exceedance belongs toΩ obeys a Poisson distri-
bution withλ = |Ω|. These last two results are established by means of probabilistic
techniques in the book [23, Sec. 4.3]. The relation (116) provides a way of arriving at
such estimates by purely analytic-combinatorial techniques.
� V.51.Other constrained permutations.Given a permutationσ = σ1 · · ·σn, asuccession gap
is defined as any differenceσi+1 − σi. Discuss the counting of permutations whose succession
gaps are constrained to lie outside of a finite setΩ. In how many ways can a kangaroo pass
through all points of the integer interval[1, n] starting at1 and ending atn while making hops
that belong to{−2,−1, 1, 2}? �

V. 7. Perspective

The theorems in this chapter demonstrate the power of the fundamental tech-
niques developed in Chapter IV, which exploit classical theorems in complex analysis
to develop coefficient asymptotics. As we start seeing it here, this approach applies
to many of the generating functions derived from the formal combinatorial techniques
of Part A of this book. By paying careful attention to the types of combinatorial con-
structions involved, we are able to identify abstract schemas that help us solve whole
classes of problems at once. Each schema connects a type of combinatorial construc-
tion to a complex asymptotic method. In this way, it becomes possible to discuss
properties shared by an infinite collection of combinatorial classes. In this chapter,
we have presented the method in detail for classes that involve a sequence construc-
tion and classes recursively defined by a linear system of equations (paths in graphs,
automata, transfer matrices).

In an ideal world, we might wish to have a direct correspondence between com-
binatorial constructions and analytic methods—a theory that would carry all the way
from combinatorial objects of any description to full analysis of all their properties.
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The case of paths in graphs and automata, with its strong connectedness condition
leading to Perron-Frobenius theory, is an instance of this ideal situation. Reality is
however usually a bit more complex: theorems for deriving asymptotic results from
combinatorial specifications must often have some sort of analytic side conditions.
A typical example is the radius of convergence condition forsupercritical sequences.
As soon as such conditions are satisfied, the asymptotic properties of large structures
become highly predictable. This is the very essence of analytic combinatorics.

In the next two chapters, we investigate generating functions whose singularities
are no longer poles—fractional exponents and logarithmic factors become allowed.
This first necessitates investing in general methodology, atask undertaken in Chap-
ter VI where the method known as singularity analysis is developed. Then, a chapter
parallel to the present one, Chapter VII, will present a number of new schemas based
on the set and cyle constructions, as well as on recursion.

Applications of rational functions in discrete and continuous mathematics are in abun-
dance. Many examples are to be found in Goulden and Jackson’sbook [244]. Stanley [447]
even devotes a full chapter of his bookEnumerative Combinatorics, vol. I, to rational generating
functions. These two books push the theory further than we can do here, but the corresponding
asymptotic aspects which we expose lie outside of their scope. The analytic theory of posi-
tive rational functions starts with the works of Perron and Frobenius at the beginning of the
twentieth century and is explained in books on matrix theorylikes those of Bellman [26] and
Gantmacher [225]. Its importance has been long recognized in the theory of finite Markov
chains, so that the basic theory of positive matrices is welldeveloped in many elementary trea-
tises on probability theory. For such aspects, we refer for instance to the classic presentations
by Feller [161] or Karlin and Taylor [290].

The supercritical sequence schema is the first in a list of abstract schemas that neatly exem-
plify the interplay between combinatorial, analytic, and probabilistic properties of large random
structures. The origins of this approach are to be traced to early works of Bender [28, 29] fol-
lowed by Soria and Flajolet [210, 212, 443].

Turning to more specific topics, we mention in relation to Section V. 3 the first global at-
tempt at a combinatorial theory of continued fractions by Flajolet in [168] together with related
works of Jackson of which an exposition is to be found in [244, Ch. 5] and a synthesis in [188]
in relation to birth and death processes. Walks on graphs from an algebraic standpoint are well
discussed in Godsil’s book [238]; for infinite graphs and groups, see Woess [500]. The discus-
sion of local constraints in permutations based on [190] combines some of the combinatorial
elements bound in Stanley’s book [447] with the general philosophy of analytic combinatorics.
Our treatment of words and languages largely draws its inspiration from the line of research
started by Schützenberger in the early 1960’s and on the subsequent account to be found in
Lothaire’s book [337]. A nice review of transfer matrix methods (including a discussion of
limit distributions) is offered by Bender, Richmond, and Williamson in [37].
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Singularity Analysis of Generating
Functions

Es ist eine Tatsache, daß die genauere Kenntnis
des Verhaltens einer analytischen Funktion

in der Nähe ihrer singulären Stellen
eine Quelle von arithmetischen Sätzen ist.1

— ERICH HECKE [264, Kap. VIII]
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A function’s singularities are reflected in the function’s coefficients. Chapters IV
and V have treated in detail rational fractions and meromorphic functions, where the
local analysis of polar singularities provides contributions to coefficients in the form
of products of polynomials and simple exponentials. In thischapter, we present a
general approach to the analysis of coefficients of generating functions that is not re-
stricted to polar singularities and extends to a very large class of functions that have
moderate growth or decay at their dominant singularities. The basic principle behind
this extension is the existence of ageneral correspondencebetween

the asymptotic expansion of a function near its dominant singularities
and

the asymptotic expansion of the function’s coefficients.

This mapping essentially preserves orders of growth in the sense that larger functions
tend to have have larger coefficients. It extends considerably the analysis of mero-
morphic functions in Chapters IV–V and further justifies thePrinciples of Coefficient
Asymptoticsenounced in Chapter IV, p. 215.

1“It is a fact that the precise knowledge of the behaviour of ananalytic function in the vicinity of its
singular points is a source of arithmetic properties.”

359
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Precisely, the method ofsingularity analysisapplies to functions whose singular
expansions involve fractional powers and logarithms—we refer to such singularities
as “algebraic–logarithmic” . It principally relies on two types of results.

— First, it is possible to set up acatalogueof asymptotic expansions for coef-
ficients of the standard functions that occur in such singular expansions

— Second,transfer theoremsallow us to extract the asymptotic order of coef-
ficients of error terms from singular expansions with error terms.

The developments are based on Cauchy’s coefficient formula,used in conjunction
with special contours of integration known asHankel contours. The contours come
very close to the singularities then steer away: By design, they have the property of
capturing essential asymptotic informations contained inthe functions’ singularities.

The method of singularity analysis is robust, so that functions amenable to it ben-
efit of being closed under a variety of operations, includingsum, product, integration,
differentiation, and composition. Another important feature of the method is that it
only necessitateslocal asymptotic propertiesof the function to be analysed. In this
way, it often proves instrumental in the case of functions that are only indirectly ac-
cessible through functional equations.

This chapter is meant to develop the basic technology of singularity analysis and,
like Chapter IV, it is largely of a methodological nature. Weillustrate the approach by
a few combinatorial problems, including simple varieties of trees (e.g, unary-binary
trees), combinatorial sums, the supercritical cycle construction, supertrees, Pólya’s
drunkard walks, and tree recurrences. The next chapter, Chapter VII, will systemat-
ically explore combinatorial structures and schemas as well as functional equations
that can be asymptotically analysed by means of singularityanalysis in a way that
parallels Chapter V regarding meromorphic asymptotics.

VI. 1. A glimpse of basic singularity analysis theory

Rational and meromorphic functions involve locally near a singularity elements of
the form(1−z/ω)−k. Accordingly their coefficients involve asymptotically exponen-
tial polynomials, that is, finite linear combinations of elements of the typeω−nnk−1,
with k a positive integer. We examine here an approach that takes into account func-
tions whose singularities are of a richer nature than mere poles found in rational and
meromorphic functions. the method, calledsingularity analysis, applies to functions
whose expansion at a singularityω involves elements of the form

(
1 − z

ω

)−α
(

log
1

1 − z
ω

)β

.

Under suitable conditions to be discussed in detail in this chapter, any such element
contributes a term of the form

ω−nnα−1(log n)β.

Here,α andβ can be arbitrary real (or even complex) numbers.
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Location of singularities and exponential factors.The exponential factorω−n

present in earlier expansions is easily accounted for (see Chapter IV), as the location
of the dominant singularities always induces a multiplicative exponential factor for
coefficients. Indeed, iff(z) is singular atz = ω, theng(z) ≡ f(z/ω) satisfies, by the
scaling rule of Taylor expansions,

[zn] f(z) = ωn[zn] f(
z

ω
) = ωn[zn] g(z),

andg(z) itself is singular on the unit circle, but not inside the disc. Consequently, in
most of the discussion that follows, we shall examine functionsf(z) that are singular
atz = 1, a condition that entails no loss of generality.

Basic scale.Consider the following table of commonly encountered functions
that are singular at1, together with their coefficients:

(1)

Function Coefficient (exact) Coefficient (asymptotic)

(f1) [zn] 1−
√

1− z =
2

n4n

 
2n− 2

n− 1

!
∼ 1

2
√
πn3

(f2) [zn]
1√

1− z =
1

4n

 
2n

n

!
∼ 1√

πn

(f3) [zn]
1

1− z = 1 ∼ 1

(f4) [zn]
1

1− z log
1

1− z = Hn ∼ log n

(f5) [zn]
1

(1− z)2 = n+ 1 ∼ n.

Some structure is apparent in this table: a logarithmic factor in the function is reflected
by a similar factor in the coefficients, square-roots somehow induce square-roots, and
functions involving larger powers have larger coefficients.

It is easy to come up at least with a partial explanation of these observations.
Regarding basic functions such asf1, f2, f3, andf5, the Newton expansion

(1 − z)−α =

∞∑

n=0

(
n+ α− 1

n

)
zn

when specialized to an integerk immediately gives the asymptotic form of the coeffi-
cients involved,

(2) [zn](1 − z)−k ≡ (n+ 1)(n+ 2) · · · (n+ k − 1)

(k − 1)!
=

nk−1

(k − 1)!

(
1 +O(

1

n
)

)
.

For generalα, it is therefore natural to expect

(3) [zn](1 − z)−α ≡
(
n+ α− 1

α− 1

)
=

nα−1

(α− 1)!

(
1 +O(

1

n
)

)
.

It turns out that this asymptotic formula is valid for real orcomplexα, provided we
interpret(α − 1)! suitably. We shall prove the estimate (see Section VI. 2 and Theo-
rem VI.1)

(4) [zn](1 − z)−α ∼ nα−1

Γ(α)

(
1 +

α(α − 1)

2n
+ · · ·

)
,
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FIGURE VI.1. The five functions from Eq. (1) and a plot of their coefficient sequences
illustrate the tendency of coefficient extraction to be consistent with orders of growth of
functions.

whereΓ(α) is theEuler Gamma functiondefined as

(5) Γ(α) :=

∫ ∞

0

e−ttα−1 dt,

for ℜ(α) > 0, which coincides with(α − 1)! wheneverα is an integer. (Basic prop-
erties of this function are recalled in APPENDIX B: Gamma function, p. 689.)

We observe from the pair (2)–(3) that functions that are larger at the singularity
z = 1 have larger coefficients (see Figure 1). The correspondencethat this observation
suggests is very general as we are going to see repeatedly throughout this chapter. A
catalogueof exact or asymptotic forms for coefficients of standard singular functions
is obtained in Section VI. 2 (see Theorem VI.1).

Transfer of error terms.An asymptotic expansion of a functionf(z) that is sin-
gular atz = 1 is typically of the form

(6) f(z) = σ(z) +O(τ(z)) whereσ(z) ≫ τ(z) asz → 1,

with σ andτ belonging to an asymptotic scale of standard functions likethe collec-
tion {(1 − z)−α}α∈R in simpler cases. Taking formally Taylor coefficients in the
expansion (6), we arrive at

(7) fn ≡ [zn]f(z) = [zn]σ(z) + [zn]O(τ(z)).

The term[zn]σ(z) is described asymptotically by (4). Therefore, in order to extract
asymptotic informations on the coefficients off(z), one needs a way of extracting
coefficients of functions known only by their order of growtharound the singularity.
Such a translation of error terms from functions to coefficients is achieved bytransfer
theorems, which, under conditions of analytic continuation, guarantee that

[zn]O(τ(z)) = O([zn]τ(z)).

(See Section VI. 3 and Theorem VI.3.) This relation is much less trivial than its sym-
bolic form would seem to imply.
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In summary, it is the goal of this chapter to expose the (favorable) conditions un-
der which we have available the correspondence (cf. SectionVI. 4 and Theorem VI.4)

(8) f(z) = σ(z) +O(τ(z)) =⇒ fn = σn +O(τn).

This process of singularity analysis is then seen to parallel the analysis of coefficients
of rational and meromorphic functions presented in the previous two chapters. We
describe the method for functions from the scale

1

(1 − z)α
(log

1

1 − z
)β (z → 1),

whose coefficients have subexponential factors of the form

θ(n) = nα−1(logn)β .

The range of singular behaviours taken into account by singularity analysis is in fact
considerably larger: iterated logarithms (log log’s) and more exotic functions can be
encapsulated in the method.

EXAMPLE VI.1. First asymptotics of 2-regular graphs. As an illustration of themodus
operandiof singularity analysis, consider the function

f(z) =
e−z−z2/2

√
1− z ,

which is the EGF of2–regular graphs (or equivalently, “clouds”, see Note II.21, p. 124). Sin-
gularity analysis permits us to reason as follows. The function f(z) is only singular atz = 1
where it has a branch point. Expanding the numerator aroundz = 1, we have

(9) f(z) =
e−3/4

√
1− z +O((1− z)1/2).

Therefore(see Theorems VI.1 and VI.3, as well as the discussion in Example VI.2 below,
p. 378), upon translating formally and term-by-term, one has

(10) [zn]f(z) = e−3/4

 
n− 1/2

n

!
+O

 
n− 3/2

n

!
=
e−3/4

√
πn

+O(n−3/2).

Furthermore, a full asymptotic expansion into descending powers ofn can be obtained in the
same way from a full expansion of the numeratore−z/2−z2/4. . . END OF EXAMPLE VI.1. �

Plan of this chapter.The first part of this chapter, Sections VI. 2–VI. 5, is dedi-
cated to the basic technology of singularity analysis alongthe lines of our foregoing
discussion, and including the case of functions with finitely many singularities on the
boundary of their disc of convergence. An “Intermezzo”, Section VI. 6, serves a pre-
lude to the second part of the chapter, where we investigate operations on generating
functions whose effect on singularities is predictable. The most important of these is
inversion, which, under a broad set of conditions, leads to square-root singularity and
provides a unified asymptotic theory of simple varieties of trees (Section VI. 7). Poly-
logarithms are proved to be amenabe to singularity analysisin Section VI. 8, a fact that
permits us to take into account weights like

√
n or logn in combinatorial sums. Com-

position of functions is studied in Section VI. 9. Then Section VI. 10 presents several
closure properties of functions of singularity analysis class, including differentiation,
integration, and Hadamard product. The chapter concludes with a brief presentation
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of two classical alternatives to singularity analysis, Tauberian theory and Darboux’s
method.

VI. 2. Coefficient asymptotics for the basic scale

This section and the next two present the fundamentals ofsingularity analysis, a
theory which was developed by Flajolet and Odlyzko in [199]. Technically the theory
relies on a systematic use of Hankel contours in Cauchy coefficient integrals. Hankel
contours classically serve to express the Gamma function: see APPENDIX B: Gamma
function, p. 689. Here they are first used to estimate coefficients of a standard scale of
functions, and then to prove transfer theorems for error terms in Section VI. 3. With
this basic process, an asymptotic expansion of a function near a singularity is directly
mapped to a matching asymptotic expansion of its coefficients.

Starting from the binomial expansion, we have for generalα,

[zn](1 − z)−α = (−1)n

(−α
n

)
=

(
n+ α− 1

n

)
=
α(α + 1) · · · (α+ n− 1)

n!
.

This quantity is expressible in terms of Gamma factors, and

(11)

(
n+ α− 1

n

)
=

Γ(n+ α)

Γ(α)Γ(n+ 1)
,

providedα is neither 0 nor a negative integer. (Whenα ∈ {0,−1, . . .}, the coefficients(
n+α−1

n

)
eventually vanish, so that the asymptotic problem of estimating [zn](1 −

z)−α becomes void.) The asymptotic analysis of the coefficients
(
n+α−1

n

)
can be

carried out elementarily by means of Stirling’s formula andreal integral estimates:
see Notes 1 and 2.

A method far more productive than elementary real analysis techniques consists
in analysing coefficients of a functionf(z) by means of Cauchy’s coefficient formula,

[zn]f(z) =
1

2iπ

∫

γ

f(z)
dz

zn+1
.

The basic principle is extremely simple: it consists in choosing a contour of integra-
tionγ that comes at distance1n of the singularityz = 1. Under the change of variables
z = 1 + t/n, the kernelz−n−1 in the integral transforms into an exponential, and the
function can be locally expanded, with the differential coefficient only introducing a
rescaling factor of1/n:

(12)
z 7→

(
1 +

t

n

)
, dz 7→ 1

n
dt

1

zn+1
7→ e−t, (1 − z)−α 7→ nα(−t)−α.

This gives us for instance (precise justification below):

[zn](1 − z)−α ∼ gαn
α−1, gα :=

1

2iπ

∫
e−t(−t)−α dt.

The contour and the associated rescaling “capture” the behaviour of the function near
its singularity, thereby enabling coefficient estimation.
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0 2/n10 1

1/2

R

FIGURE VI.2. The contoursC0, C1, andC2 ≡ H(n) used for estimating the coefficients
of functions from the standard asymptotic scale.

Theorem VI.1 (Standard function scale). Let α be an arbitrary complex number in
C \ Z≤0. The coefficient ofzn in

f(z) = (1 − z)−α

admits for largen a full asymptotic expansion in descending powers ofn,

[zn]f(z) ∼ na−1

Γ(α)

(
1 +

∞∑

k=1

ek

nk

)
,

whereek is a polynomial inα of degree2k. In particular:

(13)
[zn]f(z) ∼ nα−1

Γ(α)

(
1 +

α (α− 1)

2n
+
α (α− 1) (α− 2) (3α− 1)

24n2

+
α2 (α− 1)

2
(α− 2) (α− 3)

48n3
+ · · ·

)
.

The quantityek is a polynomial inα that is divisible by(α−1) · · · (α−k), in accordance with
the fact that the asymptotic expansion terminates whenα ∈ Z≥1. The factor1/Γ(α) vanishes
whenα ∈ Z≤0, in accordance with the fact that coefficients are asymptotically 0 in that case.
PROOF. The first step is to express the coefficient[zn](1− z)−α as a complex integral
by means of Cauchy’s coefficient formula,

(14) fn =
1

2iπ

∫

C
(1 − z)−α dz

zn+1
,

whereC is a small enough contour that encircles the origin; see Figure 2. For instance,
we can start withC ≡ C0, whereC0 is the positively oriented circleC0 = {z, |z| = 1

2}.
The second step is to deformC0 into another simple closed curveC1 around the origin
that does not cross the half-lineℜ(z) ≥ 1: the contourC1 consists of a large circle
of radiusR > 1 with a notch that comes back near and to the left ofz = 1. Since
the integrand along large circles decreases asO(R−n−α), we can finally letR tend to
infinity and are left with an integral representation forfn whereC has been replaced
by a contourC2 that starts from+∞ in the lower half plane, winds clockwise around
1, and ends at+∞ in the upper half plane. This is a typical case of aHankel contour.
A judicious choice of its distance to the half-lineR≥1 yields the expansion.
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To specify precisely the integration path, we particularize C2 to be the contour
H(n) that passes at a distance1

n from the half lineR≥1:

(15) H(n) = H−(n) + H+(n) + H◦(n)

where

(16)





H−(n) = {z = w − i
n , w ≥ 1}

H+(n) = {z = w + i
n , w ≥ 1}

H◦(n) = {z = 1 − eiφ

n , φ ∈ [−π
2 ,

π
2 ]}.

Now, a change of variable

(17) z = 1 +
t

n
in the integral (14) gives the form

(18) fn =
nα−1

2iπ

∫

H
(−t)−α

(
1 +

t

n

)−n−1

dt.

(The Hankel contourH is the same as in the proof of Theorem B.1, 691.)
We have the asymptotic expansion

(19)(
1 +

t

n

)−n−1

= e−(n+1) log(1+t/n) = e−t

[
1 +

t2 − 2t

2n
+

3t4 − 20t3 + 24t2

24n2
+ · · ·

]
,

which tells us that the integrand in (18) converges pointwise (as well as uniformly
in any bounded domain of thet plane) to(−t)−αe−t. This quantity is precisely the
kernel that appears in Hankel’s formula for the Gamma function (p. 691). Substitution
of the asymptotic form

(
1 +

t

n

)−n−1

= e−t

(
1 +O(

1

n
)

)
,

asn→ ∞ inside the integral (18) suggests (formally) that

[zn](1 − z)−α =
nα−1

Γ(α)

(
1 +O(

1

n
)

)
.

To justify the formal argument outlined in the previous paragraph, we proceed as
follows:

(i) Split the contour according toℜ(t) ≤ log2 n andℜ(t) ≥ log2 n, as in the
corresponding diagram:

(20)

0

log2 n

2

.

(ii) Verify that the part corresponding toℜ(t) ≥ log2 n is negligible in the scale
of the problem. For instance, one has
(

1 +
t

n

)−n

= O(exp(− log2 n)) for ℜ(t) ≥ log2 n.
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n = 10 n = 20 n = 50
4n

√
πn3

`
1 1 8708 6 935533866 2022877684829178931751713264

− 9
8
n−1 16 603 65 45410086 197 7362936920522405787299715

+ 145
128

n−2 16 815 656 5051735 19782 79553371460627490749710

− 1155
1024

n−3 1679 4 6564 073885 1978261 300061101426696482732

+ 36939
32768

n−4 16796 656412 2750 19782616 64919884629357813591

− 295911
262144

n−5 16796 6564120 303 1978261657 612856326190245636

+ 4735445
4194304

n−6 16796 656412042 6 197826165775 9023715384519184

− 37844235
33554432

n−7
´

16796 6564120420 19782616577561 03402179527600

Cn 16796 6564120420 1978261657756160653623774456

FIGURE VI.3. Improved approximations to the Catalan numbers obtained bysuccessive
terms of their asymptotic expansion.

(iii) Use a terminating form of (19) to develop an expansion to any predeter-
mined order, with uniform error terms, for the part corresponding toℜ(t) ≤
log2 n. (This is possible becauset/n = O(log2 n/n) is small.)

These considerations validate term-by-term integration of expansion (19) within the
integral of (18), so that the full expansion offn is determined as follows: A term of
the formtr/ns in the expansion (19) induces, by Hankel’s formula, a term ofthe form
n−s/Γ(α− r). (The expansion so obtained is nondegenerate providedα differs from
a negative integer or zero; see also Note 3 for details.) Since

1

Γ(α− k)
=

1

Γ(α)
(α− 1)(α− 2) · · · (α− k).

the expansion in the statement of the theorem eventually follows. �

The asymptotic approximations obtained from Theorem VI.2 differ from the ones
that are associated with meromorphic asymptotics, (Chapter IV), where exponentially
small error terms could be derived. However, it is not uncommon to obtain results
with about10−6 accuracy, already for values ofn in the range101–102 with just a few
terms of the asymptotic expansion. Figure 3 exemplifies thissituation by displaying
the approximations obtained for the Catalan numbers,

Cn =
4n

n+ 1
[zn](1 − z)−1/2,

whenC10, C20, C50 are considered and up to eight asymptotic terms are taken into
account.
� VI.1. Stirling’s formula and asymptotics of binomial coefficients. The Gamma function
form (11) of the binomial coefficients yields

[zn](1− z)−α =
nα−1

Γ(α)

„
1 +O(

1

n
)

«
,

when Stirling’s formula is applied to the Gamma factors. �
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� VI.2. Beta integrals and asymptotics of binomial coefficients.A direct way of obtaining the
general asymptotic form of

`
n+α−1

n

´
bases itself on the Eulerian Beta integral (see [492, p.254]

and APPENDIX B: Gamma function, p. 689). Consider the quantity

φ(n, α) =

Z 1

0

tα−1(1− t)n−1 dt =
(n− 1)!

α(α+ 1) · · · (α+ n− 1)
≡ 1

n
`

n+α−1
n

´ ,

where the second form results elementarily from successiveintegrations by parts. The change
of variablest = x/n yields

φ(n, α) =
1

nα

Z n

0

xα−1(1− x/n)n−1 dt ∼
n→∞

1

nα

Z ∞

0

xα−1e−x dx ≡ Γ(α)

nα
,

where the asymptotic form results from the standard limit formula of the exponential:exp(a) =
limn→∞(1 + a/n)n. �

� VI.3. Computability of full expansions.The coefficientsek of Theorem VI.1 satisfy

ek =

2kX

ℓ=k

λk,ℓ(α− 1)(α− 2) · · · (α− ℓ),

whereλk,ℓ := [vktℓ]et(1 + vt)−1−1/v . �

� VI.4. Oscillations and complex exponents.Oscillations occur in the case of singular expan-
sions involving complex exponents. From the considerationof [zn](1 − z)±i ≍ n∓i−1, one
finds

[zn] cos

„
log

1

1− z

«
=
P (log n)

n
+O(

1

n2
),

whereP (u) is a continuous and 1–periodic function. In general, such oscillations are present
in [zn](1− z)−α for any nonrealα. �

Logarithmic factors. The basic principle underlying the method of proof of The-
orem VI.1 (see also the summary Equation (12)) has the advantage of being easily
extended to a wide class of singular functions, most notablythe ones that involve
logarithmic terms.

Theorem VI.2 (Standard function scale, logarithms). Letα be an arbitrary complex
number inC \ Z≤0. The coefficient ofzn in

f(z) = (1 − z)−α

(
1

z
log

1

1 − z

)β

admits for largen a full asymptotic expansion in descending powers oflogn,

(21) fn = [zn]f(z) ∼ nα−1

Γ(α)
(logn)β

[
1 +

C1

logn
+

C2

log2 n
+ · · ·

]
,

whereCk = (−1)k
(
β
k

)
Γ(α) dk

dsk
1

Γ(s)

∣∣∣
s=α

.

A coefficient of1/z is introduced in front of the logarithm sincelog(1 − z)−1 =
z + O(z2). In this way,f(z) is abona fidepower series inz, even in cases whenβ is
not a positive integer.
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PROOF. The proof is a simple variant of that of Theorem VI.1 (see [199] for details).
The basic expansion used is now

f(1 +
t

n
)(1 +

t

n
)−n−1 ∼ e−t

(−n
t

)α(
log

(−n
t

))β

∼ e−t(−t)−αnα(logn)β

(
1 − log(−t)

logn

)β

∼ e−t(−t)−αnα(logn)β

(
1 − β

log(−t)
logn

+
β(β − 1)

2!

(
log(−t)
logn

)2

+ · · ·
)
.

Again, we are justified in using this expansion inside Cauchy’s integral representation
of coefficients. What comes out from term by term integrationis a collection of Hankel
integrals of the form

− 1

2iπ

∫ (0)

+∞
(−t)−se−t(log(−t))k dt

which reduce to derivatives of1/Γ(s), as is seen by differentiation with respect tos
under the integral sign. �

A typical example of application of Theorem VI.2 is the estimate

[zn]
1√

1 − z

1
1
z log 1

1−z

=
1√

πn logn

(
1 − γ + 2 log 2

logn
+O(

1

log2 n
)

)
.

(Such singular functions do occur in combinatorics and the analysis of algorithms [209].)
� VI.5. Singularity analysis of slowly varying functions.A functionM(u) is said to beslowly
varying towards infinity (in the complex plane) if for any fixedλ > 0 and all θ satisfying
|θ| ≤ π − φ for someφ ∈ (0, π

2
), there holds

lim
u→+∞

M(λeiθu)

M(u)
= 1.

(Powers of logarithms and iterated logarithms are typically slowly varying functions.) Under
suitable uniformity assumptions, one has [199]

(22) [zn]
1

(1− z)α
M

„
1

1− z

«
∼ nα−1

Γ(α)
M(n).

For instance:[zn]
exp

“q
1
z

log 1
1−z

”

√
1− z ∼ exp

`√
log n

´
√
πn

. See also the discussion of Tauberian

theory, p. 416. �

� VI.6. Iterated logarithms.For a generalα 6∈ Z≤0, the relation (22) specializes to

[zn](1− z)−α

„
1

z
log

1

1− z

«β „
1

z
log

„
1

z
log

1

1− z

««δ

∼ nα−1

Γ(α)
(log n)β(log log n)δ.

A full asymptotic expansion can be derived in this case. �
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α 6∈ {0,−1,−2, . . .} (Eq.) α ∈ {0,−1,−2, . . .} (Eq.)

β 6∈ Z≥0
nα−1

Γ(α)
(log n)β

∞X

j=0

Cj

(log n)j
(21) fn ∼ nα−1(logn)β

∞X

j=1

Dj

(logn)j
(23)

β ∈ Z≥0
nα−1

Γ(α)

∞X

j=0

Ej(log n)

nj
(24) nα−1

∞X

j=0

Fj(log n)

nj
(26)

FIGURE VI.4. The general and special cases offn ≡ [zn]f(z) when f(z) is as in
Theorem VI.2.

Special cases.The conditions of Theorems VI.1 and VI.2 exclude explicitlythe
case whenα is a negative integer: the formulæ actually remain valid in this case,
provided one interprets them as limit cases, making use of0 = 1/Γ(0) = 1/Γ(−1) =
· · · . Also, whenβ is a positive integer, the expansion of Theorem VI.2 terminates:
in that situation, stronger forms are valid. Such cases are summarized in Figure 4 and
discussed below.

The case of integralα ∈ Z≤0 and generalβ 6∈ Z≥0. Whenα is a negative
integer, the coefficients off(z) = (1 − z)−α eventually reduce to zero, so that the
asymptotic coefficient expansion becomes trivial: this situation is implicitly covered
by the statement of Theorem VI.1 since, in that case,1/Γ(α) = 0. When logarithms
are present (withα ∈ Z≤0 still), the expansion of Theorem VI.2 regarding

f(z) = (1 − z)−α

(
1

z
log

1

1 − z

)β

remains valid provided we again take into account the equality 1/Γ(α) = 0 in for-
mula (21) after effecting simplifications by Gamma factors:It is only the first term
of (21) that vanishes, and one has

(23) [zn]f(z) ∼ nα−1 (logn)β

[
D1

log n
+

D2

log2 n
+ · · ·

]
,

whereDk is given byDk = (−1)k

(
β

k

)
dk

dsk

1

Γ(s)

∣∣∣∣
s=α

. For instance, we find

[zn]
z

log(1 − z)−1
= − 1

n log2 n
+

2γ

n log3 n
+O(

1

n log4 n
).

The case of generalα 6∈ Z≤0 and integralβ ∈ Z≥0. Whenβ is a nonnegative
integer, the error terms can be further improved with respect to the ones predicted by
the general statement of Theorem VI.2. For instance, we have:

[zn]
1

1 − z
log

1

1 − z
= logn+ γ +

1

2n
− 1

12n2
+O(

1

n4
)

[zn]
1√

1 − z
log

1

1 − z
∼ 1√

πn

(
logn+ γ + 2 log 2 +O(

log n

n
)

)
.

(In such a case, the expansion of Theorem VI.2 terminates since only its first(k +
1) terms are nonzero.) In fact, in the general case of nonintegral α, there exists an
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expansion of the form

(24) [zn](1 − z)−α logk 1

1 − z
∼ nα−1

Γ(α)

[
E0(log n) +

E1(logn)

n
+ · · ·

]
,

where theEj are polynomials of degreek, as can be proved by adapting the argument
employed for generalα (see also Note 8).

The joint case of integralα ∈ Z≤0 and integralβ ∈ Z≥0. If α is a negative inte-
ger, the coefficients appear as finite differences of coefficients of logarithmic powers.
Explicit formulæ are then available elementarily from the calculus of finite differences
whenβ is a positive integer. For instance, withα = −r for r ∈ Z≥0, one has

(25) [zn](1 − z)r log
1

1 − z
= (−1)r r!

n(n− 1) · · · (n− r)
.

The caseα = −r andβ = k (with r, k ∈ Z≥0) is covered by (27) in Note 7 below:
there is a formula analogous to (24),

(26) [zn](1 − z)r logk 1

1 − z
∼ n−r−1

[
F0(logn) +

F1(log n)

n
+ · · ·

]
,

but now withdeg(Fj) = k − 1.

A table of the asymptotic form of coefficients of a few standard functions illus-
trating Theorems VI.1 and VI.2 as well as some of the “specialcases” is given in
Figure 5.
� VI.7. The method of Frobenius and Jungen.This is an alternative approach to the case
β ∈ Z≥0 (see [287]). Start from the observation that

(1− z)−α

„
log

1

1− z

«k

=
∂k

∂αk
(1− z)−α.

and allow the operators of differentiation( ∂/∂α ) and coefficient extraction ([zn] ) to commute—
this can be justified by Cauchy’s coefficient formula upon differentiating under the integral
sign—, which yields

(27) [zn](1− z)−α

„
log

1

1− z

«k

=
∂k

∂αk

Γ(n+ α)

Γ(α)Γ(n+ 1)
,

and leads to an “exact” formula (Note 8 below). �

� VI.8. Shifted harmonic numbers.Define theα-shifted harmonic number by

hn(α) :=

n−1X

j=0

1

j + α
.

SetL(z) := − log(1− z). Then, one has

[zn](1− z)−αL(z) =

 
n+ α− 1

n

!
hn(α)

[zn](1− z)−αL(z)2 =

 
n+ α− 1

n

!
`
h′

n(α) + hn(α)2
´
.

(Note:hn(α) = ψ(α+ n)− ψ(α), whereψ(s) := ∂s log Γ(s).) In particular,

[zn]
1√

1− z log
1

1− z =
1

4n

 
2n

n

!
[2H2n −Hn],
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Function Coefficients

(1− z)3/2 1√
πn5

(
3

4
+

45

32n
+

1155

512n2
+O(

1

n3
))

(1− z) (0)

(1− z)1/2 − 1√
πn3

(
1

2
+

3

16n
+

25

256n2
+O(

1

n3
))

(1− z)1/2L(z) − 1√
πn3

(
1

2
log n+

γ + 2 log 2− 2

2
+O(

log n

n
))

(1− z)1/3 − 1

3Γ( 2
3
)n4/3

(1 +
2

9n
+

7

81n2
+O(

1

n3
))

z/L(z)
1

n log2 n
(−1 +

2γ

log n
+
π2 − 6γ2

2 log2 n
+O(

1

log3 n
))

1 (0)

log(1− z)−1 1

n

log2(1− z)−1 1

n
(2 log n+ 2γ − 1

n
− 1

6n2
+O(

1

n4
))

(1− z)−1/3 1

Γ( 1
3
)n2/3

(1 +O(
1

n
))

(1− z)−1/2 1√
πn

(1− 1

8n
+

1

128n2
+

5

1024n3
+O(

1

n4
))

(1− z)−1/2L(z)
1√
πn

(log n+ γ + 2 log 2− log n+ γ + 2 log 2

8n
+O(

log n

n2
))

(1− z)−1 1

(1− z)−1L(z) log n+ γ +
1

2n
− 1

12n2
+

1

120n4
+O(

1

n6
))

(1− z)−1L(z)2 log2 n+ 2γ log n+ γ2 − π2

6
+O(

log n

n
)

(1− z)−3/2

r
n

π
(2 +

3

4n
− 7

64n2
+O(

1

n3
))

(1− z)−3/2L(z)

r
n

π
(2 log n+ 2γ + 4 log 2− 4 +

3 log n

4n
+O(

1

n
))

(1− z)−2 n+ 1

(1− z)−2L(z) n log n+ (γ − 1)n+ log n+
1

2
+ γ +O(

1

n
)

(1− z)−2L(z)2 n(log2 n+ 2(γ − 1) log n+ γ2 − 2γ + 2− π2

6
+O(

log n

n
))

(1− z)−3 1
2
n2 + 3

2
n+ 1

FIGURE VI.5. A table of some commonly encountered functions (withL(z) :=
log(1/(1− z))) and the asymptotic forms of their coefficients.

whereHn ≡ hn(1) is the usual harmonic number. �

VI. 3. Transfers

Our general objective is to translate an approximation of a function near a sin-
gularity into an asymptotic approximation of its coefficients. What is required at this
stage is a way to extract coefficients of error terms (known usually in O(·) or o(·)
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FIGURE VI.6. A ∆–domain and the contour used to establish Theorem VI.3.

form) in the expansion of a function near a singularity. Thistask is technically simple
as a fairly coarse analysis suffices. Like in the previous section, it relies on contour
integration by means of Hankel-type paths; see for instancethe summary in Eq. (12)
above.

A natural extension of the approach of the previous section is to assume the error
terms valid in the complex plane slit along the real half lineR≥1. In fact weaker
conditions suffice and any domain whose boundary makes an acute angle with the
half lineR≥1 appears to be suitable.

Definition VI.1. Given two numbersφ,R with R > 1 and 0 < φ < π
2 , the open

domain∆(φ,R) is defined as

∆(φ,R) = {z
∣∣ |z| < R, z 6= 1, |Arg(z − 1)| > φ}.

A domain is a∆–domainif it is a ∆(φ,R) for someR andφ. A function is∆–analytic
if it is analytic in some∆–domain.

Analyticity in a ∆–domain (Figure 6, left) is the basic condition fortransfer to
coefficients of error terms in asymptotic expansions.

Theorem VI.3 (Transfer, Big-Oh and little-oh). Letα, β be arbitrary real numbers,
α, β ∈ R and letf(z) be a function that is∆–analytic.

(i) Assume thatf(z) satisfies in the intersection of a neighbourhood of 1 with its
∆–domain the condition

f(z) = O

(
(1 − z)−α(log

1

1 − z
)β

)
.

Then one has: [zn]f(z) = O(nα−1(logn)β).
(ii) Assume thatf(z) satisfies in the intersection of a neighbourhood of 1 with its

∆–domain the condition

f(z) = o

(
(1 − z)−α(log

1

1 − z
)β

)
.

Then one has: [zn]f(z) = o(nα−1(logn)β).
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PROOF. (i) The starting point is Cauchy’s coefficient formula,

fn ≡ [zn]f(z) =
1

2iπ

∫

γ

f(z)
dz

zn+1
,

whereγ is any simple loop around the origin which is internal to the∆–domain off .
We choose the positively oriented contour (Figure 6, right)γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4,
with
8
>>>>><
>>>>>:

γ1 = { z
˛̨
|z − 1| = 1

n
, |Arg(z − 1)| ≥ θ] } (inner circle)

γ2 = { z
˛̨ 1

n
≤ |z − 1|, |z| ≤ r, Arg(z − 1) = θ } (rectilinear part, top)

γ3 = { z
˛̨
|z| = r, |Arg(z − 1)| ≥ θ] } (outer circle)

γ4 = { z
˛̨ 1

n
≤ |z − 1|, |z| ≤ r, Arg(z − 1) = −θ } (rectilinear part, bottom).

If the ∆ domain off is ∆(φ,R), we assume that1 < r < R, andφ < θ < π
2 , so that

the contourγ lies entirely inside the domain of analyticity off .
For j = 1, 2, 3, 4, let

f (j)
n =

1

2iπ

∫

γj

f(z)
dz

zn+1
.

The analysis proceeds by bounding the absolute value of the integral along each of
the four parts. In order to keep notations simple, we detail the proof in the case where
β = 0.

(1) Inner circle(γ1). From trivial bounds, the contribution fromγ1 satisfies

|f (1)
n | = O(

1

n
) ·O

(
(
1

n
)−α

)
= O

(
nα−1

)
,

as the function isO(nα) (by assumption onf(z)), the contour has length
O(n−1), andz−n−1 remainsO(1) on this part of the contour.

(2) Rectilinear parts(γ2, γ4). Consider the contributionf (2)
n arising from the

part γ2 of the contour. Settingω = eiθ, and performing the change of
variablez = 1 + ωt

n , we find

|f (2)
n | ≤ 1

2π

∫ ∞

1

K

(
t

n

)−α ∣∣∣∣1 +
ωt

n

∣∣∣∣
−n−1

dt,

for some constantK > 0 such that|f(z)| < K(1 − z)−α over the∆–
domain, which is granted by the growth assumption onf . From the relation

∣∣∣∣1 +
ωt

n

∣∣∣∣ ≥ 1 + ℜ(
ωt

n
) = 1 +

t

n
cos θ,

there results the inequality

|f (2)
n | ≤ K

2π
Jnn

α−1, where Jn =

∫ ∞

1

t−α

(
1 +

t cos θ

n

)−n

dt.
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For a givenα, the integralsJn are all bounded above by some constant since
they admit a limit asn tends to infinity:

Jn →
∫ ∞

1

t−αe−t cos θ dt.

The condition onθ that0 < θ < π
2 precisely ensures convergence of the

integral. Thus, globally, on the partγ2 of the contour, we have

|f (2)
n | = O(nα−1).

A similar bound holds forf (4)
n relative toγ4.

(3) Outer circle(γ3). There,f(z) is bounded whilez−n is of the order ofr−n.

Thus, the integralf (3)
n is exponentially small.

In summary, each of the four integrals of the split contour contributesO(nα−1). The
statement of Part(i) of the theorem thus follows.

(ii) An adaptation of the proof shows thato(.) error terms may be translated
similarly. All that is required is a further breakup of the rectilinear part at a distance
log2 n/n from 1 (see Equation (20) or [199] for details). �

An immediate corollary of Theorem VI.3 is the possibility oftransferringasymp-
totic equivalencefrom singular forms to coefficients:

Corollary VI.1 (sim–transfer). Assume thatf(z) is ∆–analytic and

f(z) ∼ (1 − z)−α, asz → 1, z ∈ ∆,

withα 6∈ {0,−1,−2, · · · }. Then, the coefficients off satisfy

[zn]f(z) ∼ nα−1

Γ(α)
.

PROOF. It suffices to observe that, withg(z) = (1 − z)−α, one has

f(z) ∼ g(z) iff f(z) = g(z) + o(g(z)),

then apply Theorem VI.1 to the first term, and Theorem VI.3 (little-oh transfer) to the
remainder. �

� VI.9. Transfer of nearly polynomial functions.Let f(z) be∆–singular and satisfy the singu-
lar expansionf(z) ∼ (1 − z)r, wherer ∈ Z≥0. Then,fn = o(n−r−1). [This is also a direct
consequence of the little-oh transfer.] �

� VI.10. Transfer of large negative exponents.The∆–analyticity condition can be weakened
for functions that are large at their singularity. Assume that f(z) is analytic in the open disk
|z| < 1, and that in the whole of the open disk it satisfies

f(z) = O((1− z)−α).

Then, providedα > 1, one has

[zn]f(z) = O(nα−1).

[Hint. Integrate on the circle of radius1− 1
n

; see also [199].] �
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VI. 4. The process of singularity analysis

In Sections VI. 2 and VI. 3, we have developed a collection of statements granting
the existence ofcorrespondencesbetween properties of a functionf(z) singular at an
isolated point (z = 1) and the asymptotic behaviour of its coefficientsfn = [zn]f(z).
Using the symbol ‘•—◮’ to represent such a correspondence2, we can summarize some
of our results relative to the scaleS = {(1 − z)−α, α ∈ C \ Z≤0} as follows:





f(z) = (1 − z)−α •——◮ fn =
nα−1

Γ(α)
+ · · · (Theorem VI.1)

f(z) = O((1 − z)−α) •——◮ fn = O(nα−1) (Theorem VI.3(i))
f(z) = o((1 − z)−α) •——◮ fn = o(nα−1) (Theorem VI.3(ii))

f(z) ∼ (1 − z)−α •——◮ fn ∼ nα−1

Γ(α)
(Cor. VI.1).

The important requirement is that the function should have an isolated singularity (the
condition of∆–analyticity) and that the asymptotic property of the function near its
singularity should be valid in an area of the complex plane extending beyond the disk
of convergence of the original series, (in a∆–domain). Extensions to logarithmic
powers and special cases likeα ∈ Z≤0 are also, as we know, available. We letS
denote the set of such singular functions:

(28) S =
{
(1 − z)−αλ(z)β

∣∣ α, β ∈ C
}
, λ(z) :=

1

z
log

1

1 − z
.

At this stage, we thus have available tools by which, starting from the expansion
of a function at its singularity, also calledsingular expansion, one can justify the term-
by-term transfer from an approximation of the function to anasymptotic estimate of
the coefficients. We state:

Theorem VI.4 (Singularity analysis, single singularity). Letf(z) be function analytic
at 0 with a singularity atζ, such thatf(z) can be continued to a domain of the form
ζ · ∆0, for a ∆-domain∆0, whereζ · ∆0 is the image of∆0 by the mappingz 7→ ζz.
Assume that there exist two functionsσ, τ , whereσ is a (finite) linear combination of
functions inS andτ ∈ S, so that

f(z) = σ (z/ζ) +O (τ (z/ζ)) as z → ζ in ζ · ∆0.

Then, the coefficients off(z) satisfy the asymptotic estimate

fn = ζ−nσn +O(ζ−nτ⋆
n),

whereσn = [zn]σ(z) has its coefficients determined by Theorems VI.1, VI.2 and
τ⋆
n = na−1(logn)b, if τ(z) = (1 − z)−aλ(z)b.

We observe that the statement is equivalent toτ⋆
n = [zn]τ (z), except whena ∈ Z≤0 (when

the1/Γ(a) factor should be omitted). Also, generically, we haveτ⋆
n = o(σn), so that orders of

growth of functions at singularities are mapped to orders ofgrowth of coefficients.

2The symbol ‘=⇒’ represents anunconditionallogical implication and is accordingly used in this
book to represent the systematic correspondence between combinatorial specifications and generating func-
tion equations. In contrast, the symbol ‘•—◮’ represents a mapping from functions to coefficients, under
suitableanalytic conditionsas stated in Theorems VI.1–VI.3.
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Let f(z) be a function analytic at0 whose coefficients are to be asymptotically analysed.
1. Preparation. This consists in locating dominant singularities and checking analytic continu-
ation.

1a. Locate singularities.Determine the dominant singularities off(z) (assumed not to
be entire). Check thatf(z) has a single singularityζ on its circle of convergence.

1b. Check continuation.Establish thatf(z) is analytic in some domain of the formζ∆0.

2. Singular expansion.Analyse the functionf(z) asz → ζ in the domainζ∆0 and determine
in that domain an expansion of the form

f(z) =
z→1

σ(z/ζ) +O(τ (z/ζ)) with τ (z)≪ σ(z).

For the method to succeed, the functionsσ andτ should belong to the standard scale of func-
tionsS = {(1− z)−αλ(z)β}, with λ(z) := z−1 log(1− z)−1.

3. TransferTranslate the main term termσ(z) using the catalogues provided by TheoremsVI.1
and VI.2. Transfer the error term (Theorem VI.3) and conclude that

[zn]f(z) =
n→+∞

ζ−nσn +O
`
ζ−nτ⋆

n

´
,

whereσn = [zn]σ(z) and τ⋆
n = [zn]τ (z) provided the corresponding exponentα 6∈ Z≤0

(otherwise, the factor1/Γ(α) = 0 should be dropped).

FIGURE VI.7. A summary of the singularity analysis process (single dominant singularity).

PROOF. The normalized functiong(z) = f(z/ζ) is singular at 1. It is∆-analytic and
satisfies the relationg(z) = σ(z) + O(τ(z)) asz → 1 within ∆0. Theorem VI.3,(i)
(the big-Oh transfer) applies to theO-error term. The statement follows finally since
[zn]f(z) = ζ−n[zn]g(z). �

The statement of Theorem VI.4 can be concisely expressed by the correspon-
dence:

(29) f(z) =
z→1

σ(z/ζ)+O (τ(z/ζ)) •——◮ fn =
n→∞

ζ−nσn +O(ζ−nτ⋆
n).

The conditions of analytic continuation and validity of theexpansion in a∆–domain
are essential.Similarly, we have

(30) f(z) =
z→1

σ (z/ζ)) + o (τ (z/ζ)) •——◮ fn =
n→∞

ζ−nσn +O(ζ−nτ⋆
n),

as a simple consequence of Theorem VI.3, part(ii) (little-oh transfer). The map-
pings (29) and (30) supplemented by the accompanying analysis constitute the heart
of thesingularity analysisprocess summarized in Figure 7.

Many of the functions commonly encountered in analysis are found to be∆–
continuable. This fact results from the property of the elementary functions (like√ ,
log, tan) to be continuable to larger regions than what their expansions imply, as well
as to the rich set of composition properties that analytic functions satisfy. Also, asymp-
totic expansions at a singularity initially determined along the real axis by elementary
real analysis often hold in much wider regions of the complexplane. The singularity
analysis process is then likely to be applicable to a large number of generating func-
tions that are provided by the symbolic method—most notablythe iterative structures
described in Section IV. 4 (p. 236). In such cases, singularity analysis greatly refines
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the exponential growth estimates obtained in Theorem IV.8 (p. 237). The condition is
that singular expansions should be of a suitably moderate3 growth. We illustrate this
situation now by treating combinatorial generating functions obtained by the symbolic
methods of Chapters I and II, for which explicit expressionsare available.

EXAMPLE VI.2. Asymptotics of 2-regular graphs.This example completes the discussion of
Example 1, p. 363. The labelled classC of 2-regular graphs satisfies

C = SET(UCYC≥3(Z)) =⇒ C(z) = exp

„
1

2

„
log(1− z)−1 − z − z2

2

««
,

where UCYC is the undirected cycle construction (Note II.21, p. 124). For this example, we
follow step by step the singularity analysis process as summarized in Figure 7.

1. Preparation. The functionC(z) being the product ofe−z/2−z2/4 (that is entire) and
of (1 − z)−1/2 (that is analytic in the unit disk) is itself analytic in the unit disk. Also, since
(1− z)−1/2 is ∆–analytic (it is well-defined and analytic in the complex plane slit alongR≥1),
C(z) is itself∆–analytic, with a singularity atz = 1.

2. Singular expansion. The asymptotic expansion ofC(z) nearz = 1 is obtained starting

from the standard (analytic) expansion ofe−z/2−z2/4 atz = 1,

e−z/2−z2/4 = e−3/4 + e−3/4(1− z) +
e−3/4

4
(1− z)2 − e−3/4

12
(1− z)3 + · · · .

The factor(1 − z)−1/2 is its own asymptotic expansion, clearly valid in any∆–domain. Per-
forming themultiplicationyields a complete expansion,

(31) C(z) ∼ e−3/4

√
1− z + e−3/4

√
1− z +

e−3/4

4
(1− z)3/2 − e−3/4

12
(1− z)5/2 + · · · ,

out of which terminating forms can be extracted.
3. Transfer. Take for instance the expansion of (31) limited to two terms plus an error

term. The singularity analysis process allows the transferof (31) to coefficients, which we can
present in tabular form as follows:

˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛

C(z) cn ≡ [zn]C(z)

e−3/4 1√
1− z e−3/4

 
n− 1/2

−1/2

!
∼ e−3/4

√
πn

»
1− 1

8n
+

1

128n2
+ · · ·

–

+ e−3/4
√

1− z +e−3/4

 
n− 3/2

−3/2

!
∼ −e

−3/4

2
√
πn3

»
1 +

3

8n
+ · · ·

–

+O((1− z)3/2) +O(
1

n5/2
).

Terms are then collected with expansions suitably truncated to the coarsest error term, so that
here a 3–term expansion results. In the sequel, we shall no longer need to detail such compu-
tations and we shall content ourselves with putting in parallel the function’s expansion and the
coefficient’s expansion like in the following correspondence:

C(z) =
e−3/4

√
1− z+e−3/4

√
1− z+O((1−z)3/2) •——◮ cn =

e−3/4

√
πn
− 5e−3/4

8
√
πn3

+O(
1

n5/2
).

3For functions with fast growth at a singularity, the saddle-point method developed in Chapter VIII
becomes effectual.
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Here is a numerical check. Setc(1)n := e−3/4/
√
πn and letc(2)n represent the sum of the first

two terms of the expansion ofcn. One finds:

n 5 50 500

n!c
(1)
n 14.30212 1.1462888618 · 1063 1.4542120372 · 101132

n!c
(2)
n 12.51435 1.1319602511 · 1063 1.4523942721 · 101132

n!cn 12 1.1319677968 · 1063 1.4523943224 · 101132

Clearly, a complete asymptotic expansion in descending powers ofn can be obtained in this
way. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . END OF EXAMPLE VI.2. �

EXAMPLE VI.3. Asymptotics of unary–binary trees and Motzkin numbers.Unary-binary trees
are unlabelled plane trees that admit the specification and OGF:

U = Z(1 + U + U × U) =⇒ U(z) =
1− z −

p
(1 + z)(1− 3z)

2z
.

(See Note I.36 (p. 63) and Subsection V. 3 (p. 295) for the lattice path version.) The GFU(z)
is singular atz = −1 andz = 1

3
, the dominant singularity being atz = 1

3
. By branching

properties of the square-root function,U(z) is analytic in a∆–domain like the one depicted
below:

0
−1 1

3

Around the point1
3
, a singular expansion is obtained bymultiplying (1 − 3z)1/2 and the

analytic expansion of the factor(1 + z)1/2/(2z). The singularity analysis process then applies
and yields automatically:

U(z) = 1− 31/2
√

1− 3z +O((1− 3z)) •——◮ Un =

r
3

4πn3
3n +O(3nn−2).

Further terms in the singular expansion ofU(z) at z = 1
3

provide additional terms in the
asymptotic expression of the Motzkin numbersUn, for instance,

Un =

r
3

4πn3
3n

„
1− 15

16n
+

505

512n2
− 8085

8192n3
+

505659

524288n4
+O

„
1

n5

««

results from an expansion ofU(z) till O((1− 3z)11/2). . . . . . . . END OF EXAMPLE VI.3. �

EXAMPLE VI.4. Asymptotics of children’s rounds.Stanley [445] has introduced certain
combinatorial configurations that he has nicknamed “children’s rounds”: a round is a labelled
set of directed cycles, each of which has a center attached. The specification and EGF are

R = SET(Z ⋆ CYC(Z)) =⇒ R(z) = exp

„
z log

1

1− z

«
= (1− z)−z.
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The functionR(z) is analytic in theC-plane slit alongR≥1, as is seen by elementary properties
of thecompositionof analytic functions. The singular expansion atz = 1 is then mapped to an
expansion for the coefficients:

R(z) =
1

1− z + log(1− z) +O((1− z)1/2) •——◮ [zn]R(z) = 1− 1

n
+O(n−3/2).

A more detailed analysis yields

[zn]R(z) = 1− 1

n
− 1

n2
(log n+ γ − 1) +O

„
log2 n

n3

«
,

and an expansion to any order can be easily obtained. . . . . . . .. . . END OF EXAMPLE VI.4. �

� VI.11. The asymptotic shape of the rounds numbers.A complete asymptotic expansion has
the form

[zn]R(z) ∼ 1−
X

j≥1

Pj(log n)

nj
,

wherePj is a polynomial of degreej − 1. (The coefficients ofPj are rational combinations of
powers ofγ, ζ(2), . . . , ζ(j− 1).) The successive terms in this expansion are easily obtained by
a computer algebra program. �

EXAMPLE VI.5. Asymptotics of coefficients of an elementary function.Our final example
is meant to show the way rather arbitrary compositions of basic functions can be treated by
singularity analysis. LetC = Z ⋆ SEQ(C) be the class of general labelled plane trees. Consider
the labelled class defined by substitution

F = C ◦ CYC(CYC(Z)) =⇒ F (z) = C(L(L(z))).

There,C(z) = 1
2
(1−

√
1− 4z) andL(z) = log 1

1−z
. Combinatorially,F is the class of trees

in which nodes are replaced by cycles of cycles, a rather artificial combinatorial object, and

F (z) =
1

2

»
1−

s
1− 4 log

1

1− log 1
1−z

–
.

The problem is first to locate the dominant singularity ofF (z), then to determine its nature,
which can be done inductively on the structure ofF (z). The dominant positive singularityρ of
F (z) satisfiesL(L(ρ)) = 1

4
and one has

ρ = 1− ee−1/4−1 .
= 0.198443,

given thatC(z) is singular at1
4

andL(z) has positive coefficients. SinceL(L(z)) is analytic at
ρ, a local expansion ofF (z) is obtained next bycompositionof the singular expansion ofC(z)
at 1

4
with the standard Taylor expansion ofL(L(z)) atρ. We find

F (z) =
1

2
−C1(ρ−z)1/2+O((ρ−z)3/2) •——◮ [zn]F (z) =

C1ρ
−n+1/2

2
√
πn3

»
1 +O(

1

n
)

–
,

with C1 = e
5
8
− 1

2
e−1/4 .

= 1.26566. . . . . . . . . . . . . . . . . . . . . . . . . . . END OF EXAMPLE VI.5. �

� VI.12. The asymptotic number of trains.Combinatorial trains have been introduced in Sec-
tion IV. 4 as a way to exemplify the power of complex asymptotic methods. One finds that, at its
dominant singularityρ, the EGFTr(z) is of the formTr(z) ∼ C/(1− z/ρ), and, by singularity
analysis,

[zn]Tr(z) ∼ 0.11768 31406 15497 · 2.06131 73279 40138n.

(This asymptotic approximation is good to 15 significant digits for n = 50, in accordance with
the fact that the dominant singularity is a simple pole.) �
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VI. 5. Multiple singularities

The previous section has described in detail the analysis offunctions with a single
dominant singularity. The extension to functions that havefinitely many(by necessity
isolated) singularities on their circle of convergence follows along entirely similar
lines. It parallels the situation of rational and meromorphic functions in Chapter IV
(p. 250) and is technically simple, the net result being:

In the case of multiple singularities, the separate contributions from each of
the singularities, as given by the basic singularity analysis process, must be
added up.

Like in (28), we letS be the standard scale of functions singular at 1, namely

S =
{
(1 − z)−αλ(z)β

∣∣ α, β ∈ C
}
, λ(z) :=

1

z
log

1

1 − z
.

Theorem VI.5 (Singularity analysis, multiple singularities). Let f(z) be analytic in
|z| < ρ and have a finite number of singularities on the circle|z| = ρ at points
ζj = ρeiθj , for j = 1 . . r. Assume that there exists a∆–domain∆0 such thatf(z) is
analytic in the indented disc

D =

r⋂

j=1

(ζj · ∆0),

with ζ · ∆0 the image of∆0 by the mappingz 7→ ζz.
Assume that there existsr functionsσ1, . . . , σr, each a linear combination of

elements fromS and a functionτ ∈ S such that

f(z) = σj(z/ζj) +O (τ(z/ζj)) asz → ζj in D.

Then the coefficients off(z) satisfy the asymptotic estimate

fn =

r∑

j=1

ζ−n
j σj,n +O

(
ρ−nτ⋆

n

)
,

where eachσj,n = [zn]σj(z) has its coefficients determined by Theorems VI.1, VI.2
andτ∗n = na−1(log n)b, if τ(z) = (1 − z)−aλ(z)b.

A function analytic in a domain likeD is sometimes said to be star-continuable, a notion that
is the natural generalization of∆–analyticity for functions with several dominant singularities.
Also, a similar statement holds witho-error terms replacingO’s.
PROOF. Like in the case of a single singularity, the proof bases itself on Cauchy’s
coefficient formula

fn = [zn]

∫

γ

f(z)
dz

zn+1
,

where a composite contourγ depicted on Figure 8 is used. Estimates on each part of
the contour obey exactly the same principles as in the proof of Theorems VI.1–VI.3.
Let γ(j) be the open loop aroundζj that comes from the outer circle, winds aboutζj
and joins again the outer circle; letr be the radius of the outer circle.

— The contribution along the arcs of the outer circle isO(r−n), that is, expo-
nentially small.
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γ

0 0

D:

FIGURE VI.8. Multiple singularities (r = 3): analyticity domain (D, left) and compos-
ite integration contour (γ, right).

— The contribution along the loopγ(1) (say) separates into

1

2iπ

∫

γ(1)

f(z)
dz

zn+1
= I ′ + I ′′

I ′ :=
1

2iπ

∫

γ(1)

σ1(z/ζ1)
dz

zn+1
, I ′′ :=

1

2iπ

∫

γ(1)

(f(z) − σ1(z/ζ1))
dz

zn+1
.

The quantityI ′ is estimated by extending the open loop to infinity by the
same method as in the proof of Theorems VI.1 and VI.2: it is found to equal
ζ−n
1 σ1,n plus an exponentially small term. The quantityI ′′, corresponding

to the error term, is estimated by the same bounding technique as in the
proof of Theorem VI.3 and is found to beO(ρnτ⋆

n).

Collecting the various contributions completes the proof of the statement. �

Theorem VI.5 expresses, that in the case of multiple singularities, each domi-
nant singularity can be analysed separately; the singular expansions are then each
transferred to coefficients, and the corresponding asymptotic contributions are finally
collected. Two examples illustrating the process follow.

EXAMPLE VI.6. An artificial example.Let us demonstrate themodus operandion the simple
function

(32) g(z) =
ez

√
1− z2

.

There are two singularities atz = +1 andz = −1, with

g(z) ∼ e√
2
√

1− z
z → +1 and g(z) ∼ e−1

√
2
√

1 + z
z → −1.

The function is clearly star-continuable with the singularexpansions valid in the star domain.
We have

[zn]
e√

2
√

1− z
∼ e√

2πn
and [zn]

e−1

√
2
√

1 + z
∼ e−1(−1)n

√
2πn

.

To get the coefficient[zn]g(z), it suffices to add up these two contributions (by Theorem VI.5),
so that

[zn]g(z) ∼ 1√
2πn

[e+ (−1)ne−1].
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If expansions at+1 (respectively−1) are written with an error term, which is of the form
O((z − 1)1/2) (respectively,O((z + 1)1/2), there results an estimate of the coefficientsgn =
[zn]g(z), which can be put under the form

g2n =
cosh(1)√

πn
+O

“
n−3/2

”
, g2n+1 =

sinh(1)√
πn

+O
“
n−3/2

”
.

This makes explicit the dependency of the asymptotic form ofgn on the parity of the indexn.
Clearly a full asymptotic expansion can be obtained. . . . . . .. . . . . END OF EXAMPLE VI.6. �

EXAMPLE VI.7. Permutations with cycles of odd length.Consider the specification and EGF

F = SET(CYCodd(Z)) =⇒ F (z) = exp

„
1

2
log

1 + z

1− z

«
=

r
1 + z

1− z .

The singularities off are atz = +1 andz = −1, the function being obviously star-continuable.
By singularity analysis (Theorem VI.5), we have automatically:

F (z) =

8
><
>:

21/2

√
1− z +O

“
(1− z)1/2

”
(z → 1)

O
“
(1 + z)1/2

”
(z → −1)

•——◮ [zn]F (z) =
21/2

√
πn

+O
“
n−3/2

”
.

For the next asymptotic order, the singular expansions

F (z) =

8
<
:

21/2

√
1− z − 2−3/2

√
1− z +O((1− z)3/2) (z → 1)

2−1/2
√

1 + z +O((1 + z)3/2) (z → −1)

yield

[zn]F (z) =
21/2

√
πn
− (−1)n2−3/2

√
πn3

+O(n−5/2).

This example illustrates the occurrence of singularities that have different weights, in the sense
of being associated with different exponents. . . . . . . . . . . .. . . . . . . END OF EXAMPLE VI.7. �

The discussion of multiple dominant singularities ties well with the earlier dis-
cussion of Subsection IV. 6.1, p. 250. In the periodic case where the dominant singu-
larities are at roots of unity, different regimes manifest themselves cyclically depend-
ing on congruence properties of the indexn, like in the two examples above. When
the dominant singularities have arguments that are not commensurate toπ (a com-
paratively rare situation), aperiodic fluctuations appear, in which case the situation is
similar to what was already discussed, regarding rational and meromorphic functions,
in Subsection IV. 6.1.

VI. 6. Intermezzo: functions of singularity analysis class

Let us say that a function is ofsingularity analysis class, or SA-classfor short,
if its satisfies the conditions of singularity analysis, as expressed by Theorem VI.4
(single dominant singularity) or Theorem VI.5 (multiple dominant singularities). The
property of being of SA-class is preserved by several basic operations of analysis: we
have already seen this feature in passing, when determiningsingular expansions of
functions obtained by sums, products, or compositions in Examples 2–5.



384 VI. SINGULARITY ANALYSIS OF GF’S

As a starting example, it is easily recognized that the assumptions of∆-analyticity
for two functionsf(z), g(z) accompanied by the singular expansions

f(z) ∼
z→1

c(1 − z)−α, g(z) ∼
z→1

d(1 − z)−δ,

and the conditionα, δ 6∈ Z≤0 imply for the coefficients of the sum

[zn] (f(z) + g(z)) ∼





c
nα−1

Γ(α)
α > δ

(c+ d)
nα−1

Γ(α)
α = δ, c+ d 6= 0

d
nδ−1

Γ(δ)
α < δ.

Similarly, for products, we have

[zn] (f(z)g(z)) ∼ cd
nα+δ−1

Γ(α+ δ)
,

providedα+ δ 6∈ Z≤0.
The simple considerations above illustrate the robustnessof singularity analysis.

They also indicate that properties are easy to state in the generic case where no nega-
tive integral exponents are present. However, if all cases are to be covered, there can
easily be an explosion of the number of particular situations, which may render some-
what clumsy the enunciation of complete statements. Accordingly, in what follows,
we shall largely confine ourselves to generic cases, as long as these suffice to develop
the important mathematical technique at stake for each particular problem.

In the remainder of this chapter, we proceed to enlarge the class of functions
recognized to be of SA-class, keeping in mind the needs of analytic combinatorics.
The following types of functions are treated in later sections.

— Inverse functions(Section VI. 7). The inverse of an analytic function is, un-
der mild conditions, of SA-class. In the case of functions attached to simple
varieties of trees (corresponding to the inversion ofy/φ(y)), the singular
expansion invariably has an exponent of1

2 attached to it (a square-root sin-
gularity). This applies in particular to the Cayley tree function, in terms of
which many combinatorial structures and parameters can be analysed.

— Polylogarithms(Section VI. 8). These functions are the generating func-
tions of simple arithmetic sequences like(nθ) for an arbitraryθ ∈ C. The
fact that polylogarithms are of SA-class opens the possibility of estimat-
ing a large number of sums, which involve both combinatorialterms (e.g.,
binomial coefficients) and elements like

√
n andlog n. Such sums appear

recurrently in the analysis of cost functionals of combinatorial structures
and algorithms.

— Composition(Section VI. 9). The composition of functions of SA-class of-
ten proves to be itself of SA-class. This fact has implications for the analysis
of composition schemas and makes possible a broad extensionof the super-
critical sequence schema treated in Section V. 4, (p. 313).
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— Differentiation, integration, and Hadamard products(Section VI. 10). These
are three operations on analytic function that preserve theproperty for a
function to be of SA-class. Applications are given to tree recurrences and to
multidimensional walk problems.

A main theme of this book is that elementary combinatorial classes tend to have
generating functions whose singularity structure is strongly constrained—in many
cases, singularities are isolated. The singularity analysis process is then a prime tech-
nique for extracting asymptotic information from such generating functions.

VI. 7. Inverse functions

Recursively defined structures lead to functional equations whose solutions may
often be analysed locally near singularities. An importantcase is the one of func-
tions defined by inversion. It includes the Cayley tree function as well as all generat-
ing functions associated to simple varieties of trees (Subsections I. 5.1 (p. 61), II. 5.1
(p. 116), and III. 6.2 (p. 182)). A common pattern in this context is the appearance
of singularities of the square-root type, which proves to beuniversal amongst a broad
class of problems involving trees and tree-like structures. Accordingly, by singularity
analysis, the square-root singularity induces subexponential factors of the asymptotic
formn−3/2 in coefficients’ expansions.

Inverse functions. Singularities of functions defined by inversion have been lo-
cated in Subsection IV. 7.1 (p. 261) and our treatment will proceed from there. The
goal is to estimate the coefficients of a function defined implicitly by an equation of
the form

(33) y(z) = zφ(y(z)) or equivalently z =
y(z)

φ(y(z))
.

The problem of solving (33) is one of functional inversion: we have seen (Lem-
mas IV.2 and IV.3, pp. 262–263) thatan analytic function admits locally an analytic
inverse if and only if its first derivative is nonzero. We operate here under the following
assumptions:

— Condition (H1). The functionφ(u) is analytic atu = 0 and satisfies

(34) φ(0) 6= 0, [un]φ(u) ≥ 0, φ(u) 6≡ φ0 + φ1u.

(As a consequence, the inversion problem is well defined around 0. The
nonlinearity ofφ only excludes the caseφ(u) = φ0 + φ1u, corresponding
to y(z) = φ0z/(1 − φ1z).)

— Condition (H2). Within the opendisc of convergence ofφ at 0, |z| <
R, there exists a (necessarily unique) positive solution to thecharacteristic
equation:

(35) ∃τ, 0 < τ < R, φ(τ) − τφ′(τ) = 0.

(Existence is granted as soon aslimxφ′(x)/φ(x) > 1 asx → R−,with R
the radius of convergence ofφ at 0; see Proposition IV.5, p. 264.)
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y :

1

0

0.5

-0.5

10.5-1 0

-1

-0.5

−→ z :

-1

1

0.5

0

-0.5

10-1-1.5 0.5-0.5

FIGURE VI.9. The images of concentric circles by the mappingy 7→ z = ye−y. It
is seen thaty 7→ z = ye−y is injective on|y| ≤ 1 with an image extending beyond the
circle |z| = e−1 [in grey], so that the inverse functiony(z) is analytically continuable in a
∆–domain aroundz = e−1. Since the direct mappingye−y is quadratic at 1 (with value
e−1), the inverse function has a square-root singularity ate−1 (with value 1).

Then (by Proposition IV.5, p. 264), the radius of convergence of y(z) is the corre-
sponding positive valueρ of z such thaty(ρ) = τ , that is to say,

(36) ρ =
τ

φ(τ)
=

1

φ′(τ)
.

We start with a calculation indicating in a plain context theoccurrence of a square-root
singularity.

EXAMPLE VI.8. A simple analysis of the Cayley tree function.The situation corresponding
to the functionφ(u) = eu, so thaty(z) = zey(z) (defining the Cayley tree functionT (z)), is
typical of general analytic inversion. From (35), the radius of convergence ofy(z) is ρ = e−1

corresponding toτ = 1. The image of a circle in they–plane, centered at the origin and having
radiusr < 1, by the functionye−y is a curve of thez–plane that properly contains the circle
|z| = re−r (see Figure 9) asφ(y) = ey, which has nonnegative coefficients, satisfies

˛̨
˛φ(reiθ)

˛̨
˛ ≤ φ(r) for all θ ∈ [−π,+π],

the inequality being strict for allθ 6= 0. The following observation is the key to analytic
continuation: Since the first derivative ofy/φ(y) vanishes at 1, the mappingy 7→ y/φ(y)
is angle-doubling, so that the image of the circle of radius1 is a curveC that has a cusp at
ρ = e−1. (See Figure 9; Notes 16 and 17 provide interesting generalizations.)

This geometry shows that the solution ofz = ye−y is uniquely defined forz insideC.
Thus,y(z) is ∆–analytic. A singular expansion fory(z) is then derived from reversion of the
power series expansion ofz = ye−y. We have

ye−y = e−1 − e−1

2
(y − 1)2 +

e−1

3
(y − 1)3 − e−1

8
(y − 1)4 + · · · ,

so that solving fory gives

y − 1 =
√

2(1− ez)1/2 +
2

3
(1− ez) +O((1− ez)3/2),
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and a full expansion can be obtained. . . . . . . . . . . . . . . . . . . . .. . . . . END OF EXAMPLE VI.8. �

Analysis of inverse functions.The calculation of Example 8 now needs to be
extended to the general case,y = zφ(y). This involves three steps:(i) all the dom-
inant singularities are to be located;(ii) analyticity ofy(z) in a ∆–domain must be
established;(iii) the singular expansion, obtained formally so far and involving a
square-root singularity, needs to be determined. Step(i) requires a special discussion
and is related to periodicities.

A simple example likeφ(u) = 1 + u2 (binary trees), for which

y(z) =
1 −

√
1 − 4z2

2z
,

shows thaty(z) may have several dominant singularities—here, two conjugate singu-
larities at− 1

2 and+ 1
2 . The conditions for this to happen are rather simple. Let us say

that a function analytic at 0,f(u), is p–periodicif f(u) = urg(up) for some power
seriesg (see p. 252). A function is calledperiodicif it is p–periodic from somep ≥ 2
andaperiodicotherwise. An elementary argument developed in Note 15 below shows
that that periodicity does not occur fory(z) unlessφ(u) is itself periodic, a case which
turns out to be easily reducible to the aperiodic situation.

Theorem VI.6 (Singular Inversion). Letφ be a nonlinear function satisfying the con-
ditions (H1) and (H2) of Equations(34) and (35), and lety(z) be the solution of
y = zφ(y) satisfyingy(0) = 0. Then, the quantityρ = τ/φ(τ) is the radius of con-
vergence ofy(z) at 0 (withτ the root of the characteristic equation), and the singular
expansion ofy(z) nearρ is of the form

y(z) = τ − d1

√
1 − z/ρ+

∑

j≥2

(−1)jdj(1 − z/ρ)j/2, d1 :=

√
2φ(τ)

φ′′(τ)
,

with thedj being some computable constants.
Assume that, in addition,φ is aperiodic4. Then, one has

[zn]y(z) ∼
√

φ(τ)

2φ′′(τ)

ρ−n

√
πn3

(
1 +

∞∑

k=1

ek

nk

)
,

for a familyek of computable constants.

PROOF. Proposition IV.5, p. 264, shows thatρ is indeed the radius of convergence
of y(z). The Singular Inversion Lemma (Lemma IV.3, p. 263) also shows thaty(z)
can be continued to a neighbourhood ofρ slit along the rayR≥ρ.

The singular expansion atρ is determined like in Example 8. Indeed, the relation
betweenz andy, in the vicinity of(z, y) = (ρ, τ), may be put under the form

(37) ρ− z = H(y), where H(y) :=

(
τ

φ(τ)
− y

φ(y)

)
,

4If φ has maximal periodp, then one must restrictn to n ≡ 1 mod p; in that case, there is an extra
factor ofp in the estimate ofyn: see Note 15 and Equation (38).
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the functionH(y) in the right hand side being such thatH(τ) = H ′(τ) = 0. Thus,
the dependency betweeny andz is locally a quadratic one:

ρ− z =
1

2!
H ′′(τ)(y − τ)2 +

1

3!
H ′′′(τ)(y − τ)3 + · · · .

When this relation is locally inverted: a square-root appears:

−√
ρ− z =

√
H ′′(τ)

2
(y − τ)

[
1 + c1(y − τ) + c2(y − τ)2 + ...

]
.

The determination with a−√ should be chosen there asy(z) increases toτ− asz →
ρ−. This implies, by solving with respect toy − τ , the relation

y − τ ∼ −d⋆
1(ρ− z)1/2 + d⋆

2(ρ− z) − d⋆
3(ρ− z)3/2 + · · · ,

whered⋆
1 =

√
2/H ′′(τ) with H ′′(τ) = τφ′′(τ)/φ(τ)2 . The singular expansion atρ

results.
There now remains to exclude the possibility fory(z) to have singularities other

thanρ on the circle|z| = ρ. Observe thaty(ρ) is well defined (in facty(ρ) = τ ), so
that the series representingy(z) converges atρ as well as on the whole circle (given
positivity of the coefficients). Ifφ(z) is aperiodic, then so isy(z). Consider any point
ζ such that|ζ| = ρ andζ 6= ρ and setη = y(ζ). We then have|η| < τ (by the
Daffodil Lemma: Lemma IV.1, p. 253). The functiony(z) is analytic atζ by virtue of
the Analytic Inversion Lemma (Lemma IV.2, p. 262) and the property that

d

dy

y

φ(y)

∣∣∣∣
y=η

6= 0.

(This last property derives from the fact that the numeratorof the quantity on the left,

φ(η) − ηφ′(η) = φ0 − φ2η
2 − 2φ3η

3 − 3φ4η
4 − · · · ,

cannot vanish, by the triangle inequality since|η| < τ .) Thus, under the aperiodicity
assumption,y(z) is analytic on the circle|z| = ρ punctured atρ. The expansion of
the coefficients then results from basic singularity analysis. �

Figure 10 provides a table of the most basic varieties of simple trees and the
corresponding asymptotic estimates. With Theorem VI.6, wenow have available a
powerful method that permits us to analyse not only implicitly defined functions but
also expressions built upon them. This fact will be put to good use in Chapter VII,
when analysing a number of parameters associated to simple varieties of trees.
� VI.13. Computability of singular expansions.Define

h(w) :=

s
τ/φ(τ )− w/φ(w)

(τ −w)2
,

so thaty(z) satisfies
√
ρ− z = (τ − y)h(y). The singular expansion ofy can then be deduced

by Lagrange inversion from the expansion of the negative powers ofh(w) at w = τ . This
technique yields for instance explicit forms for coefficients in the singular expansion ofy =
zey. �
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Type φ(u) Sing. expansion ofy(z) Coeff.[zn]y(z)

binary (1 + u)2 1− 4
q

1
4
− z + · · · 4n

√
πn3

+O(n−5/2)

unary-binary 1 + u+ u2 1− 3
q

1
3
− z + · · · 3n+1/2

2
√
πn3

+O(n−5/2)

general (1− u)−1 1
2
−
q

1
4
− z 4n−1

√
πn3

+O(n−5/2)

Cayley eu 1−
√

2e
√
e−1 − z + · · · en

√
2πn3

+O(n−5/2)

FIGURE VI.10. Singularity analysis of some simple varieties of trees.

� VI.14. Stirling’s formula via singularity analysis.The solution toT = zeT analytic at 0 is
the Cayley tree function. It satisfies[zn] = nn−1/n! (by Lagrange inversion) and, at the same
time, its singularity is known from Theorem VI.6. As a consequence:

nn−1

n!
∼ en

√
2πn3

„
1− 1

12
n−1 +

1

288
n−2 +

139

51840
n−3 − · · ·

«
.

Thus Stirling’s formulaalsoresults from singularity analysis. �

� VI.15. Periodicities.Assume thatφ(u) = ψ(up)with ψ analytic at 0 andp ≥ 2. Let y =
y(z) be the root ofy = zφ(y). SetZ = zp and letY (Z) be the root ofY = Zψ(Y )p. One has
by constructiony(z) = Y (zp)1/p, given thatyp = zpφ(y)p. SinceY (Z) = Y1Z+Y2Z

2+· · · ,
we verify that the nonzero coefficients ofy(z) are amongst those of index1, 1+ p, 1+2p, . . . .

If p is chosen maximal, thenψ(u)p is aperiodic. Then Theorem VI.6 applies toY (Z): the
functionY (Z) is analytically continuable beyond its dominant singularity atZ = ρp; it has a
square root singularity atρp and no other singularity on|Z| = ρp. Also, sinceY = Zψ(Y )p,
the functionY (Z) cannot vanish on|Z| ≤ ρp, Z 6= 0. Thus,Y (Z)1/p is analytic in|Z| ≤ ρp,
except atρp where it has a√ branch point. All computations done, we find that

(38) [zn]y(z) ∼ p · d1ρ
−n

2
√
πn3

when n ≡ 1 (mod p).

The argument also shows thaty(z) hasp conjugate roots on its circle of convergence. (This is
a kind of Perron-Frobenius property for periodic tree functions.) �

� VI.16. Boundary cases I.The case whenτ lies on the boundary of the disc of convergence
of φ may lead to asymptotic estimates differing from the usualρ−nn−3/2 prototype. Without
loss of generality, takeφ aperiodic to have radius of convergence equal to 1 and assumethatφ
is of the form

(39) φ(u) = u+ c(1− u)α + o((1− u)α), with 1 < α ≤ 2,

asu tends to 1 with|u| < 1. The solution of the characteristic equationφ(τ )− τφ′(τ ) = 0 is
thenτ = 1. The functiony(z) defined byy = zφ(y) is ∆–analytic (by a mapping argument
similar to the one exemplified by Figure 9 and related to the fact thatφ “multiplies” angles
near 1). The singular expansion ofy(z) and the coefficients then satisfy

(40) y(z) = 1− c−1/α(1− z)1/α + o
“
(1− z)1/α

”
•——◮ yn ∼ c−1/α n−1/α−1

−Γ(−1/α)
.

[The caseα = 2 was first observed by Janson [281]. Trees withα ∈ (1, 2) have been investi-
gated in connection with stable Lévy processes [141]. The singular exponentα = 3

2
occurs for
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instance in planar maps (Chapter VII), so that GFs with coefficients of the formρ−nn−5/3 can
arise, when considering trees whose nodes are themselves maps.] �

� VI.17. Boundary cases II.Let φ(u) be the probability generating function of a random
variableX with mean equal to 1 and such thatφn ∼ λn−α−1, with 1 < α < 2. Then,
by a complex version of an Abelian theorem (see, e.g., [56, §1.7] and [182]), the singular
expansion (39) holds whenu → 1, |u| < 1, within a cone, so that the conclusions of (40)
hold in that case. Similarly, ifφ′′(1) exists, meaning thatX has a second moment, then the
estimate (40) holds withα = 2, and then coincides with what Theorem VI.6 predicts [281]. (In
probabilistic terms, the condition of Theorem VI.6 is equivalent to postulating the existence of
exponential moments for the one-generation offspring distribution.) �

VI. 8. Polylogarithms

Expressions involving sequences like(
√
n) or (log n) can be subjected to sin-

gularity analysis. The starting point is the definition of the generalizedpolyloga-
rithm Liα,r, whereα is an arbitrary complex number andr a nonnegative integer:

Liα,r(z) :=
∑

n≥1

(log n)r z
n

nα
,

The series converges for|z| < 1, so that the functionLiα,r is a priori analytic in
the unit disc. The quantityLi1,0(z) is the usual logarithm,log(1 − z)−1, hence the
established name, polylogarithm, assigned to these functions [331]. In what follows,
we make use of the abbreviationLiα,0(z) ≡ Liα(z), so thatLi1(z) ≡ Li1,0(z) ≡
log(1 − z)−1 is the GF of the sequence(1/n). Similarly , Li0,1 is the GF of the
sequence(logn) andLi−1/2(z) is the GF of the sequence(

√
n).

Polylogarithms are continuable to the whole of the complex plane slit along the
ray R≥1, a fact established early in the twentieth century by Ford [220]. They are
of SA-class [176] and their singular expansions involve the Riemann zeta function
defined by

ζ(s) =

∞∑

n=1

1

ns
,

for ℜ(s) > 1, and by analytic continuation elsewhere [470].

Theorem VI.7 (Singularities of polylogarithms). For all α ∈ Z and r ∈ Z≥0, the
functionLiα,r(z) is analytic in the slit planeC\R≥1. Forα 6∈ {1, 2, . . .}, there exists
an infinite singular expansion (with logarithmic terms whenas r > 0) given by the
two rules:

(41)





Liα(z) ∼ Γ(1 − α)wα−1 +
∑

j≥0

(−1)j

j!
ζ(α − j)wj , w :=

∞∑

ℓ=1

(1 − z)ℓ

ℓ

Liα,r(z) = (−1)r ∂r

∂αr
Liα(z) (r ≥ 0).

The expansion ofLiα is conveniently described by the composition of two expansions, with the
expansion ofw = log z at z = 1, namelyw = (1 − z) + 1

2
(1 − z)2 + · · · , to be substituted
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inside the expansion into powers ofw. The exponents of(1 − z) involved in the resulting
expansion are{α− 1, α, . . .} ∪ {0, 1, . . .}. Forα < 1, the main asymptotic term ofLiα,r is

Liα,r ∼ Γ(1− α)(1− z)α−1Lr(z), L(z) := log
1

1− z ,

while, forα > 1, we haveLiα,r ∼ ζ(r)(α), since the sum converges.
PROOF. The analysis crucially relies on the Mellin transform (seeAPPENDIX B:
Mellin transform, p. 707). We start with the caser = 0 and consider several ways in
which z may approach the singularity 1. Step(i) below describes the main ingredi-
ent needed inobtainingthe expansion, the subsequent steps being only required for
justifying it in larger regions of the complex plane.

(i) Whenz → 1− along the real line: Setw = − log z and introduce

(42) Λ(w) := Liα(e−w) =
∑

n≥1

e−nw

nα
.

This is aharmonic sumin the sense of Mellin transform theory, so that the Mellin
transform ofΛ satisfies (ℜ(s) > max(0, 1 − α))

(43) Λ⋆(s) ≡
∫ ∞

0

Λ(w)ws−1 dw = ζ(s+ α)Γ(s).

The functionΛ(w) can be recovered from the inverse Mellin integral,

(44) Λ(w) =
1

2iπ

∫ c+i∞

c−i∞
ζ(s+ α)Γ(s)w−s ds,

with c taken in the half-plane in whichΛ⋆(s) is defined. There are poles ats =
0,−1,−2, . . . due to the Gamma factor and a pole ats = 1 − α due to the zeta
function. Taked to be of the form−m− 1

2 and smaller than1 − α. Then, a standard
residue calculation, taking into account poles to the left of c and based on

(45)

Λ(w) =
∑

s0∈{0,−1,...,−m}∪{1−α}
Res

(
ζ(s+ α)Γ(s)w−s

)
s=s0

+
1

2iπ

∫ d+i∞

d−i∞
ζ(s+ α)Γ(s)w−s ds,

then yields a finite form of the estimate (41) ofLiα (asw → 0, corresponding to
z → 1−).

(ii) Whenz → 1− in a cone of angle less thanπ inside the unit disc: In that case,
we observe that the identity in (44) remains valid by analytic continuation, since the
integral is still convergent (this property owes to the fastdecay ofΓ(s) towards±i∞).
Then the residue calculation (45), on which the expansion ofΛ(w) is based in the real
casew > 0, still makes sense. The extension of the asymptotic expansion ofLiα from
within the unit disc is thus granted.

(iii) Whenz tends to 1 vertically’:Details of the proof are given in [176]. What
is needed is a justification of the validity of expansion (41), whenz is allowed to tend
to 1 from the exterior of the unit disc. The key to the analysisis a Lindelöf integral
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Li−1/2(z) =
X

n≥1

√
nzn =

√
π

2(1− z)3/2
− 3

√
π

8(1− z)1/2
+ ζ(−1

2
) +O

“
(1− z)1/2

”

Li0(z) =
X

n≥1

zn ≡ 1

1− z − 1

Li0,1(z) =
X

n≥1

log n zn =
L(z)− γ

1− z − 1

2
L(z) +

γ − 1

2
+ log

√
2π +O ((1− z)L(z))

Li1/2(z) =
X

n≥1

zn

√
n

=

r
π

1− z + ζ(
1

2
)− 1

4

√
π
√

1− z +O
“
(1− z)3/2

”

Li1/2,1(z) =
X

n≥1

log n√
n
zn =

√
π
L(z)− γ − 2 log 2√

1− z − ζ(1

2
)
“γ

2
+
π

4
+ log

√
8π
”

+ · · ·

Li1(z) =
X

n≥1

zn

n
≡ L(z)

Li2(z) =
X

n≥1

zn

n2
=

π2

6
− (L(z) + 1)(1− z)− (

1

4
+

1

2
L(z))(1− z)2 + · · ·

FIGURE VI.11. Sample expansions of polylogarithms (L(z) := log(1 − z)−1).

representation of the polylogarithm (Notes IV.7 and IV.8, p. 225), which provides
analytic continuation. To wit:

Liα(−z) = − 1

2iπ

∫ 1/2+i∞

1/2−i∞

zs

sα

π

sinπs
ds.

The proof then proceeds with the analysis of the polylogarithm whenz = ei(w−π)

ands = 1/2 + it, the integral being estimated asymptotically as aharmonic integral
(a continuous analogue of harmonic sums [502]) by means of Mellin transforms. The
extension to a cone with vertex at 1, having a vertical symmetry and angle less thanπ,
then follows by an analytic continuation argument. By unicity of asymptotic expan-
sions (the horizontal cone of Parts(i) and(ii) and the vertical cone have a nonempty
intersection), the resulting expansion must coincide withthe one calculated explicitly
in Part(i), above.

To conclude, regarding the general caser ≥ 0, we may proceed along similar
lines, with eachlogn factor introducing a derivative of the Riemann zeta function,
hence a multiple pole ats = 1. It can then be checked that the resulting expansion
coincides with what is given by formally differentiating the expansion ofLiα a number
of times equal tor. (See also Note 18 below.) �

Figure 11 provides a table of expansions relative to commonly encountered poly-
logarithms (the functionLi2 is also known as adilogarithm). Example 9 illustrates
the use of polylogarithms for establishing a class of asymptotic expansions of which
Stirling’s formula appears as a special case. Further uses of Theorem VI.7 will appear
in the next sections.



VI. 9. FUNCTIONAL COMPOSITION 393

EXAMPLE VI.9. Stirling’s formula, polylogarithms, and superfactorials. One has
X

n≥1

log n! zn = (1− z)−1 Li0,1(z),

to which singularity analysis is applicable. Theorem VI.7 then yields the singular expansion

1

1− z Li0,1(z) ∼ L(z)− γ
(1− z)2 +

1

2

−L(z) + γ − 1 + log 2π

1− z + · · · ,

from which Stirling’s formula reads off:

log n! ∼ n log n− n+
1

2
log n+ log

√
2π + · · · .

(Stirling’s constantlog
√

2π comes out as neatly−ζ′(0).) Similarly, define thesuperfactorial
function to be1122 · · ·nn. One has

X

n≥1

log(1222 · · ·nn)zn =
1

1− z Li−1,1(z),

to which singularity analysis is mechanically applicable.The analogue of Stirling’s formula
then reads:

1122 · · ·nn ∼ An
1
2

n2+ 1
2

n+ 1
12 e−

1
4

n2

,

A = exp

„
1

12
− ζ′(−1)

«
= exp

„
− ζ

′(2)

2π2
+

log(2π) + γ

12

«
.

The constantA is known as the Glaisher-Kinkelin constant [165, p. 135]. Higher order factorials
can be treated similarly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . END OF EXAMPLE VI.9. �

� VI.18. Polylogarithms of integral index and a general formula.Letα = m ∈ Z≥1. Then:

Lim(z) =
(−1)m

(m− 1)!
wm−1(logw −Hm−1) +

X

j≥0,j 6=m−1

(−1)j

j!
ζ(m− j)wj ,

whereHm is the harmonic number andw = − log z. [The line of proof is the same as in
Theorem VI.7, only the residue calculation ats = 1 differs.] The general formula,

Liα,r(z) ∼
z→1

(−1)r ∂r

∂αr

X

s∈Z≥0∪{1−α}
Res

ˆ
ζ(s+ α)Γ(s)w−s˜, w := − log z,

holds for allα ∈ C andr ∈ Z≥0 and is amenable to symbolic manipulation. �

VI. 9. Functional composition

Let f andg be functions analytic at the origin that have nonnegative coefficients.
We consider the composition

h = f ◦ g, h(z) = f(g(z)),

assumingg(0) = 0. Let ρf , ρg, ρh be the corresponding radii of convergence, and let
τf = f(ρf ), and so on. We shall assume thatf andg are∆–continuable and that
they admit singular expansions in the scale of powers. Thereare three cases to be
distinguished depending on howτg compares toρf . Clearly one has:
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— Supercritical case5, whenτg > ρf . In that case, whenz increases from0,
there is a valuer strictly less thanρg such thatg(r) attains the valueρf ,
which triggers a singularity off ◦ g. In other wordsr ≡ ρh = g(−1)(ρf ).
Around this point,g is analytic and a singular expansion off ◦ g is obtained
by composing the singular expansion off with the regular expansion ofg
at r. The singularity type is that of the external function(f).

— Subcritical case, whenτg < ρf . In this dual situation, the singularity off ◦g
is driven by that of the inside functiong. We haveρh = ρg, τh = f(ρg)
and the singular expansion off ◦ g is obtained by composing the regular
expansion off with the singular expansion ofg at ρg. The singularity type
is that of the internal function(g).

— Critical case, whenτg = ρf . In this boundary case, there is a confluence
of singularities. We haveρh = ρg, τh = τf , and the singular expansion is
obtained by composition rules of the singular expansions.The singularity
type is a mix of the types of the internal and external functions(f, g).

This terminology extends the notion of supercritical sequence schema introduced
in Chapter V, where we considered the casef(z) = (1 − z)−1 and discussed some
of the probabilistic consequences. Rather than stating general conditions that would
be unwieldy, it is better to discuss examples directly, referring to the above guide-
lines supplemented by the plain algebra of generalized power expansions, whenever
necessary.

EXAMPLE VI.10. “Supertrees”. Let G be the class of general Catalan trees:

G = Z × SEQ(G) =⇒ G(z) =
1

2
(1−

√
1− 4z).

The radius of convergence ofG(z) is 1
4

and the singular value isG( 1
4
) = 1

2
. The classZG

consists of planted trees, which are such that to the root is attached a stem and an extra node,
with OGF equal tozG(z). We then introduce two classes ofsupertreesdefined by substitution:

H = G[ZG] =⇒ H(z) = G(zG(z))
K = G[(Z + Z ′)G] =⇒ K(z) = G(2zG(z)).

These are “trees of trees”: the classH is formed of trees such that, on each node there is grafted
a planted tree (by the combinatorial substitution of Section I. 6, p. 77); the classK similarly
corresponds to the case when the stems can be of any two colours. Incidentally, combinatorial
sum expressions are available for the coefficients,

Hn =

⌊n/2⌋X

k=1

1

n− k

 
2k − 2

k − 1

! 
2n− 3k − 1

n− k − 1

!
, Kn =

⌊n/2⌋X

k=1

2k

n− k

 
2k − 2

k − 1

! 
2n− 3k − 1

n− k − 1

!
,

the initial values being given by

H(z) = z2 +z3 +3z4 +7z5 +21z6 + · · · , K(z) = 2z2 +2z3 +8z4 +18z5 +64z6 + · · · .
SinceρG = 1

4
andτG = 1

2
, the composition scheme is subcritical in the case ofH and

critical in the case ofK. In the first case, the singularity is of square-root type andone finds

5This terminology is in accordance with the notion of supercritical sequence schema in Section V. 4
(p. 313), for which the external function isf(z) = (1 − z)−1, with ρf = 1.



VI. 9. FUNCTIONAL COMPOSITION 395

FIGURE VI.12. A binary supertree is a “tree of trees”, with component treesall binary.
The number of binary supertrees with2n nodes has the unusual asymptotic form
c4nn−5/4.

easily:

H(z) ∼
z→ 1

4

2−
√

2

4
− 1√

8

r
1

4
− z, •——◮ Hn ∼ 4n

8
√

2πn3/2
.

In the second case, the two square-roots combine to produce afourth root:

K(z) ∼
z→ 1

4

1

2
− 1√

2
(
1

4
− z)1/4 •——◮ Kn ∼ 4n

8Γ( 3
4
)n5/4

.

On a similar register, consider the classB of complete binary trees:

B = Z + Z × B × B =⇒ B(z) =
1−
√

1− 4z2

2z
,

and define the class ofbinary supertrees(Figure 12) by

S = B (Z × B) =⇒ S(z) =
1−

p
2
√

1− 4z2 − 1 + 4z2

1−
√

1− 4z2
.

The composition is critical sincezB(z) = 1
2

at the dominant singularityz = 1
2
. It is enough to

consider the reduced function

S(z) = S(
√
z) = z + z2 + 3z3 + 8z4 + 25z5 + 80z6 + 267z7 + 911z8 + · · · ,

whose coefficients constituteEISA101490and occur in Bousquet-Mélou’s study of integrated
superbrownian excursion [67]. We find

S(z) ∼ 1−
√

2(1−4z)1/4+(1−4z)1/2+· · · •——◮ Sn =
4n

n5/4

„ √
2

4Γ( 3
4
)
− 1

2
√
πn1/4

+ · · ·
«
.

For instance, a seven term expansion yields a relative accuracy of10−4, already forn = 100,
so that such approximations are quite usable in practice.

The occurrence of the exponent− 5
4

in the enumeration of bicoloured and binary supertrees
is striking. Related constructions have been considered byKemp [291] who obtained more
generally exponents of the form−1 − 2−d by iterating the substitution construction (this, in
connection with what he called “multidimensional trees”).It is significant that asymptotic terms
of the formnp/q with q 6= 1, 2 can appear in elementary combinatorics, even in the context
of simple algebraic functions. Such exponents tend to be associated with nonstandard limit
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Weights

(46)
fk

1
k

1
4k

`
2k
k

´
1 Hk k k2

f(z) log 1
1−z

1√
1−z

1
1−z

1
1−z

log 1
1−z

z
(1−z)2

z+z2

(1−z)3
.

Triangular arrays

(47)
g
(k)
n

`
n−1
k−1

´
kn−k

(n−k)!

`
k

n−k

´
k
n

`
2n−k−1

n−1

´
k
n

`
2n

n−k

´
k nn−k−1

(n−k)!

g(z) z
1−z

zez z(1 + z) 1−
√

1−4z
2

1−2z−
√

1−4z
2z

T (z)

FIGURE VI.13. Typical weights (top) and triangular arrays (bottom) illustrating the dis-
cussion of combinatorial sumsSn =

Pn
k=1 fkg

(k)
n .

laws, akin to the stable distributions of probability theory; see also our discussion at the end of
Chapter IX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . END OF EXAMPLE VI.10. �

� VI.19. Supersupertrees.Define these by

S[2](z) = B(zB(zB(z))).

We find automatically (with the help of B. Salvy’s program)

[z2n+1]S[2](z) ∼ 2−13/4Γ

„
7

8

«−1

4nn−9/8,

and further extensions involving an asymptotic termn−1−2−d

are possible (see [291] for similar
cases). �

Combinatorial sums.Singularity analysis permits us to discuss the asymptotic
behaviour of entire classes of combinatorial sums at a fair level of generality, with
asymptotic estimates coming out rather automatically. We consider here combinatorial
sums of the form

Sn =

n∑

k=0

fkg
(k)
n ,

wherefk is a sequence of numbers, usually of a simple form and called theweights,
while theg(k)

n are a triangular array of numbers, for instance Pascal’s triangle.
As weightsfk we shall consider sequences such thatf(z) is ∆–analytic with a

singular expansion involving functions of the standard scale of Theorems VI.1, VI.2,
VI.3. Typical examples forf(z) and(fk) are6 are displayed in Figure 13, Equation 46.
The triangular arrays discussed here are taken to be coefficients of thepowersof some
fixed function, namely,

g(k)
n = [zn](g(z))k where g(z) =

∞∑

n=1

gnz
n,

with g(z) an analytic function at the origin having nonnegative coefficients and satis-
fying g(0) = 0. Examples are given in Figure 13, Equation (47). An interesting class

6Weights likelog k and
√
k, also satisfy these conditions, as seen in Section VI. 8.
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of such arrays arises from the Lagrange inversion theorem. Indeed, ifg(z) is implic-
itly defined byg(z) = zG(g(z)), one hasgn,k = k

n [wn−k]G(w)n; the last three cases
of (47) are obtained in this way (by takingG(w) as1/(1 − w), (1 + w)2, ew).

By design, the generating function of theSn is simply

S(z) =

∞∑

n=0

Snz
n = f(g(z)) with f(z) =

∞∑

k=0

fkz
k.

Consequently, the asymptotic analysis ofSn results by inspection from the way sin-
gularities off(z) andg(z) get transformed by composition.

EXAMPLE VI.11. Bernoulli sums.Let φ be a function fromZ≥0 to R and writefk := φ(k).
Consider the sums

Sn :=

nX

k=0

φ(k)
1

2n

 
n

k

!
.

If Xn is a binomial random variable7, Xn ∈ Bin(n, 1
2
), thenSn = E(φ(Xn)) is exactly the

expectation ofφ(Xn). Then, by the binomial theorem, the OGF of the sequence(Sn) is:

S(z) =
2

2− z f
„

z

2− z

«
.

Considering weights whose generating function has, like in(46) radius of convergence 1, what
we have is a variant of the composition schema, with an additional prefactor. The composition
scheme is of thesupercritical typesince the functiong(z) = z/(2 − z), which has radius of
convergence equal to 2, satisfiesτg =∞. The singularities ofS(z) are then of the same type as
those of the weight generating functionf(z) and one verifies, in all cases of (46), that, to first
asymptotic order,Sn ∼ φ(n/2): this is in agreement with the fact that the binomial distribution
is concentrated near its meann

2
. Singularity analysis provides complete asymptotic expansions,

for instance,

E

„
1

Xn

˛̨
Xn > 0

«
=

2

n
+

2

n2
+

6

n3
+O(n−4)

E (HXn) = log
n

2
+ γ +

1

2n
− 1

12n2
+O(n−3).

See [163, 176] for more along these lines. . . . . . . . . . . . . . . . . . . . END OF EXAMPLE VI.11. �

EXAMPLE VI.12. Generalized Knuth–RamanujanQ-functions. For reasons motivated by
analysis of algorithms, Knuth has encountered repeatedly sums of the form

Qn({fk}) = f0 + f1
n

n
+ f2

n(n− 1)

n2
+ f3

n(n− 1)(n− 2)

n3
+ · · · .

(See, e.g., [312, pp. 305–307].) There(fk) is a sequence of coefficients (usually of at most
polynomial growth). For instance, the casefk ≡ 1 yields the expected time till the first collision
in the birthday paradox problem (Section II. 3, p. 105).

A closer examination shows that the analysis of suchQn is reducible to singularity analy-
sis. Writing

Qn({fk}) = f0 +
n!

nn−1

X

k≥1

fk
nn−k−1

(n− k)!

7A binomial random variable is a sum of Bernoulli random variables:Xn =
Pn

j=1 Yj where theYj

are independent and distributed like a Bernoulli variableY , with P(Y = 1) = p, P(Y = 0) = q = 1− p.
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reveals the closeness with the last column of (47). Indeed, setting

F (z) =
X

k≥1

fk

k
zk,

one has (n ≥ 1)

Qn = f0 +
n!

nn−1
[zn]S(z) where S(z) = F (T (z)),

andT (z) is the Cayley tree function (T = zeT ).
For weightsfk = φ(k) of polynomial growth, the schema iscritical. Then, the singular

expansion ofS is obtained by composing the singular expansion off with the expansion ofT ,
namely,T (z) ∼ 1−

√
2
√

1− ez asz → e−1. For instance, ifφ(k) = kr for some integerr ≥
1 thenF (z) has anrth order pole atz = 1. Then, the singularity type ofF (T (z)) is Z−r/2

whereZ = (1 − ez), which is reflected bySn ≍ ennr/2−1 (we use ‘≍’ to represent order-
of-growth information, disregarding multiplicative constants). After the final normalization, we
see thatQn ≍ n(r+1)/2. Globally, for many weights of the formfk = φ(k), we expectQn to
be of the form

√
nφ(
√
n), in accordance with the fact that the expectation of the firstcollision

in the birthday problem is on average near
p
πn/2. . . . . . . . . . . END OF EXAMPLE VI.12. �

� VI.20. General Bernoulli sums.Let Xn ∈ Bin(n; p) be a binomial random variable with
general parametersp, q:

P(Xn = k) =

 
n

k

!
pkqn−k, q = 1− p.

Then withfk = φ(k), one has

E(φ(Xn)) = [zn]
1

1− qz f
„

pz

1− qz

«
,

so that the analysis develops as in the caseBin(n; 1
2
). �

� VI.21. Higher moments of the birthday problem.Take the model where there aren days
in the year and letB be the random variable representing the first birthday collision. Then
Pn(B > k) = k!n−k

`
n
k

´
, and

En(Φ(B)) = Φ(1) +Qn({∆Φ(k)}), where ∆Φ(k) := Φ(k + 1)− Φ(k).

For instanceEn(B) = 1 + Qn(〈1, 1, . . .〉). We thus get moments of various functionals (here
stated to two asymptotic terms):

Φ(x) x x2 + x x3 + x2 x4 + x3

En(Φ(B))
p

πn
2

+ 2
3

2n+ 2 3
q

πn3

2
− 2n 8n2 − 7

q
πn3

2

via singularity analysis. �

� VI.22. How to weigh an urn? The “shake-and-paint” algorithm.You are given an urn
containing an unknown numberN of identical looking balls. How to estimate this number in
much fewer thanO(N) operations? A probabilistic solution due to Brassard and Bratley [71]
uses a brush and paint. Shake the urn, pull out a ball, then mark it with paint and replace it
into the urn. Repeat until you find an already painted ball. Let X be the number of operations.
One hasE(X) ∼

p
πN/2. Further more the quantityY := X2/2 constitutes, by the previous

note, an asymptotically unbiased estimator ofN , in the sense thatE(Y ) ∼ N . In other words,
count the time till an already painted ball is first found, andreturn half of the square of this time.
One also has

p
V(Y ) ∼ N . By performing the experimentm times (usingm different colours

of paint) and by taking the arithmetic average of them estimates, one obtains an unbiased
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estimator whose typical accuracy is
p

1/m. For instance,m = 16 gives an expected accuracy
of 25%. (Similar principles are used in the design of data mining algorithms.) �

� VI.23. Catalan sums.These are defined by

Sn :=
X

k≥0

fk

 
2n

n− k

!
, S(z) =

1√
1− 4z

f

„
1− 2z −

√
1− 4z

2z

«
.

The case whenρf = 1 corresponds to a critical composition, which can be discussed much in
the same way as Ramanujan sums. �

Schemas.Singularity analysis also enables us to discuss at a fair level of gener-
ality the behaviour ofschemas, in a way that parallels the discussion of the sequence
schema, based on a meromorphic analysis (Section V. 4, p. 313). We illustrate this
point here by means of the supercritical cycle schema. Deeper examples relative to
recursively defined structures are developed in Chapter VII.

EXAMPLE VI.13. Supercritical cycle schema.The schemaH = CYC(G) forms labelled
cycles from basic components inG:

H = CYC(G) =⇒ H(z) = log
1

1−G(z)
.

Consider the case whereG attains the value 1 before becoming singular, that is,τG >
1. This corresponds to a supercritical composition schema, which can be discussed in a way
that closely parallels the supercritical sequence schema (Section V. 4, p. 313): a logarithmic
singularity replaces a polar singularity.

Let σ := ρH , which is determined byG(σ) = 1. First, one finds:

H(z) ∼
z→σ

log
1

1− z/σ − log(σG′(σ)) +A(z),

whereA(z) is analytic atz = σ. Thus:

[zn]H(z) ∼ σ−n

n
.

(The error term implicit in this estimate is exponentially small).
The BGFH(z, u) = log(1 − uG(z))−1 has the variableu marking the number of com-

ponents inH-objects. In particular, the mean number of components in a randomH-object of
sizen is∼ λn, whereλ = 1/(σG′(σ)), and the distribution is concentrated around its mean.
Similarly, the mean number of components with sizek in a randomHn object is found to be
asymptotic toλgkσ

k, wheregk = [zk]G(z). . . . . . . . . . . . . . . . . . END OF EXAMPLE VI.13. �

VI. 10. Closure properties

At this stage, we have available composition rules for singular expansions under
operations like±, ×, ÷. These are induced by corresponding rules for extended
formal power series, where generalized exponents and logarithmic factors are allowed.
Also, from Section VI. 7, inversion of analytic functions normally gives rise to square-
root singularities and, from Section VI. 9, functions amenable to singularity analysis
are essentially closed under composition.
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In this section8 we show that functions of singularity analysis class satisfy explicit
closure properties under differentiation, integration, and Hadamard product. In order
to keep the developments simple, we shall mostly restrict attention to functions that
are∆–analytic and admit asimplesingular expansion of the form

(48) f(z) =
J∑

j=0

cj(1 − z)αj +O((1 − z)A),

or asimplesingular expansionwith logarithmic terms

(49) f(z) =

J∑

j=0

cj (L(z)) (1 − z)αj +O((1 − z)A), L(z) := log
1

1 − z
.

where eachcj is a polynomial. These are the most frequently occurring in applica-
tions, and the proof techniques are easily extended to deal with more general situation.

Subsection VI. 10.1 treats differentiation and integration; Subsection VI. 10.2 pre-
sents the closure of functions that admit simple expansionsunder Hadamard prod-
uct. Finally, Subsection VI. 10.3, concludes with an examination of several interesting
classes of tree recurrences, where all the closure properties previously established are
put to use in order to quantify precisely the asymptotic behaviour of recurrences that
are attached to tree models.

VI. 10.1. Differentiation and integration. Functions of singularity analysis class
are closed under differentiation, this is in sharp contrastwith real analysis. In the sim-
ple cases9 of (48) and (49), closure under integration is also satisfied. The general
principle (Theorems VI.8 and VI.9 below) is the following:Derivatives and primi-
tives of functions that are of singularity analysis class admit singular expansions that
can be obtained term by term via formal differentiation and integration.

The following statement is a version tuned to our needs of well-known differen-
tiability properties of complex asymptotic expansions (see, e.g., Olver’s book [381,
p. 9]).

Theorem VI.8 (Singular differentiation). Let f(z) be∆-analytic with a singular ex-
pansion near its singularity of the simple form

f(z) =

J∑

j=0

cj(1 − z)αj +O((1 − z)A).

Then, for each integerr > 0, the derivativedr

dzr f(z) is ∆–analytic. The expansion of
the derivative at the singularity is obtained through term-by-term differentiation:

dr

dzr
f(z) = (−1)r

J∑

j=0

cj
Γ(αj + 1)

Γ(αj + 1 − r)
(1 − z)αj−r +O((1 − z)A−r).

8This section contains supplementary material that may be omitted on a first reading. The contents
are liberally borrowed from an article of Fill, Flajolet, and Kapur [163].

9It would be possible but unwieldy to treat a larger class, which would have to include arbitrarily
nested logarithms, since, for instance,

R
dx/x = log x,

R
dx/(x log x) = log log x, and so on.
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z

radius

1

κ | 1 − z |

φ
φ’

FIGURE VI.14. The geometry of the contourγ(z) used in the proof of the differentia-
tion theorem.

PROOF. Clearly, all that is required is to establish the effect of differentiation on error
terms, which is expressed symbolically as

d

dz
O((1 − z)A) = O((1 − z)A−1).

By bootstrapping, only the case of a single differentiation(r = 1) needs to be consid-
ered.

Let g(z) be a function that is regular in a domain∆(φ, η) where it is assumed to
satisfyg(z) = O((1 − z)A) for z ∈ ∆. Choose a subdomain∆′ := ∆(φ′, η′), where
φ < φ′ < π

2 and0 < η′ < η. By elementary geometry, for a sufficiently smallκ > 0,
the disc of radiusκ|z− 1| centered at a valuez ∈ ∆′ lies entirely in∆; see Figure 14.
We fix such a small valueκ and letγ(z) represent the boundary of that disc oriented
positively.

The starting point is Cauchy’s integral formula

(50) g′(z) =
1

2πi

∫

C

g(w)
dw

(w − z)2
,

a direct consequence of the residue theorem. HereC should encirclez while lying
inside the domain of regularity ofg, and we opt for the choiceC ≡ γ(z). Then trivial
bounds applied to (50) give

|g′(z)| = O
(
||γ(z)|| · (1 − z)A|1 − z|−2

)

= O
(
|1 − z|A−1

)
.

The estimate involves the length of the contour,||γ(z)||, which isO(1 − z) by con-
struction, as well as the bound ong itself, which isO((1− z)A) since all points of the
contour are themselves at a distance exactly of the order of|1 − z| from 1. �

� VI.24. Differentiation and logarithms.Let g(z) satisfy

g(z) = O
“
(1− z)AL(z)k

”
, L(z) = log

1

1− z ,

for k ∈ Z≥0. Then, one has

dr

dzr
g(z) = O

“
(1− z)A−rL(z)k

”
.

(The proof follows along the lines of Theorem VI.8.) �
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It is well known that integration of asymptotic expansions is usually easier than
differentiation. Here is a statement custom-tailored to our needs.

Theorem VI.9 (Singular integration). Letf(z) be∆-analytic and admit a∆-expansion
near its singularity of the form

f(z) =
J∑

j=0

cj(1 − z)αj +O((1 − z)A).

Then
∫ z

0
f(t) dt is ∆–analytic. Assume further hat none of the quantitiesαj andA

equals−1.
(i) If A < −1, then the singular expansion of

∫
f is

(51)
∫ z

0

f(t) dt = −
J∑

j=0

cj
αj + 1

(1 − z)αj+1 +O
(
(1 − z)A+1

)
.

(ii) If A > −1, then the singular expansion of
∫
f is

(52)
∫ z

0

f(t) dt = −
J∑

j=0

cj
αj + 1

(1 − z)αj+1 + L0 +O
(
(1 − z)A+1

)
,

where the “integration constant”L0 has the value

L0 :=
∑

αj<−1

cj
αj + 1

+

∫ 1

0

[
f(t) −

∑

αj<−1

cj(1 − t)αj

]
dt.

The case where either someαj orA is−1 is easily treated by the additional rules
Z z

0

(1− t)−1 dt = L(z),

Z z

0

O((1− t)−1) dt = O(L(z)).

that are consistent with elementary integration, and similar rules are easily derived for powers
of logarithms. Furthermore, the correspondingO–transfers hold true. (The proofs are simple
modifications of the one given below for the basic case.)
PROOF. The basic technique consists in integrating, term by term,the singular expan-
sion off . We letr(z) be the remainder term in the expansion off , that is,

r(z) := f(z) −
J∑

j=0

cj(1 − z)αj .

By assumption, throughout the∆-domain one has, for some positive constantK,

|r(z)| ≤ K|1 − z|A.

(i) CaseA < −1. Straight-line integration between0 andz, provides (51), as
soon as it has been established that

∫ z

0

r(t) dt = O
(
|1 − z|A+1

)
.
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0 1

1 + η

φ

z
γ1

γ2

FIGURE VI.15. The contour used in the proof of the integration theorem.

By Cauchy’s integral formula, we can choose any path of integration that stays within
the region of analyticity ofr. We choose the contourγ := γ1∪γ2, shown in Figure 15.
Then, one has

∣∣∣∣
∫

γ

r(t) dt

∣∣∣∣ ≤
∣∣∣∣
∫

γ1

r(t) dt

∣∣∣∣+
∣∣∣∣
∫

γ2

r(t) dt

∣∣∣∣

≤ K

∫

γ1

|1 − t|A |dt| +K

∫

γ2

|1 − t|A| |dt|

= O(|1 − z|A+1).

where the symbol|dt| designates the differential line-length element in the corre-
sponding curvilinear integral. Both integrals areO(|1 − z|A+1): for the integral
alongγ1, this results from explicitly carrying out the integration; for the integral along
γ2, this results from the trivial boundO(||γ2||(1 − z)A).

(ii) CaseA > −1. We letf−(z) represent the “divergence part” off that gives
rise to nonintegrability:

f−(z) :=
∑

αj<−1

cj(1 − z)αj .

Then with the decompositionf = [f − f−] + f−, integrations can be performed
separately. First, one finds

∫ z

0

f−(t) dt = −
∑

αj<−1

cj
αj + 1

(1 − z)αj+1 +
∑

αj<−1

cj
αj + 1

.
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Next, observe that the asymptotic condition guarantees theexistence of
∫ 1

0 applied to
[f − f−], so that

∫ z

0

[f(t) − f−(t)] dt =

∫ 1

0

[f(t) − f−(t)] dt+

∫ z

1

[f(t) − f−(t)] dt.

The first of these two integrals is a constant that contributes toL0. As to the second
integral, term-by-term integration yields

∫ z

1

[f(t) − f−(t)] dt = −
∑

αj>−1

cj
αj + 1

(1 − z)αj+1 +

∫ z

1

r(t) dt.

The remainder integral is finite, given the growth conditionon the remainder term,
and, upon carrying out the integration along the rectilinear segment joining1 to z,
trivial bounds show that it is indeedO(|1 − z|A+1). �

VI. 10.2. Hadamard Products. The Hadamard productof two functionsf(z)
andg(z) analytic at the origin is defined as their term-by-term product,

(53) f(z)⊙ g(z) =
∑

n≥0

fngnz
n, where f(z) =

∑

n≥0

fnz
n, g(z) =

∑

n≥0

gnz
n.

We are going to see, following an article of Fill, Flajolet, and Kapur [163], that simple
functions of singularity analysis class are closed under Hadamard product. Establish-
ing such a closure property requires methods for composing functions from the basic
scale, namely(1 − z)a, as well as error terms of the formO((1 − z)A). We address
each problem in turn.

The expansion around the origin,

(54) (1 − z)a = 1 +
−a
1
z +

(−a)(−a+ 1)

2!
z2 + · · · ,

gives through term-by-term multiplication

(55) (1 − z)a ⊙ (1 − z)b = 2F1[−a,−b; 1; z].

Here2F1 represents the classicalhypergeometric functionof Gauss defined by

(56) 2F1[α, β; γ; z] = 1 +
αβ

γ

z

1!
+
α(α + 1)β(β + 1)

γ(γ + 1)

z2

2!
+ · · · .

From their transformation theory, see for instance [492, Ch XIV], hypergeometric
functions can generally be expanded in the vicinity ofz = 1 by means of thez 7→ 1−z
transformation. Instantiation of this transformation with γ = 1 yields

(57) 2F1[α, β; 1; z] =
Γ(1 − α− β)

Γ(1 − α)Γ(1 − β)
2F1[α, β;α + β; 1 − z]

+
Γ(α+ β − 1)

Γ(α)Γ(β)
(1 − z)−α−β+1

2F1[1 − α, 1 − β; 2 − α− β; 1 − z].

From there, we can state:
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Theorem VI.10 (Hadamard Composition). When neither ofa, b, a + b is an integer,
the Hadamard product(1− z)a⊙ (1− z)b has an infinite∆-expansion with exponent
scale{0, 1, 2, . . .} ∪ {a+ b+ 1, a+ b+ 2, . . .}, namely,

(1 − z)a ⊙ (1 − z)b ∼
∑

k≥0

λ
(a,b)
k

(1 − z)k

k!
+
∑

k≥0

µ
(a,b)
k

(1 − z)a+b+1+k

k!
,

where the coefficientsλ andµ are given by

λ
(a,b)
k =

Γ(1 + a+ b)

Γ(1 + a)Γ(1 + b)

(−a)k(−b)k

(−a− b)k
, µ

(a,b)
k =

Γ(−a− b− 1)

Γ(−a)Γ(−b)
(1 + a)k(1 + b)k

(2 + a+ b)k
.

Herexk is defined fork ∈ Z≥0 byxk := x(x + 1) · · · (x+ k − 1).
� VI.25. Special cases.The case where eithera or b is an integer poses no difficulty, since, for
m ∈ Z≥0, the function(1− z)m⊙ g(z) is a polynomial, while,(1− z)−m⊙ g(z) is reducible
to a derivative ofg, to which the Singular Differentiation Theorem can be applied.

The casea + b ∈ Z needs transformation formulæ that extend (57): the principles (based
on a Lindelöf integral representation and developed by Barnes) are described in [492, §14.53],
while the formulæ appear explicitly in [2, pp. 559–560]. �

� VI.26. Simple expansions with logarithmic terms.The technique of differentiation with
respect to a parameter,

ˆ
(1− z)−αL(z)

˜
⊙ (1− z)−β =

∂

∂α

h
(1− z)−α ⊙ (1− z)−β

i
,

makes it possible to derive explicit composition rules for expansions involving logarithmic
terms. �

Next, we address the Hadamard composition of error terms in singular expan-
sions. The way Hadamard products preserve∆–analyticity and compose error terms
is summarized by the following statement.

Theorem VI.11 (Hadamard closure). (i) Assume thatf(z) andg(z) are ∆-analytic
in ∆(ψ0, η). Then the Hadamard product(f⊙g)(z) is analytic in a (possibly smaller)
∆-domain, call it∆′.

(ii) Assume further that

f(z) = O((1 − z)a) and g(z) = O((1 − z)b), z ∈ ∆(ψ0, η).

Then the Hadamard product(f ⊙ g)(z) admits in∆′ an expansion given by the fol-
lowing rules:
— If a+ b+ 1 < 0, then

(f ⊙ g)(z) = O((1 − z)a+b+1).

— If k < a+ b+ 1 < k + 1, for some integerk ∈ Z≥−1, then

(f ⊙ g)(z) =

k∑

j=0

(−1)j

j!
(f ⊙ g)

(j)
(1)(1 − z)j +O

(
(1 − z)a+b+1

)
.

— If a+ b+ 1 is a nonnegative integer, then (withL(z) = log(1 − z)−1)

(f ⊙ g)(z) =

k∑

j=0

(−1)j

j!
(f ⊙ g)

(j)
(1)(1 − z)j +O

(
(1 − z)a+b+1L(z)

)
.
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PROOF. (Sketch) The starting point is an important formula due to Hadamard that
expresses Hadamard products as a contour integral:

(58) f(z) ⊙ g(z) =
1

2iπ

∫

γ

f(w)g
( z
w

) dw

w
.

The contourγ in the w-plane should be chosen such that both factors,f(w) and
g(z/w) are analytic. In other words, given the domain∆ in which bothf and g
are analytic, one should haveγ ⊂ ∆ ∩ (z∆−1).

In the first case(a + b + 1 < 0), the precise geometry of a feasible contourγ
is described in [163], the principles being similar to those employed in the construc-
tion of Hankel contours elsewhere in this chapter. The integral giving the value of the
Hadamard product is finally estimated trivially, based on the order of growth assump-
tions onf andg, asz → 1. This approach extends to the casea+ b+ 1 = 0, where a
logarithmic factor comes in,

For the remaining cases, the easy identity

ϑc+d(f ⊙ g) = (ϑcf) ⊙
(
ϑdg
)
, where ϑ ≡ z

d

dz
,

reduces the analysis to the situation wherea + b + 1 < 0. It suffices to differenti-
ate sufficiently many times and finally integrate back, as permitted by the Singular
Integration Theorem. �

Globally, Theorems VI.10 and VI.11 establish the closure under Hadamard prod-
ucts of functions amenable to singularity analysis in the sense of (48). In practice,
in order to derive the singular expansion of a function at a singularity, one may con-
veniently appeal to theZigzag Algorithmdescribed in Figure 16, whose validity is
ensured by thea priori knowledge of theexistenceof an expansion guaranteed by
Theorems VI.10 and VI.11. A typical application of this algorithms appears in Equa-
tions (61) and (62) below, in the context of Pólya’s drunkard problem.

EXAMPLE VI.14. Pólya’s drunkard problem.(This example is taken from [163].) In the
d–dimensional latticeZd of points with integer coordinates, the drunkard performs arandom
walk starting from the origin with steps in{−1,+1}d, each taken with equal likelihood. The
probability that the drunkard is back at the origin after2n steps is

(59) q(d)
n =

 
1

22n

 
2n

n

!!d

,

since the walk is a productd independent 1–dimensional walks. The probability that2n is the
epoch of thefirst return to the origin is the quantityp(d)

n , which is determined implicitly by

(60)

 
1−

∞X

n=1

p(d)
n zn

!−1

=
∞X

n=0

q(d)
n zn,

as results from the convolution equations expressing the decomposition of loops into primitive
loops. In terms of the associated ordinary generating functionsP andQ, this relation thus reads
as(1− P (z))−1 = Q(z).

The asymptotic analysis of theqn’s is straightforward; the one of thepn’s is more in-
volved and is of interest in connection with recurrence and transience of the random walk; see,
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Let f(z) andg(z) be∆–analytic and admit simple singular expansions of the form (48) or (49).
What is sought is the singular expansion of

h(z) := f(z)⊙ g(z).
Step 1. Determine the asymptotic expansionsfn = [zn]f(z) andgn = [zn]g(z) induced by
the singular expansions off andg in accordance with the singularity analysis process. Given
finite singular expansions off andg, the orderC of the error in the expansion ofh is knowna
priori by Theorem VI.11.

Step 2.Deduce from Step 1 an asymptotic expansion ofhn = [zn]h(z) by usual multiplication
from the expansions offn andgn.

Step 3.Reconstruct by singularity analysis a functionH(z) that is singular at 1 and is such that

[zn]H(z) ∼ [zn]h(z).

This can be done by using the expansions of basic functions, as provided by Theorems VI.1
and VI.2 in the reverse direction. By construction,H(z) is a sum of functions of the form
(1− z)αL(z)k, which are all singular at 1.

Step 4.Output the singular expansion off ⊙ g as

h(z) = H(z) + P (z) +O
“
(1− z)C

”
,

whereP is a polynomial of degreeδ, which is the largest integer< C. The polynomialP (z)
is needed, since polynomials (and more generally functionsanalytic at 1) do not leave a trace
in asymptotic expansions of coefficients. Sinceh(z)−H(z) is δ times differentiable at 1, one
must take

P (z) =
δX

j=0

(−1)j

j!
∂j

z (h(z)−H(z))z=1 (1− z)j .

FIGURE VI.16. The Zigzag algorithm for computing singular expansions of Hadamard
products.

e.g., [133, 329]. The Hadamard closure theorem provides a direct access to this problem. Define

λ(z) :=
X

n≥0

1

22n

 
2n

n

!
zn ≡ 1√

1− z .

Then, Equations (59) and (60) imply:

P (z) = 1− 1

λ(z)⊙d
, where λ(z)⊙d := λ(z)⊙ · · · ⊙ λ(z) (d times).

The singularities ofP (z) are found to be as follows.

Cased = 1: No Hadamard product is involved and

P (z) = 1−
√

1− z, implying p(1)
n =

1

n22n−1

 
2n− 2

n− 1

!
∼ 1

2
√
πn3

.

(This agrees with the classical combinatorial solution expressed in terms of Catalan numbers.)

Cased = 2: By the Hadamard closure theorem, the functionQ(z) = λ(z)⊙ λ(z) admits
a priori a singular expansion atz = 1 that is composed solely of elements of the form(1− z)α

possibly multiplied by integral powers of the logarithmic functionL(z). From a computational
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standpoint (cf. the Zigzag Algorithm), it is then best to start from the coefficients themselves,

(61) q(2)n ∼
„

1√
πn
− 1

8
√
πn3

+ · · ·
«2

∼ 1

π

„
1

n
− 1

4n2
+ · · ·

«
,

and reconstruct the only singular expansion that is compatible, namely

(62) Q(z) =
1

π
L(z) +K +O((1− z)1−ǫ),

whereǫ > 0 is an arbitrarily small constant andK is fully determined as the limit asz →
1 of Q(z) − π−1L(z). Then it can be seen that the functionP is ∆–continuable. (Proof:
Otherwise, there would be complex poles arising from zeros of the functionQ on the unit disc,
and this would entail inp(2)

n the presence of terms oscillating around 0, a fact that contradicts
the necessary positivity of probabilities.) The singular expansion ofP (z) at z = 1 results
immediately from that ofQ(z):

P (z) ∼ 1− π

L(z)
+

π2K

L2(z)
+ · · · .

so that, by Theorems VI.2 and VI.3, one has

p
(2)
n =

π

n log2 n
− 2π

γ + πK

n log3 n
+O

„
1

n log4 n

«

K = 1 +
∞X

n=1

 
16−n

 
2n

n

!2

− 1

πn

!

.
= 0.8825424006106063735858257 .

(See the study by Louchardet al. [345, Sec. 4] for somewhat similar calculations.)

Cased = 3: This case is easy sinceQ(z) remains finite at its singularityz = 1 where it
admits an expansion in powers of(1− z)1/2, to the effect that

q(3)n ∼
„

1√
πn
− 1

8
√
πn3

+ · · ·
«3

∼ 1

π3/2

„
1

n3/2
− 3

8n5/2
+ · · ·

«
.

The functionQ(z) is a priori ∆-continuable and its singular expansion can be reconstructed
from the form of coefficients:

Q(z) ∼
z→1

Q(1)− 2

π

√
1− z +O(|1− z|),

leading to

P (z) =

„
1− 1

Q(1)

«
− 2

πQ2(1)

√
1− z +O(|1− z|).

By singularity analysis, the last expansion gives

p
(3)
n =

1

π3/2Q2(1)

1

n3/2
+O

„
1

n2

«

Q(1) =
π

Γ
`

3
4

´4
.
= 1.3932039296856768591842463.

A complete asymptotic expansion in powersn−3/2, n−5/2, . . . can be obtained by the same de-
vices. In particular this improves the error term above toO(n−5/2). The explicit form ofQ(1)
results from its expression as the generalized hypergeometric 3F2[

1
2
, 1

2
, 1

2
; 1, 1; 1], which eval-

uates by Clausen’s theorem and Kummer’s identity to the square of a complete elliptic integral.
(See the papers by Larry Glasser for context, for instance [236]; nowadays, several computer
algebra systems even provide this value automatically.)
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Higher dimensions are treated similarly, with logarithmicterms surfacing in asymptotic
expansions for all even dimensions. . . . . . . . . . . . . . . . . . . . .. . . . . END OF EXAMPLE VI.14. �

VI. 10.3. Tree recurrences.To conclude with singularity analysis theory, we
present the general framework oftree recurrences, also known asprobabilistic divide-
and-conquer recurrences, which are recurrences of the general form

(63) fn = tn +
∑

k

pn,k(fk + fn−a−k), (n ≥ n0).

There,(fn) is the sequence implicitly determined by the recurrence, assuming known
initial conditionsf0, . . . , fn0−1; the sequence(tn) is known as the sequence oftolls;
the array(pn,k) is a triangular array of numbers that are probabilities in the sense that,
for each fixedn ≥ 0, one has

∑
k pn,k = 1; the numbera is a small fixed integer

(usually 0 or 1).
The interpretation of the recurrence is in the form of a splitting process : a collec-

tion of n elements is given; a numbera of these is put aside and the rest is partitioned
into two subgroups, a “left” subgroup of cardinalityKn and a “right” subgroup of
cardinalityn− a−Kn. The quantityKn is a random variable with probability distri-
bution

P(Kn = k) = pn,k.

The splitting is repeated recursively till only groups of size less than the threshold
n0 are obtained. Assuming stochastic independence of all the random variablesK
involved, it is seen thatfn represents the expectation of the (total)costCn of a random
(recursive) splitting, when a single stage involvingn elements incurs a toll equal totn.
In symbols:

fn = E(Cn), Cn = tn + CKn + Cn−a−Kn .

Clearly, a particular realization of the splitting processcan be represented by a
binary tree. With a suitable choice of probabilities, such processes can be used to anal-
yse cost functional of increasing binary trees, and binary Catalan trees, for instance.
A prime motivation is the analysis of divide-and-conquer algorithms in computer sci-
ence, like quicksort, mergesort, union-find algorithms, and so on [101, 208, 433]. Our
treatment once more follows the article [163].

A general approach to the asymptotic solution of a tree recurrence goes as fol-
lows. First, introduce generating functions,

f(z) =
∑

n

fnωnz
n, t(z) =

∑

n

tnω
′
nz

n,

for some normalization sequences(ωn) and(ω′
n) that are problem-specific. (So,ωn ≡

1 gives rise to an OGF,ωn ≡ 1/n! to an EGF, with other normalizations being also
useful.) Then, by linearity of the original recurrence, there exists a linear operatorL
on series (and functions), such that

f(z) = L[t(z)].

Provided the splitting probabilitiespn,k have expressions of a tractable form, it is rea-
sonable to attempt expressingL in terms of the usual operations of analysis. One may
then investigate the wayL affects singularities and deduce the asymptotic form of the
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cost sequence(fn) from the singularities of its generating function,f(z). An inter-
esting feature of this approach is to allow for a powerful discussion of the relationship
between tolls and induced costs, in a way that parallels composition of singularities
in Section VI. 9. Closure properties discussed earlier in this section are naturally a
crucial ingredient in the intervening singularity analysis process.

The three examples that we present combine closure properties with the singu-
larity analysis of polylogarithms of Section VI. 8. Example15 is relative to increas-
ing binary trees and binary search trees (Example II.17, p. 132). Example 16 dis-
cusses additive costs of random binary Catalan trees in the perspective of tree recur-
rences. Finally, Example 17 shows the applicability of singularity analysis to a basic
coalescence-fragmentation process.

EXAMPLE VI.15. The binary search tree recurrence.One of the simplest random tree models
is defined as follows: a random binary tree of sizen ≥ 1 is obtained by taking a root and
appending to it a left subtree of sizeKn and a right subtree of sizen − 1 −Kn, whereKn is
uniformly distributed over the set of permissible values{0, 1, . . . , n − 1}. A tree of size 0 is
the empty tree. In earlier notations, this process corresponds to

pn,k ≡ P(Kn = k) =
1

n
, 0 ≤ k ≤ n− 1.

The associated tree recurrence is then

fn = tn +
2

n

n−1X

k=0

fk, f0 = t0,

which translates for OGFs,

f(z) :=
X

n≥0

fnz
n, t(z) =

X

n≥0

tnz
n,

into a linear integral equation:

(64) f(z) = t(z) + 2

Z z

0

f(w)
dw

1− w .

Differentiation yields the ordinary differential equation

f ′(z) = t′(z) +
2

1− z f(z), f(0) = t0,

which is then solved by the variation-of-constants method.In this way, it is found that an
integral transform expresses the relation between the GF oftolls and the GF of total costs.
Assuming without loss of generalityt0 = 0, we have (with∂w ≡ d

dw
)

(65) f(z) = L[t(z)], where L[t(z)] =
1

(1− z)2
Z z

0

(∂wt(w)) (1−w)2 dw.

Simple toll sequences that admit generating functions of a simple form can then be em-
ployed to build arepertoire10 that already provides useful indications on the relations between
the orders of growth of(tn) and(fn). For instance, we find, for the rising-factorial tolls
8
>>>><
>>>>:

tαn :=

 
n+ α

α

!
, tα(z) = (1− z)−α−1,

fα(z) =
α− 1

α+ 1

ˆ
(1− z)−α−1 − (1− z)−2

˜
, fα

n =
α− 1

α+ 1

" 
n+ α

α

!
− n− 1

#
,

10The repertoire approach is developed in an attractive manner by Green and Knuth in [250].
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Tolls (tn) Costs(fn)

tn = nα (2 < α) fn =
α+ 1

α− 1
nα +O(nα−1)

tn = nα (1 < α < 2) fn =
α+ 1

α− 1
nα +O(n)

tn =

 
n+ α

α

!
(α > 1)

α− 1

α+ 1

" 
n+ α

α

!
− n+ 1

#
∼ α+ 1

α− 1

nα

Γ(α+ 1)

tn =

 
n+ α

α

!
(α < 1)

1− α− 1

1 + α

"
n+ 1−

 
n+ α

α

!#
∼ 1 + α

1− αn

tn = nα (0 < α < 1) Kαn+O(nα)

tn = log n K′
0n− log n+O(1)

FIGURE VI.17. Tolls and costs for the binary search tree recurrence, assuming t0 = 0.

for α 6= 1, whileα = 1 corresponding tot1n = n+ 1 leads to

f1(z) =
2

(1− z)2 log
1

1− z , f1
n = 2(n+ 1)(Hn+1 − 1) = 2n log n+O(n),

with Hn a harmonic number. The emergence of an extra logarithmic factor for α = 1 is to
be noted: it corresponds to the fact that path length in a binary search tree or an increasing
binary tree of sizen is∼ 2n log n. These elementary techniques provide a first set of entries
recapitulated in Figure 17.

Singularity analysis furthermore permits us to develop a complete asymptotic expansion
for tolls of the form

√
n, log n, and many others. Consider for instance the tolltαn = nα,

for which the generating function, a polylogarithm, is known to admit a singular expansions in
terms of elements of the form(1 − z)β , with the main term corresponding toβ = −α − 1
whenα > −1 (Theorem VI.7). TheL transformation reads as a succession of operations,
”differentiate, multiply by(1 − z)2, integrate, multiply by(1 − z)−2”, which are covered by
Theorems VI.8 and VI.9. The chain on any particular element starts as

c(1− z)β ∂−→ cβ(1− z)β−1 ×(1−z)2−→ cβ(1− z)β+1,

at which stage integration intervenes. According to Theorem VI.9, assumingβ 6= −2 and
ignoring integration constants, integration gives

cβ(1− z)β+1
R
−→ −c β

β + 2
(1− z)β+2 ×(1−z)−2

−→ −c β

β + 2
(1− z)β.

Thus, the singular element(1− z)β corresponds to a contribution

−c β

β + 2

 
n− β − 1

−β − 1

!
,

which is of orderO(n−β−1). It can be verified that this chain of operations suffices to determine
the leading order offn whentn = nα andα > 1.

The derivation above is representative of the main lines of the analysis, but it has left
aside the determination of integration constants, which play a dominant rôle whentn = nα

andα < 1 (because a term of the formK/(1 − z)2 then dominates inf(z)). Introduce, in
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accordance with the statement of the Singular Integration Theorem (Theorem VI.9) the quantity

K[t] :=

Z 1

0

h
t′(w)(1− w)2 −

`
t′(w)(1− w)2

´
−

i
dw,

wheref− represents the sum of singular terms of exponent< −1 in the singular expansion of
f(z). Then, fortn = nα with 0 < α < 1, taking into account the integration constant (which
gets multiplied by(1− z)−2, given the shape ofL), we find forα < 1:

fn ∼ Kαn, Kα = K[Li−α] = 2

∞X

n=1

nα

(n+ 1)(n+ 2)
.

Similarly, the tolltn = log n gives rise to

fn ∼ K′
0n, K′

0 = 2
∞X

n=1

log n

(n+ 1)(n+ 2)

.
= 1.2035649167.

This last estimate quantifies theentropyof the distribution of binary search trees, which is stud-
ied by Fill in [164], and discussed in the reference book by Cover and Thomas on information
theory [103, p. 74-76]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . END OF EXAMPLE VI.15. �

EXAMPLE VI.16. The binary tree recurrence.Consider a procedure that on a binary tree
performs some calculation (without affecting the tree itself) at a cost oftn, then recursively
calls itself on the left and right subtrees. If the binary tree to which the procedure is applied
is drawn uniformly amongst all binary trees of sizen the expectation of the total costs of the
procedure satisfies the recurrence

(66) fn = tn +

n−1X

k=0

CkCn−1−k

Cn
(fk + fn−k) with Cn =

1

n+ 1

 
2n

n

!
.

Indeed, the quantity

pn,k =
CkCn−1−k

Cn

represents the probability that a random tree of sizen has a left subtree of sizek and a right
subtree of sizen− k. It is then natural to introduce the generating functions

t(z) =
X

n≥0

tnCnz
n, f(z) =

X

n≥0

fnCnz
n,

and the recurrence (66) translates into a linear equation:

f(z) = t(z) + 2zC(z)f(z),

with C(z) the OGF of Catalan numbers. Now, given a toll sequence(tn) with ordinary gener-
ation function

τ (z) :=
X

n≥0

tnz
n,

the functiont(z) is a Hadamard product:t(z) = τ (z)⊙ C(z). Also,C(z) is well known, so
that the fundamental relation is

(67) f(z) = L[τ (z)], where L[τ (z)] =
τ (z)⊙ C(z)√

1− 4z
, C(z) =

1−√1− 4z

2z
.

This transform relates the ordinary generating function oftolls to the normalized generating
function of the total costs via a Hadamard product.
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Tolls (tn) Costs(fn)

nα ( 3
2
< α)

Γ(α− 1
2
)

Γ(α)
nα+1/2 +O(nα−1/2)

n3/2 2√
π
n2 +O(n log n)

nα ( 1
2
< α < 3

2
)

Γ(α− 1
2
)

Γ(α)
nα+1/2 +O(n)

n1/2 1√
π
n log n+O(n)

nα (0 < α < 1
2
) Kαn+O(1)

log n K
′
0n+O(

√
n

FIGURE VI.18. Tolls and costs for the binary tree recurrence.

The calculation for simple tolls likenr with r ∈ Z≥0 can be carried out elementarily. For
the tollstαn = nα what is required is the singular expansion of

τ (z)⊙ C
“z

4

”
= Li−α(z)⊙ C

“z
4

”
=

∞X

n=1

nα

n+ 1

 
2n

n

!“z
4

”n

.

This is precisely covered by Theorems VI.10 and VI.11. The results of Figure 18 follow, after
routine calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . END OF EXAMPLE VI.16. �

EXAMPLE VI.17. The Cayley tree recurrence.Considern vertices labelled1, . . . , n. There
are(n− 1)!nn−2 sequences of edges,

〈u1, v1, 〉, 〈u2, v2, 〉, · · · 〈un−1, vn−1, 〉,
that give rise to a tree over{1, . . . , n}, and the number of such sequences is(n−1)!nn−2 since
there arenn−2 unrooted trees of sizen. At each stagek, the edges numbered 1 tok determine a
forest. Each addition of an edge connects two trees and reduces the number of trees in the forest
by 1, so that the forest evolves from the totally disconnected graph (at time 0) to an unrooted
tree (at timen − 1). If we consider each of the sequences to be equally likely, the probability
thatun−1 andvn−1 belong to components of sizek and(n− k) is

1

2(n− 1)

 
n

k

!
kk−1nn−k−1

nn−2
.

(The reason is that there arenn−2 unrooted trees; the last added edge hasn − 1 possibilities
and 2 possible orientations.)

Assume that the aggregation of two trees into a tree of size equal toℓ incurs a toll oftℓ.
The total cost of the aggregation process for a final tree of sizen satisfies the recurrence

(68) fn = tn +
X

0<k<n

pn,k(fk + fn−k), pn,k =
1

2(n− 1)

 
n

k

!
kk−1nn−k−1

nn−2
.

The recurrence (68) has been studied in detail by Knuth and Pittel [311], building upon earlier
works of Knuth and Schönhage [312]. A prime motivation of the cited works is the importance
of this recurrence in algorithms that dynamically manage equivalence relations (the so-called
union-find algorithm [312]).
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Tolls (tn) Costs(fn)

nα ( 3
2
< α)

Γ(α− 1
2
)√

2Γ(α)
nα+1/2 +O(nα−1/2)

n3/2

r
2

π
n2 +O(n log n)

nα ( 1
2
< α < 3

2
)

Γ(α− 1
2
)√

2Γ(α)
nα+1/2 +O(n)

n1/2 1√
2π
n log n+O(n)

nα (0 < α < 1
2
) bKαn+O(1)

log n bK′
0n+O(

√
n

FIGURE VI.19. Tolls and costs for the Cayley tree recurrence.

Given the sequence of tolls(tn), we introduce the generating function

τ (z) =
X

n≥1

tnz
n,

and letT be the Cayley tree function (T = zeT ). For total costs, the generating function
adopted is

f(z) =
X

n≥1

fnn
n−1zn.

The basic recurrence (68) can then be rephrased as an integral transform involving a Hadamard
product, namely,

(69) f(z) = L[τ (z)], with L[τ ](z) =
1

2

T (z)

1− T (z)

Z z

0

∂w

`
τ (w)⊙ T (w)2

´ dw

T (w)
.

Though the expression of the transform looks formidable at first sight, it is really nothing but a
short sequence of basic operations, “Hadamard product, multiplication, differentiation, division,
integration, multiplication”, each of which has a quantifiable effect on functions of singularity
analysis class. (The singularity structure ofT (z) is itself determined by the Singular Inversion
Theorem, Theorem VI.6.)

The net result is that the effect of tolls of the formnα, log n, and so on, can be analysed:
see Figure 19 for a listing of estimates. Details of the proofare left as an exercise to our
reader and are otherwise found in [163, §5.3]. The analogy of behaviour with the Catalan tree
recurrence stands out.

This example is also of interest since it furnishes an analytically tractable model of a
coalescence-fragmentation process. This is a topic of great interest in several areas of science,
for which we refer to Aldous’ survey [6]. . . . . . . . . . . . . . . . . . . . . END OF EXAMPLE VI.17. �

VI. 11. Tauberian theory and Darboux’s method

There are several alternative approaches to the analysis ofcoefficients of func-
tions, which are of moderate growth. Naturally,All methods provide estimates com-
patible with singularity analysis methods(Theorems VI.1, VI.2, and VI.3). Each one
requires some sort of “regularity condition” either on the part of the function or on the
part of the coefficient sequence, the regularity condition of singularity analysis being
in essence analytic continuation.
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The methods briefly surveyed here fall into three broad categories:(i) Elementary
real analytic methods;(ii) Tauberian theorems;(iii) Darboux’s method.

Elementary real analytic methods assume somea priori smoothness conditions on
the coefficient sequence; they are included here for the sakeof completeness, though
properly speaking they do not belong to the galaxy of complexasymptotic methods.
Their scope is mostly limited to the analysis of products while the other methods
permit to approach more general functional composition patterns. Tauberian theorems
belong to the category of advanced real analysis methods; they also needs somea
priori regularity on the coefficients, typically positivity or monotonicity. Darboux’s
method requires some smoothness of the function on the closed unit disk, and, by its
techniques and scope, it is the closest to singularity analysis.

We content ourselves with a brief discussion of the main results. For more infor-
mation, the reader is referred to Odlyzko’s excellent survey [377].

Elementary real analytic methods.An asymptotic equivalent of the coefficients
of a function can sometimes be worked out elementarily from simple properties of the
component functions. The regularity conditions are a smooth asymptotic behaviour of
the coefficients of one of the two factors in a product of generating functions. A good
source for these techniques is Bender’s survey [29].

Theorem VI.12 (Bender’s method). Leta(z) =
∑
anz

n andb(z) =
∑
bnz

n be two
power series with radii of convergenceα > β ≥ 0 respectively. Assume thatb(z)
satisfies the ratio test,

bn−1

bn
→ β as n→ ∞.

Then the coefficients of the productf(z) = a(z) · b(z) satisfy, provideda(β) 6= 0,

[zn]f(z) ∼ a(β)bn as n→ ∞.

PROOF. (Sketch) The basis of the proof is the following chain:

fn = a0bn + a1bn−1 + a2bn−2 + · · · + anb0)

= bn

(
a0 + a1

bn−1

bn
+ a2

bn−2

bn
+ · · · + an

b0
bn

)

= bn

(
a0 + a1(

bn−1

bn
) + a2(

bn−2

bn−1
)(
bn−1

bn
) + · · ·

)

∼ bn(a0 + a1β + a2β
2 + · · · ).

There, only the last line requires a little elementary analysis that is left as an exercise
to the reader. �

This theorem applies for instance to the EGF of 2–regular graphs:

f(z) = a(z) · b(z) with a(z) = e−z/2−z2/4, b(z) =
1√

1 − z
,

fow which it givesfn ∼ e−3/4
(
n−1/2

n

)
∼ e−3/4

√
πn

, in accordance with Example 2
(p. 378). Clearly, a whole collection of lemmas can be statedin the same vein. Sin-
gularity analysis usually provides more complete expansions, though Theorem VI.12
does apply to a few situations not covered by it.
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Tauberian theory.Tauberian methods apply to functions whose growth is only
known along the positive real line. The regularity conditions are in the form of ad-
ditional assumptions on the coefficients (positivity or monotonicity) known under the
name of Tauberian “side conditions”. An insightful introduction to the subject may
be found in Titchmarsh’s book [469], and a detailed exposition in Postnikov’s mono-
graph [399] and Korevaar’s compendium [317]. We cite the most famous of all Taube-
rian theorems due to Hardy, Littlewood, and Karamata. In this section, a function is
said to beslowly varyingat infinity iff, for any c > 0, one hasL(cx)/L(x) → 1 as
x→ +∞; examples of slowly varying functions are provided by powers of logarithms
or iterated logarithms.

Theorem VI.13 (The HLK Tauberian theorem). Let f(z) be a power series with
radius of convergence equal to 1, satisfying

(70) f(z) ∼ 1

(1 − z)α
L(

1

1 − z
),

for someα ≥ 0 with L a slowly varying function. Assume that the coefficientsfn =
[zn]f(z) are all non–negative (this is the “side condition”). Then

(71)
n∑

k=0

fk ∼ nα

Γ(α+ 1)
L(n).

The conclusion (71) is consistent with what singularity analysis gives: Under the
conditions, and if in addition analytic continuation is assumed, then

(72) fn ∼ nα−1

Γ(α)
L(n),

which by summation yields the estimate (71).
It must be noted that a Tauberian theorem requires very little on the part of the

function. However, it gives less since it doesnot provide error estimates. Also, the
result it provides is valid in the more restrictive sense of mean values, or Cesàro aver-
ages. (If further regularity conditions on thefn are available, for instance monotonic-
ity, then the conclusion of (72) can then be deduced from (71)by purely elementary
real analysis.) The method applies only to functions that are large enough at their
singularity, and despite numerous efforts to improve the conclusions, it is the case that
Tauberian theorems have little concrete to offer in terms oferror estimates.

Appeal to a Tauberian theorem is justified when a function has, apart from the
positive half line, a very irregular behaviour near its circle of convergence, for in-
stance when each point of the unit circle is a singularity. (The function is then said to
admit the unit circle as a natural boundary.) An interestingexample of this situation is
discussed by Greene and Knuth [249] who consider the function

(73) f(z) =
∞∏

k=1

(1 +
zk

k
)
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that is the EGF of permutations having cycles all of different lengths. A little compu-
tation shows that

log

∞∏

k=1

(
1 +

zk

k

)
=

∞∑

k=1

zk

k
− 1

2

∞∑

k=1

z2k

k2
+

1

3

∞∑

k=1

z3k

k3
− · · ·

∼ log
1

1 − z
− γ + o(1).

(Only the last line requires some care, see [249].)
Thus, we have

f(z) ∼ e−γ

1 − z
=⇒ 1

n
(f0 + f1 + · · · + fn) ∼ e−γ ,

by virtue of Theorem VI.12. In fact, Greene and Knuth were able to supplement this
argument by a “bootstrapping” technique and show a strongerresult, namely

fn → e−γ .

Darboux’s method.The method of Darboux requires, as regularity condition,
that functions be smooth enough —i.e., sufficiently differentiable— on their circle of
convergence. What lies at the heart of this many–facetted method is a simple relation
between the smoothness of a function and the corresponding decrease of its Taylor
coefficients.

Theorem VI.14 (Darboux’s method). Assume thatf(z) is continuous in the closed
disk|z| ≤ 1, and is in additionk times continuously differentiable(k ≥ 0) on |z| = 1.
Then

(74) [zn]f(z) = o

(
1

nk

)
.

PROOF. Start from Cauchy’s coefficient formula

fn =
1

2iπ

∫

C
f(z)

dz

zn+1
.

Because of the continuity assumption, one may take as integration contourC the unit
circle. Settingz = eiθ yields the Fourier version of Cauchy’s coefficient formula,

(75) fn =
1

2π

∫ 2π

0

f(eiθ)e−niθ dθ.

The integrand in (75) is strongly oscillating and the Riemann–Lebesgue lemma of
classical analysis (see [469, p. 403]) shows that the integral givingfn tends to 0 as
n→ ∞.

This argument covers the casek = 0. The case of a generalk is then derived
through successive integrations by parts, as

[zn]f(z) =
1

2π(in)k

∫ 2π

0

f (k)(eiθ)e−niθ dθ.

�

Various consequences of Theorem VI.14 are given in reference texts also under
the name of Darboux’s method. See for instance [98, 249, 265, 496]. We shall only
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illustrate the mechanism by rederiving in this framework the analysis of the EGF of
2–regular graphs. Clearly, we have

(76) f(z) =
e−z/2−z2/4

√
1 − z

=
e−3/4

√
1 − z

+ e−3/4
√

1 − z +R(z).

ThereR(z) is the product of(1 − z)3/2 with a function analytic atz = 1 that is a rest
in the Taylor expansion ofe−z/2−z2/4. Thus,R(z) is of classC1, i.e., continuously
differentiable once. By Theorem VI.14, we have

[zn]R(z) = o

(
1

n

)
,

so that

(77) [zn]f(z) =
e−3/4

√
πn

+ o

(
1

n

)
.

Darboux’s method bears some resemblance to singularity analysis in that the esti-
mates derive from translating error terms in expansions. However, smoothness condi-
tions, rather than plain order of growth information, are required by it. The method is
often applied in situations like in (76)–(77) to functions that are products of the type
h(z)(1−z)α with h(z) analytic at 1, or combinations thereof. In such particular cases,
Darboux’s method is however subsumed by singularity analysis.

It is inherent to Darboux’s method that it cannot be applied to functions whose
singular expansion only involves terms that become infinite, while singularity analy-
sis can. A clear example arises in the analysis of the common subexpression prob-
lem [209] where there occurs a function with a singular expansion of the form

1√
1 − z

1√
log 1

1−z

[
1 +

c1

log 1
1−z

+ · · ·
]
.

� VI.27. Darboux versus singularity analysis.This note provides an instance where Darboux’s
method applies whereas singularity analysis does not. Let

Fr(z) =
∞X

n=0

z2n

(2n)r
.

The functionF0(z) is singular at every point of the unit circle, and the same property holds for
anyFr with r ∈ Z≥0. [Hint: F0, which satisfies the functional equationF (z) = z + F (z2),
grows unboundedly near2nth roots of unity.] Darboux’s method can be used to derive

[zn]
1√

1− zF5(z) =
c√
πn

+ o

„
1

n

«
, c :=

32

31
.

What is the best error term that can be obtained? �

VI. 12. Perspective

The method of singularity analysis expands our ability to extract coefficient asymp-
totics, to a far wider class of functions than the meromorphic and rational functions
of Chapters IV and V. This ability is the fundamental tool foranalysing many of



VI. 12. PERSPECTIVE 419

the generating functions of Chapters I–III, and is applicable at a considerable level of
generality.

The basic method is straightforward and appealing: we locate singularities, es-
tablish analyticity in a domain around them, expand the functions around the singular-
ities, and apply general transfer theorems to take each termin the function expansion
to a term in an asymptotic expansion of its coefficients. The method applies directly
to a large variety of explicitly given functions, for instance combinations of ratio-
nal functions, square roots, and logarithms, as well as to functions that are implicitly
defined, like generating functions for tree structures, which are obtained by analytic
inversion. Functions amenable to singularity analysis also enjoy rich closure prop-
erties, and the corresponding operations mirror the natural operations on generating
functions implied by the combinatorial constructions of Chapters I–III.

This approach again sets us in the direction of the ideal situation of having a
theory where combinatorial constructions and analytic methods fully correspond, but,
again, the very essence of analytic combinatorics is that the theorems that provide
asymptotic results cannot be so general as to be free of analytic side conditions. In
the case of singularity analysis, these side conditions have to do with establishing
analyticity in a domain around singularities. These conditions are automatically satis-
fied by a large number of functions with moderate (at most polynomial) growth near
their dominant singularities (most notably a large subset of the generating functions
of combinatorial structures defined by the constructions ofChapters I–III) justifying
precisely what we need: a term-by-term transfer from the expansion of a generating
function at its singularity to function coefficients, including error terms. The calcula-
tions involved in singularity analysis are rather mechanical. Salvy [424] has indeed
succeeded in automating the analysis of a large class of generating functions in this
way.

Again, we can look carefully at specific combinatorial constructions and then ap-
ply singularity analysis to general abstract schemas, thereby solving whole classes of
combinatorial problems at once. This process (along with several important exam-
ples) is the topic of the next chapter. After that, we consider the saddle point method
(Chapter VIII), which is appropriate for functions with no singularities at a finite dis-
tance (entire functions) as well as those whose growth is rapid (exponential) near their
singularities. Singularity analysis will surface again inChapter IX, given its crucial
technical rôle in obtaining uniform expansions of multivariate generating functions
near singularities.

General surveys of asymptotic methods in enumeration have been given by Bender [29]
and more recently Odlyzko [377]. A general reference to asymptotic analysis that has a remark-
ably concrete approach is De Bruijn’s book [111]. Comtet’s [98] and Wilf’s [496] books each
devote a chapter to these questions.

This chapter is largely based on the theory developed by Flajolet and Odlyzko in [199],
where the term “singularity analysis” originates from. An important early (and unduly ne-
glected) reference is the study by Wong and Wyman [501]. The theory draws its inspiration
from classical analytic number theory, for instance the prime number theorem where similar
contours are used (see the discussion in [199] for sources). Another area where Hankel con-
tours are used is the inversion theory of integral transforms [131], in particular in the case of
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algebraic and logarithmic singularities. Closure properties developed here are from the arti-
cles [163, 176] by Flajolet, Fill, and Kapur.

Darboux’s method can often be employed as an alternative to singularity analysis. It is still
the most widely used technique in the literature, though thedirect mapping of asymptotic scales
afforded by singularity analysis appears to us much more transparent. Darboux’s method is well
explained in the books by Comtet [98], Henrici [265], Olver [381], and Wilf [496]. Tauberian
theory is treated in detail in Postnikov’s monograph [399] and Korevaar’s encyclopedic treat-
ment [317], with an excellent introduction to be found in Titchmarsh’s book [469].
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Applications of Singularity Analysis

Mathematics is being lazy. Mathematics is letting the principles do the work for you
so that you do not have to do the work for yourself.

— GEORGEPÓLYA1

I wish to God these calculations had been executed by steam.

— CHARLES BABBAGE (1792-1871)

— The Bhagavad Gita XV.12

Contents

VII. 1. A roadmap to singularity analysis asymptotics 423
VII. 2. Sets and the exp–log schema 427
VII. 3. Simple varieties of trees and inverse functions 434
VII. 4. Tree-like structures and implicit functions 445
VII. 5. Nonplane unlabelled trees and Ṕolya operators 453
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Singularity analysis paves the way to the analysis of a largequantity of generating
functions, as provided by the symbolic method exposed in Chapters I–III. In accor-
dance with Pólya’s aphorism, it makes it possible to “be lazy” and “let the principles
work for you”. In this chapter we illustrate this situation with numerous examples re-
lated to languages, permutations, trees, and graphs of various sorts. Like in Chapter V,
most analyses are organized into broad classes calledschemas.

First, we develop the generalexp–log schema, which covers thesetconstruction,
either labelled or unlabelled, applied to generators whosedominant singularity is of
logarithmic type (Section VII. 2). This typically nonrecursive schema parallels in gen-
erality the supercritical schema of Chapter V, which is relative to sequences. It permits
us to quantify various constructions of permutations, derangements, 2–regular graphs,

1Quoted in M Walter, T O’Brien, Memories of George Pólya, Mathematics Teaching 116 (1986)
2“There is an imperishable tree, it is said, that has its rootsupward and its branches down and whose

leaves are the Hymns. He who knows it possesses knowledge.”

421
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mappings, and functional graphs, and even gives access to factorization properties of
polynomials over finite fields.

Next, we deal withrecursively defined structures, whose study constitutes the
main theme of this chapter. In that case, generating functions are accessible by means
of equations or systems that implicitly define them. A distinctive feature of many such
combinatorial types is that their generating functions have asquare-root singularity,
that is, the singular exponent equals1

2 . As a consequence, the counting sequences
characteristically involve asymptotic terms of the formAnn−3/2, where the latter
asymptotic exponent,− 3

2 , precisely reflects the singular exponent1
2 in the function’s

singular expansion, in accordance with the principles of singularity analysis presented
in Chapter VI.

Treesare the prototypical recursively defined combinatorial type. Square-root
singularities automatically arise for all varieties of trees constrained by a finite set of
allowed node degrees—binary trees, unary-binary trees, ternary trees, for instance—
and many more. The counting estimates involve the characteristic n− 3

2 subexponen-
tial factor, a property that holds in the labelled and unlabelled frameworks alike (Sec-
tion VII. 3).

Simple varieties of trees have many properties in common, beyond the subexpo-
nential growth factor of tree counts. Indeed, in a random tree of some large sizen,
almost all nodes are found to be at level about

√
n, path length grows on average

like n
√
n, and height is of

√
n order with high probability. These results serve to

unify classical tree types—we say that such properties of random trees areuniver-
sal3 amongst all simply generated families sharing the square-root singularity prop-
erty. (This notion of universality, borrowed from physics,is also nowadays finding
increasing popularity amongst probabilists, for reasons much similar to ours.) In this
perspective, the motivation for organizing the theory along the lines of majorschemas
fits perfectly with the quest ofuniversal lawsin analytic combinatorics.

In the context of simple varieties of trees, the square-rootfeature arises from
general properties of the inverse of an analytic function. Under suitable conditions,
this property can be extended to functions defined implicitly by a functional equation.
Consequences are the general enumeration of nonplane unlabelled trees, including iso-
mers of alkanes in theoretical chemistry, as well as secondary structures of molecular
biology (Section VII. 4).

Much of this chapter is devoted tocontext-free specifications and languages. In
that case, generating functions are a priorialgebraic functions, meaning that they sat-
isfy a system of polynomial equations, itself optionally reducible (by elimination) to
a single equation. For solutions of positive polynomial systems, square-root singu-
larities are found to be the rule under a simple technical condition of irreducibility
(Section VII. 6) that is evocative of the Perron-Frobenius conditions encountered in

3“[. . . ] this echoes the notion of universality in statistical physics. Phenomena that appear at first to be
unconnected, such as magnetism and the phase changes of liquids and gases, share some identical features.
This universal behaviour pays no heed to whether, say, the fluid is argon or carbon dioxide. All that matters
are broad-brush characteristics such as whether the systemis one-, two- or three-dimensional and whether
its component elements interact via long- or short-range forces. Universality says that sometimes the details
do not matter.” [From “Utopia Theory”, inPhysics World, August 2003].
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Chapter V in relation to finite-state and transfer-matrix models. As an illustration,
we show how to develop a coherent theory of topological configurations in the plane
(trees, forests, graphs) that satisfy a non-crossing constraint.

For arbitrary algebraic functions (the ones that are not necessarily associated to
positive coefficients and equations, or irreducible positve systems), a richer set of sin-
gular behaviours becomes possible: singular expansions involve fractional exponents
(not just 1

2 , corresponding to the square-root paradigm above). Singularity analy-
sis is invariably applicable (Section VII. 7). Algebraic functions are viewed as plane
algebraic curves and one can make use of the famous Newton-Puiseux theorem of
elementary algebraic geometry, which completely describes the types of singularities
thay may occur. Algebraic functions surface as solutions ofvarious types of functional
equations: this turns out to be the case for many classes of walks that generalize Dyck
and Motzkin paths, via what is known as the kernel method, as well as for many types
of planar maps (embedded planar graphs), via the so-called quadratic method. In all
these cases, singular exponents of a predictable (rational) form are bound to occur,
implying in turn numerous quantitative properties of random discrete structures.

Differential equations and systemsare associated to recursively defined structure,
when either pointing constructions or order constraints appear. For counting gen-
erating functions, the equations are nonlinear, while the GFs associated to additive
parameters lead to linear versions. Differential equations are also central in connec-
tion with theholonomic framework4, which gives access to the enumeration of many
classes of “hard” objects, like regular graphs and Latin rectangles. Singularity analysis
is once more instrumental in working out precise asymptoticestimates. We examine
here (Section VII. 9) applications relative to quadtrees and to varieties of increasing
trees, some of which are closely related to permutations as well as to algorithms and
data structures for sorting and searching.

VII. 1. A roadmap to singularity analysis asymptotics

The singularity analysis theorems of Chapter VI, which may be coarsely summa-
rized by the correspondence

(1) f(z) ∼ (1 − z/ρ)−α •——◮ fn ∼ 1

Γ(α)
ρ−nnα−1,

serve as our main asymptotic engine throughout this chapter. Singularity analysis
is instrumental in quantifying properties of nonrecursiveas well as recursive struc-
tures. Our reader might be surprised not to encounter integration contours anymore
in this chapter: it now suffices to work out thelocal analysis of functions at their
singularities, then the general theorems of singularity analysis (Chapter VI) effect the
translation to counting sequences and parametersautomatically.

4Holonomic functions (APPENDIXB: Holonomic functions, p. 693) are defined as solutions of linear
differential equations with coefficients that are rationalfunctions.
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The exp–log schema.This schema is relative to the labelledset construction,

(2) F = SET(G) =⇒ F (z) = exp (G(z)) ,

as well as its unlabelled counterparts, MSET and PSET: anF -structure is thus con-
structed (nonrecursively) as an unordered assembly ofG-components. In the case
where the GF of components is logarithmic at its dominant singularity,

(3) G(z) ∼ κ log
1

1 − z/ρ
+ λ,

an immediate computation shows thatF (z) has a singularity of the power type,

F (z) ∼ eλ (1 − z/ρ)
−κ

,

which is clearly in the range of singularity analysis. The construction (2), supple-
mented by simple technical conditions of the form (3), defines theexp–log schema.
Then, for suchF -structures that are definable as assemblies of logarithmiccompo-
nents, the asymptotic counting problem is systematically solvable (Theorem VII.1,
p. 428); the number ofG-components in a large randomF -structure isO(log n), both
in the mean and in probability, while more refined estimates describe precisely the
likely shape of profiles. This schema has a generality comparable to the supercriti-
cal schema examined in Section V. 4, p. 313, but the probabilistic phenomena at stake
appear to be in sharp contrast: the number of components is typically small, being log-
arithmic inn for exp-log sets, as opposed to a linear growth in the case of supercritical
sequences. The schema can be used to analyse properties of permutations, functional
graphs, mappings, and polynomial over finite fields.

Recursion and the universality of square-root singularity. A major theme of this
chapter is the study of asymptotic properties of recursive structures. In an amazingly
large number of cases, functions with a square root singularity are encountered, and
given the usual correspondence,

f(z) ∼ −(1 − z)1/2 •——◮ fn ∼ 1

2
√
πn3

;

the corresponding coefficients are of the asymptotic formCρ−nn−3/2. Several schemas
can be described to capture this phenomenon; we develop here, in order of increas-
ing structural complexity, the ones corresponding to simple varieties of trees, implicit
structures, Pólya operators, and irreducible polynomialsystems.

Simple varieties of trees and inverse functions.Our treatment ofrecursive combi-
natorial typesstarts with simple varieties of trees. In the basic situation, that of plane
unlabelled trees, the equation is

(4) Y = Z × SEQΩ(Y) =⇒ Y (z) = zφ(Y (z)),

with, as usual,φ(w) =
∑

ω∈Ωw
ω. Thus, the OGFY (z) is determined as the inverse

of w/φ(w), where the functionφ reflects the collection of all allowed node degrees
(Ω). From analytic function theory, we know that singularities of the inverse of an
analytic function are generically of the square-root type (Chapters IV and VI), and
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such is the case wheneverΩ is a “well behaved” set of integers, in particular, a finite
set. Then, the number of trees satisfies the estimate

(5) Yn = [zn]Y (z) ∼ CAnn−3/2.

Square-root singularity is also attached to several universality phenomena, as evoked
in the general introduction to this chapter.

Tree-like structures and implicit functions.Functions defined implicitly by an
equation of the form

(6) Y (z) = G(z, Y (z))

whereG is bivariate analytic, has nonnegative coefficients, and satisfies a natural
set of conditions (Theorem VII.3, p. 447) also lead to square-root singularity. The
schema (6) generalizes (4): simply takeG(z, y) = zφ(y).

Trees under symmetries and Pólya operators.The analytic methods evoked above
can be further extended to Pólya operators, which translate unlabelled set and cycle
set constructions. A typical application is to the class nonplane unlabelled trees whose
OGF satisfies theinfinite functional equation,

H(z) = z exp

(
H(z)

1
+
H(z2)

2
+ · · ·

)
.

Singularity analysis applies more generally to varieties of nonplane unlabelled trees
(Theorem VII.4, p. 457), which covers the enumeration of various types of interesting
molecules in combinatorial chemistry.

Context-free structures and polynomial systems.The GF of any context-free class
or language is known to be a component of asystemof positive polynomial equations






y1 = P1(z, y1, . . . , yr)
...

...
...

yr = Pr(z, y1, . . . , yr).

Then−3/2 counting law is again universal amongst such combinatorialclasses un-
der a basic condition of “irreducibility” (Theorem VII.5, p. 461). In that case, the
GFs are algebraic functions satisfying a strong positivityconstraint, and the corre-
sponding analytic statement constitutes the importantDrmota-Lalley-Woods Theorem
(Theorem VII.6, p. 466).

Note that there is a progression in the complexity of the schemas leading to
square-root singularity. From the analytic standpoint, this can be roughly rendered
by a chain

inverse functions−→ implicit functions−→ systems.

It is however often meaningful to treat each combinatorial problem at its minimal
level of generality, since results tend to become less and less explicit as complexity
increases.
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rational Irred. linear system ζ−n Perron-Frob., merom. fns,
Ch. V

— General rational ζ−nnℓ meromorphic functions,
Ch. V

algebraic Irred. positive sys. ζ−nn−3/2 DLW Th., sing. analysis,
This chapter,§VII. 6, p. 460

— General algebraic ζ−nnr/s Puiseux, sing. analysis,
This chapter,§VII. 7, p. 469

holonomic Regular sing. ζ−nnθ logℓ n ODE, sing. analysis,
This chapter,§VII. 9.1, p. 493

— Irregular sing. ζ−neP (n1/r)nθ logℓ n ODE, saddle-point,
Ch. VIII

FIGURE VII.1. A telegraphic summary of a hierarchy of special functions byincreas-
ing level of generality: asymptotic elements composing coefficients and the coefficient
extraction method (withℓ, r ∈ Z≥0, p

q
∈ Q, θ algebraic, andP a polynomial).

General algebraic functions.In essence, the coefficients ofall algebraic func-
tionscan be analysed asymptotically. (There are only minor limitations arising from
the possible presence of several dominant singularities, like in the rational function
case.) The starting point is the characterization of the local behaviour of an algebraic
function at any of its singularities, which is provided by the Newton-Puiseux theorem:
if ζ is a singularity, then the branchY (z) of an algebraic function admits nearζ a
representation of the form

(7) Y (z) = Zp/q




∑

k≥0

ckZ
k/q



 , Z := (1 − z/ζ),

for somer/s ∈ Q, so that the singular exponent is invariably arational number.
Singularity analysis is also systematically applicable, so that thenth coefficient ofY
is expressible as a finite linear combination of terms, each of the asymptotic form

(8) ζ−nnr/s,
r

s
∈ Q;

see also Figure 1. The various quantities (likeζ, r, s) entering the asymptotic expan-
sion of the coefficients of an algebraic function turn out to be effectively computable.

Beside providing a wide-encompassing conceptual framework of independent in-
terest, the general theory of algebraic coefficient asymptotics is applicable whenever
the combinatorial problems considered is not amenable to any of the special schemas
previously described. For instance, certain kinds of “supertrees” (these are defined
as trees composed with trees, Example 10, p. 394) lead to the singular typeZ1/4,
which is reflected by an unusual subexponential factor ofn−5/4 present in asymptotic
counts. Maps, which are planar graphs drawn in the plane (or on the sphere), satisfy a
universality law with a singular exponent equal to3

2 , which is associated to counting
sequences involving an asymptoticn−5/2 factor.
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Differential equations and systems.When recursion is combined with point-
ing or with order constraints, enumeration problems translate into integro-differential
equations. Section VII. 9 examines the types of singularities that may occur in two
important cases:(i) linear differential equations;(ii) nonlinear differential equations.

Linear differential equations arise from the analysis of parameters of splitting pro-
cesses that extend the framework of tree recurrences (Chapter VI), and we treat the
geometric quadtree structure in this perspective. Anotherespecially important source
of linear differential equations is the class ofholonomic functions(solutions of linear
equations with rational coefficients, cf APPENDIX B: Holonomic functions, p. 693),
which includes GFs of Latin rectangles, regular graphs, permutations restricted by the
length of their longest increasing subsequence, Young tableaux and many more struc-
tures of combinatorial theory. In an important case, that ofa “regular” singularity ,
asymptotic forms can be systematically extracted. The singularities that may occur ex-
tend the algebraic ones (7), and the corresponding coefficients are then asymptotically
composed of elements of the form

(9) ζ−nnθ(log n)ℓ,

(θ an algebraic quantity,ℓ ∈ Z≥0), which is more general than (8).
Nonlinear differential equations are typically attached to the enumeration of trees

satisfying various kinds of order constraints. A general treatment is intrinsically not
possible, given the extreme diversity of singular types that may occur. Accordingly,
we restrict attention to first-order nonlinear equations ofthe form

d

dz
Y (z) = φ(Y (z)),

which covers varieties of increasing trees, including several models closely related to
permutations.

Figure 1 summarizes three classes of special functions encountered in this book,
namely, rational, algebraic, and holonomic. When structural complexity increases, a
richer set of asymptotic coefficient behaviours becomes possible. (The complex as-
ymptotic methods employed extend much beyond the range suggested by the figure.
For instance, the class of irreducible positive systems of polynomial equations are part
of the general square-root singularity paradigm, also encountered with Pólya opera-
tors, as well as inverse and implicit functions in non-algebraic cases.)

VII. 2. Sets and the exp–log schema

In this section, we examine a schema that is structurally comparable to the super-
critical sequence schema of Section V. 4, p. 313, but that requires singularity analysis
for coefficient extraction. The starting point is the construction of permutations (P) as
labelled sets of cyclic permutations (K):

(10) P = SET(K) =⇒ P (z) = exp (K(z)) , whereK(z) = log
1

1 − z
,

which gives rise to many easy explicit calculations. For instance the probability that
a random permutation consists of a unique cycle is1

n (since it equalsKn/Pn); the
number of cycles is asymptotic tologn, both on average (p. 112) and in probability
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(Example III.4, p. 148); the probability that a random permutation has no singleton
cycle is∼ e−1 (the derangement problem; see pp. 113 and 216).

Similar properties hold true under surprisingly general conditions. We start with
definitions that describe the combinatorial classes of interest.

Definition VII.1. A functionG(z) analytic at 0, having nonnegative coefficients and
finite radius of convergenceρ is said to be of(κ, λ)-logarithmic type, whereκ 6= 0, if
the following conditions hold:

(i) the numberρ is the unique singularity ofG(z) on |z| = ρ;
(ii) G(z) is continuable to a∆–domain atρ;

(iii) G(z) satisfies,

G(z) = κ log
1

1 − z/ρ
+ λ+O

(
1

(log(1 − z/ρ))2

)
, asz → ρ in ∆.

Definition VII.2. The labelled constructionF = SET(G) is said to be a labelled
exp-log schemaif the exponential generating functionG(z) of G is of logarithmic
type.

The unlabelled constructionF = MSET(G) is said to be an unlabelledexp-log
schemaif the ordinary generating functionG(z) of G is of logarithmic type.

By the fact thatG(z) has positive coefficients, we must haveκ > 0, while the sign
of λ is arbitrary. The definitions and the main properties to be derived for unlabelled
multisets easily extend to the powerset construction: see Notes 1 and 5 below.

Theorem VII.1 (Exp–log schema). Consider an exp-log schema with parameters
(κ, λ).

(i) The counting sequences satisfy





[zn]G(z) =
κ

n
ρ−n

(
1 +O

(
(logn)−2

))
,

[zn]F (z) =
eλ+r0

Γ(κ)
nκ−1ρ−n

(
1 +O

(
(log n)−2

))
,

wherer0 = 0 in the labelled case andr0 =
∑

j≥2G(ρj)/j in the case of unlabelled
multisets.

(ii) The numberX of G–components in a randomF–object satisfies

EFn(X) = κ(logn− ψ(κ)) + λ+ r1 +O
(
(logn)−1

)
(ψ(s) ≡ d

dsΓ(s)),

wherer1 = 0 in the labelled case andr1 =
∑

j≥2G(ρj) in the case of unlabelled
multisets. The variance satisfiesVFn(X) = O(log n), and, in particular, the distri-
bution ofX is concentrated around its mean.

We shall see in Chapter IX that, in addition, theasymptotic distributionof X is invariably
Gaussianunder such exp-log conditions.
PROOF. This result is from an article by Flajolet and Soria [210], with a correction
to the logarithmic type condition given by Jennie Hansen [257]. We first discuss the
labelled case, F = SET(G), so thatF (z) = expG(z).
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(i) The estimate for[zn]G(z) follows directly from singularity analysis with log-
arithmic terms (Theorem VI.4, p. 376). RegardingF (z), we find, by exponentiation,

(11) F (z) =
eλ

(1 − z/ρ)κ

[
1 +O

(
1

(log(1 − z/ρ))2

)]
.

Like G, the functionF = eG has an isolated singularity atρ, and is continuable to
a ∆-domain, in which the expansion (11) is valid. The basic transfer theorem then
provides the estimate of[zn]F (z).

(ii) Regarding the number of components, the BGF ofF with u marking the
number ofG–components isF (z, u) = exp(uG(z)), in accordance with the general
developments of Chapter III. The function

f1(z) :=
∂

∂u
F (z, u)

∣∣∣∣
u=1

= F (z)G(z),

is the EGF of the cumulated values ofX . It satisfies nearρ

f1(z) =
eλ

(1 − z/ρ)κ

(
κ log

1

1 − z/ρ
+ λ

)[
1 +O

(
1

(log(1 − z/ρ))2

)]
,

whose translation, by singularity analysis theory is immediate:

[zn]f1(z) ≡ EFn(X) =
eλ

Γ(κ)
ρ−n

(
κ logn− κψ(κ) + λ+O

(
(logn)−1

))
.

This provides the mean value estimate ofX as [zn]f1(z)/[z
n]F (z). The variance

analysis is conducted in the same way, using a second derivative.

For theunlabelled case, the analysis of[zn]G(z) can be recycled verbatim. First,
given the assumptions, we must haveρ < 1 (since otherwise[zn]G(z) could not be
an integer). The classical translation of multisets (Chapter I) rewrites as

F (z) = exp (G(z) +R(z)) , R(z) :=

∞∑

j=2

G(zj)

j
,

whereR(z) involves terms of the formG(z2), . . ., each being analytic in|z| < ρ1/2.
Thus,R(z) is itself analytic, as a uniformly convergent sum of analytic functions, in
|z| < ρ1/2. (This follows the usual strategy for treating Pólya operators in asymptotic
theory.) Consequently,F (z) is ∆-analytic. Asz → ρ, we then find

(12) F (z) =
eλ+r0

(1 − z/ρ)κ

[
1 + O

(
1

(log(1 − z/ρ))2

)]
, r0 ≡

∞∑

j=2

G(ρj)

j
.

The asymptotic expansion of[zn]F (z) then results from singularity analysis.
The BGFF (z, u) of F , with u marking the number ofG–components, is

F (z, u) = exp

(
uG(z)

1
+
u2G(z2)

2
+ · · ·

)
.

Consequently,

f1(z) :=
∂

∂u
F (z, u)

∣∣∣∣
u=1

= F (z) (G(z) +R1(z)) , R1(z) =

∞∑

j=2

G(zj).
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F κ n = 100 n = 272 n = 739

Permutations 1 5.18737 6.18485 7.18319
Derangements 1 4.19732 5.18852 6.18454
2–regular 1

2
2.53439 3.03466 3.53440

Mappings 1
2

2.97898 3.46320 3.95312

FIGURE VII.2. Some exp–log structures (F) and the mean number ofG–components
for n = 100, 272 ≡ ⌈100 · e⌋, 739 ≡ ⌈100 · e2⌋.

Again, the singularity type is that ofF (z) multiplied by a logarithmic term,

(13) f1(z) ∼
z→ρ

F (z)(G(z) + r1), r1 ≡
∞∑

j=2

G(ρj).

The mean value estimate results. Variance analysis followssimilarly. �

� VII.1. Unlabelled powersets.For the powerset constructionF = PSET(G), the statement
of Theorem VII.1 holds with

r0 =
X

j≥2

(−1)j−1G(ρj)

j
,

as seen by an easy adaptation of the proof techniques. �

As we see below, beyond permutations, mappings, unlabelledfunctional graphs,
polynomials over finite fields, 2–regular graphs, and generalized derangements resort
to the exp-log schema; see Figure 2 for representative numerical data. Furthermore,
singularity analysis gives precise information on the decomposition of largeF objects
into G components.

EXAMPLE VII.1. Cycles in derangements.The case ofpermutationscorresponds to radius
of convergenceρ = 1 and parameters F(κ, λ) = (1, 0), and is immediately seen to satisfy the
conditions of Theorem VII.1. LetΩ be a finite set of the integers and consider next the class
D ≡ DΩ of permutationswithout any cycle of length inΩ. This includes standardderange-
ments(whereΩ = {1}). The specification is then


D = SET(K)
K = CYCZ>0\Ω(Z)

=⇒

8
<
:

D(z) = exp(K(z))

G(z) = log
1

1− z −
X

ω∈Ω

zω

ω
.

The theorem applies, withκ = 1, λ := −Pω∈Ω ω
−1. In particular, the mean number of cycles

in a random generalized derangement of sizen is log n+O(1). END OF EXAMPLE VII.1. �

EXAMPLE VII.2. Connected components in 2-regular graphs.The class of (undirected)2–
regular graphsis obtained by the set construction applied to components that are themselves
undirected cyclesof length≥ 3 (see p. 123 and Example VI.2, p. 378). In that case:


F = SET(G)
G = UCYC≥3(Z)

=⇒

8
<
:

F (z) = exp(G(z))

G(z) =
1

2
log

1

1− z −
z

2
− z2

4
.

This is an exp–log scheme withκ = 1
2

andλ = − 3
4
. In particular the number of components

is asymptotic to1
2

log n, both in the mean and in probability. . . END OF EXAMPLE VII.2. �
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EXAMPLE VII.3. Connected components in mappings.The classF of mappings(functions
from a finite set to itself) has been introduced in SubsectionII. 5.2, p. 119. The associated
digraphs are described as labelled sets of connected components (K), themselves (directed)
cycles of trees (T ), so that the class of all mappings has an EGF given by

F (z) = exp(K(z)), K(z) = log
1

1− T (z)
, T (z) = zeT (z),

with T the Cayley tree function. The analysis of inverse functions(Section VI. 7 and Exam-
ple VI.8, p. 386) has shown thatT (z) is singular atz = e−1, where it admits the singular
expansionT (z) ∼ 1−

√
2
√

1− ez. ThusG(z) is logarithmic withκ = 1
2

andλ = − log
√

2.
As a consequence, the number of connected mappings satisfies

Kn ≡ n![zn]K(z) = nn

r
π

2n

“
1 +O(n−1/2)

”
.

In other words:the probability for a random mapping of sizen to consist of a single component
is∼p π

2n
. Also, the mean number of components in a random mapping of sizen is

1

2
log n+ log

√
2eγ +O(n−1/2).

Similar properties hold for mappings without fixed points that are analogous to derangements
and were discussed in Chapter II, p. 121. We shall establish below, p. 458, thatunlabelled
functional graphs also adhere to the exp-log schema. . . . . . .. . . . END OF EXAMPLE VII.3. �

EXAMPLE VII.4. Factors of polynomials over finite fields.Factorization properties of ran-
dom polynomials over finite fields are of importance in various areas of mathematics and have
applications to coding theory, symbolic computation, and cryptography [41, 487, 437]. (Exam-
ple I.18, p. 83, offers a preliminary discussion).

LetFp be the finite field withp elements andP = Fp[X] the set of monic polynomials with
coefficients in the field. We view these polynomials as (unlabelled) combinatorial objects with
size identified to degree. Since a polynomial is specified by the sequence of its coefficients, one
has (withA the “alphabet” of coefficients,A = Fp treated as a collection of atomic objects),

(14) P = SEQ(A) =⇒ P (z) =
1

1− pz ,

and there arepn monic polynomials of degreen.
Polynomials are a unique factorization domain, since they can be subjected to Euclidean

division. A nonconstant polynomial that has no proper nonconstant divisor is termedirreducible
—irreducibles are the analogues of the primes in the integerrealm. The unique factorization
property implies that the collection of all polynomials is combinatorially isomorphic to the
multiset class of the collection of irreducibles:

(15) P ∼= MSET(I) =⇒ P (z) = exp

„
I(z) +

1

2
I(z2) +

1

3
I(z3) + · · ·

«
.

The conjunction of (14) and (15) yields a functional relation determiningI(z) implicitly, which
can be solved by taking logarithms and then making use of Möbius inversion: we find

I(z) =
X

k≥1

µ(k)

k
log

1

1− pzk
= log

1

1− pz +R(z),

whereR(z) is analytic in|z| < p−1/2. ThusI(z) is of logarithmic type with parameters

κ = 1, λ =
X

k≥2

µ(k)

k
log

1

1− p1−k
.
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(X + 1)
“

X10 + X9 + X8 + X6 + X4 + X3 + 1
” “

X14 + X11 + X10 + X3 + 1
”

X3 (X + 1)
“

X2 + X + 1
”2 “

X17 + X16 + X15 + X11 + X9 + X6 + X2 + X + 1
”

X5(X + 1)
“

X5 + X3 + X2 + X + 1
” “

X12 + X8 + X7 + X6 + X5 + X3 + X2 + X + 1
” “

X2 + X + 1
”

X2
“

X2 + X + 1
”2 “

X3 + X2 + 1
” “

X8 + X7 + X6 + X4 + X2 + X + 1
” “

X8 + X7 + X5 + X4 + 1
”

“
X7 + X6 + X5 + X3 + X2 + X + 1

” “
X18 + X17 + X13 + X9 + X8 + X7 + X6 + X4 + 1

”

FIGURE VII.3. The factorizations of five random polynomials of degree 25 over F2.
One out of five polynomials in this sample has no root in the base field (the asymptotic
probability is 1

4
by Note 4).

There results thatIn ∼ pn/n, which constitutes a “Prime Number Theorem” for polynomials
over finite fields:A fraction asymptotic to1

n
of the polynomials inFp[X] are irreducible.This

says that a polynomial of degreen is roughly comparable to a number written in basep havingn
digits: in effect, the proportion of prime numbers amongst numbers whose representation has
lengthn is asymptotic to1/(n log p), by virtue of the classical Prime Number Theorem.

SinceI(z) is logarithmic andP is obtained by a multiset construction, we have an exp-log
scheme and Theorem VII.1 applies. As a consequence:The number of factors of a random poly-
nomial of degreen is∼ log n on average and its distribution is concentrated.(See Figure 3.)
This and similar developments lead to a complete analysis ofsome of the basic algorithms
known for factoring polynomials over finite fields; see [186]. . . END OF EXAMPLE VII.4. �

� VII.2. The divisor function for polynomials.Let δ(̟) for ̟ ∈ P be the total number of
monic polynomials (not necessarily irreducible) dividing̟: if ̟ = ιe1

1 · · · ιek
k , where theιj

are distinct irreducibles, thenδ(̟) = (e1 + 1) · · · (ek + 1). One has

EPn(δ) =
[zn]

Q
j≥1(1 + 2zj + 3z2j + · · · )

[zn]
Q

j≥1(1 + zj + z2j + · · · ) =
[zn]P (z)2

[zn]P (z)
,

so that the mean value ofδ overPn is exactly(n + 1). This evaluation is relevant to poly-
nomial factorization overZ since it gives an upper bound on the number of ireducible factor
combinations that need to be considered in order to lift a factorization fromFp(X) to Z(X);
see [308, 487]. �

� VII.3. The cost of finding irreducible polynomials.Assume that it takes expected timet(n)
to testa random polynomial of degreen for irreducibility. Then it takes expected time∼ nt(n)
to find a random polynomial of degreen: simply draw a polynomial at random and test it for
irreducibility. Testing for ireducibility can be achievedby developing a polynomial factorization
algorithm which is stopped as soon as a nontrivial factor is found. See works by Panarioet al.
for detailed analyses [383, 384]. �

Profiles of exp-log structures.Under the exp–log conditions, it is also possible
to analyse theprofile of structures, that is, the number of components of sizer for
each fixedr. We recall here that the Poisson distribution of parameterν is the law of
a discrete random variableY such that

E(uY ) = e−ν(1−u), P(Y = k) = e−ν ν
k

k!
.
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A variableY is said to be anegative binomialof parameter(m,α) if its probability
generating function and its individual probabilities satisfy:

E(uY ) =

(
1 − α

1 − αu

)m

, P(Y = k) =

(
m+ k − 1

k

)
αk(1 − α)m.

(The quantityP(Y = k) is the probability that themth success in a sequence of
independent trials with individual success probabilityα occurs at timem+k; see [162,
p. 165].)

Proposition VII.1 (Profiles of exp–log structures). Assume the conditions of Theo-
rem VII.1 and letX(r) be the number ofG-components of sizer in anF -object. In the
labelled case,X(r) admits alimit distribution of the Poisson type: for any fixedk,

(16) lim
n→∞

PFn(X(r) = k) = e−ν ν
k

k!
, ν = grρ

r, gr ≡ [zr]G(z).

In the unlabelled case,X(r) admits alimit distribution of the negative binomial type:
for any fixedk,
(17)

lim
n→∞

PFn(X(r) = k) =

(
Gr + k − 1

k

)
αk(1 − α)Gr , α = ρr, Gr ≡ [zr]G(z).

PROOF. In the labelled case, the BGF ofF with u marking the numberX(r) of r–
components is

F (z, u) = exp ((u− 1)grz
r)F (z).

Extracting the coefficient ofuk leads to

φk(z) := [uk]F (z, u) = exp (−grz
r)

(grz
r)k

k!
F (z).

The singularity type ofφk(z) is that ofF (z) since the prefactor (an exponential mul-
tiplied by a polynomial) is entire, so that singularity analysis applies directly. As a
consequence, one finds

[zn]φk(z) ∼ exp (−grρ
r)

(grρ
r)k

k!
· ([zn]F (z)) ,

which provides the distribution ofX(r) under the form stated in (16).
In the unlabelled case, the starting BGF equation is

F (z, u) =

(
1 − zr

1 − uzr

)Gr

F (z),

and the analytic reasoning is similar to the labelled case. �

The unlabelled version of Proposition VII.1 covers in particular polynomials over
finite fields; see [186, 298] for related results.
� VII.4. Mean profiles.The mean value ofX(r) satisfies

EFn(X(r)) ∼ grρ
r, EFn(X(r)) ∼ Gr

ρr

1− ρr
,

in the labelled and unlabelled (multiset) case respectively. In particular: the mean number of
roots of a random polynomial overFp that lie in the base fieldFp is asymptotic to p

p−1
. Also:
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Plane Non-plane

Unlabelled (OGF)

V = Z ×SΩ(V)

V (z) = zφ(V (z))

φ(u) :=
P

ω∈Ω u
ω

V = Z ×MΩ(V)

V (z) = zΦ(V (z)))

(Φ a Pólya operator)

Labelled (EGF)

V = Z ⋆SΩ(V)

bV (z) = zφ(bV (z))

φ(u) :=
P

ω∈Ω u
ω

V = Z ⋆PΩ(V)

bV (z) = zφ(bV (z))

φ(u) :=
P

ω∈Ω
uω

ω!

FIGURE VII.4. Functional equations satisfied by generating functions of degree-
restricted families of trees.

the probability that a polynomial has no root in the base fieldis asymptotic to(1− 1/p)p. (For
random polynomials with real coefficients, a famous result of Kac (1943) asserts that the mean
number of real roots is∼ 2

π
log n; see [146].) �

� VII.5. Profiles of powersets.In case of unlabelled powersetsF = PSET(G) (no repetitions
of elements allowed), the distribution ofX(r) satisfies

lim
n→∞

PFn(X(r) = k) =

 
Gr

k

!
αk(1− α)Gr−k, α =

ρr

1 + ρr
,

i.e., the limit is abinomial lawof parameters(Gr, ρ
r/(1 + ρr)). �

VII. 3. Simple varieties of trees and inverse functions

A unifying theme in this chapter is the enumeration of rootedtrees determined
by restrictions on the collection of allowed node degrees—some setΩ ⊆ Z≥0 con-
taining 0 (for leaves) and at least another numberd ≥ 2 (to avoid trivialities) being
fixed, all nodes outdegrees are constrained to lie inΩ. Corresponding to the four com-
binations, unlabelled/labelled and plane/nonplane, there are four types of functional
equations summarized by Figure 4. In three of the four cases,namely,

unlabelled plane, labelled plane, and labelled nonplane,

the generating function (OGF for unlabelled, EGF for labelled) satisfies an equation
of the form

(18) y(z) = zφ(y(z)).

In accordance with earlier conventions (p. 182), we namesimple variety of treesany
family of trees whose GF satisfies an equation of the form (18). (The functional equa-
tion satisfied by the OGF of a degree-restricted variety of nonplane unlabelled trees
furthermore involves a Pólya operatorΦ, which implies the presence of terms of the
form y(z2), y(z3), . . .: such cases are discussed in Section VII. 5 below.)

The relationy = zφ(y) has already been examined in Section VI. 7, p. 385,
from the point of view of singularity analysis. For convenience, we encapsulate the
conditions of the main theorem of that section, Theorem VI.6, p. 387, into a definition.
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Definition VII.3. Let y(z) be a function analytic at0. It is said to belong to the
smooth inverse-function schemaif there exists a functionφ(u) analytic at0, such that
in a neighbourhood of0 one has

y(z) = zφ(y(z)),

andφ(u) satisfies the following conditions.
—Condition (H1): The functionφ(u) is such that

(19) φ(0) 6= 0, [un]φ(u) ≥ 0, φ(u) 6≡ φ0 + φ1u.

— Condition (H2): Within theopendisc of convergence ofφ at 0, |z| < R, there
exists a (necessarily unique) positive solution to thecharacteristic equation:

(20) ∃τ, 0 < τ < R, φ(τ) − τφ′(τ) = 0.

A classY whose generating functiony(z) (either ordinary or exponential) satis-
fies these conditions is also said to belong to the smooth inverse-function schema.

The schema is said to beaperiodicif φ(u) is an aperiodic function ofu.

VII. 3.1. Asymptotic counting. As we saw on general grounds in Chapters IV
and VI, inversion fails to be analytic when the first derivative of the function to be
inverted vanishes (hence the characteristic equation). The heart of the matter is that,
at the point of failurey = τ , corresponding toz = τ/φ(τ) (the radius of convergence
of y(z) at 0), the dependencyy 7→ z becomes quadratic, so that its inversez 7→ y
gives rise to a square-root singularity, from which the typicaln−3/2 term in coefficient
asymptotics results (Theorem VI.6, p. 387). In view of our needs in this chapter, we
rephrase Theorem VI.6 as follows.

Theorem VII.2. Lety(z) belong to thesmooth inverse-function schema, in the sense
of Definition VII.3, and be aperiodic. Then, withτ the positive root of the characterstic
equation andρ = τ/φ(τ), one has

[zn]y(z) ∼
√

φ(τ)

2φ′′(τ)

ρ−n

√
πn3

[
1 +O

(
1

n

)]
.

As we also know from Theorem VI.6, a full (locally convergent) expansion of
y(z) in powers of

√
1 − z/ρ exists, starting with

(21) y(z) = τ − γ
√

1 − z/ρ+O (1 − z/ρ) , γ :=

√
2φ(τ)

φ′′(τ)
,

which implies a full asymptotic expansion foryn = [zn]y(z) in odd powers of1/
√
n.

(The statement extends to the aperiodic case, with the necessary condition thatn ≡ 1
mod p, whenφ has periodp.)

We have seen already that this framework covers binary, unary-binary, general
Catalan, as well as Cayley trees (Figure 10, p. 389). Here is another typical applica-
tion.
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EXAMPLE VII.5. Mobiles. A (labelled) mobile, as defined by Bergeron, Labelle, and Ler-
oux [39, p. 240], is a (labelled) tree in which subtrees dangling from the root are taken up to
cyclic shift:

1 2 3! + 3 = 9 4! + 4 × 2 + 4 × 3 + 4 × 3 × 2 = 68

(Think of Alexander Calder’s creations.) The specificationand EGF equation are

M = Z ⋆ (1 + CYCM) =⇒ M(z) = z

„
1 + log

1

1−M(z)

«
.

(By definition, cycles have at least one components, so that the neutral structure must be added
to allow for leaf creation.) The EGF starts asM(z) = z+ 2 z2

2!
+ 9 z3

3!
+ 68 z4

4!
+ 730 z5

5!
+ · · · ,

whose coefficients constituteEISA038037.
The verification of the conditions of the theorem are immediate. We haveφ(u) = 1 +

log(1− u)−1, whose radius of convergence is 1. The characteristic equation reads

1 + log
1

1− τ −
τ

1− τ = 0,

which has a unique positive root atτ
.
= 0.68215. (In fact, one hasτ = 1− 1/T (e−2), with T

the Cayley tree function.) The radius of convergence isρ ≡ 1/φ′(τ ) = 1− τ . The asymptotic
formula for the number of mobiles then results:

1

n!
Mn ∼ C · Ann−3/2, where C

.
= 0.18576, A

.
= 3.14461.

(This example is adapted from [39, p. 261], with corrections.) . . END OF EXAMPLE VII.5. �

� VII.6. Trees with node degrees that are prime numbers.Let P be the class of all plane un-
labelled trees such that the (out)degrees of internal nodesbelong to the set of prime numbers,
{2, 3, 5, . . .}. One hasP (z) = z + z3 + z4 + 2 z5 + 6 z6 + 8 z7 + 29 z8 + 50 z9 + · · · ,
andPn ∼ Cωnn−3/2, with ω

.
= 2.79256 84676. The asymptotic form “forgets” many de-

tails of the distribution of primes, so that it can be obtained to great accuracy. (Compare with
Example V.10, p. 317 and Note 23, p. 458.) �

VII. 3.2. Basic tree parameters. Throughout this subsection, we consider a sim-
ple variety of treesV , whose generating function (OGF or EGF, as the case may be)
will be denoted byy(z), satisfying the inverse relationy = zφ(y). In order to place
all cases under a single umbrella, we shall writeyn = [zn]y(z), so that the number of
trees of sizen is eitherVn = yn (unlabelled case) orVn = n!yn (labelled case). We
postulate throughout thaty(z) belongs to the smooth inverse-function schema and is
aperiodic.

As already seen on several occasions in Chapter III (SectionIII. 5, p. 170), addi-
tive parameters lead to generating functions that are expressible in terms of the basic
tree generating functiony(z). Now that singularity analysis is available, such gener-
ating functions can be exploited systematically, with a wealth of asymptotic estimates
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relative to trees of large sizes coming within easy reach. The universality of the square-
root singularity amongst varieties of trees that satisfy the smoothness assumption then
impliesuniversalbehaviour for many tree parameters, which we now list.

— Node degrees.The degree of the root in a large random tree isO(1) on
average and with high probability, and its asymptotic distribution can be
generally determined (Example 6). A similar property holdsfor thedegree
of a random nodein a random tree (Example 8).

— Level profilescan also be determined. The quantity of interest is the mean
number of nodes in thekth layer from the root in a random tree. It is seen
for instance that, near the root, a tree from a simple varietytends to grow lin-
early (Example 7), this in sharp contrast with other random tree models (for
instance, increasing trees, Subsection VII. 9.2, p. 500), where the growth is
exponential. This property is one of the numerous indications that random
trees taken from simple varieties are skinny and far from having perfectly
balanced shape. A related property is the fact that path length is on average
O(n

√
n) (Example 9), which means that the typical depth of a random node

in a random tree isO(
√
n).

These basic properties are ony the tip of an iceberg. Indeed,Meir and Moon, who
launched the study of simple varieties of trees (the seminalpaper [356] can serve as a
good starting point) have worked out literaly several dozenanalyses of parameters of
trees, using a strategy similar to the one exposed here5. We shall have occasion in later
chapters to return to probabilistic properties of simple varieties of trees satisfying the
smooth inverse-function schema—we only indicate here for completeness that height
is known generally to scale as

√
n and is associated to a limiting theta distribution (see

Proposition V.4, p. 306 for the special case of Catalan treesand [197, 180, 314] for
general results), with similar properties holding true forwidth as shown by Odlyzko–
Wilf and Chassaing-Marckert-Yor [83, 379].

EXAMPLE VII.6. Root degrees in simple varieties.Here is an immediate application of
singularity analysis, one that exemplifies the synthetic type of reasoning that goes along with
the method. Take for notational simplicity a simple familyV that is unlabelled, with OGF
V (z) ≡ y(z). Let V [k] be the subset ofV composed of all trees whose root has degree equal
to k. Since a tree inV [k] is formed by appending a root to a collection ofk trees, one has

V [k](z) = φkzy(z)
k, φk := [wk]φ(w).

For anyfixedk, a singular expansion results from raising both members of (21) to thekth power;
in particular,

(22) V [k](z) = φkz

»
τk − kγτk−1

r
1− z

ρ
+O

„
1− z

ρ

«–
.

This is to be compared to the basic estimate (21): the ratioV
[k]

n /Vn is then asymptotic to the
ratio of the coefficients of

p
1− z/ρ in the corresponding generating functions,V [k](z) and

5The main difference is that Meir and Moon appeal to the Darboux-Pólya method discussed in Sec-
tion VI. 11 instead of singularity analysis.
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Tree φ(w) τ, ρ PGF of root degree (type)

simple variety uφ′(τu)/φ′(τ )

binary (1 + w)2 1, 1
4

1
2
u+ 1

2
u2 (Bernoulli)

unary-binary 1 + w + w2 1, 1
3

1
3
u+ 2

3
u2 (Bernoulli)

general (1− w)−1 1
2
, 1

4
u/(2− u)2 (sum of two geometric)

Cayley ew 1, e−1 ueu−1 (shifted Poisson)

FIGURE VII.5. The distribution of root degree in simple varieties of treesof the smooth
inverse-function schema.

V (z) ≡ y(z). Thus, for any fixedk, we have found that

(23)
V

[k]
n

Vn
= ρkφkτ

k−1 +O(n−1/2).

(The error term is in fact of the formO(n−1), as seen when pushing the expansion one step
further.)

The ratioV [k]
n /Vn is the probability that the root of a random tree of sizen has degreek.

Sinceρ = 1/φ′(τ ), one can rephrase (23) as follows:In a smooth simple variety of trees, the
random variable∆ representing root-degree admits a discrete limit distribution given by

(24) lim
n→∞

PVn(∆ = k) =
kφkτ

k−1

φ′(τ )
.

(By general principles exposed in Chapter IX, convergence is uniform.) Accordingly, the prob-
ability generating function (PGF) of the limit law admits the simple expression

EVn

“
u∆
”

= uφ′(τu)/φ′(τ ).

The distribution is thus characterized by the fact that its PGF is a scaled version of thederiv-
ative of the basic tree constructorφ(w). Figure 5 summarizes this property together with its
specialization to our four pilot examples. . . . . . . . . . . . . . .. . . . . . END OF EXAMPLE VII.6. �

Additive functionals. Singularity analysis gives access to many additive param-
eters of trees. Consider three tree parameters,ξ, η, σ satisfying the basic relation,

(25) ξ(t) = η(t) +

deg(t)∑

j=1

σ(tj),

which can be taken to defineξ(t) in terms of the simpler parameterη(t) and the sum
of values ofσ over the root subtrees oft (deg(t) is the degree of the root oft andtj is
thejth root subtree). As we are interested in average-case analysis, we introduce the
cumulative GFs,

(26) Ξ(z) =
∑

t

ξ(t)z|t|, H(z) =
∑

t

η(t)z|t|, Σ(z) =
∑

t

σ(t)z|t|,

assuming an unlabelled variety of trees for simplicity. We first state a simple algebraic
result which formalizes several of the calculations of Section III. 5, p. 170.
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Lemma VII.1 (Iteration lemma for trees). For tree parameters from a simple variety
with GF y(z) that satisfy the additive relation(25), the cumulative generating func-
tions(26), are related by

(27) Ξ(z) = H(z) + zφ′(y(z))Σ(z).

In particular, if ξ is definedrecursivelyin terms ofη, that is,σ ≡ ξ, one has

(28) Ξ(z) =
H(z)

1 − zφ′(y(z))
=
zy′(z)

y(z)
H(z).

In the case of a recursive parameter, unwinding the recursion shows thatξ(t) :=
P

s�t η(s),
where the sum is extended toall subtreess of t (writtens � t).
PROOF. We have

Ξ(z) = H(z) + Ξ̃(z), where Ξ̃(z) :=
∑

t∈V


z|t|

deg(t)∑

j=1

σ(tj)


 .

Spitting the expression of̃Ξ(z) according to the valuesr of root degree, we find

Ξ̃(z) =
∑

r≥0

φrz
1+|t1|+···+|tr| (σ(t1) + σ(t2) + · · · + σ(tr))

= z
∑

r≥0

φr

(
Σ(z)y(z)r−1 + y(z)Σ(z)y(z)r−2 + · · · y(z)r−1Σ(z)

)

= zΣ(z) ·
∑

r≥0

(
rφry(z)

r−1
)
,

which yields the linear relation expressingΞ in (27).
In the recursive case, the functionΞ is determined by a linear equation, namely

Ξ(z) = H(z) + zφ′(y(z))Ξ(z), which, once solved, provides the first form of (28).
Differentiation of the fundamental relationy = zφ(y) yields the identity

y′(1 − zφ′(y)) = φ(y) =
y

z
, i.e., 1 − zφ′(y) =

y

zy′
,

from which the second form results. �

� VII.7. A combinatorial interpretation.For a recursive parameter, we can viewΞ(z) as the
GF of trees with one subtree marked, to which is attached a weight of η. Then (28) can be
interpreted as follows: point to an arbitrary node at a tree inV (the GF iszy′(z)), “subtract” the
tree attached to this node (a factor ofy(z)−1), and replace it by the same tree but now weighted
by η (the GF isH(z)). �

� VII.8. Labelled varieties.Formulae (27) and (28) hold verbatim for labelled trees (either
of the plane or nonplane type), provided we interprety(z),Ξ(z),H(z) as EGFs:Ξ(z) :=P

t∈V ξ(t)z
|t|/|t|!, and so on. �

EXAMPLE VII.7. Mean level profile in simple varieties.The question we address here is
that of determining the mean number of nodes at levelk (i.e., at distancek from the root) in a
random tree of some large sizen. An explicit expression for the joint distribution of nodesat
all levels has been developed in Subsection III. 6.2, p. 182,but this multivariate representation
is somewhat hard to interpret in concrete terms.
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Let ξk(t) be the number of nodes at levelk in treet. Define the generating function of
cumulated values,

Xk(z) :=
X

t∈V
ξk(t)z|t|.

Clearly,X0(z) ≡ y(z) since each tree has a unique root. Then, since the parameterξk is
the sum over subtrees of parameterξk−1, we are in a situation exactly covered by (27), with
η(t) ≡ 0. The relationXk(z) = zφ′(y(z))Ξk−1(z), is then immediately solved by recurrence,
to the effect that

(29) Xk(z) =
`
zφ′(y(z))

´k
y(z).

Making use of the (analytic) expansion ofφ′ atτ , namely,φ′(y) ∼ φ′(τ ) + φ′′(τ )(y− τ ) and
of ρφ′(τ ) = 1, one gets for any fixedk

Xk(z) ∼
„

1− kγρφ′′(τ )

r
1− z

ρ

«„
τ − γ

r
1− z

ρ

«
∼ τ − γ(τρφ′′(τ )k + 1)

r
1− z

ρ
.

Thus comparing the singular part ofXk(z) to that ofy(z), we find: For fixed k, the mean
number of nodes at levelk in a tree is of the asymptotic form

EVn [ξk] ∼ Ak + 1, A := τρφ′′(τ ).

This result was first given by Meir and Moon [356]. The striking fact is that, although the
number of nodes at levelk can at least double at each level, growth is only linear on average.
In figurative terms, the immediate vicinity of the root starts like a “cone”, and trees of simple
varieties tend to be rather skinny near their base.

When used in conjunction with saddle point bounds, the exactGF expression of (29) addi-
tionally provides a probabilistic upper bound on the heightof trees of the formO(n1/2+δ) for
anyδ > 0. Indeed restrictz to the interval(0, ρ) and assume thatk = n1/2+δ . Let χ be the
height parameter. First, we have

(30) PVn(χ ≥ k) ≡ EVn([[ξk ≥ 1]]) ≤ EVn(ξk).

Next by saddle point bounds, for any legal positivex (0 < x < Rconv(φ)),

(31) EVn(ξk) ≤
`
xφ′(y(x))

´k
y(x)x−n ≤ τ

`
xφ′(y(x))

´k
x−n.

Fix nowx = ρ− nδ

n
. Local expansions then show that

(32) log
“`
xφ′(y(x))

´k
x−n

”
≤ −Kn3δ/2 +O

“
nδ
”
,

for some positive constantK. Thus, by (30) and (32):In a smoothsimple variety of trees,
the probability of height exceedingn1/2+δ is exponentially small, being of the rough form
exp(−n3δ/2). Accordingly, the mean height isO(n1/2+δ) for any δ > 0. Flajolet and
Odlyzko [197] have characterized the moments of height, the mean being inparticular asymp-
totic toλ

√
n and the limit distribution being of the Theta type already encountered in Chapter V

in the particular case of general Catalan trees, where explicit expressions are available. (Further
local limit and large deviation estimates appear in [180].) Figure 6 displays three random trees
of sizen = 500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . END OF EXAMPLE VII.7. �

� VII.9. The variance of level profiles.The BGF of trees withu marking nodes at levelk
has an explicit expression, in accordance with the developments of Chapter III. For instance
for k = 3, this iszφ(zφ(zφ(uy(z)))). Double differentiation followed by singularity analysis
shows that

VVn [ξk] ∼ 1

2
A2k2 − 1

2
A(3− 4A)k + τA− 1,
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FIGURE VII.6. Three random 2–3 trees (Ω = {0, 2, 3}) of sizen = 500 have height
respectively 48, 57, 47, in agreement with the fact that height is typicalyO(

√
n).

another result of Meir and Moon [356]. The precise analysis of the mean and variance in the
interesting regime wherek ≍ √n is also given in [356], but it requires the saddle point method
of Chapter VIII or the methods of Chapter IX. �

EXAMPLE VII.8. Mean degree profile.Let ξ(t) ≡ ξk(t) be the number of nodes of degreek
in random tree of some varietyV. The analysis extends that of the root degree seen earlier. The
parameterξ is an additive functional induced by the basic parameterη(t) ≡ ηk(t) defined by
ηk(t) := [[deg(t) = k]]. By the analysis of root degree, we have for the GF of cumulated values
associated toη

H(z) = φkzy(z)
k, φk := [wk]φ(w),

so that, by the fundamental formula (28),

X(z) = φkzy(z)
k zy

′(z)

y(z)
= z2φky(z)

k−1y′(z).

The singular expansion ofzy′(z) results from that ofy(z) by differentiation (Chapter VI),

zy′(z) =
1

2
γ

1p
1− z/ρ

+O(1),

and the corresponding coefficient is[zn](zy′) = nyn. This gives immediately the singularity
type ofX, which is of the form of an inverse square root. Thus,

X(z) ∼ ρφkτ
k−1(zy′(z))

implying (ρ = τ/φ(τ ))

Xn

nyn
∼ φkτ

k

φ(τ )
.

Consequently, one has:
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Proposition VII.2. In a smoothsimple variety of trees, the mean number of nodes of degreek
is asymptotic toλkn, whereλk := φkτ

k/φ(τ ). Equivalently, the probability distribution of the
degree∆′ of a random node in a random tree of sizen satisfies

lim
n→∞

Pn(∆′) = λk ≡ φkτ
k

φ(τ )
, with PGF :

X

k

λku
k =

φ(uτ )

φ(τ )
.

For the usual tree varieties this gives:

Tree φ(w) τ, ρ Probability distr. (type)
binary (1 +w)2 1, 1

4
PGF: 1

4
+ 1

2
u+ 1

4
u2 (Bernoulli)

unary-binary 1 + w + w2 1, 1
3

PGF: 1
3

+ 1
3
u+ 1

3
u2 (Bernoulli)

general (1−w)−1 1
2
, 1

4
PGF:1/(2 − u) (Geometric)

Cayley ew 1, e−1 PGF:eu−1 (Poisson)

For instance, asymptotically, a general Catalan tree has onaveragen
2

leaves,n
4

nodes of de-
gre 1 n

8
of degree 2, and so on; a Cayley tree has∼ ne−1/k! nodes of degreek; for bi-

nary (Catalan) trees, the four possible types of nodes each appear each with asymptotic fre-
quency 1

4
. (These data agree with the fact that a random tree underVn is distributed like a

branching process tree determined by the PGFφ(uτ )/φ(τ ); see Subsection III. 6.2, p. 182.)
END OF EXAMPLE VII.8. �

� VII.10. Variances.The variance of the number ofk-ary nodes is∼ νn, so that the distribu-
tion of the number of nodes of this type is concentrated, for each fixedk. The starting point is
the BGF defined implicitly by

Y (z, u) = z
“
φ(Y (z, u)) + φk(u− 1)Y (z, u)k

”
,

upon taking a double derivative with respect tou, settingu = 1, and finally performing singu-
larity analysis on the resulting GF of cumulated values. �

� VII.11. The mother of a random node.The discrepancy in distributions between the root
degree and the degree of a random node deserves an explanation. Pick up a node distinct from
the root at random in a tree and look at the degree of its mother. The PGF of the law is in
the limit uφ′(uτ )/φ′(τ ). Thus the degree of the root is asymptotically the same as that of the
mother of any non-root node.

More generally, letX have distributionpk := P(X = k). Construct a random variableY
such that the probabilityqk := P(Y = k) is proportional both tok andpk. Then for the
associated PGFs, the relationq(u) = p′(u)/p′(1) holds. The law ofY is said to be thesize-
biasedversion of the law ofX. Here, a mother is picked up with an importance proportionalto
its degree. In this perspective, Eve appears to be just like arandom mother. �

EXAMPLE VII.9. Path length. Path length of a tree is the sum of the distances of all nodes to
the root. It is defined recursively by

ξ(t) = |t| − 1 +

deg(t)X

j=1

ξ(tj).

In this case, we haveη(t) = |t| − 1 corresponding to the GF of cumulated valuesH(z) =
zy′(z)− y(z), and the fundamental relation (28) gives

X(z) = (zy′(z)− y(z))zy
′(z)

y(z)
=
z2y′(z)2

y(z)
− zy′(z).

The type ofy′(z) at its singularity isZ−1/2, whereZ := (1 − z/ρ). The formula forX(z)
involves the square ofy′, so that the singularity ofX(z) is of typeZ−1, resembling a simple
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pole. This means that the cumulated valueXn = [zn]X(z) grows likeρ−n, so that the mean
value ofξ overVn has growthn3/2. Working out the constants, we find

X(z) + zy′(z) ∼ γ2

4τ

1

Z
+O(Z−1/2).

As a consequence:

Proposition VII.3. In a random tree of sizen from a smooth simple variety, the expectation of
path length satisfies

(33) EVn(ξ) = λ
√
πn3 +O(n), λ :=

s
φ(τ )

2τ 2φ′′(τ )
.

For our classical varieties, the main terms of (33) are then:

Binary Unary-binary General Cayley

∼
√
πn3 ∼ 1

2

√
3πn3 ∼ 1

2

√
πn3 ∼

q
1
2
πn3

Observe that the quantity1
n

EVn(ξ) represents the expected depth of a random node in random
tree (the model is then[1 . . n] × Vn), which is thus∼ λ

√
n. (This result is consistent with

height of a tree being with high probability of orderO(n1/2).) . END OF EXAMPLE VII.9. �

� VII.12. Variance of path length.Path length can be analysed starting from the bivariate gen-
erating function given by a functional equation of the difference type (see Chapter III, p. 174),
which allows for the computation of higher moments. The standard deviation is found to be
asymptotic toΛ2n

3/2 for some computable constantΛ2 > 0, so that the distribution is spread.
(Louchard [339] and Takács [460] have additionally worked out the asymptotic form of all mo-
ments, leading to a characterization of the limit law of pathlength that can be described in terms
of the Airy function and coincides with the Brownian excursion area.) �

� VII.13. Generalizations of path length.Define thesubtree size indexof orderα ∈ R≥0 to
be ξ(t) ≡ ξα(t) :=

P
s�t |s|α, where the sum is extended to all the subtreess of t. This

corresponds to a recursively defined parameter withη(t) = |t|α. The results of Section VI. 10
relative to Hadamard products and polylogarithms make it possible to analyse the singularities
of H(z) andX(z). It is found that there are three different regimes

α > 1
2

α = 1
2

α < 1
2

EVn(ξ) ∼ Kαn
α EVn(ξ) ∼ K1/2n log n EVn(ξ) ∼ Kαn

where eachKα is a computable constant. (This extends the results of Subsection VI. 10.3,
p. 409 to all simple varieties of trees that are smooth.) �

VII. 3.3. Mappings. The basic construction of mappings,

(34)





F = SET(K)
K = CYC(T )
T = Z ⋆ SET(T )

=⇒





F = exp(K)
K = log 1

1−T

T = zeT ,

builds maps from Cayley trees, which constitute a smooth simple variety. The con-
struction lends itself to a number of multivariate extensions. For instance, the param-
eterχ(φ) equal to the number of cyclic points gives rise to the BGF

F (z, u) = exp

(
log

1

1 − uT

)
= (1 − uT )−1.
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# components ∼ 1
2

log n

# cyclic nodes ∼
p
πn/2

# terminal nodes ∼ ne−1

tail length (λ) ∼
p
πn/8

cycle length (µ) ∼
p
πn/8

tree size ∼ n/3
component size ∼ 2n/3

FIGURE VII.7. Expectations of the main additive parameters of random mappings of sizen.

The mean number of a cyclic points in a random mapping of sizen is accordingly

µn ≡ EFn [φ] =
n!

nn
[zn]

(
∂

∂u
F (z, u)

∣∣∣∣
u=1

)
=

n!

nn
[zn]

T

(1 − T )2
.

Singularity analysis is immediate as

T

(1 − T )2
∼

z→e−1

1

2

1

1 − ez
•——◮ [zn]

T

(1 − T )2
∼

n→∞
1

2
en.

The mean number of cyclic points in a randomn–mapping is asymptotic to
√
πn/2.

A large number of parameters can be analysed in this way systematically as shown in
the survey [198]: see Figure 7 for a summary of results whose proof we leave asan
exercise to the reader. The leftmost table describes globalparameters of mappings;
the rightmost table is relative to properties of random point in randomn-mapping:λ
is the distance to its cycle of a random point,µ the length of the cycle to which the
point leads, tree size and component size are respectively the size of the largest tree
containing the point and the size of its (weakly) connected component. In particular, a
random mapping of sizen has relatively few components, some of which are expected
to be of a fairly large size.

The properties outlined above for the class of all maping also prove to be universal
for a wide varety of mappings defined by degree restrictions of various sorts.

EXAMPLE VII.10. Simple varieties of mappings.Let Ω be a subset of the integers and
consider mappingsφ ∈ F such that the number of preimages of any point is constrainedto lie
in Ω. Such special mappings may serve to model the behaviour of special classes of functions
under iteration, and are accordingly of interest in variousareas of computational number theory
and cryptography. For instance the quadratic functionsφ(x) = x2+a overFp have the property
that each elementy has either zero, one, or two preimages (depending on whethery − a is a
quadratic nonresidue, 0, or a quadratic residue).

The basic construction of mappings needs to be amended. Start with the family of treesT
that are the simple variety corresponding toΩ:

T = zφ(T ), φ(w) :=
X

ω∈Ω

uω

ω!
.

At any vertex on a cycle, one must graftr trees with the constraint thatr + 1 ∈ Ω (since one
edge is coming from the cycle itself). Such legal tuples witha root appended are represented by

U = zφ′(T ),

sinceφ is an exponential generating function and shift corresponds to differentiation. Then
connected components and components are formed in the usualway by

K = log
1

1− U , F = exp(K) =
1

1− U .
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We assume thatφ (i.e.,Ω) satisfies the general conditions of Theorem VII.2, withτ the charac-
teristic value. ThenT (z) has a square-root singularity atρ = τ/φ(τ ). The same holds forU
which satisfies the singular expansion

(35) U(z) ∼ 1− ρφ′′(τ )γ

r
1− z

ρ
,

sinceU = zφ′(T ). Thus, eventually,

F (z) ∼ λq
1− z

ρ

.

There results the universality of ann−1/2 law in such constrained mappings,

1

n!
Fn ∼ λ√

πn
ρ−n,

which nicely extends what is known to hold for unrestricted mappings. The analysis of additive
functionals can then proceed on lines very similar to the case of standard mappings, to the
effect that the estimates of Figure 7 hold, albeit with different multiplicative constants. The
programme just sketched has been carried out in a thorough way by Arney and Bender in [14]
to which we refer for a detailed treatment. . . . . . . . . . . . . . . .. . . END OF EXAMPLE VII.10. �

� VII.14. Probabilities of first-order sentences.A beautiful theorem of Lynch [348], much in
line with the global aims of analytic combinatorics, gives aclass of properties of random map-
pings for which asymptotic probabilities are systematically computable. In logics, a first-order
sentence is built out of variables, equality, boolean connectives (∨,∧,¬, etc), and quantifiers
(∀,∃). In addition, there is a function symbolϕ, representing a generic mapping.

Theorem. Given a propertyP expressed by a first-order sentence, letµn(P ) be the
probability thatP is satisfied by a random mappingϕ of sizen. Then the quantity
µ∞(P ) = limn→∞ µn(P ) exists and its value is given by an expression consisting
of integer constants and the operators+,−,×,÷, andex.

For instance:

P : ϕ is perm. ϕ without fixed pt. ϕ has #leaves≥ 2

∀x∃yϕ(y) = x ∀x¬ϕ(x) = x ∃x, y [x 6= y ∧ ∀z[ϕ(z) 6= x ∧ ϕ(z) 6= y]]

µ∞(P ) 0 e−1 1

One can express in this language a property likeP12 : “all cycles of length 1 are attached to

trees of height at most 2”, for which the limit probability ise−1+e−1+e−1

. The proof of the theo-
rem is based on Ehrenfeucht games supplemented by ingeniousinclusion-exclusion arguments.
(Most examples, likeP12, can be directly treated by singularity analysis.) Compton[94, 95, 96]
has produced lucid surveys of this area of logics, known as finite model theory. �

VII. 4. Tree-like structures and implicit functions

The goal of this section is to show that universality of the square-root singularity
type holds for classes of recursively defined structures, which considerably extend
the case of (smooth) simple varieties of trees. The startingpoint is the investigation of
labelled recursive classesY, with associated GFy(z), that are given by a construction,

(36) Y = G[Z,Y] =⇒ y(z) = G(z, y(z))
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whereG may be an arbitrary composition of basic constructors reflected by a bivari-
ate functionG(z, w) in the labelled case. This situation covers for instance hierar-
chies (Chapter II), Schröder’s generalized systems (Chapter I), paths with diagonal
steps, as well as trees with variable node sizes or edge lengths. The unlabelled uni-
verse also benefits from the technology developed for functions implicitly defined by
y = G(z, y). This technology then makes it possible to estimate counting sequences
and parameters of many recursive structures, when Pólya operators are involved (Sec-
tion VII. 5, p. 453).

VII. 4.1. The smooth implicit-function schema. The investigation of (36) ne-
cessitates certain analytic conditions to be satisfied by the bivariate functionG, which
we first encapsulate into the definition of a schema.

Definition VII.4. Let y(z) be a function analytic at0, y(z) =
∑

n≥0 ynz
n, with

y0 = 0 andyn ≥ 0. The function is said to belong to thesmooth implicit-function
schemaif there exists a bivariateG(z, w) such that

y(z) = G(z, y(z)),

whereG(z, w) satisfies the following conditions.
— (I1): G(z, w) =

∑
m,n≥0 gm,nz

mwn is analytic in a domain|z| < R and
|w| < S, for someR,S > 0.

— (I2): The coefficients ofG satisfy

(37)
gm,n ≥ 0, g0,0 = 0, g0,1 6= 1,
gm,n > 0 for somem and for somen ≥ 2.

— (I3): There exist two numbersr, s, such that0 < r < R and0 < s < S, satisfying
the system of equations,

(38) G(r, s) = s, Gw(r, s) = 1, with r < R, s < S,

which is called thecharacteristic system. A classY with such a generating function
y(z) is also said to belong to thesmooth implicit-function schema.

Postulating thatG(z, w) is analytic and with nonnegative coefficients is a minimal
assumption in the context of analytic combinatorics. The problem is assumed to be
normalized, so thaty(0) = 0 andG(0, 0) = 0, the conditiong0,1 6= 1 being imposed
to avoid that the implicit equation be of the reducible formy = y + · · · (first line
of (37)). The second condition of (37) means that inG(z, y), the dependency ony
is nonlinear (otherwise, the analysis resorts to rational and meromorphic asymptotic
methods of Chapter V). The major analytic condition is(I3), which postulates the
existence of positive solutionsr, s to thecharacteristic systemwithin the domain of
analyticity ofG.

The main result6 due to Meir and Moon [360] expresses universality of the square-
root singularity together with its usual consequences regarding asymptotic counting.

6This theorem has an interesting history. An overly general version of it was first stated by Bender in
1974 (Theorem 5 of [29]). Canfield [77] pointed out ten years later that Bender’s conditions were not quite
sufficient to grant square-root singularity. A corrected statement was given by Meir and Moon in [360]
with a further (minor) erratum in [359]. We follow here the form given in Theorem 10.13 of Odlyzko’s
survey [377] with the correction of another minor misprint (regardingg0,1 which should readg0,1 6=
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Theorem VII.3 (Smooth implicit-function schema). Let y(z) belong to thesmooth
implicit-function schemadefined byG(z, w), with (r, s) the positive solution of the
characteristic system. Then,y(z) converges atz = r where it has a square-root
singularity,

y(z) =
z→r

s− γ
√

1 − z/r +O(1 − z/r), γ :=

√
2rGz(r, s)

Gww(r, s)
,

the expansion being valid in a∆-domain. If, in addition,y(z) is aperiodic7, thenr is
the unique dominant singularity ofy and the coefficients satisfy

[zn]y(z) =
n→∞

γ

2
√
πn3

r−n
(
1 +O(n−1

)
.

Observe that the assumptions imply the existence ofexactly one rootof the char-
acteristic system within the part of the positive quadrant whereG is analytic, since,
obviously,yn cannot admit two asymptotic expressions with different parameters. A
complete expansion exists in powers of(1 − z/r)1/2 (for y(z)) and in powers of1/n
(for yn), while periodic cases can be treated by a simple extension of the technical
apparatus to be developed.

The proof of this theorem first necessitates two statements of independent inter-
est:(i) Lemma VII.2 is logically equivalent to an analytic version of the classical Im-
plicit Function Theorem found in APPENDIX B: Implicit Function Theorem, p. 698.
(ii) Lemma VII.3 supplements this by describing what happens at apoint where the
implicit function theorem “fails”. (These two statements extend the analytic and the
singular inversion lemma of Subsection IV. 7.1, p. 261.)

Lemma VII.2 (Analytic Implicit Functions). Let F (z, w) be z bivariate function
analytic at (z, w) = (z0, w0). Assume thatF (z0, w0) = 0 andFw(z0, w0) 6= 0.
Then, there exists a unique functiony(z) analytic in a neighbourhood ofz0 such that
y(z0) = w0 andF (z, y(z)) = 0.

PROOF. This is a restatement of the Analytic Implicit Function Theorem of APPEN-
DIX B: Implicit Function Theorem, p. 698, upon effecting a translationz 7→ z + z0,
w 7→ w + w0. (This property extends the Analytic Inversion Lemma IV.2,p. 262.)�

Lemma VII.3 (Singular Implicit Functions). LetF (z, w) be a bivariate function an-
alytic at (z, w) = (z0, w0). Assume the conditions:F (z0, w0) = 0, Fz(z0, w0) 6= 0,
Fw(z0, w0) = 0, andFww(z0, w0) 6= 0. Choose an arbitrary ray of angleθ emanat-
ing fromz0. Then there exists a neighbourhoodΩ of z0 such that at every pointz of Ω
with z 6= z0 andz not on the ray, the equationF (z, y) = 0 admits two solutionsy1(z)
andy2(z) that are analytic inΩ slit along a ray and satisfy, asz → z0

y1(z) = y0 − γ
√

1 − z/z0 +O (1 − z/z0)) , γ :=

√
2z0Fz(z0, w0)

Fww(z0, w0)
,

1). A statement concerning a restricted class of functions (either polynomial or entire) already appears in
Hille book [268, p. 274].

7In the usual sense:f(z) =
P

n fnzn is aperiodic if there exist three indicesi < j < k such that
fifjfk 6= 0 andgcd(j − i, k − i) = 1.
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FIGURE VII.8. The connection problem for the equationw = 1
4
z + w2 (with explicit

formsw = 1±
√

1− z): the combinatorial solutiony(z) nearz = 0 and the two analytic
solutionsy1(z), y2(z) nearz = 1.

and similarly fory2 whose expansion is obtained by changing
√

to −√
.

PROOF. Locally, near(r, s), the functionF (z, w) behaves like

(39) F + (w − s)Fw + (z − r)Fz +
1

2
(w − s)2Fww,

(plus smaller order terms), whereF and its derivatives are evaluated at the point(r, s).
SinceF = Fw = 0, cancelling (39) suggests for the solutions ofF (z, w) = 0 near
z = r the form

w − s = ±γ
√
r − z +O(z − r),

which is consistent with the statement. This informal argument can be justified by the
following steps (details omitted):(a) establish the existence of a formal solution in
powers of±(1− z/r)1/2; (b) prove, by the method of majorant series, that the formal
solutions also converge locally and provide a solution to the equation.

Alternatively, by the Weierstrass Preparation Theorem (see again APPENDIX B:
Implicit Function Theorem, p. 698) the two solutionsy1(z), y2(z) that assume the
values atz = r are solutions of a quadratic equation

(Y − s)2 + b(z)(Y − s) + c(z) = 0,

whereb andc are analytic atz = r, with b(r) = c(r) = 0. The solutions are then
obtained by the usual formula for solving a quadratic equation,

Y − s =
1

2

(
−b(z) ±

√
b(z)2 − 4c(z)

)
,

which provides fory1(z) an expression as the square-root of an analytic function and
yields the statement. (This property extends the Singular Inversion Theorem VI.6,
p. 387.) �
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It is now possible to return to the proof of our main statement.

PROOF. [Theorem VII.3] Given the two lemmas, the general idea of the proof of The-
orem VII.3 can be easily grasped. SetF (z, w) = w −G(z, w). There exists a unique
analytic functiony(z) satisfyingy = G(z, y) nearz = 0, by the analytic lemma.
On the other hand, by the singular lemma, near the point(z, w) = (r, s), there exist
two solutionsy1, y2, both of which have a square root singularity. Given the positive
character of the coefficients ofG, it is not hard to see that, ofy1, y2, the functiony1(z)
is increasing asz approaches from the left (assuming the principal determination of
the square root in the definition ofγ). A simple picture of the situation regarding the
solutions to the equationy = G(z, y) is exemplified by Figure 8.

The problem is then to show that a smooth analytic curve (the dotted curve in
Figure 8)doesconnect the solution at 0 to the increasing branch solution at r. Pre-
cisely, one needs to check thaty1(z) (defined nearr) is the analytic continuation of
y(z) (defined near0) asz increases along the positive real axis. This is indeed a deli-
cateconnection problemwhose technical proof is discussed in Note 15. Once this fact
is granted and it has been verified thatr is the unique dominant singularity ofy(z)
(Note 16), the statement of Theorem VII.3 follows directly by singularity analysis.�
� VII.15. The connection problem for implicit functions.A proof thaty(z) andy1(z) are well
connected is given by Meir and Moon in [360] from which our description is adapted.

Let ρ be the radius of convergence ofy(z) at0 andτ = y(ρ). The pointρ is a singularity
of y(z) by Pringsheim’s Theorem. The goal is to establish thatρ = r andτ = s. Regarding
the curve

C =
˘
(z, y(z))

˛̨
0 ≤ z ≤ ρ

¯
,

this means that three cases are to be excluded:
(a) C stays entirely in the interior of the rectangle

R :=
˘
(z, y)

˛̨
0 ≤ z ≤ r, 0 ≤ y ≤ s

¯
.

(b) C intersects the upper side of the rectangleR at some point of abscissar0 < r where
y(r0) = s.

(c) C intersects the rightmost side of the rectangleR at the point(r, y(r)) with y(r) < s.
Graphically, the three cases are depicted in Figure 9.

(a)

(b)

(c)

FIGURE VII.9. The three cases
(a), (b), and (c), to be excluded
(solid lines).

In the discussion, we make use of the fact thatG(z, w), which has nonnegative coefficients
is an increasing function in each of its argument. Also, the form

(40) y′ =
Gz(z, y)

1−Gw(z, y)
,
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shows differentiability (hence analyticity) of the solutiony as soon asGz(z, y) 6= 1.
—Case(a) is excluded. Assume that0 < ρ < r and 0 < τ < s. Then, we have

Gw(r, s) = 1, and by monotonicity properties ofGw , the inequalityGw(ρ, τ ) < 1 holds. But
theny(z) must be analytic atz = ρ, which contradicts the fact thatρ is a singularity.

—Case(b) is excluded.Assume that0 < r0 < r andy(r0) = s. Then there are two
distinct points on the implicit curvey = G(z, y) at the same altitude, namely(r0, s) and(r, s),
implying the equalities

y(r0) = G(r0, y(r0)) = s = G(r, s),

which contradicts the monotonicity properties ofG.
—Case(c) is excluded. Assume thaty(r) < s. Let a < r be a point chosen close

enough tor. Then abovea, there are three branches of the curvey = G(z, y), namely
y(a), y1(a), y2(a), where the existence ofy1, y2 results from Lemma VII.3. This means that
the functiony 7→ G(a, y) has a graph that intersects the main diagonal at three points, a con-
tradiction with the fact thatG(a, y) is a convex function ofy. �

� VII.16. Unicity of the dominant singularity.From the previous note, we know thaty(r) = s,
with r the radius of convergence ofy. The aperiodicity ofy implies that|y(ζ)| < y(r) for all
|ζ| such that|ζ| = r and|ζ| 6= r (see the Daffodil Lemma IV.1, p. 253). One then has for any
suchζ the property:|Gw(ζ, y(ζ))| < G(r, s) = 1, by monotonicity ofGw. But then by (40)
above, this implies thaty(ζ) is analytic atζ. �

The solutions to the characteristic system (38) can be regarded as the intersection
points of two curves, namely,

G(r, s) − s = 0, Gw(r, s) = 1.

Here are plots in the case of two functionsG: the first one has nonnegative coefficients
while the second one (corresponding to a counterexample of Canfield [77]) involves
negative coefficients. Positivity of coefficients implies convexity properties that avoid
pathological situations.

G(z, y) =
1

1− z − y − 1− y − y3 G(z, y) =
z

24− 9y + y2

(positive) (not positive)

0

0.2

0.4

(s)

0.1 0.2
(r)

0

2

4

(s)

10 20
(r)

VII. 4.2. Combinatorial applications. Many combinatorial classes, which ad-
mit a recursive specification of the formY = G(Z,Y), with G a constructor of sorts,
can be subjected to Theorem VII.3. The resulting structuresare, to varying degrees,
avatars of tree structures. In what follows, we describe a few instances where the
square-root universality holds.
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|===|===|===|German
| | |===|English
| | |===|Dutch
| |
| |===|===|Swedish
| |===|Danish
|===|Greek
|
|===|===|===|Portuguese
| | |===|Spanish
| | |===|Italian
| | |===|French
| |
| |===|Romanian
|
|===|Armenian

FIGURE VII.10. A hierarchy placed on some of the modern Indoeuropean languages.

— Hierarchiesare trees enumerated by the number of their leaves (Exam-
ples 11 and 12).

— Trees with variable node sizesgeneralize simple families of trees; they oc-
cur in particular as models of secondary structures in mathematical biology
(Example 13).

— Lattice paths with variable edge lengthsare attached to some of the most
classical objects of combinatorial theory (Note 18).

EXAMPLE VII.11. Labelled hierarchies.The classL of labelled hierarchies, as defined in
Note II.18, p. 119, satisfies

L = Z + SET≥2(L) =⇒ L = z + eL − 1− L.
These occur in statistical classification theory: given a collection of n distinguished items,
Ln is the number of ways of superimposing a nontrivial classification (cf Figure 10). Such
abstract classifications usually have no planar structure,hence our modelling by a labelled set
construction.

In the notations of Definition VII.4, p. 446, the basic function isG(z, w) = z+ew−1−w,
which is analytic in|z| <∞, |w| <∞. The characteristic system is

r + es − 1− s = s, es − 1 = 1,

which has a unique positive solution,s = log 2, r = 2 log 2−1, obtained by solving the second
equation fors, then propagating the solution to getr. Thus, hierarchies belong to the smooth
implicit-function schema, and, by Theorem VII.3, the EGFL(z) has a square-root singularity.
One then finds mechanically

1

n!
Ln ∼ 1

2
√
πn3

(2 log 2− 1)−n+1/2 .

(The unlabelled counterpart is the object of Note 22 below.). . END OF EXAMPLE VII.11. �

� VII.17. The degree profile of hierarchies.Combining BGF techniques and singularity anal-
ysis, it is found that a random hierarchy of some large sizen has on average about0.57n nodes
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A fragment of RNA is, in first approximation, a tree-like
structure with edges corresponding to bases pairs and
“loops” corresponding to leaves. There are constraints
on the sizes of leaves (taken here between 4 and 7) and
length of edges (here between 1 and 4 base pairs). We
model such an RNA fragment as a planted treeP at-
tached to a binary tree (Y) with equations:

P = AY, Y = AY 2 +B,
A = z2 + z4 + z6 + z8, B = z4 + z5 + z6 + z7.

FIGURE VII.11. A simplified combinatorial model of RNA structures as considered by
Watermanet al. [271, 430, 453].

of degree 2,0.18n nodes of degree 3,0.04n nodes of degree 4, and less than0.01n nodes of
degree 5 or higher. �

EXAMPLE VII.12. Trees enumerated by leaves.For a (nonempty) setΩ ⊂ Z≥0 that does not
contain 0,1, it makes sense to consider the class of labelledtrees,

C = Z + KΩ(C), K = SEQ or SET.

(A totally similar discussion can be conducted forunlabelled planetrees, with OGFs replacing
EGFs.) These are rooted trees (plane or non-plane, respectively), with size determined by the
number of leaves and with degrees constrained to lie inΩ. The EGF is then of the form

C(z) = z + η(C(z)).

This variety of trees includes the labelled hierarchies, which correspond toη(w) = ew−1−w.
Assume for simplicityη here to be entire (possibly a polynomial). The base functionis

G(z, w) = z+η(w), and the characteristic system iss = r+η(s), η′(s) = 1. Sinceη′(0) = 0
andη′(+∞) = +∞, this system always has a solution:

s = η[−1](1), r = s− η(s).
Thus Theorem VII.3 applies, giving

(41) [zn]C(z) ∼ γ

2
√
πn3

r−n, γ =

r
1

2
rη′′(s),

and a full expansion can be obtained. . . . . . . . . . . . . . . . . . . . .. . . END OF EXAMPLE VII.12. �

EXAMPLE VII.13. Trees with variable edge lengths and node sizes.Consider unlabelled plane
trees in which nodes can be of different sizes: what is given is a setbΩ of ordered pairs(ω,σ),
where a value(ω,σ) means that a node of degreeω and sizeσ is allowed. Simple varieties
in their basic form correspond toσ ≡ 1; trees enumerated by leaves (including hierarchies)
correspond toσ ∈ {0, 1} with σ = 1 iff ω = 0. Figure 11 indicates the way such trees can
model the self-bonding of single stranded nucleic acids like RNA, according to Watermanet
al. [271, 430, 453]. Clearly an extremely large number of variations are possible.

The fundamental equation in the case of a finitebΩ is

Y (z) = P (z, Y (z)), P (z,w) :=
X

(ω,σ)∈bΩ

zσwω,
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with P a polynomial. In the aperiodic case, there is invariably a formula of the form

Yn ∼ κ ·Ann3/2,

corresponding to the universal square-root singularity. .. . . . . . END OF EXAMPLE VII.13. �

� VII.18. Schröder numbers.Consider the classY of unary-binary trees where unary nodes
have size 2, while leaves and binary nodes have the usual size1. The GF satisfiesY = z +
z2Y + zY 2, so that

Y (z) = zD(z2), D(z) =
1− z −

√
1− 6z + z2

2z
.

We haveD(z) = 1 + 2 z + 6 z2 + 22 z3 + 90 z4 + 394 z5 + · · · , which is EIS A006318
(“Large Schröder numbers”). By the bijective correspondence between trees and lattice paths,
Y2n+1 is in correspondence with excursions of lengthn made of steps(1, 1), (2, 0), (1,−1).
Upon tilting by 45◦, this is equivalent to paths connecting the lower left corner to the upper
right corner of an(n× n) square that are made of horizontal, vertical, and diagonalsteps, and
never go under the main diagonal. The seriesS = z

2
(1+D) enumerates Schröder’s generalized

parenthesis systems (Chapter I, p. 64):S := z + S2/(1− S), and the asymptotic formula

Y2n−1 = Sn =
1

2
Dn−1 ∼ 1

4
√
πn3

“
3− 2

√
2
”−n+1/2

follows straightforwardly. �

VII. 5. Nonplane unlabelled trees and Ṕolya operators

Essentially all the results obtained earlier for simple varieties of trees extend to
the case of nonplane unlabelled trees.Pólya operatorsare central, and their treatment
is typical of the asymptotic theory of unlabelled objects obeying symmetries (i.e.,
involving the unlabelled MSET, PSET, CYC constructions), as seen repeatedly in this
book.

Binary and general trees.We shall start the discussion by considering the enu-
meration of two classes of non-plane trees following Pólya[395, 397] and Otter [382],
whose articles are important historic sources for the asymptotic theory of nonplane
tree enumeration—a brief account also appears in [259]. (These authors used the
more traditional method of Darboux instead of singularity analysis, but this distinc-
tion is immaterial here as calculations develop under completely parallel lines under
both theories.) The two classes under consideration are those of general and binary
non-plane unlabelled trees. In both cases, there is a fairlydirect reduction to the enu-
meration of Cayley trees and of binary trees, which renders explicit several steps of
the calculation. The trick is, as usual, to treat quantitiesf(z2), f(z3), . . . , as “known”
analytic quantities.

Proposition VII.4 (Special non-plane unlabelled trees). Consider the two classes of
non-plane unlabelled trees

H = Z × MSET(H), W = Z × MSET{0,2}(W)

respectively of the general and binary type. Then, with constantsγH , AH andγW , AW

given by Notes 20 and 21, one has

Hn ∼ γH

2
√
πn3

An
H , W2n−1 ∼ γW

2
√
πn3

An
W .
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PROOF. (i) General case.The OGF of nonplane unlabelled trees is the analytic
solution to the functional equation

(42) H(z) = z exp

(
H(z)

1
+
H(z2)

2
+ · · ·

)
.

Let T be the solution to

(43) T (z) = zeT (z),

that is to say, the Cayley function. The functionH(z) has a radius of convergenceρ
strictly less than 1 as its coefficients dominate those ofT (z), the radius of convergence
of the latter being exactlye−1 .

= 0.367. The radiusρ cannot be 0 since the number of
trees is bounded from above by the number of plane trees whoseOGF has radius14 .
Thus, one has14 ≤ ρ ≤ e−1.

Rewriting the defining equation ofH(z) as

H(z) = ζeH(z) with ζ := z exp

(
H(z2)

2
+
H(z3)

3
+ · · ·

)
,

we observe thatζ = ζ(z) is analytic for|z| < ρ1/2, that is to say in a disk that properly
contains the disk of convergence ofH(z). We may thus rewriteH(z) as

H(z) = T (ζ(z)).

Sinceζ(z) is analytic atz = ρ, a singular expansion ofH(z) nearz = ρ results from
composing the singular expansion ofT at e−1 with the analytic expansion ofζ at ρ.
In this way, we get:

(44) H(z) = 1 − γ(1 − z

ρ
)1/2 +O((1 − z

ρ
)), γ =

√
2eρζ′(ρ).

Thus,

[zn]H(z) ∼ γ

2
√
πn3

ρ−n.

(ii) Binary case.Consider the functional equation

(45) f(z) = z +
1

2
f(z)2 +

1

2
f(z2).

This enumerates non-plane binary trees with size defined as the number of external
nodes, so thatW (z) = 1

z f(z2). Thus, it suffices to analyse[zn]f(z), which dispenses
us from dealing with periodicity phenomena.

The OGFf(z) has a radius of convergenceρ that is at least14 (since there are
fewer non-plane trees than plane ones). It is also at most1

2 as results from comparison
of f with the solution to the equationg = z + 1

2g
2. We may then proceed as before:

treat the term1
2f(z2) as a function analytic in|z| < ρ1/2, as though it were known,

then solve. To this effect, set

ζ(z) := z +
1

2
f(z2),
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which exists in|z| < ρ1/2. Then, the equation (45) becomes a plain quadratic equa-
tion, f = ζ + 1

2f
2, with solution

f(z) = 1 −
√

1 − 2ζ(z).

The singularityρ is the smallest positive solution ofζ(ρ) = 1
2 . The singular expansion

of f is obtained by composing the analytic expansion ofζ at ρ with
√

1 − 2ζ. The
usual square-root singularity results:

f(z) ∼ 1 − γ
√

1 − z/ρ, γ :=
√

2ρζ′(ρ).

This induces theρ−nn−3/2 form for the coefficients[zn]f(z) ≡ [z2n−1]W (z). �

� VII.19. Full asymptotic expansions forHn,W2n−1. They can be determined since the OGFs
admit complete asymptotic expansions in powers of

p
1− z/ρ. �

The argument used in the proof of the proposition may seem partly nonconstruc-
tive. However, numerically, the values ofρ andC can be determined to great ac-
curacy. See the notes below as well as Finch’s section on “Otter’s tree enumeration
constants” [165, Sec. 5.6].
� VII.20. Numerical evaluation of constants I.Here is an unoptimized procedure controlled
by a parameterm ≥ 0 for general non-plane unlabelled trees.

ProcedureGet value of ρ(m : integer);
1. Set up a procedure to compute and memorize theHn on demand;
(this can be based on recurrence relations implied byH ′(z); see [373])
2. Definef [m](z) :=

Pm
j=1Hnz

n;

3. Defineζ [m](z) := z exp
“Pm

k=2
1
k
f [m](zk)

”
;

4. Solve numericallyζ [m](x) = e−1 for x ∈ (0, 1) to max(m, 10) digits of accuracy;
5. Returnx as an approximation toρ.

For instance, a conservative estimate of the accuracy attained form = 0, 10, . . . , 50 (in a few
billion machine instructions) is:

m = 0 m = 10 m = 20 m = 30 m = 40 m = 50
3 · 10−2 10−6 10−11 10−16 10−21 10−26

Accuracy appears to be a little better than10−m/2. This yields to 25D:

ρ
.
= 0.3383218568992076951961126, AH ≡ ρ−1 .

= 2.955765285651994974714818,
γH

.
= 1.559490020374640885542206.

The formula of the Proposition estimatesH100 with a relative error of10−3. �

� VII.21. Numerical evaluation of constants II.The procedure of the previous note adapts
easily to give:

ρ
.
= 0.4026975036714412909690453, AW ≡ ρ−1 .

= 2.483253536172636858562289,
γW

.
= 1.130033716398972007144137.

The formula of the Proposition estimates[z100]f(z) with a relative error of7 · 10−3. �

The two results, general and binary, are thus obtained by a modification of the
method used for simple varieties of trees, upon treating thePólya operator part as an
analytic variant of the corresponding equations of simple varieties of trees.
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Alkanes, alcohols, and degree restrictions.The previous two examples sug-
gest that a general theory is possible, for varieties of unlabelled non-plane trees,
T = Z MSETΩ(T ), for someΩ ⊂ Z≥0. First, we examine the case of special regular
trees defined byΩ = {0, 3}, which, when viewed as alkanes and alcohols, are of rele-
vance to combinatorial chemistry (Example 14). Indeed, theproblem of enumerating
isomers of such chemical compounds has been at the origin of Pólya’s foundational
works [395, 397]. Then, we extend the method to the general situation of trees with
degrees constrained to some finite setΩ (Proposition VII.4).

EXAMPLE VII.14. Nonplane trees and alkanes.In chemistry, carbon atoms (C) are known to
have valency 4 while hydrogen (H) has valency 1.Alkanes, also known as paraffins (Figure 12),
are are acyclic molecules formed of carbon and hydrogen atoms according to this rule and
without multiple bonds; they are thus of the typeCnH2n+2. In combinatorial terms, we are
talking of unrooted trees with (total) node degrees in{1, 4}. The rooted version of these trees
are determined by the fact that a root is chosen and (out)degrees of nodes lie in the setΩ =
{0, 3}; these are rooted ternary trees and they correspond to alcohols (with theOH group
marking one of the carbon atoms).

Alcohols (A) are the simplest to enumerate as they are rooted trees. The OGF starts as
(EISA000598)

A(z) = 1 + z + z2 + z3 + 2 z4 + 4 z5 + 8 z6 + 17 z7 + 39 z8 + 89 z9 + · · · ,

with size being taken here as the number of internal nodes. The specification is

A = {ǫ}+ Z MSET3(A).

(EquivalentlyA+ := A \ {ǫ} satisfiesA+ = Z MSET0,1,2,3(A+).) This implies thatA(z)
satisfies the functional equation:

A(z) = 1 + z

„
1

3
A(z3) +

1

2
A(z)A(z2) +

1

6
A(z)3

«
.

In order to apply Theorem VII.3, introduce the function

G(z, w) = 1 + z

„
1

3
A(z3) +

1

2
A(z2)w +

1

6
w3

«
,

which exists in|z| < |ρ|1/2 and |w| < ∞, with ρ the (yet unknown) radius of convergence
of A. Like before, the Pólya termsA(z2), A(z3) are teated as known functions. By methods
similar to those used in the analysis of binary and general trees (Subsection VII. 5), we find that
the characteristic system admits a solution,

r
.
= 0.3551817423143773928, s

.
= 2.1174207009536310225,

so thatρ = r and y(ρ) = s. Thus the growth of the number of alcohols is of the form
κ · 2.81546nn−3/2.

LetB(z) be the OGF of alkanes (EISA000602), which are unrooted trees:

B(z) = 1 + z + z2 + z3 + 2 z4 + 3 z5 + 5 z6 + 9 z7 + 18 z835 z9 + 75 z10 + · · · .

For instance,B6 = 5 because there are 5 isomers of hexane,C6H14, for which chemists had to
develop a nomenclature system, interestingly enough basedon a diameter of the tree:
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H H H H H H H OH H
| | | | | | | | |
| | | | | | | | |

H--C--H H--C--C--H H--C--C--C--H H--C--C--C--H
| | | | | | | | |
| | | | | | | | |
H H H H H H H H H

Methane Ethane Propane Propanol

FIGURE VII.12. A few examples of alkanes (CH4, C2H6, C3H8) and an alcohol.

Hexane 3-Methylpentane 2-Methylpentane

2,3-Dimethylbutane 2,2-Dimethylbutane

The number of structurally different alkanes can then be found by an adaptation of the
dissimilarity formula (Equation (48) and Note 25). This problem has served as a powerful
motivation for the enumeration of graphical trees and its fascinating history goes back to Cayley.
(See Rains and Sloane’s article [406] and [397]). The asymptotic formula of (unrooted) alkanes
is of the formAnn−5/2 term, which represents roughly a proportion1/n of the number of
(rooted) alcohols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . END OF EXAMPLE VII.14. �

The pattern of analysis should by now be clear, and we state:

Theorem VII.4 (Nonplane unlabelled trees). Let Ω ∋ 0 be a finite subset ofZ≥0

and consider the varietyV of (rooted) nonplane unlabelled trees with outdegrees of
nodes inΩ. Assume aperiodicity (gcd(Ω) = 1) and the condition thatΩ contains at
least one element larger than 1. Then the number of trees of sizen in V satisfies an
asymptotic formula:

Vn ∼ C ·Ann−3/2.

PROOF. The argument given for alcohols is transposed verbatim. Only the existence
of a root of the characteristic system needs to be established.

The radius of convergence ofV (z) is a priori≤ 1. The fact thatρ is strictly less
than 1 is established by means of an exponential lower bound,Vn > Bn, for some
B > 1 and infinitely many values ofn. To obtain this exponential variability, first
choose ann0 such thatVn0 > 1, then build a perfectd-ary tree (for somed ∈ Ω,
d 6= 0, 1) tree of heighth, and finally graft freely subtrees of sizen0 at n/(4n0)
of the leaves of the perfect tree. Choosingd such thatdh > n/(4n0) yields the
lower bound. That the radius of convergence is nonzero results from the upper bound
provided by corresponding plane trees whose growth is at least exponential. Thus, one
has0 < ρ < 1.



458 VII. APPLICATIONS OF SINGULARITY ANALYSIS

By the translation of multisets of bounded cardinality, thefunctionG is polyno-
mial in finitely many of the quantities{V (z), V (z2), . . .}. Thus the functionG(z, w)
constructed like in the case of alcohols converges in|z| < ρ1/2, |w| < ∞. As
z → ρ−1, we must haveτ := V (ρ) finite, since otherwise, there would be a con-
tradiction in orders of growth in the nonlinear equationV (z) = · · · + · · ·V (z)d · · ·
as z → ρ. Thus (ρ, τ) satisfiesτ = G(ρ, τ). For the derivative, one must have
Gw(ρ, τ) = 1 since: (i) a smaller value would mean thatV is analytic atρ (by the
Implicit Function Theorem);(ii) a larger value would mean that a singularity has
been encountered earlier (by the usual argument on failure of the Implicit Function
Theorem). Thus, Theorem VII.3 on positive implicit functions is applicable. �

A large number of variations are clearly possible as evidenced by the title of an
article [258] published by Harary, Robinson, and Schwenk in 1975, namely, “Twenty-
step algorithm for determining the asymptotic number of trees of various species”.

� VII.22. Unlabelled hierarchies.The classH of unlabelled hierarchies is specified byH =
Z + MSET≥2(H) (see Note 42, p. 68). One has

eHn ∼ γ

2
√
πn3

ρ−n, ρ
.
= 0.29224.

(Compare with the labelled case of Example 11.) What is the asymptotic proportion of internal
nodes of degreer, for a fixedr > 0? �

� VII.23. Trees with prime degrees and the BBY theory.Bell, Burris, and Yeats [25] develop
a general theory meant to account for the fact that, in their words,“ almost anyfamily of trees
defined by a recursive equation that is nonlinear [. . . ] lead[s] to an asymptotic law of the
Pólya formt(n) ∼ Cρ−nn−3/2” . Their most general result (Th. 75) implies for instance that
the number of nonplane unlabelled trees whose node degrees are restricted to be prime numbers
admits such a Pólya form (see also Note 6, p. 436). �

Unlabelled functional graphs (mapping patterns).Unlabelled functional graphs,
also known as “mapping patterns” (F ) are unlabelled digraphs in which each vertex
has outdegree equal to 1. Equivalently, they can be regardedas multisets of compo-
nents (L) that are cycles of nonplane unlabelled trees (H),

F = MSET(L); L = CYC(H); H = Z × MSET(H),

a specification that entirely parallels that of mappings in Equation (34), p. 443.
The OGFH(z) has a square-root singularity by virtue of (44) above, with addi-

tionallyH(ρ) = 1. The translation of the unlabelled cycle construction,

L(z) =
∑

j≥1

ϕ(j)

j
log

1

1 −H(zj)
,

implies thatL(z) is logarithmic, andF (z) has a singularity of type1/
√
Z where

Z := 1 − z/ρ. Thus,unlabelled functional graphs constitute an exp-log structure
with κ = 1

2 . The number of unlabelled functional graphs thus grows likeCρ−nn−1/2

and the mean number of components in a random functional graph is∼ 1
2 logn, like

for the labelled mapping counterpart. See [357] for more on this topic.
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� VII.24. An alternative form ofF (z). Arithmetical simplifications associated with the Euler
totient function yield:

F (z) =

∞Y

k=1

“
1−H(zk)

”−1

.

A similar form applies generally to multisets of unlabelledcycles. �

Unrooted trees.All the trees considered so far have been rooted and this version
is the one most useful in applications. Anunrooted tree8 is by definition a connected
acyclic (undirected) graph. In that case, the tree is clearly non-plane and no special
root node is distinguished.

The counting of the classU of unrooted labelled treesis easy: there are plainly
Un = nn−2 of these, since each node is distinguished by its label, which entails that
nUn = Tn, with Tn = nn−1 by Cayley’s formula. Also, the EGFU(z) satisfies

(46) U(z) =

∫ z

0

T (y)
dy

y
= T (z) − 1

2
T (z)2,

as already seen when we discussed labelled graphs in ChapterII.
Forunrooted unlabelled trees, symmetries are in the way and a tree can be rooted

in a number of ways that depends on its shape. For instance of star graph leads to a
number of different rooted trees that equals 2 (choose either the center or one of the
peripheral nodes), while a line graph gives rise to⌈n/2⌉ structurally different rooted
trees. WithH the class of rooted unlabelled trees andI the class of unrooted trees,
we have at this stage only the general inequality

In ≤ Hn ≤ nIn.

A table of values of the ratioHn/In suggests that the answer is closer to the upper
bound:

(47) n 10 20 30 40 50 60
Hn/In 6.78 15.58 23.89 32.15 40.39 48.62

The solution is provided by a famous exact formula due to Otter (Note 25):

(48) I(z) = H(z) − 1

2

(
H(z)2 −H(z2)

)
,

which gives in particular (EISA000055) I(z) = z + z2 + z3 + 2 z4 + 3 z5 + 6 z6 +
11 z7 + 23 z8 + · · · . Given (48), it is child’s play to determine the singular expansion
of I knowing that ofH . The radius of convergence ofI is the same as that ofH as
the termH(z2) only introduces exponentially small coefficients. Thus, itsuffices to
analyseH − 1

2H
2:

H(z) − 1

2
H(z)2 ∼ 1

2
− δ2Z + δ3Z

3/2 +O
(
Z2
)
, Z =

(
1 − z

ρ

)
.

What is noticeable is the cancellation in coefficients for the termZ1/2 (since1 − x−
1
2 (1 − x)2 = 1

2 + O(x2)), so thatZ3/2 is the actual singularity type ofI. Clearly,
the constantδ3 is computable from the first four terms in the singular expansion ofH

8Unrooted trees are also called sometimesfree trees.
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atρ. Then singularity analysis yields:The number of unrooted trees of sizen satisfies
the formula

(49) In ∼ 3δ3

4
√
πn5

ρ−n, In ∼ 0.5349496061 · 2.9955765856nn−5/2.

The numerical values are from [165] and the result is Otter’s original [382]: an un-
rooted tree of sizen gives rise to about different0.8n rooted trees on average. (The
formula (49) corresponds to an error slightly under10−2 for n = 100.)
� VII.25. Dissimilarity theorem for trees. Here is how combinatorics justifies (48), follow-
ing [39, §4.1]. LetI• (andI•–•) be the class of unrooted trees with one vertex (respectively one
edge) distinguished. We haveI• ∼= H (rooted trees) andI•–• ∼= SET2(H). The combinatorial
isomorphism claimed is

(50) I• + I•–• ∼= I + (I × I) .
A diameterof an unrooted tree is a simple path of maximal length. If the length of any diameter
is even, call “centre” its mid-point; otherwise, call “bicentre” its mid-edge. (For each tree, there
is eitheronecentre oronebicentre.) The left-hand side of (50) corresponds to trees that are
pointed either at a vertex (I•) or an edge (I•–•). The termI on the right-hand side corresponds
to cases where the pointing happens to coincide with the canonical centre or bicentre. If there
is not coincidence, then, an ordered pair of trees results from a suitable surgery of the pointed
tree. [Hint: cut in some canonical way near the pointed vertex or edge.] �

VII. 6. Irreducible context-free structures

In this section, we discuss an important variety of context-free classes, one that
satisfies the universal law of square-root singularities, attached to counting sequences
that are of the asymptotic formAnn−3/2. (General algebraic functions are treated in
the next section.)

VII. 6.1. Context-free specifications and the irreducibility schema. We start
from the notion of a context-free class introduced in Subsection I. 5.4, p. 75. A class
is context-freeif it is the first component of a system of combinatorial equations

(51)





Y1 = F1(Z,Y1, . . . ,Yr)
...

...
...

Yr = Fr(Z,Y1, . . . ,Yr),

where eachFj is a construction that only involves the combinatorial constructions of
disjoint union and cartesian product. (This repeats Equation (67) of Chapter I, p. 75.)
As seen in Subsection I. 5.4, binary and general trees, triangulations, as well a Dyck

and Łukasiewicz languages are typical instances of context-freee classes.
As a consequence of the symbolic rules of Chapter I, the OGF ofa context-free

classC is the first component (C(z) ≡ y1(z)) of the solution of a polynomial system
of equations of the form

(52)





y1(z) = Φ1(z, y1(z), . . . , yr(z))
...

...
...

yr(z) = Φr(z, y1(z), . . . , yr(z)),
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where theΦj are polynomials. By elimination (Cf APPENDIX B: Algebraic elimina-
tion, p. 685), it is always possible to find a bivariate polynomialP (z, y) such that

(53) P (z, C(z)) = 0,

andC(z) is analgebraic function. (Algebraic functions are discussed in all generality
in the next section.)

The case of linear systems has been dealt with in Chapter V, when examining
the transfer matrix method. Accordingly, we only need to consider herenonlinear
systems (of equations or specifications) defined by the condition that at least oneΦj

in (52) is a polynomial of degree2 or more, corresponding to the fact that at least one
of the constructionsFj in (51) involves at least a productYkYℓ.

Definition VII.5. A well-founded context-free specification(51) is said to belong to
the irreducible context-freeschema if it is nonlinear and its dependency graph is
strongly connected. It is said to be aperiodic if all theyj(z) are aperiodic9.

Theorem VII.5 (Irreducible context-free schema). A classC that belongs to the irre-
ducible context-free schema has a generating function thathas a square-root singu-
larity at its radius of convergenceρ:

C(z) = τ − γ

√
1 − z

ρ
+O

(
1 − z

ρ

)
,

for computable algebraic numbersρ, τ, γ. If, in addition,C(z) is aperiodic, then the
dominant singularity is unique and the counting sequence satisfies

(54) Cn ∼ γ

2
√
πn3

ρ−n.

This theorem is none other than a transcription, at the combinatorial level, of a
remarkable analytic statement, Theorem VII.6, due to Drmota, Lalley, and Woods,
which is proved below (p. 466), is slightly stronger, and is of independent interest.

Computability issues.There are two possible approaches to the calculation of the
quantities that appear in (54), one based on the original system (52), the other based
on the single equation (53) that results from elimination.

— System:From the proof of Theorem VII.6, it suffices to solve inpositivereal
numbers the polynomial system ofm+ 1 equations in them+ 1 unknowns
ρ, τ1, . . . , τm,

(55) τ1 = Φ1(ρ, τ1, . . . , τm), · · · , τm = Φm(ρ, τ1, . . . , τm), J(ρ, τ1, . . . , τm) = 0,

whereJ is the Jacobian determinant (δi,j ≡ [[i = j]] represents Kronecker’s
symbol):

(56) J(z, y1, . . . , ym) := det

(
δi,j −

∂

∂yj
Φi(z, y1, . . . , ym)

)
.

In that case,ρ is the common radius of convergence of all theyj(z) and
τj = yj(ρ). The constantγ ≡ γ1 is a component solution of a linear system
of equations with coefficients in the field generated byρ, τj , which can be

9In the usual sense that the span of the coefficient sequence isequal to 1. For an irreducible system,
all theyj are aperiodic if and only ifat leastone of theyj is aperiodic.
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obtained by the method of undetermined coefficients, knowing thatyj is of
the form

(57) yj(z) ∼ τj − γj

√
1 − z/ρ, z → ρ.

— Equation:The general techniques are described in the next section,§VII. 7.
They give rise to the following algorithm:(i) determine the exceptional set
and isolate the dominant positive singularity;(ii) identify the coefficients in
the singular (Puiseux) expansion, knowing a priori that thesingularity is of
the square-root type.

Whatever the adopted strategy is, symbolic algebra system proves invaluable in per-
forming the required algebraic eliminations.

� VII.26. Catalan and Jacobi.For the Catalan GF, defined byy = 1 + zy2, the system of
Equation (55) instantiates to

τ − 1− ρτ 2 = 0, 1− 2ρτ = 0,

giving back as expected:ρ = 1
4
, τ = 2. �

VII. 6.2. Combinatorial applications. Random walks on free groups [323], di-
rected walks in the plane [21, 320, 323] (see also p. 482 below), coloured trees [503],
and boolean expression trees [85] are only some of the many combinatorial structures
resorting to the irreducible context-free schema. Stanleypresents in his book [449,
Ch. 6] several examples of algebraic GFs, and an inspiring survey is provided by
Bousquet-Mélou in [68]. We limit ourselves here to a brief discussion of non-crossing
configurations.

EXAMPLE VII.15. Non-crossing configurations.Context-free descriptions can model natu-
rally very diverse sorts of objects including particular topological-geometric configurations—
we examine here non-crossing planar configurations. The problems considered have their origin
in combinatorial musings of the Rev. T.P. Kirkman in 1857 andwere revisited in 1974 by Domb
and Barett [132] for the purpose of investigating certain perturbative expansions of statistical
physics. Our presentation follows closely the synthesis offered by Flajolet and Noy in [196].

Consider, for each value ofn, graphs built on vertices that are at then complex roots
of unity, numbered0, . . . , n − 1. A non-crossing graphis a graph such that no two of its
edges cross. One can also define connected non-crossing graphs, non-crossing forests (acyclic
graphs), and non-crossing trees (acyclic connected graphs); see Figure 13. Note that the various
graphs considered can always be considered as rooted in somecanonical way (e.g., at the vertex
of smallest index) .

Trees. A non-crossing tree is rooted at 0. To the root vertex is attached an ordered collec-
tion of vertices, each of which has an end-nodeν that is the common root of two non-crossing
trees, one on the left of the edge(0, ν) the other on the right of(0, ν). Let T denote the class
of trees andU denote the class of trees whose root has been severed. Witho denoting a generic
node, we have

T = o× U , U = SEQ(U × o× U),
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(connected graph)

(tree) (forest)

(graph)

Configuration / OGF Coefficients (exact / asymptotic)
Trees (EIS: A001764) z + z2 + 3z3 + 12z4 + 55z5 + · · ·

T 3 − zT + z2 = 0
1

2n− 1

 
3n− 3

n− 1

!

∼
√

3

27
√
πn3

(
27

4
)n

Forests (EIS: A054727) 1 + z + 2z2 + 7z3 + 33z4 + 181z5 · · ·

F 3 + (z2 − z − 3)F 2 + (z + 3)F − 1 = 0

nX

j=1

1

2n− j

 
n

j − 1

! 
3n− 2j − 1

n− j

!

∼ 0.07465√
πn3

(8.22469)n

Connected graphs (EIS: A007297) z + z2 + 4z3 + 23z4 + 156z5 + · · ·

C3 + C2 − 3zC + 2z2 = 0
1

n− 1

2n−3X

j=n−1

 
3n− 3

n+ j

! 
j − 1

j − n+ 1

!

∼ 2
√

6− 3
√

2

18
√
πn3

“
6
√

3
”n

Graphs (EIS: A054726) 1 + z + 2z2 + 8z3 + 48z4 + 352z5 + · · ·

G2 + (2z2 − 3z − 2)G+ 3z + 1 = 0
1

n

n−1X

j=0

(−1)j

 
n

j

! 
2n− 2− j
n− 1− j

!
2n−1−j

∼
p

140− 99
√

2

4
√
πn3

“
6 + 4

√
2
”n

FIGURE VII.13. (Top) Non-crossing graphs: a tree, a forest, a connected graph, and
a general graph. (Bottom) The enumeration of non-crossing configurations by algebraic
functions.
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which corresponds graphically to the “butterfly decomposition”:

U
UU

U U

U = T = 

The reduction to a pure context-free form is obtained by noticing thatU = SEQ(V) is
equivalent toU = 1 + UV: a specification and the associated polynomial system are then

(58) {T = ZU , U = 1+UV, V = ZUU} =⇒ {T = zU, U = 1+UV, V = zU2}.
This system relatingU andV is irreducible (then,T is immediately obtained fromU ), and
aperiodicity is obvious from the first few values of the coefficients. The Jacobian of theU, V –
system, cf (56) (obtained byz → ρ, U → υ, V → ν), is

˛̨
˛̨ 1− ν υ

2ρυ 1

˛̨
˛̨ = 1− ν − 2ρυ2.

Thus, the system (55) giving the singularity ofU, V is

{υ = 1 + υν, ν = ρυ2, 1− ν − 2ρυ2 = 0},
whose positive solution isρ = 4

27
, υ = 3

2
, ν = 1

3
. The complete asymptotic formula is

displayed in Figure 13. (In a simple case like this, we have more: T satisfiesT 3−zT +z2 = 0,
which by Lagrange inversion givesTn = 1

2n−1

`
3n−3
n−1

´
.)

Forests.A (non-crossing) forest is a non-crossing graph that is acyclic. In the present con-
text, it is not possible to express forests simply as sequences of trees, because of the geometry
of the problem.

Starting conventionally from the root vertex 0 and following all connected edges defines a
“backbone” tree. To the left of every vertex of the tree, a forest may be placed. There results
the decomposition (expressed directly in terms of OGFs),

(59) F = 1 + T [z 7→ zF ],

whereT is the OGF of trees andF is the OGF of forests. In (59), the termT [z 7→ zF ] denotes
a functional composition. A context-free specification in standard form results mechanically
from (58) upon replacingz by zF , namely

(60) F = 1 + T, T = zFU, U = 1 + UV, V = zFU2.

This system is irreducible and aperiodic, so that the asymptotic shape ofFn is of the form
γωnn−3/2, as predicted by Theorem VII.5. (The values of constants areworked out in Exam-
ple 17 by means of the equational approach.)

Graphs.Similar constructions (see [196]) give the OGFs of connected and general graphs,
as summarized in Figure 13. Note the common shape of the asymptotic estimates and also the
fact that binomial expressions are available in each case. .. . . . END OF EXAMPLE VII.15. �

VII. 6.3. Analysis of irreducible polynomial systems. The analytic engine be-
hind Theorem VII.5 is a fundamental result, the “Drmota-Lalley-Woods” (DLW) The-
orem, due to independent research by several authors: Drmota [135] developed a ver-
sion of the theorem in the course of studies relative to limitlaws in various families
of trees defined by context-free grammars; Woods [503], motivated by questions of
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Boolean complexity and finite model theory, gave a form expressed in terms of colour-
ing rules for trees; finally, Lalley [323] came across a similarly general result when
quantifying return probabilities for random walks on groups. Drmota and Lalley show
how to pull out limit Gaussian laws for simple parameters (bya perturbative analysis;
see Chapter IX); Woods shows how to deduce estimates of coefficients even in some
periodic or non-irreducible cases.

In the treatment that follows we start from a polynomial system of equations,

{yj = Φj(z, y1, . . . , ym)} , j = 1, . . . ,m,

in accordance with the notations adopted at the beginning ofthe section. We only con-
sidernonlinear systemsdefined by the fact that at least one polynomialΦj is nonlinear
in some of the indeterminatesy1, . . . , ym.

First, for combinatorial reasons, we define several possible attributes of a polyno-
mial system.

— Algebraic positivity(or a-positivity). A polynomial system is said to bea-
positiveif all the component polynomialsΦj have nonnegative coefficients.

Next, we want to restrict consideration to systems that determine a unique solution
vector(y1, . . . , ym) ∈ (C[[z]])

m. Define thez-valuationval(~y) of a vector~y ∈ C[[z]]m

as the minimum over allj’s of the individual valuations10 val(yj). The distance be-
tween two vectors is defined as usual byd(~y, ~y′) = 2− val(~y−~y′). Then, one has:

— Algebraic properness(or a-properness). A polynomial system is said to be
a-properif it satisfies a Lipschitz condition

d(Φ(~y),Φ(~y ′)) < Kd(~y, ~y ′) for someK < 1.

In that case, the transformationΦ is a contraction on the complete metric space of
formal power series and, by the general fixed point theorem, the equation~y = Φ(~y)
admits a unique solution. In passing, this solution may be obtained by the iterative
scheme,

~y(0) = (0, . . . , 0)t, ~y(h+1) = Φ(y(h)), ~y = lim
h→∞

~y(h).

The key notion is irreducibility. To a polynomial system,~y = Φ(~y), associate its
dependency graphdefined as a graph whose vertices are the numbers1, . . . ,m and
the edges ending at a vertexj arek → j, if yj figures in a monomial ofΦk(j). (This
notion is reminiscent of the one already introduced for linear system on page 329.)

— Algebraic irreducibility(or a-irreducibility). A polynomial system is said to
bea-irreducibleif its dependency graph is strongly connected.

Finally, one needs a technical notion of periodicity to dispose of cases like

y(z) =
1

2z

(
1 −

√
1 − 4z

)
= z + z3 + 2z5 + · · · ,

(the OGF of complete binary trees) where coefficients are only nonzero for certain
residue classes of their index.

10Let f =
P∞

n=β fnzn with fβ 6= 0; the valuation off is by definitionval(f) = β.
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— Algebraic aperiodicity(or a-aperiodicity). A power series is said to beaperi-
odic if it contains three monomials (with nonzero coefficients),ze1 , ze2 , ze3 ,
such thate2− e1 ande3− e1 are relatively prime. A proper polynomial sys-
tem is said to be aperiodic if each of its component solutionsyj is aperiodic.

Theorem VII.6 (Irreducible positive polynomial systems, DLW Theorem). Consider
a nonlinear polynomial system~y = Φ(~y) that is a-proper, a-positive, and a-irreducible.
In that case, all component solutionsyj have the same radius of convergenceρ <∞.
Then, there exist functionshj analytic at the origin such that, in a neighbourhood
of ρ:

(61) yj = hj

(√
1 − z/ρ

)
.

In addition, all other dominant singularities are of the form ρω with ω a root
of unity. If furthermore the system is a-aperiodic, allyj haveρ as unique dominant
singularity. In that case, the coefficients admit a completeasymptotic expansion of the
form

(62) [zn]yj(z) ∼ ρ−n




∑

k≥0

dkn
−3/2−k



 .

PROOF. The proof consists in gathering by stages consequences of the assumptions.
It is essentially based on a close examination of “failure” of the mutivariate implicit
function theorem and the way this leads to square-root singularities.

(a) As a preliminary observation, we note that each component solution yj is
an algebraic function that has a nonzero radius of convergence. (This can be checked
directly by the method of majorant series or as a consequenceof a multivariate version
of the implicit function theorem.)

(b) Properness together with the positivity of the system implies that eachyj(z)
has nonnegative coefficients in its expansion at 0, since it is a formal limit of approx-
imants that have nonnegative coefficients. In particular, each power seriesyj has a
certain nonzero radius of convergenceρj . Also, by positivity,ρj is a singularity ofyj

(by virtue of Pringsheim’s theorem). From the known nature of singularities of al-
gebraic functions (e.g., the Newton-Puiseux Theorem, recalled p. 474 below), there
must exist some orderR ≥ 0 such that eachRth derivative∂R

z yj(z) becomes infinite
asz → ρ−j .

We establish now thatρ1 = · · · = ρm. In effect, differentiation of the equations
composing the system implies that a derivative of arbitraryorder r, ∂r

zyj(z), is a
linear form in other derivatives∂r

zyj(z) of the same order (and a polynomial form in
lower order derivatives); also the linear combination and the polynomial form have
nonnegative coefficients. Assume a contrario that the radiiwere not all equal, say
ρ1 = · · · = ρs, with the other radiiρs+1, . . . being strictly greater. Consider the
system differentiated a sufficiently large number of times,R. Then, asz → ρ1, we
must have∂R

z yj tending to infinity forj ≤ s. On the other hand, the quantitiesys+1,
etc., being analytic, theirRth derivatives that are analytic as well must tend to finite
limits. In other words, because of the irreducibility assumption (and again positivity),
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infinity has topropagate and we have reached a contradiction. Thus:all the yj have
the same radius of convergence. We letρ denote this common value.

(c1) The key step consists in establishing the existence of a square-root singularity
at the common singularityρ. Consider first the scalar case, that is

(63) y − φ(z, y) = 0,

whereφ is assumed to be a nonlinear polynomial iny and have nonnegative coeffi-
cients. This case resorts to the smooth implict function schema, whose argument we
briefly revisit under our present perspective.

Let y(z) be the unique branch of the algebraic function that is analytic at 0. Com-
parison of the asymptotic orders iny inside the equalityy = φ(z, y) shows that (by
nonlinearity) we cannot havey → ∞ whenz tends to a finite limit. Let nowρ be the
radius of convergence ofy(z). Sincey(z) is necessarily finite at its singularityρ, we
setτ = y(ρ) and note that, by continuity,τ − φ(ρ, τ) = 0.

By the implicit function theorem, a solution(z0, y0) of (63) can be continued
analytically as(z, y0(z)) in the vicinity of z0 as long as the derivative with respect
to y (a simplified Jacobian),

J(z0, y0) := 1 − φ′y(z0, y0)

remains nonzero. The quantityρ being a singularity, we must thus haveJ(ρ, τ) = 0.
On the other hand, the second derivative−φ′′yy is nonzero at(ρ, τ) (by nonlinearity
and positivity). Then, the local expansion of the defining equation (63) at(ρ, τ) binds
(z, y) locally by

−(z − ρ)φ′z(ρ, τ) −
1

2
(y − τ)2φ′′yy(ρ, τ) + · · · = 0,

implying the singular expansion

y − τ = −γ(1 − z/ρ)1/2 + · · · .
This establishes the first part of the assertion in the scalarcase.

(c2) In the multivariate case, we graft an ingenious argument [323] that is based
on a linearized version of the system to which Perron-Frobenius theory is applicable.
First, irreducibility implies that any component solutionyj depends positively and
nonlinearly on itself (by possibly iteratingΦ), so that a contradiction in asymptotic
comportments would result, if we suppose that anyyj tends to infinity. Eachyj(z)
remains finite at the positive dominant singularityρ.

Now, the multivariate version of the implicit function theorem grants us locally
the analytic continuation of any solutiony1, y2, . . . , ym at z0 provided there is no
vanishing of the Jacobian determinant

J(z0, y1, . . . , ym) := det

(
δi,j −

∂

∂yj
Φi(z0, y1, . . . , ym)

)
,

whereδi,j is Kronecker’s symbol. Thus, we must have

(64) J(ρ, τ1, . . . , τm) = 0 where τj := yj(ρ).
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The next argument (we follow Lalley [323]) uses Perron-Frobenius theory and
linear algebra. Consider the Jacobian matrix

K(z0, y1, . . . , ym) :=

(
∂

∂yj
Φi(z0, y1, . . . , ym)

)
,

which represents the “linear part” ofΦ. Forz, y1, . . . , ym all nonnegative, the matrix
K has positive entries (by positivity ofΦ) so that it is amenable to Perron-Frobenius
theory. In particular it has a positive eigenvalueλ(z, y1, . . . , ym) that dominates all
the other in modulus. The quantity

λ̂(z) = λ(y1(z), . . . , ym(z))

is increasing as it is an increasing function of the matrix entries that themselves in-
crease withz for z ≥ 0.

We propose to prove that̂λ(ρ) = 1, In effect,λ̂(ρ) < 1 is excluded since other-
wise(I−K) would be invertible atz = ρ and this would implyJ 6= 0, thereby contra-
dicting the singular character of theyj(z) atρ. Assumea contrarioλ̂(ρ) > 1 in order
to exclude the other case. Then, by the increasing property,there would existsρ1 < ρ

such that̂λ(ρ1) = 1. Let v1 be a left eigenvector ofK(ρ1, y1(ρ1), . . . , ym(ρ1)) cor-
responding to the eigenvaluêλ(ρ1). Perron-Frobenius theory guarantees that such a
vectorv1 has all its coefficients that are positive. Then, upon multiplying on the left
by v1 the column vectors corresponding toy andΦ(y) (which are equal), one gets an
identity; this derived identity upon expanding nearρ1 gives

(65) A(z − ρ1) = −
∑

i,j

Bi,j(yi(z) − yi(ρ1))(yj(z) − yj(ρ1)) + · · · ,

where· · · hides lower order terms and the coefficientsA,Bi,j are nonnegative with
A > 0. There is a contradiction in the orders of growth if eachyi is assumed to be
analytic atρ1 since the left side of (65) is of exact order(z − ρ1) while the right side
is at least as small as to(z − ρ1)

2. Thus, we must havêλ(ρ) = 1 andλ̂(x) < 1 for
x ∈ (0, ρ).

A calculation similar to (65) but withρ1 replaced byρ shows finally that, if

yi(z) − yi(ρ) ∼ γi(ρ− z)α,

then consistency of asymptotic expansions implies2α = 1, that isα = 1
2 . We have

thus proved:All the component solutionsyj(z) have a square-root singularity atρ.
(The existence of a complete expansion in powers of(ρ− z)1/2 results from a refine-
ment of this argument.) The proof of the general case (61) is thus complete.

(d) In the aperiodic case, we first observe that eachyj(z) cannot assume an
infinite value on its circle of convergence|z| = ρ, since this would contradict the
boundedness of|yj(z)| in the open disk|z| < ρ (whereyj(ρ) serves as an upper-
bound). Consequently, by singularity analysis, the Taylorcoefficients of anyyj(z) are
O(n−1−η) for someη > 1 and the series representingyj at the origin converges on
|z| = ρ.

For the rest of the argument, we observe that if~y = Φ(z, ~y), then~y = Φ〈m〉(z, ~y)
where the superscript denotes iteration of the transformation Φ in the variables~y =
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(y1, . . . , ym). By irreducibility,Φ〈m〉 is such thateachof its component polynomials
involvesall the variables.

Assume that there would exists a singularityρ∗ of someyj(z) on |z| = ρ. The
triangle inequality yields|yj(ρ

∗)| < yj(ρ) where strictness is related to the general
aperiodicity argument encountered at several other placesin this book. But then, the
modified Jacobian matrixK〈m〉 of Φ〈m〉 taken at theyj(ρ

∗) has entries dominated
strictly by the entries ofK〈m〉 taken at theyj(ρ). There results that the dominant
eigenvalue ofK〈m〉(z, ~yj(ρ

∗)) must be strictly less than 1. But this would imply that
I − K〈m〉(z, ~yj(ρ

∗)) is intervertible so that theyj(z) would be analytic atρ∗. A
contradiction has been reached:ρ is the sole dominant singularity of eachyj and this
concludes the argument. �

Many extensions of the DLW Theorem are possible, as indicated by the notes and
references below—the underlying arguments are powerful, versatile, and highly gen-
eral. Consequences regarding limit distributions, as obtained by Drmota and Lalley,
are further explored in Chapter IX.
� VII.27. Analytic systems.Drmota [135] has shown that the conclusions of the DLW Theo-
rem regarding universality of the square-root singularityholds more generally forΦj that are
analytic functions ofCm+1 to C, provided there exists a positive solution of the characteristic
system within the domain of analyticity of theΦj . This extension then unifies the DLW theorem
and Theorem VII.3 relative to the smooth implicit function schema. �

� VII.28. Pólya systems.Woods [503] has shown that Pólya operators of the form MSETk

can also be treated by an extension of the DLW Theorem, which then unifies this theorem and
Theorem VII.4. �

� VII.29. Infinite systems.Lalley [325] has extended the conclusions of the DLW Theorem to
certain infinite systems of generating function equations.This makes it possible to quantify the
return probabilities of certain random walks on infinite free products of finite groups. �

The square-root singularity property ceases to be universal when the assumptions
of Theorems VII.5 and VII.6, namely, positivityand irreducibility, fail to be satisfied.
For instance, supertrees that are specified by a positive butreducible system have a
singularity of the fourth-root type (Example 10, p. 394 and Example 18, p. 479). We
discuss in the next section,§VII. 7, general methods that apply toanyalgebraic func-
tion and are based on the minimal polynomialequation(rather than system) satisfied
by the function. Note that the results there do not always subsume the present ones,
since structure is not preserved when a system is reduced, byelimination, to a single
equation. (It would be desirable to determine directly fromthe system itself the type
of singular behaviour of the solution, but the systematic research involved in such a
programme has not been yet been carried out.)

VII. 7. The general analysis of algebraic functions

Algebraic series and algebraic functions are simply definedas solutions of a poly-
nomial equation or system. Their singularities are strongly constrained to bebranch
points, with the local expansion at a singularity being a fractional power series known
as a Newton-Puiseux expansion; see Subsection VII. 7.1. Singularity analysis then
appears to be systematically applicable to algebraic functions, to the effect that their
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coefficients are asymptotically composed of elements of theform

(66) C · ωnnp/q,
p

q
∈ Q \ {−1,−2, . . .},

cf Subsection VII. 7.2. This last form includes as a special case the exponentp
q = − 3

2 ,
that was encountered repeatedly, when dealing with inversefunctions, implicit func-
tions, and irreducible systems. In this section, we developthe basic structural results
that lead to the asymptotic forms (66). Coming up however with effective solutions
(i.e., decision procedures) is not obvious in the algebraiccase, and a number of al-
gorithms are described in order to locate and analyse singularities (Newton’s polygon
method). In particular, the multivalued character of algebraic functions creates a need
to solve connection problems.

Basics. We adopt as the starting point of the present discussion the following
definition of an algebraic function or series (see also Note 30 for a variant).

Definition VII.6. A functionf(z) analytic in a neighbourhodV of a pointz0 is said
to bealgebraicif there exists a (nonzero) polynomialP (z, y) ∈ C[z, y], such that

(67) P (z, f(z)) = 0, z ∈ V .
A power seriesf ∈ C[[z]] is said to be an algebraic power series if it coincides with
the expansion of an algebraic function at 0.

Thedegreeof an algebraic series or functionf is by definition the minimal value
of degy P (z, y) over all polynomials that are cancelled byf (so that rational series
are algebraic of degree 1). One can always assumeP to be irreducible overC (that is
P = QR implies that one ofQ orR is a scalar) and of minimal degree.

An algebraic function may also be defined by starting with a polynomial system
of the form

(68)





P1(z, y1, . . . , ym) = 0
...

...
...

Pm(z, y1, . . . , ym) = 0,

where eachPj is a polynomial. A solution of the system (68) is by definitionanm-
tuple (f1, . . . , fm) that cancels eachPj , that is,Pj(z, f1, . . . , fm) = 0. Any of the
fj is called a component solution. A basic but nontrivial result of elimination theory
is that any component solution of a nondegenerate polynomial system is an algebraic
series (APPENDIX B: Algebraic elimination, p. 685). In other words, one can elimi-
nate the auxiliary variablesy2, . . . , ym and construct a single bivariate polynomialQ
such thatQ(z, y1) = 0.

We stress the point that, in the definitions by equation (67) or system (68), no
positivity of any sort nor irreducibility is assumed. The foregoing treatment applies to
anyalgebraic function, whether or not it comes from combinatorics.
� VII.30. Algebraic definition of algebraic series.It is also customary to definef to be an
algebraic series if it satisfiesP (z, f) = 0 in the sense of formal power series, withouta priori
consideration of convergence issues. Then the technique ofmajorant series may be used to
prove that the coefficients off grow at most exponentially. Thus, the alternative definition is
indeed equivalent to Definition VII.6. �
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� VII.31. “Alg is in Diag of Rat”. Every algebraic functionF (z) overC(z) is the diagonal of
a rational functionG(x, y) = A(x, y)/B(x, y) ∈ C(x, y). Precisely:

F (z) =
X

n≥0

Gn,nz
n, where G(x, y) =

X

m,n≥0

Gm,nx
myn.

This is granted by a theorem of Denef and Lipshitz [120], which is related to the holonomic
framework (APPENDIX B: Holonomic functions, p. 693). �

� VII.32. Multinomial sums and algebraic coefficients.Let F (z) be an algebraic function.
ThenFn = [zn]F (z) is a (finite) linear combination of “multinomial forms” defined as

Sn(C;h; c1, . . . , cr) :=
X

C

 
n0 + h

n1, . . . , nr

!
cn1
1 · · · cnr

r ,

where the summation is over all values ofn0, n1, . . . , nr satisfying a collection of linear in-
equalitiesC involving n. [Hint: a consequence of Denef–Lipshitz.] �

VII. 7.1. Singularities of general algebraic functions.Let P (z, y) be an irre-
ducible polynomial ofC[z, y],

P (z, y) = p0(z)y
d + p1(z)y

d−1 + · · · + pd(z).

The solutions of the polynomial equationP (z, y) = 0 define a locus of points(z, y)
in C × C that is known as acomplex algebraic curve. Let d be they-degree ofP .
Then, for eachz there are at mostd possible values ofy. In fact, there existd values
of y “almost always”, that is except for a finite number of cases:

— If z0 is such thatp0(z0) = 0, then there is a reduction in the degree iny and
hence a reduction in the number of finitey-solutions for the particular value
of z = z0. One can conveniently regard the points that disappear as “points
at infinity” (formally, one then operates in the projective plane).

— If z0 is such thatP (z0, y) has a multiple root, then some of the values ofy
will coalesce.

Define theexceptional setof P as the set (R is the resultant of APPENDIX B: Alge-
braic elimination, p. 685):

(69) Ξ[P ] := {z
∣∣ R(z) = 0}, R(z) := R(P (z, y), ∂yP (z, y), y).

The quantityR(z) is also known as thediscriminantof P (z, y), with z taken as a
parameter. Ifz 6∈ Ξ[P ], then we have a guarantee that there existd distinct solutions
to P (z, y) = 0, sincep0(z) 6= 0 and∂yP (z, y) 6= 0. Then, by the Implicit Function
Theorem, each of the solutionsyj lifts into a locally analytic functionyj(z). A branch
of the algebraic curveP (z, y) = 0 is the choice of such ayj(z) together with a
simply connected region of the complex plane throughout which this particularyj(z)
is analytic.

Singularities of an algebraic function can thus only occur if z lies in the excep-
tional setΞ[P ]. At a pointz0 such thatp0(z0) = 0, some of the branches escape to
infinity, thereby ceasing to be analytic. At a pointz0 where the resultant polynomial
R(z) vanishes butp0(z) 6= 0, then two or more branches collide. This can be either
a multiple point (two or more branches happen to assume the same value, but each
one exists as an analytic function aroundz0) or a branch point (some of the branches
actually cease to be analytic). An example of an exceptionalpoint that is not a branch
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10-1
FIGURE VII.14. The real section of the lemniscate of Bernoulli defined byP (z, y) =
(z2 + y2)2 − (z2 − y2) = 0: the origin is a double point where two analytic branches
meet.

point is provided by the classical lemniscate of Bernoulli:at the origin, two branches
meet while each one is analytic there (see Figure 14).

A partial knowledge of the topology of a complex algebraic curve may be gotten
by first looking at its restriction to the reals. Consider forinstance the polynomial
equationP (z, y) = 0, where

P (z, y) = y − 1 − zy2,

which defines the OGF of the Catalan numbers. A rendering of the real part of the
curve is given in Figure 15. The complex aspect of the curve asgiven byℑ(y) as a
function ofz is also displayed there. In accordance with earlier observations, there are
normally two sheets (branches) above each point. The exceptional set is given by the
roots of the discriminant,

R = z(1 − 4z),

that is,z = 0, 1
4 . Forz = 0, one of the branches escapes at infinity, while forz = 1/4,

the two branches meet and there is a branch point; see Figure 15.
In summary the exceptional set provides a set ofpossible candidatesfor the sin-

gularities of an algebraic function.

Lemma VII.4 (Location of algebraic singularities). Let y(z), analytic at the origin,
satisfy a polynomial equationP (z, y) = 0. Then,y(z) can be analytically continued
along any simple path emanating from the origin that does notcross any point of the
exceptional set defined in(69).

PROOF. At any z0 that is not exceptional and for ay0 satisfyingP (z0, y0) = 0,
the fact that the discriminant is nonzero implies thatP (z0, y) has only a simple root
aty0. Consequently, we havePy(z0, y0) 6= 0. By the Implicit Function Theorem, the
algebraic functiony(z) is analytic in a neighbourhood ofz0. �

Nature of singularities. We start the discussion with an exceptional point that
is placed at the origin (by a translationz 7→ z + z0) and assume that the equation
P (0, y) = 0 hask equal rootsy1, . . . , yk wherey = 0 is this common value (by a
translationy 7→ y + y1 or an inversiony 7→ 1/y, if points at infinity are consid-
ered). Consider a punctured disk|z| < r that does not include any other exceptional
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FIGURE VII.15. The real section of the Catalan curve (top). The complex Catalan curve
with a plot ofℑ(y) as a function ofz = (ℜ(z),ℑ(z)) (bottom left); a blowup ofℑ(y)
near the branch point atz = 1

4
(bottom right).

point relative toP . In the argument that follows, we lety1, (z), . . . , yk(z) be analytic
determinations of the root that tend to 0 asz → 0.

Start at some arbitrary value interior to the real interval(0, r), where the quantity
y1(z) is locally an analytic function ofz. By the implicit function theorem,y1(z) can
be continued analytically along a circuit that starts fromz and returns toz while simply
encircling the origin (and staying within the punctured disk). Then, by permanence of
analytic relations,y1(z) will be taken into another root, say,y(1)

1 (z). By repeating the
process, we see that after a certain number of timesκ with 1 ≤ κ ≤ k, we will have
obtained a collection of rootsy1(z) = y

(0)
1 (z), . . . , y

(κ)
1 (z) = y1(z) that form a set of

κ distinct values. Such roots are said to form acycle. In this case,y1(tκ) is an analytic
function of t except possibly at 0 where it is continuous and has value 0. Thus, by
general principles (regarding removable singularities),it is in fact analytic at 0. This
in turn implies the existence of a convergent expansion near0:

(70) y1(t
κ) =

∞∑

n=1

cnt
n.

(The parametert is known as thelocal uniformizing parameter, as it reduces a multi-
valued function to a single value one.) This translates backinto the world ofz: each
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determination ofz1/κ yields one of the branches of the multivalued analytic function
as

(71) y1(z) =

∞∑

n=1

cnz
n/κ.

Alternatively, withω = e2iπ/κ a root of unity, theκ determinations are obtained as

y
(j)
1 (z) =

∞∑

n=1

cnω
nzn/κ,

each being valid in a sector of opening< 2π. (The caseκ = 1 corresponds to an
analytic branch.)

If r = k, then the cycle accounts for all the roots which tend to 0. Otherwise,
we repeat the process with another root and, in this fashion,eventually exhaust all
roots. Thus, all thek roots that have value0 at z = 0 are grouped into cycles of size
κ1, . . . , κℓ. Finally, values ofy at infinity are brought to zero by means of the change
of variablesy = 1/u, then leading to negative exponents in the expansion ofy.

Theorem VII.7 (Newton–Puiseux expansions at a singularity). Letf(z) be a branch
of an algebraic functionP (z, f(z)) = 0. In a circular neighbourhood of a singu-
larity ζ slit along a ray emanating fromζ, f(z) admits a fractional series expansion
(Puiseux expansion) that is locally convergent and of the form

f(z) =
∑

k≥k0

ck(z − ζ)k/κ,

for a fixed determination of(z − ζ)1/κ, wherek0 ∈ Z andκ is an integer≥ 2, called
the “branching type”.

Newton (1643-1727) discovered the algebraic form of Theorem VII.7, published
it in his famous treatiseDe Methodis Serierum et Fluxionum(completed in 1671). This
method was subsequently developed by Victor Puiseux (1820–1883) so that the name
of Puiseux series is customarily attached to fractional series expansions. The argument
given above is taken from the neat exposition offered by Hille in [269, Ch. 12, vol. II].
It is known as a “monodromy argument”, meaning that it consists in following the
course of values of an analytic function along paths in the complex plane till it returns
to its original value.

Newton polygon.Newton also described aconstructiveapproach to the deter-
mination of branching types near a point(z0, y0), that by means of the previous dis-
cussion can always be taken to be(0, 0). In order to introduce the discussion, let us
examine the Catalan generating function nearz0 = 1/4. Elementary algebra gives the
explicit form of the two branches

y1(z) =
1

2z

(
1 −

√
1 − 4z

)
, y2(z) =

1

2z

(
1 +

√
1 − 4z

)
,

whose forms are consistent with what Theorem VII.7 predicts. If however one starts
directly with the equation,

P (z, y) ≡ y − 1 − zy2 = 0
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then, the translationz = 1/4 − Z (the minus sign is a mere notational convenience),
y = 2 + Y yields

(72) Q(Z, Y ) ≡ −1

4
Y 2 + 4Z + 4ZY + ZY 2.

Look for solutions of the formY = cZα(1+o(1)) with c 6= 0, whoseexistenceis a pri-
ori granted by the Newton-Puiseux Theorem. Each of the monomials in (72) gives rise
to a term of a well determined asymptotic order, respectively Z2α, Z1, Zα+1, Z2α+1.
If the equation is to be identically satisfied, then the main asymptotic order ofQ(Z, Y )
should be 0. Sincec 6= 0, this can only happen if two or more of the exponents in
the sequence(2α, 1, α + 1, 2α + 1) coincideand the coefficients of the correspond-
ing monomial inP (Z, Y ) is zero, a condition that is an algebraic constraint on the
constantc. Furthermore, exponents of all the remaining monomials have to be larger
since by assumption they represent terms of lower asymptotic order.

Examination of all the possible combinations of exponents leads one to discover
that the only possible combination arises from the cancellation of the first two terms
of Q, namely− 1

4Y
2 + 4Z, which corresponds to the set of constraints

2α = 1, −1

4
c2 + 4 = 0,

with the supplementary conditionsα + 1 > 1 and2α + 1 > 1 being satisfied by this
choiceα = 1

2 . We have thus discovered thatQ(Z, Y ) = 0 is consistent asymptotically
with

Y ∼ 4Z1/2, Y ∼ −4Z1/2.

The process can be iterated upon subtracting dominant terms. It invariably gives
rise to complete formal asymptotic expansions that satisfyQ(Z, Y ) = 0 (in the Cata-
lan example, these are series in±Z1/2). Furthermore, elementary majorizations estab-
lish that such formal asymptotic solutions represent indeed convergent series. Thus,
local expansions of branches have indeed been determined.

An algorithmic refinement (also due to Newton) can be superimposed on the pre-
vious discussion and is known as the method ofNewton polygons. Consider a general
polynomial

Q(Z, Y ) =
∑

j∈J

ZajY bj ,

and associate to it the finite set of points(aj , bj) in N×N, which is called the Newton
diagram. It is easily verified that the only asymptotic solutions of the formY ∝ Zτ

correspond to values ofτ that are inverse slopes (i.e.,∆x/∆y) of lines connecting
two or more points of the Newton diagram (this expresses the cancellation condition
between two monomials ofQ) andsuch that all other points of the diagram are on this
line or to the right of it. In other words:

Newton’s polygon method.Any possible exponentτ such thatY ∼ cZτ is
a solution to a polynomial equation corresponds to one of theinverse slopes
of the leftmost convex envelope of the Newton diagram. For each viableτ ,
a polynomial equation constrains the possible values of thecorresponding
coefficientc. Complete expansions are obtained by repeating the process,
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FIGURE VII.16. The real algebraic curve defined by the equationP = (y − x2)(y2 −
x)(y2 − x3)− x3y3 near(0, 0) (left) and the corresponding Newton diagram (right).

which means deflatingY from its main term by way of the substitutionY 7→
Y − cZτ .

Figure 16 illustrates what goes on in the case of the curveP = 0 where

P (z, y) = (y − z2)(y2 − z)(y2 − z3) − z3y3

= y5 − y3z − y4z2 + y2z3 − 2 z3y3 + z4y + z5y2 − z6,

considered near the origin. As the partly factored form suggests, we expect the curve
to resemble the union of two orthogonal parabolas and of a curvey = ±z3/2 having a
cusp, i.e., the union of

y = z2, y = ±√
z, y = ±z3/2,

respectively. It is visible on the Newton diagram of the expanded form that the possible
exponentsy ∝ zτ at the origin are the inverse slopes of the segments composing the
envelope, that is,

τ = 2, τ =
1

2
, τ =

3

2
.

For computational purposes, once determined the branchingtypeκ, the value of
k0 that dictates where the expansion starts, and the first coefficient, the full expansion
can be recovered by deflating the function from its first term and repeating the New-
ton diagram construction. In fact, after a few initial stages of iteration, the method
of indeterminate coefficients can always be eventually applied11. Computer algebra
systems usually have this routine included as one of the standard packages; see [427].

11Bruno Salvy, private communication, August 2000
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VII. 7.2. Asymptotic form of coefficients. The Newton–Puiseux theorem de-
scribes precisely the local singular structure of an algebraic function. The expansions
are valid around a singularity and, in particular, they holdin indented disks of the type
required in order to apply the formal translation mechanisms of singularity analysis
(Chapter VI).

Theorem VII.8 (Algebraic asymptotics). Let f(z) =
∑

n fnz
n be an algebraic se-

ries. Assume that the branch defined by the series at the origin has a unique dominant
singularity atz = α1 on its circle of convergence. Then, the coefficientfn satisfies
the asymptotic expansion,

(73) fn ∼ α−n
1



∑

k≥k0

dkn
−1−k/κ


 ,

wherek0 ∈ Z andκ is an integer≥ 2.
If f(z) has several dominant singularities|α1| = |α2| = · · · = |αr|, then there

exists an asymptotic decomposition (whereǫ is some small fixed number,ǫ > 0)

(74) fn =

r∑

j=1

φ(j)(n) +O((|α1| + ǫ))−n,

where eachφ(j)(n) admits a complete asymptotic expansion,

φ(j)(n) ∼ α−n
j



∑

k≥k
(j)
0

d
(j)
k n−1−k/κj


 ,

with k(j)
0 in Z, andκj an integer≥ 2.

PROOF. An early version of this theorem apppears as [174, Th. D, p. 293]. The
expansions granted by Theorem VII.7 are of the exact type required by singularity
analysis (Theorem VI.4, p. 376). For multiple singularities, Theorem VI.5 (p. 381)
based on composite contours is to be used: in that case eachφ(j)(n) is the contribution
obtained by transfer of the corresponding local singular element. �

In the case of multiple singularities, partial cancellations may occur in some of
the dominant terms of (74): consider for instance the case of

1√
1 − 6

5z + z2
= 1 + 0.60z + 0.04z2 − 0.36z3 − 0.408z4 − · · · ,

where the function has two complex conjugate singularitieswith an argument not
commensurate toπ, and refer to the corresponding discussion of rational coefficients
asymptotics (Subsection IV. 6.1, p. 250). Fortunately, such delicate arithmetic situa-
tions tendnot to arise in combinatorial situations.

EXAMPLE VII.16. Branches of unary-binary trees.the generating function of unary binary
trees is defined byP (z, f(z)) = 0 where

P (z, y) = y − z − zy − zy2,
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FIGURE VII.17. The real algebraic curve corresponding to non-crossing forests.

so that

f(z) =
1− z −

√
1− 2z − 3z2

2z
=

1− z −
p

(1 + z)(1− 3z)

2z
.

There exist only two branches:f and its conjugatēf that form a 2–cycle atz = 1
3
. The

singularities of all branches are at0,−1, 1
3

as is apparent from the explicit form off or from
the defining equation. The branch representingf(z) at the origin is analytic there (by a general
argument or by the combinatorial origin of the problem). Thus, the dominant singularity off(z)
is at 1

3
and it is unique in its modulus class. The “easy” case of Theorem VII.6 then applies

oncef(z) has been expanded near1
3
. As a rule, the organization of computations is simpler if

one makes use of the local uniformizing parameter with a choice of sign in accordance to the
direction along which the singularity is approached. In this case, we setz = 1

3
− δ2 and find

f(z) = 1− 3 δ +
9

2
δ2 − 63

8
δ3 +

27

2
δ4 − 2997

128
δ5 + · · · , δ = (

1

3
− z)1/2.

This translates immediately into

fn ≡ [zn]f(z) ∼ 3n+1/2

2
√
πn3

„
1− 15

16n
+

505

512n2
− 8085

8192n3
+ · · ·

«
.

The approximation provided by the first three terms is quite good: for n = 10 already, it
estimatesf10 = 835. with an error less than1. . . . . . . . . . . . . . . END OF EXAMPLE VII.16. �

EXAMPLE VII.17. Branches of non-crossing forests.Consider the polynomial equationP (z, y) =
0, where

P (z, y) = y3 + (z2 − z − 3)y2 + (z + 3)y − 1,

and the combinatorial GF satisfyingP (z, F ) = 0 determined by the initial conditions,

F (z) = 1 + 2z + 7z2 + 33z3 + 181z4 + 1083z5 + · · · .
(EIS A054727). F (z) is the OGF of non-crossing forests defined in Example 15, p. 462.

The exceptional set is mechanically computed: its elementsare roots of the discriminant

R = −z3(5z3 − 8z2 − 32z + 4).
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Newton’s algorithm shows that two of the branches at 0, sayy0 andy2, form a cycle of length 2
with y0 = 1 − √z + O(z), y2 = 1 +

√
z + O(z) while it is the “middle branch”y1 =

1 + z +O(z2) that corresponds to the combinatorial GFF (z).
The nonzero exceptional points are the roots of the cubic factor ofR, namely

Ω = {−1.93028, 0.12158, 3.40869}.
Let ξ

.
= 0.1258 be the root in(0, 1). By Pringsheim’s theorem and the fact that the OGF

of an infinite combinatorial class must have a positive dominant singularity in[0, 1], the only
possibility for the dominant singularity ofy1(z) is ξ. (For a more general argument, see below.)

For z nearξ, the three branches of the cubic give rise to one branch that is analytic with
value approximately0.67816 and a cycle of two conjugate branches with value near1.21429
atz = ξ. The expansion of the two conjugate branches is of the singular type,

α± β
p

1− z/ξ,
where

α =
43

37
+

18

37
ξ − 35

74
ξ2

.
= 1.21429, β =

1

37

p
228− 981ξ − 5290ξ2

.
= 0.14931.

The determination with a minus sign must be adopted for representing the combinatorial GF
whenz → ξ− since otherwise one would get negative asymptotic estimates for the nonnegative
coefficients. Alternatively, one may examine the way the three real branches along(0, ξ) match
with one another at 0 and atξ−, then conclude accordingly.

Collecting partial results, we finally get by singularity analysis the estimate

Fn =
β

2
√
πn3

ωn

„
1 +O(

1

n
)

«
, ω =

1

ξ
.
= 8.22469

with the cubic algebraic numberξ and the sexticβ as above. . END OF EXAMPLE VII.17. �

The example above illustrates several important points in the analysis of coeffi-
cients of algebraic functions when there are no simple explicit radical forms. First of
all a given combinatorial problem determines a unique branch of an algebraic curve
at the origin. Next, the dominant singularity has to be identified by “connecting” the
combinatorial branch with the branches at every possible singularity of the curve. Fi-
nally, computations tend to take place over algebraic numbers and not simply rational
numbers.

So far, examples have illustrated the common situation where the exponent at the
dominant singularity is12 , which is reflected by a factor ofn−3/2 in the asymptotic
form of coefficients. Our last example shows a case where the exponent assumes a
different value, namely14 .

EXAMPLE VII.18. Branches of “supertrees”.Consider the quartic equation

y4 − 2 y3 + (1 + 2 z) y2 − 2 yz + 4 z3 = 0

and letK be the branch analytic at 0 determined by the initial conditions:

K(z) = 2 z2 + 2 z3 + 8 z4 + 18 z5 + +64 z6 + 188 z7 + · · · .
The OGFK corresponds to bicoloured “supertrees” of Example VI.10, p. 394.

The discriminant is found to be

R = 16 z4 `16 z2 + 4 z − 1
´
(−1 + 4 z)3 ,
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FIGURE VII.18. The real algebraic curve associated to the generating function of su-
pertrees of typeK.

with roots at 1
4

and(−1 ±
√

5)/8. The dominant singularity of the branch of combinatorial
interest turns out to be atz = 1

4
whereK( 1

4
) = 1

2
. The translationz = 1

4
+ Z, y = 1

2
+ Y

then transforms the basic equation into

4 Y 4 + 8ZY 2 + 16Z3 + 12Z2 + Z = 0.

According to Newton’s polygon, the main cancellation arises from 4Y 4 + Z = 0: this cor-
responds to a segment of inverse slope1/4 in the Newton diagram and accordingly to a cycle
formed with 4 conjugate branches, i.e., a fourth-root singularity. Thus, one has,

K(z) ∼
z→ 1

4

1/2− 1√
2

„
1

4
− z
«1/4

− 1√
2

„
1

4
− z
«3/4

+ · · · , [zn]K(z) ∼
n→∞

4n

8Γ( 3
4
)n5/4

,

which is consistent with earlier found values (p. 394). . . . .. . . . END OF EXAMPLE VII.18. �

Computable coefficient asymptotics.The previous discussion contains the germ
of a complete algorithm for deriving an asymptotic expansion of coefficients of any
algebraic function. We sketch here the main principles leaving some of the details to
the reader. Observe that the problem is aconnection problem: the “shapes” of the
various sheets around each point (including the exceptional points) are known, but
it remains to connect them together and see which ones are encountered first when
starting from a given branch at the origin.

Algorithm ACA: Algebraic Coefficient Asymptotics.

Input: A polynomial P (z, y) with d = degy P (z, y); a seriesY (z) such that
P (z, Y ) = 0 and assumed to be specified by sufficiently many initial termsso as to
be distinguished from all other branches.
Output: The asymptotic expansion of[zn]Y (z) whose existence is granted by The-
orem VII.8.
The algorithm consists of three main steps:Preparation, Dominant singularities,
andTranslation.
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I. Preparation:Define the discriminantR(z) = R(P, P ′
y , y).

(P1) Compute the exceptional setΞ = {z
˛̨
R(z) = 0} and the points of infinityΞ0 =

{z
˛̨
p0(z) = 0}, wherep0(z) is the leading coefficient ofP (z, y) considered as a

function ofy.
(P2) Determine the Puiseux expansions of all thed branches at each of the points of

Ξ ∪ {0} (by Newton diagrams and/or indeterminate coefficients). This includes the
expansion of analytic branches as well. Let{yα,j(z)}dj=1 be the collection of all
such expansions at someα ∈ Ξ ∪ {0}.

(P3) Identify the branch at 0 that corresponds toY (z).

II. Dominant singularities(Controlled approximate matching of branches). LetΞ1,Ξ2, . . .
be a partition of the elements ofΞ ∪ {0} sorted according to the increasing values of their
modulus: it is assumed that the numbering is such that ifα ∈ Ξi andβ ∈ Ξj , then|α| < |β| is
equivalent toi < j. Geometrically, the elements ofΞ have been grouped in concentric circles.
First, a preparation step is needed.

(D1) Determine a nonzero lower boundδ on the radius of convergence of any local Puiseux
expansion of any branch at any point ofΞ. Such a bound can be constructed from
the minimal distance between elements ofΞ and from the degreed of the equation.

The setsΞj are to be examined in sequence until it is detected that one ofthem contains a sin-
gularity. At stepj, letσ1, σ2, . . . , σs be an arbitrary listing of the elements ofΞj . The problem
is to determine whether anyσk is a singularity and, in that event, to find the right branch to
which it is associated. This part of the algorithm proceeds by controlled numerical approxima-
tions of branches and constructive bounds on the minimum separation distance between distinct
branches.

(D2) For each candidate singularityσk, with k ≥ 2, setζk = σk(1 − δ/2). By assump-
tion, eachζk is in the domain of convergence ofY (z) and of anyyσk,j .

(D3) Compute a nonzero lower boundηk on the minimum distance between two roots of
P (ζk, y) = 0. This separation bound can be obtained from resultant computations.

(D4) EstimateY (ζk) and eachyσk,j(ζk) to an accuracy better thanηk/4. If two elements,
Y (z) andyσk,j(z) are (numerically) found to be at a distance less thanηk for z =
ζk, then they are matched:σk is a singularity and the correspondingyσk,j is the
corresponding singular element. Otherwise,σk is declared to be a regular point for
Y (z) and discarded as candidate singularity.

The main loop onj is repeated until a singularity has been detected, whenj = j0, say. The
radius of convergenceρ is then equal to the common modulus of elements ofΞj0 ; the corre-
sponding singular elements are retained.

III. Coefficient expansion. Collect the singular elements at all the pointsσ determined to
be a dominant singularity at Phase II. Translate termwise using the singularity analysis rule,

(σ − z)p/κ 7→ σp/κ−n Γ(−p/κ+ n)

Γ(−p/κ)Γ(n+ 1)
,

and reorganize into descending powers ofn, if needed.

This algorithm vindicates the following assertion:

Proposition VII.5 (Decidability of algebraic connections.). The dominant singulari-
ties of a branch of an algebraic function can be determined bythe algorithmACA in
a finite number of operations.
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VII. 8. Combinatorial applications of algebraic functions

The next two subsections introduce objects whose construction leads to algebraic
functions, in a way that extends the basic symbolic method. This includes: walks
with a finite number of allowed jumps (Subsection VII. 8.1) and planar maps (Subsec-
tion VII. 8.2). In such cases, bivariate functional equations reflect the combinatorial
decompositions of objects. The common form of these functional equations is

(75) Φ(z, u, F (z, u), h1(z), . . . , hr(z)) = 0,

whereΦ is a known polynomial and the unknown functions areF andh1, . . . , hr.
Specific methods are needed in order to attain solutions to such functional equations
that would seem at first glance to be grossly underdetermined. Random walks lead to
a linear version of (75) that is treated by the so-called “kernel method”. Maps lead
to nonlinear versions that are solved by means of Tutte’s “quadratic method”. In both
cases, the strategy consists in bindingz andu by forcing them to lie on an algebraic
curve (suitably chosen in order to eliminate the dependencyon F (z, u)), and then
pulling out algebraic consequences of such a specialization.

VII. 8.1. Walks and the kernel method. Start with a setΩ that is a finite sub-
set ofZ and is called the set ofjumps. A walk (relative toΩ) is a sequencew =
(w0, w1, . . . , wn) such thatw0 = 0 andwi+1 − wi ∈ Ω, for all i, 0 ≤ i < n. A
nonnegative walk(also known as a “meander”) satisfieswi ≥ 0 and anexcursionis
a nonnegative walk such that, additionally,wn = 0. A bridge is a walk such that
wn = 0. The quantityn is called the length of the walk or the excursion. For in-
stance, Dyck paths and Motzkin paths analysed in Section V. 3, p. 295, are excursions
that correspond toΩ = {−1,+1} andΩ = {−1, 0,+1} respectively. (Walks and
excursions are also somewhat related to paths in graphs in the sense of Section V. 6,
p. 340.)

We let−c denote the smallest (negative) value of a jump, andd denote the largest
(positive) jump. A fundamental rôle is played in this discussion by the characteristic
polynomial of the walk,

S(y) :=
∑

ω∈Ω

yω =

d∑

j=−c

Sjy
j,

which is a Laurent polynomial12, that is, it involves negative powers of the variabley.
.

Walks.Observe first the rational character of the BGF of walks, withz marking
length andu marking final altitude:

(76) W (z, u) =
1

1 − zS(u)
.

Since walks may terminate at a negative altitude, this is a Laurent series inu.

12If Ω is a set, then the coefficients ofS lie in {0, 1}. The treatment above applies in all generality to
cases where the coefficients are arbitrary positive real numbers. This accounts for probabilistic situations
as well as multisets of jump values.
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Bridges.The GF of bridges is formally as[u0]W (z, u), since they correspond to
walks that end at altitude 0. Thus one has

B(z) =
1

2iπ

∫

γ

1

1 − zS(u)

du

u
,

upon integrating along a circleγ that separates the small and large branches. The
integral can then be evaluated by residues (details are in [21]).

Excursions and meanders.We propose next to determine the numberFn of ex-
cursions of lengthn and typeΩ, via the corresponding OGF

F (z) =

∞∑

n=0

Fnz
n.

In fact, we shall determine the more general BGF

F (z, u) :=
∑

n,k

Fn,ku
kzn,

whereFn,k is the number of nonnegative walks (meanders) of lengthn and final alti-
tudek (i.e., the value ofwn in the definition of a walk is constrained to equalk). In
particular, one hasF (z) = F (z, 0).

The main result to be proved below is the following:For each finite setΩ ∈ Z,
the generating function of excursions is an algebraic function that is explicitly com-
putable fromΩ. There are many ways to view this result. The problem is usually
treated within probability theory by means of Wiener-Hopf factorizations [413], and
Lalley [324] offers an insightful analytic treatment under this angle.On another reg-
ister, Labelle and Yeh [320] show that an unambiguous context-free specification of
excursions can be systematically constructed, a fact that is sufficient to ensure the al-
gebraicity of the GFF (z). (Their approach is implicitly based on the construction of
a finite pushdown automaton itself equivalent, by general principles, to a context-free
grammar.) The Labelle-Yeh construction reduces the problem to a large, but somewhat
“blind”, combinatorial preprocessing. Accordingly, for analysts, it has the disadvan-
tage of not extracting a simpler analytic (and noncombinatorial) structure inherent in
the problem: theshapeof the end result is predicted by the Drmota-Lalley-Woods
Theorem, but the nature of the constants is not accessible inthis way.

The method described below is often known as thekernel method. It takes some
of its inspiration from exercises in the 1968 edition of Knuth’s book [300] (Ex. 2.2.1.4
and 2.2.1.11), where a new approach was proposed to the enumeration of Catalan and
Schröder objects. The technique has since been extended and systematized by several
authors; see for instance [20, 21, 70, 158, 159] for relevant combinatorial works. Our
presentation below follows that of Lalley [324] and Banderier-Flajolet [21].

The polynomialfn(u) = [zn]F (z, u) is the generating function of nonnegative
walks of lengthn, with u recording final altitude. A simple recurrence relatesfn+1(u)
to fn(u), namely,

(77) fn+1(u) = S(u) · fn(u) − rn(u),
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wherern(u) is a Laurent polynomial consisting of the sum of all the monomials of
S(u)fn(u) that involve negative powers13 of u:

(78) rn(u) :=

−1∑

j=−c

uj ([uj ]S(u)fn(u)) = {u<0}S(u)fn(u).

The idea behind the formula is to subtract the effect of thosesteps that would take the
walk below the horizontal axis. For instance, one has

S(u) =
S−1

u
+O(1) : rn(u) =

S−1

u
fn(0)

S(u) =
S−2

u2
+
S−1

u
+O(1) : rn(u) =

(
S−2

u2
+
S−1

u

)
fn(0) +

S−2

u
f ′

n(0),

and generally,

(79) λj(u) =
1

j!
{u<0}ujS(u).

Thus, from (77) and (78) (multiply byzn+1 and sum), the generating function
F (z, u) satisfies the fundamental functional equation

(80) F (z, u) = 1 + zS(u)F (z, u)− z{u<0} (S(u)F (z, u)) .

Explicitly, one has

(81) F (z, u) = 1 + zS(u)F (z, u)− z

c−1∑

j=0

λj(u)

[
∂j

∂uj
F (z, u)

]

u=0

,

for Laurent polynomialsλj(u) that depend onS(u) in an effective way by (79).
The main equations (80) and (81) involve one unknown bivariate GF,F (z, u)

andc univariate GFs, the partial derivatives ofF specialized atu = 0. It is true, but
not at all obvious, that the single functional equation (81)fully determines thec + 1
unknowns. The basic technique is known as “cancelling the kernel” and it relies on
strong analyticity properties; see the book by Fayolleet al. [159] for deep ramifica-
tions in the study of2-dimensional walks. The form of (81) to be employed for this
purpose starts by grouping on one side the terms involvingF (z, u),

(82) F (z, u)(1 − zS(u)) = 1 − z

c−1∑

j=0

λj(u)Gj(z), Gj(z) :=

[
∂j

∂uj
F (z, u)

]
.

If the right side was not present, then the solution would reduce to (76). In the case at
hand, from the combinatorial origin of the problem and implied bounds, the quantity
F (z, u) is bivariate analytic at(z, u) = (0, 0) (by elementary exponential majoriza-
tions on the coefficients). The main principle of the kernel method consists incoupling
the values ofz andu in such a way that1 − zS(u) = 0, so thatF (z, u) disappears
from the picture. A condition is that bothz andu should remain small (so thatF re-
mains analytic). Relations between the partial derivatives are then obtained from such
a specialization,(z, u) 7→ (z, u(z)), which happen to be just in the right number.

13The convenient notation{u<0} denotes the singular part of a Laurent expansion:{u<0}f(z) :=P
j<0

`
[uj ]f(u)

´
· uj .
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Consequently, we consider the “kernel equation”,

(83) 1 − zS(u) = 0,

which is rewritten as
uc = z · (ucS(u)).

Under this form, it is clear that the kernel equation (83) definesc + d branches of an
algebraic function. A local analysis shows that, amongst thesec + d branches, there
arec branches that tend to 0 asz → 0 while the otherd tend to infinity asz → 0. (The
idea is that, in the equation (83), either one ofzu−c ≈ 1 or zud ≈ 1 predominates;
equivalently, a Newton polygon can be constructed.) Letu0(z), . . . , uc−1(z) be the
c branches that tend to 0, that we call “small” branches. In addition, we single out
u0(z), the “principal” solution, by the reality condition

u0(z) ∼ γz1/c, γ := (Sc)
1/c ∈ R>0 (z → 0+).

By local uniformization (70), the conjugate branches are given locally by

uℓ(z) = u0(e
2iℓπz) (z → 0+).

Couplingz andu by u = uℓ(z) produces interesting specializations of Equa-
tion (82). In that case,(z, u) is close to(0, 0) whereF is bivariate analytic so that the
substitution is admissible. By substitution, we get

(84) 1 − z

c−1∑

j=0

λj(uℓ(z))

[
∂j

∂uj
F (z, u)

]

u=0

, ℓ = 0 . . c− 1.

This is now a linear system ofc equations inc unknowns (the partial derivatives) with
algebraic coefficients that, in principle, determinesF (z, 0).

A convenient approach to the solution of (84) is due to Mireille Bousquet-Mélou.
The argument goes as follows. The quantity

(85) M(u) := uc − zuc
c−1∑

j=0

λj(u)
∂j

∂uj
F (z, 0)

can be regarded as a polynomial inu. It is monic while it vanishes by construction at
thec small branchesu0, . . . , uc−1. Consequently, one has the factorization,

(86) M(u) =
c−1∏

ℓ=0

(u− uℓ(z)).

Now, the constant term ofM(u) is otherwise known to equal−zS−cF (z, 0), by the
definition (85) ofM(u) and by Equation (79) specialized toλ0(u). Thus, the compar-
ison of constant terms between (85) and (86) provides us withan explicit form of the
OGF of excursions:

F (z, 0) =
(−1)c−1

S−cz

c−1∏

ℓ=0

uℓ(z).

One can then finally return to the original functional equation and pull the BGFF (z, u).
In summary:
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Proposition VII.6. Let Ω be a finite step of jumps and letS(u) be the characteristic
polynomial ofΩ. Consider thec small branches of the “kernel” equation,

1 − zS(u) = 0,

denoted byu0(z), . . . , uc−1(z). The generating function of excursions is given by

F (z) =
(−1)c−1

zS−c

c−1∏

ℓ=0

uℓ(z), whereS−c = [u−c]S(u)

is the multiplicity (or weight) of the smallest element−c ∈ Ω. More generally the
bivariate generating function of nonnegative walks (also known as meanders) withu
marking final altitude is bivariate algebraic and given by

F (z, u) =
1

uc − zucS(u)

c−1∏

ℓ=0

(u− uℓ(z)) .

The OGF of bridges is expressible in terms of the small branches, by

B(z) = z

c∑

j=1

u′j(z)

uj(z)
= z

d

dz
log (u1(z) · · ·uc(z)) .

EXAMPLE VII.19. Trees and Łukasiewicz codes.A particular class of walks is of special
interest; it corresponds to cases wherec = 1, that is, the largest jump in the negative direction
has amplitude 1. Consequently,Ω + 1 = {0, s1, s2, . . . , sd}. In that situation, combinatorial
theory teaches us the existence of fundamental isomorphisms between walks defined by steps
Ω and trees whose degrees are constrained to lie in1 + Ω. The correspondence is by way of
Łukasiewicz codes14, also known as ‘Polish” prefix codes introduced in Chapter I.From this
correspondence, we expect to find tree GFs in such cases.

As regards generating functions, there now exists onlyonesmall branch, namely the so-
lution u0(z) to u0(z) = zφ(u0(z)) (whereφ(u) = uS(u)) that is analytic at the origin. One
then hasF (z) = F (z, 0) = 1

z
u0(z), so that the walk GF is determined by

F (z, 0) =
1

z
u0(z), u0(z) = zφ(u0(z)), φ(u) := uS(u).

This form is consistent with what is already known regardingthe enumeration of simple families
of trees. In addition, one finds

F (z, u) =
1− u−1u0(z)

1− zS(u)
=
u− u0(z)

u− zφ(u)
.

Classical specializations are rederived in this way:

— the Catalan walk (Dyck path), defined byΩ = {−1,+1} andφ(u) = 1 + u2, has

u0(z) =
1

2z

“
1−

p
1− 4z2

”
;

— the Motzkin walk, defined byΩ = {−1, 0,+1} andφ(u) = 1 + u+ u2 has

u0(z) =
1

2z

“
1− z −

p
1− 2z − 3z2

”
;

14Such a code (p. 70) is obtained by a preorder traversal of the tree, recording a jump ofr− 1 when a
node of outdegreer is encountered. The sequence of jumps gives rise to an excursion followed by an extra
−1 jump.
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— the modified Catalan walk, defined byΩ = {−1, 0, 0,+1} (with two steps of type0)
andφ(u) = 1 + 2u+ u2, has

u0(z) =
1

2z

`
1− 2z −

√
1− 4z

´
;

— thed-ary tree walk (the excursions encoded-ary trees) defined byΩ = {−1, d−1},
hasu0(z) that is defined implicitly byu0(z) = z(1 + u0(z)

d).

The kernel method thus provides a new perspective for the enumeration of Dyck paths and
related objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . END OF EXAMPLE VII.19. �

EXAMPLE VII.20. Walks with amplitude at most 2.TakeΩ = {−2,−1, 1, 2}, so that

S(u) = u−2 + u−1 + u+ u2.

Then,u0(z), u1(z) are the two branches that vanish asz → 0 of the curve

y2 = z(1 + y + y3 + y4).

The linear system that determinesF (z, 0) andF ′
u(z, 0) is

8
>><
>>:

1−
„

z

u0(z)2
+

z

u0(z)

«
F (z, 0)− z

u0(z)
F ′

u(z, 0) = 0

1−
„

z

u1(z)2
+

z

u1(z)

«
F (z, 0)− z

u1(z)
F ′

u(z, 0) = 0

(derivatives are taken with respect to the second argument)and one finds

F (z, 0) = −1

z
u0(z)u1(z), F ′

u(z, 0) =
1

z
(u0(z) + u1(z) + u0(z)u1(z)).

This gives the number of walks, through a combination of series expansions,

F (z) = 1 + 2z2 + 2z3 + 11z4 + 24z5 + 93z6 + 272z7 + 971z8 + 3194z9 + · · · .

A single algebraic equation forF (z) = F (z, 0) is then obtained by elimination (e.g., via
Groebner bases) from the system:

8
<
:

u2
0 − z(1 + u0 + u3

0 + u4
0) = 0

u2
1 − z(1 + u1 + u3

1 + u4
1) = 0

zF + u0u1 = 0

Elimination shows thatF (z) is a root of the equation

z4y4 − z2(1 + 2z)y3 + z(2 + 3z)y2 − (1 + 2z)y + 1 = 0.

For Ω = {−2,−1, 0, 1, 2}, we find similarlyF (z) = − 1
z
u0(z)u1(z), whereu0, u1 are

the small branches ofy2 = z(1 + y + y2 + y3 + y4); the expansion starts as

F (z) = 1 + z + 3z2 + 9z3 + 32z4 + 120z5 + 473z6 + 1925z7 + 8034z8 + · · · ,

(EISA104184), andF (z) is a root of the equation

z4y4 − z2(1 + z)y3 + z(2 + z)y2 − (1 + z)y + 1 = 0.

In such cases, the GFs are no longer of the simple tree type. . .END OF EXAMPLE VII.20. �
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The singularities of the branches involved in the statementof Proposition VII.6
can be worked out in all generality [21, 324]. The roots of the kernel equation (83) are
singular at pointsz with valueu satisfying the simultaneous set of equations,

1 − zS(u) = 0, S′(u) = 0,

where the second equation corresponds to a place where the analytic implicit function
theorem “fails” to defineu as an analytic function ofz. The second equation always
has a positive rootτ , corresponding to a positive value ofz, which isρ = 1/S(τ). It
is then natural to suspectρ to be radius of convergence ofF (z) and the singularity to
be of the square-root type (Z1/2), this for reasons seen in the proof of Theorem VII.3
(the smooth implicit-function schema). These properties are shown in complete detail
in the article [21], where it is also established that the GF of bridges is of singular type
Z−1/2, just like for Dyck bridges.

Proposition VII.7. Define the structural constantτ by S′(τ) = 0, τ > 0. Then
assuming aperiodicity, the number of bridges (Bn) and the number of excursions (Fn)
satisfy

Bn ∼ β0
S(τ)n

√
2πn

, Fn ∼ ǫ0
S(τ)n

2
√
πn3

,

where

β0 =
1

τ

√
S(τ)

S′′(τ)
, ǫ0 =

(−1)c−1

S−c

√
2S(τ)3

S′′(τ)

c−1∏

j=1

uj

(
1

S(τ)

)
.

There, theuj represent the small branches andu0 is the branch that is real positive
asz → 0.

Proposition VII.7 expresses auniversal lawof type n−3/2 for excursions and
n−1/2 for bridges, a fact otherwise at least partly accessible to classical probability
theory (e.g., via a local limit theorem for bridges and via Brownian motion for ex-
cursions). Basic parameters of walks, excursions, bridges, and meanders can then be
analysed in a uniform fashion [21].

VII. 8.2. Maps and the quadratic method. A (planar) map is a connected pla-
nar graph together with an embedding into the plane. In all generality, loops and
multiple edges are allowed. A planar map therefore separates the plane into regions
called faces (Figure 19). The maps considered here are in addition rooted, meaning
that a face, an incident edge, and an incident vertex are distinguished. In this section,
only rooted maps are considered15. When representing rooted maps, we shall agree
to draw the root edge with an arrow pointing away from the rootnode, and to take
the root face as that face lying to the left of the directed edge (represented in grey on
Figure 19).

15Nothing is lost regarding asymptotic properties of random structures when a rooting is imposed.
The reason is that a map has, with probability exponentiallyclose to 1, a trivial automorphism group; con-
sequently, almost all maps ofm edges can be rooted in2m ways (by choosing an edge, and an orientation
of this edge), and there is an almost uniform2m-to-1 correspondence between unrooted maps and rooted
ones.
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FIGURE VII.19. A planar map.

Tutte launched in the 1960’s a large census of planar maps, with the intention
of attacking the four-colour problem by enumerative techniques16; see [73, 471, 472,
473, 474]. There exists in fact an entire zoo of maps defined by variousdegree or con-
nectivity constraints. In this chapter, we shall limit ourselves to conveying a flavour
of this vast theory, with the goal of showing how algebraic functions arise. The pre-
sentation takes its inspiration from the book of Goulden andJackson [244, Sec. 2.9]

LetM be the class of all maps where size is taken to be the number of edges. Let
M(z, u) be the BGF of maps withu marking the number of edges on the outside face.
The basic surgery performed on maps distinguishes two casesbased upon the nature
of the root edge. A rooted map will be declared to beisthmicif the root edger of map
µ is an “isthmus” whose deletion would disconnect the graph. Clearly, one has,

(87) M = o+ M(i) + M(n),

whereM(i) (resp.M(n)) represent the class of isthmic (resp. non-isthmic) maps and
‘o’ is the graph consisting of a single vertex and no edge. Thereare accordingly two
ways to build maps from smaller ones by adding a new edge.

(i) The class of all isthmic maps is constructed by taking two arbitrary maps and
joining them together by a new root edge, as shown below:

16The four-colour theorem to the effect that every planar graph can be coloured using only four colours
was eventually proved by Appel and Haken in 1976, using structural graph theory methods supplemented
by extensive computer search.
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The effect is to increase the number of edges by 1 (the new rootedge) and have the
root face degree become 2 (the two sides of the new root edge) plus the sum of the
root face degrees of the component maps. The construction isclearly revertible. In
other words, the BGF ofM(i) is

(88) M (i)(z, u) = zu2M(z, u)2.

(ii) The class of non-isthmic maps is obtained by taking an already existing map
and adding an edge that preserves its root node and “cuts across” its root face in some
unambiguous fashion (so that the construction should be revertible). This operation
will therefore result in a new map with an essentially smaller root-face degree. For
instance, there are 5 ways to cut across a root face of degree 4, namely,
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This corresponds to the linear transformation

u4 7→ zu5 + zu4 + zu3 + zu2 + zu1.

In general the effect on a map with root face of degreek is described by the trans-
formationuk 7→ zu(1 − uk+1)/(1 − u); equivalently, each monomialg(u) = uk

is transformed intozu(g(1) − ug(u))/(1 − u). Thus, the OGF ofM(n) involves a
discrete difference operator:

(89) M (n)(z, u) = zu
M(z, 1)− uM(z, u)

1 − u
.

Collecting the contributions from (88) and (89) in (87) thenyields the basic func-
tional equation,

(90) M(z, u) = 1 + u2zM(z, u)2 + uz
M(z, 1)− uM(z, u)

1 − u
.

The functional equation (90) binds two unknown functions,M(z, u) andM(z, 1).
Much like in the case of walks, it would seem to be underdetermined. Now, a method
due to Tutte and known as the quadratic method provides solutions. Following Tutte
and the account in [244, p. 138], we consider momentarily the more general equation

(91) (g1F (z, u) + g2)
2

= g3,

wheregj = Gj(z, u, h(z)) and theGj are explicit functions—here the unknown func-
tions areF (z, u) andh(z) (cf. M(z, u) andM(z, 1) in (90)). Bindu andz in such
a way that the left side of (91) vanishes, that is, substituteu = u(z) (a yet unknown
function) so thatg1F + g2 = 0. Since the left-hand side of (91) now has a double root
in u, so must the right-hand side, which implies

(92) g3 = 0,
∂g3
∂u

∣∣∣∣
u=u(z)

= 0.
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The original equation has become a system of two equations intwo unknowns that de-
termines implicitlyh(z) andu(z). From there, elimination provides individual equa-
tions foru(z) and forh(z). (If needed,F (z, u) can then be recovered by solving a
quadratic equation.) It will be recognized that, if the quantitiesg1, g2, g3 are polyno-
mials, then the process invariably yields solutions that are algebraic functions.

We now carry out this programme in the case of maps and Equation (90). First,
isolateM(z, u) by completing the square, giving

(93)

(
M(z, u)− 1

2

1 − u+ u2z

u2z(1 − u)

)2

= Q(z, u) +
M(z, 1)

u(1 − u)
,

where

Q(z, u) =
z2u4 − 2zu2(u− 1)(2u− 1) + (1 − u2)

4u4z2(1 − u)2
.

Next, the condition expressing the existence of a double root is

Q(z, u) +
1

u(1 − u)
M(z, 1) = 0, Q′

u(z, u) +
2u− 1

u2(1 − u)2
M(z, 1) = 0.

It is now easy to eliminateM(z, 1), since the dependency inM is linear, and a
straightforward calculation shows thatu = u(z) should satisfy

(
u2z + (u− 1)

) (
u2z + (u − 1)(2u− 3)

)
= 0.

The first parameterization would lead toM(z, 1) = 1/z which is not acceptable.
Thus,u(z) is to be taken as the root of the second factor, withM(z, 1) being defined
parametrically by

(94) z =
(1 − u)(2u− 3)

u2
, M(z, 1) = −u 3u− 4

(2u− 3)2
.

We can then eliminateu and get an explicit equation forM , which turns out to be ex-
plicitly solvable. In summary, we obtain one of the very firstresults of the enumerative
theory of maps:

Proposition VII.8. The OGF of maps admits the explicit form

(95) M(z) ≡M(z, 1) = − 1

54 z2

(
1 − 18z − (1 − 12z)3/2

)
,

and the number of maps withn edges,Mn = [zn]M(z, 1), is

(96) Mn = 2
(2n)!3n

n!(n+ 2)!
,

which satisfies asymptoticallyMn ∼ 2√
πn5

12n.

The sequence of coefficients isEISA000168:

(97) M(z, 1) = 1+2z+9z2+54z3+378z4+2916z5+24057z6+208494z7+· · · .
We refer to [244, Sec. 2.9] for detailed calculations (that are nowadays routinely per-
formed with assistance of a computer algebra system). Currently, there exist many
applications of the quadratic method to maps satisfying allsorts of combinatorial
constraints, in particular multiconnectivity; see [429] for a panorama. Interestingly
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enough, the singular exponent of maps isuniversally 3
2 , a fact further reflected by

the n−5/2 factor in the asymptotic form of coefficients. Accordingly,randomness
properties of maps are appreciably different from what is observed in trees and many
commonly encountered context-free objects (e.g., irreducible ones).
� VII.33. Lagrangean parametrization of general maps.The change of parameteru = 1−1/w
reduces (94) to the “Lagrangean form”,

(98) z =
w

1− 3w
, M(z, 1) =

1− 4w

(1− 3w)2
,

to which the Lagrange Inversion Theorem can be applied, giving back (96). �

� VII.34. The number of planar graphs.The asymptotic number of labelled planar graphs
with n vertices was determined by Giménez and Noy [235] to be of the form

Gn ∼ g · γnn−7/2n!, g
.
= 0.4970 04399, γ

.
= 27.22687 77685 .

This spectacular result, which settled a long standing openquestion, is obtained by a succes-
sion of combinatorial-analytic steps based on:(i) the enumeration of 3–connected maps (these
are the same as graphs, due to unique embeddability), which can be performed by the qua-
dratic method;(ii) the enumeration of 2–connected graphs by Bender, Gao, and Wormald [33];
(iii) the integro-differential relations that relate the GFs of2-connected and 1-connected graphs.
The authors of [235] also show that a random planar graph is connected with probability as-
ymptotic toe−ν .

= 0.96325 and the mean number of connected components is asymptotic to
1 + ν

.
= 1.03743. �

VII. 9. Ordinary differential equations and systems

In Part A of this book relative toSymbolic Methods, we have encountered differ-
ential relations attached to several combinatorial constructions.

— Pointing: the operation of pointing a specific atom in an object of a combi-
natorial classC produces a pointed classD = ΘC. If the generating function
of C is C(z) (an OGF in the unlabelled case, an EGF in the labelled case),
then one has

(99) D = ΘC =⇒ D(z) = z
d

dz
C(z).

See Subsections I. 6.2 (p. 79) and II. 6.1 (p. 126).
— Order constraints:in Subsection II. 6.3 (p. 129), we have defined the boxed

productA = (B2 ⋆ C) to be the modified labelled product comprised of
pairs of elements such that the smallest label is constrained to lie in theB
component. The translation over OGFs is

(100) A = (B2 ⋆ C) =⇒ A(z) =

∫ z

0

(∂tB(t)) · C(t) dt.

Thus pointing and order constraints systematically lead tointegro-differential relation,
which transform intoordinary differential equations(ODEs) and systems. Another
rich source of differential equations in combinatorics is provided by the holonomic
framework (APPENDIX B: Holonomic functions, p. 693). We summarize below some
of the major methods that can be used to analyse the corresponding generating func-
tions. Our analytic arguments largely follow the accessible introductions found in the
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books by Henrici [265] and Wasow [490]. Linear equations are examined in Subsec-
tion VII. 9.1, some simple nonlinear ODEs in Subsection VII.9.2. The main applica-
tions discussed here are relative to trees associated to ordered structures—quadtrees
and increasing trees principally.

VII. 9.1. Singularity analysis of linear differential equations. Linear differ-
ential equations with analytic coefficients have solutionsthat, near a reasonably well-
behaved singularityζ, are of the form

Zθ(logZ)kH(Z), Z := z − ζ,

with β ∈ C an algebraic number,k ∈ Z≥0, andH a locally analytic function. The
coefficients of such equations are composed of elements thatare asymptotically of the
form

nβ(logn)k, β = −θ − 1,

in accordance with the general correspondence provided by singularity analysis. For
instance, a naturally occurring combinatorial structure,the quadtree, gives rise to a
number sequence that, surprisingly, turns out to be asymptotic to n(

√
17−3)/2.

Regular singularities.Our starting point is alinear ordinary differential equa-
tion (linear ODE), which we take to be of the form

(101) c0(z)∂
rY (z) + c1(z)∂

r−1Y (z) + · · · + crY (z) = 0, ∂ ≡ d

dz
.

The integerr is the order. We assume that there exists a simply connected domainΩ
in which the coefficientscj ≡ cj(z) are analytic. At a pointz0 wherec0(z0) 6= 0, a
classical existence theorem (Note 35 and [490, p. 3]) guarantees that, in a neighbour-
hood ofz0, there existr linearly independent analytic solutions of the equation. Thus,
singularities can only occur at pointsζ that are roots of the leading coefficientc0(z).
� VII.35. Analytic solutions.Consider the ODE (101) nearz0 = 0 and assumec0(0) 6= 0.
Then, a formal solutionY (z) can be determined, given any set of initial conditionsY (j)(0) =
wj , by the method of indeterminate coefficients. The coefficients can be constructed recurrently,
and simple bounds show that they are of at most exponential growth. �

To proceed, we rewrite Equation (101) as

(102) ∂rY (z) + d1(z)∂
r−1Y (z) + · · · + dr(z)Y (z) = 0,

wheredj = cj/c0. Under our assumptions, the functionsdj(z) are now meromorphic
in Ω. Given a meromorphic functionf(z), we defineωζ(f) to be the order of the pole
of f at ζ, andωζ(f) = 0 means thatf(z) is analytic atζ.

Definition VII.7. The differential equations(101)and (102)are said to have a sin-
gularity atζ if at least one of theωζ(dj) is positive. The pointζ is said to be aregular
singularityif

ωζ(d1) ≤ 1, ωζ(d2) ≤ 2, . . . , ωζ(dr) ≤ r,

an irregular singularityotherwise.

For instance, the second-order ODE

(103) Y ′′ + z−1 sin(z)Y ′ − z−2 cos(z)Y = 0,
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has a regular singular point atz = 0, since the orders are0, 2, respectively. It is a
notable fact that, even though we do not know how to solve explicitly the equation in
terms of usual special functions, the asymptotic form of itssolutions can be precisely
determined.

Let ζ be a regular singular point, and say we attempt to solve (103)by trying
a solution of the formzθ + · · · . For instance, proceeding somewhat optimistically
with (103) atζ = 0, we may expect the left hand side of the equation to be of the form

[
θ(θ − 1)zθ−2 + · · ·

]
+
[
θzθ−1 + · · ·

]
−
[
zθ−2 + · · ·

]
= 0.

In order to obtain cancellation to main asymptotic order (zθ−2), we must then assume
that the coefficient ofzθ−2 vanishes; then,θ solves an algebraic equation of degree 2,
namely,θ(θ− 1)− 1 = 0, which suggests the possibility of two solutions of the form
zθ near 0, withθ = (1 ±

√
5)/2. This informal discussion motivates the following

definition.

Definition VII.8. Given an equation of the form(102)and a regular singular pointζ,
the indicial polynomialI(θ) at ζ is defined to be

I(θ) = θr + δ1θ
r−1 + · · · + δr, θℓ := θ(θ − 1) · · · (θ + ℓ− 1),

whereδj := limz→ζ(z − ζ)jdj(z). The indicial equation (atζ) is the algebraic
equationI(θ) = 0.

If we let L denote the differential operator corresponding to the lefthand side
of (102), we have formally, at a regular singular point

L
[
Zθ
]

= I(θ)Zθ−r +O
(
Zθ−r−1

)
, Z = (z − ζ),

which justifies the rôle of the indicial polynomial. (The process used to determine
the solutions by restricting attention to dominant asymptotic terms is analogous to
the Newton polygon construction for algebraic equations.)An important structure
theorem describes the possible types of solutions of a meromorphic ODE at a regular
singularity.

Theorem VII.9 (Regular singularities of ODEs). Consider a meromorphic differen-
tial equation(102)and a regular singular pointζ. Assume that the indicial equation
at ζ, I(θ) = 0, is such that no two roots differ by an integer (in particular, all roots
are distinct). Then, in a slit neighbourhood ofζ, there exists a linear basis of all the
solutions that is comprised of functions of the form

(104) (z − ζ)θjHj(z − ζ),

whereθ1, . . . , θr are the roots of the indicial polynomial and eachHj is analytic at 0.
In the case of roots differing by an integer (or multiple roots), the solutions(104)may
include additional logarithmic terms involving nonnegative powers oflog(z − ζ).

A description of the logarithmic cases is best based on a matrix treatment of the
first-order linearsystemthat is equivalent to the ODE [265, 490]. Note 37 discusses
the representative case of Euler systems, which is explicitly solvable.
� VII.36. Singular solutions.In the first case (no two roots differing by an integer), it suffices
to work out the modified differential equation satisfied byZ−θjY (z) and verify that one of
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its solutions is analytic atζ: the coefficients ofHj satisfy a solvable recurrence, like in the
nonsingular case, and their growth is verified to be at most exponential. �

� VII.37. Euler equations and systems.An equation of the form,

∂rY + e1Z
−1∂r−1Y + · · ·+ erZ

−rY = 0, ej ∈ C, Z := (z − ζ),
is known as anEuler equation. In the case where all roots of the indicial equation are simple,
a basis of solutions is exactly of the formZθj . Whenθ is a root of multiplicitym, the set of
solutions includesZθ(logZ)p, for p = 0, . . . ,m − 1. [Euler equations appear for instance in
the median-of-three quicksort algorithm [307, 434]. See [87] for several applications to random
tree models and the analysis of algorithms.]Euler systemsare first order systems of the form

d

dz
Y(z) =

A

z − ζ Y(z),

whereA ∈ Cr×r is a scalar matrix andY = (Y1, . . . , Yr)
T is a vector of functions. A formal

solution is provided by
(z − ζ)A = exp (A log(z − ζ)) ,

which indicates that the Jordan block decomposition ofA plays a rôle in the occurrence of
logarithmic factors of solutions. �

� VII.38. Irregular singularities.The equation

(1− z)2Y ′ − Y = 0, Y (0) = 1

hasY (z) = exp(z/(1 − z)) as its solution. The pointζ = 1 is a singularity, but not one
of the regular type: the solution blows up exponentially near this point. See [265, 490] for
a general treatment. (The functionY (z) occurs as the EGF of “fragmented permutations” in
Subsection II. 4.2, p. 115.) The analysis of coefficients in such cases resorts to the saddle point
method exposed in Chapter VIII. �

Theorem VII.10 (Coefficient asymptotics for meromorphic ODEs). Let f(z) be an-
alytic at 0 and satisfy a linear differential equation

dr

dzr
f(z) + c1(z)

dr−1

dzr−1
f(z) + · · · + cr(z)f(z) = 0,

where the coefficientscj(z) are analytic in|z| < ρ1, except for possibly a pole at
someζ satisfying|ζ| < ρ1, ζ 6= 0. Assume thatζ is a regular singular point and no
two roots of the indicial equation atζ differ by an integer. Then, there exist scalar
constantsλ1, . . . , λr ∈ C such that for anyρ0 with |ζ| < ρ0 < ρ1, one has

(105) [zn]f(z) =

r∑

j=1

λj∆j(n) +O
(
ρ−n
0

)
,

where the∆j(n) are of the asymptotic form

(106) ∆j(n) ∼ n−θj−1

Γ(−θj)
ζ−n

[
1 +

∞∑

k=1

si,j

ni

]
,

and theθj are the roots of the indicial equation atζ.

PROOF. The coefficientsλj relate the particular solutionf(z) to the basis of solu-
tions (104). The rest, by singularity analysis, is nothing but a direct transcription to
coefficients of the solutions provided by the structure theorem, Theorem VII.9, with
∆j(n) = [zn](z − ζ)θjHj(z − ζ). �
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Taking into account multiple roots (as in Note 37) and roots differing by as inte-
ger, we see that solutions to meromorphic linear ODEs, in theregular case at least, are
only composed of linear combinations of asymptotic elements of the form17

(107) ζ−nnβ(logn)ℓ,

whereζ is determined as root of a (possibly transcendental) equation,c0(ζ) = 0, the
numberβ is an algebraic quantity (over the field of constantsδj) determined by the
polynomial equationI(−β − 1) = 0, andℓ is an integer.

The coefficientsλj serve to “connect” the particular function of interest,f(z)
to the local basis of singular solutions (104). Their determination thus represents a
connectionproblem (see pp. 448 and 481). However, contrary to what happens for
algebraic equations, the determination of theλj can only be approached in all gen-
erality by numerical methods [203]. (Even when the coefficientsdj(z) ∈ Q(z) are
rational fractions, no decision procedure is available to decide, from anf(z) ∈ Q[[z]]
determined by initial conditions at 0, which of the connection coefficientsλj may
vanish.) In many combinatorial applications the calculations can be carried out ex-
plicitly, in which case the forms (107) serve as a beacon of what to expect asymptot-
ically. (Once existence of such forms is granted, e.g., by Theorems VII.9 and VII.10,
it is often possible to identify coefficients and/or exponents in asymptotic expansions
directly.) Similar considerations apply to functions defined bysystemsof linear dif-
ferential equations (Note 41 below).
� VII.39. Multiple singularities. In the case of several singularitiesζ1, . . . , ζs, a sum ofs
terms, each of the form (106) withζ → ζi, expresses[zn]f(z). [The structure theorem applies
at eachζi and singularity analysis is known to adapt to multiple singularities, Section VI. 5,
p. 381.] �

� VII.40. A relaxation. In Theorem VII.10, one may allow the equation to have a singularity
of any kind at 0. [Only properties of the basis of solutions near ζ are used.] �

� VII.41. Equivalence between equations and systems.A (first-order) linear differential system
is by definition

d

dz
Y (z) = A(z)Y (z),

whereY = (Y1, . . . , Ym)T is anm-dimensional column vector andA is anm×m coefficient
matrix. A differential equation of orderm can always be reduced to a system of dimensionm,
and conversely. Only rational operations and derivatives are involved in each of the conver-
sions: technically, coefficient manipulations take place in a differential fieldK that contains
coefficients of recurrences and systems. (For instance, theset of rational functionsC(z) and
the set of meromorphic functions in an open setΩ are differential fields.)

The proofs are simple extensions of the casem = 2. Starting from the equationy′′+by′+
cy = 0, one setsY1 = y, Y2 = y′ to get the system

{∂Y1 = Y2, ∂Y2 = −cY1 − bY2}.
Conversely, given the system

{∂Y1 = a11Y1 + a12Y2, ∂Y2 = a21Y1 + a22Y2},

17The forms (107) are appreciably more general than the corresponding ones arising in algebraic
coefficient asymptotics (Theorem VII.8, p. 477), since, there, no logarithmic term can be present and the
exponents are constrained to be rational numbers only, reflecting the Newton-Puiseux expansion.
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FIGURE VII.20. The quadtree splitting process (left); a hierarchical partition associated
to n = 50 random points.

let E = VS[Y1, Y2] be the vector space overK spanned byY1, Y2, which is of dimension≤ 2.
Differentiation of the relation∂Y1 = a11Y1 + a12Y2 shows that∂2Y1 can be expressed as
combination ofY1, Y2,

∂2Y1 = a′11Y1 + a′12Y2 + a11(a11Y1 + a12Y2) + a12(a21Y1 + a22Y2),

hence∂2Y1 lies in E . Thus, the system{Y1, ∂Y1, ∂Y
2
1 } is bound, which corresponds to a

differential equation of order 2 being satisfied byY1. (In the case where the coefficient matrixA

has a simple pole atζ, singularities of solutions can be studied by matrix methods akin to those
of Note 37. �

Combinatorial applications.Thequadtreeis a tree structure, discovered by Fin-
kel and Bentley [166], that can be superimposed on any sequence of points in some
Euclidean spaceRd. In computer science, it forms the basis of several algorithms for
maintaining and searching dynamically varying geometric objects [428]. Quadtrees
are associated to differential equations, whose order is equal to the dimension of the
underlying space. Some of their major characteristics can be determined via singular-
ity analysis of these equations [183, 194].

EXAMPLE VII.21. The plain quadtree. Start from the unit squareQ = [0, 1]2 and
let p = (P1, . . . , Pn), wherePj = (xj, yj), be a sequence ofn points drawn uniformly
and independently fromQ. A quaternary tree, called thequadtreeand notedQT(p), is built
recursively fromp as follows:

— if p is the empty sequence (n = 0), thenQT(p) = ∅ is the empty tree;
— otherwise, letpNW , pNE , pSW , pSE be the four subsequences of points ofp that lie

respectively North-West, North-East, South-West, South-East ofP1. For instance
pSW is pSW = (Pj1 , Pj2 , . . . , Pjk ), where1 < j1 < j2, · · · < jk ≤ n, and the
Pjℓ = (xℓ, yℓ) are those points, which satisfy the predicatexjℓ < x1 andyjℓ < y1.
ThenQT(p) is

QT(p) = 〈P1; QT(pNW ),QT(pNE),QT(pSW ),QT(pSE)〉.
In other words, the sequence of points induces a hierarchical partition of the spaceQT; see
Figure 20. (For simplicity, the tree is only defined here for points having differentx andy co-
ordinates, an event that has probability 1.)
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Quadtrees are used for searching in two related ways:(i) given a pointP0 = (x0, y0),
exact searchaims at determining whetherP0 occurs inp; (ii) given a coordinatex0 ∈ [0, 1], a
partial-match queryasks for the set of pointsP = (x, y) occurring inp such thatx = x0 (irre-
spective of the values ofy). Both types are accommodated by the quadtree structure: anexact
search corresponds to descending in the tree, following a branch guided by the coordinates of
the pointP0 that is sought; partial match is implemented by recursive descents into two subtrees
(either the pairNW,SW or NE,SE) based on the wayx0 compares to thex coordinate of
the root point. In an ideal world for computers, trees are perfectly balanced, in which case the
search costs satisfy the approximate recurrences,

(108) fn = 1 + fn/4, gn = 1 + 2gn/4,

for exact search and partial match respectively. The solutions of these recurrences are≈ log4 n
and≈ √n, respectively.

To what extent do randomly grown quadtrees differ from the perfect shape, and what is the
growth of the cost functions on average? The answer lies in the singularities of certain linear
differential equations.

Our purpose is to set up tree recurrences in the spirit of Subsection VI. 10.3, p. 409. We
need the probabilityπn,k that a quadtree of sizen gives rise to a NW root-subtree of sizek and
claim that

(109) πn,k =
1

n
(Hn −Hk) , Hn = 1 +

1

2
+ · · ·+ 1

n
.

Indeed, the probability thatℓ elements are West of the root andk are North-West is

(110) ̟n,ℓ,k =

 
n− 1

k, ℓ− k, n− 1− ℓ

!Z 1

0

Z 1

0

(xy)k(x(1− y))ℓ−k(1− x)n−1−ℓdx dy.

(The double integral is the probability that the firstk elements fallNW , the nextℓ−k fall SW ,
the rest fallE; the integrand corresponds to a conditioning upon the coordinates(x, y) of the
root; the multinomial coefficient takes into account the possible shufflings.) The Eulerian Beta
integral (p. 693) simplifies the integrals to̟n,ℓ,k = 1/(n(ℓ+1)), from which the claimed (109)
follows by summation overℓ. (It is also possible, though less convenient, to develop equations
starting from basic principles of the symbolic method.)

Given (109), the recurrence

(111) Pn = n+ 4
n−1X

k=0

πn,kPk, P0 = 0,

with πn,k as in (109), determines the sequence of expected value of path length. This recurrence
translates into the integral equation,

(112) P (z) =
z

(1− z)2 + 4

Z z

0

dt

t(1− t)

Z t

0

P (u)
du

1− u) ,

itself equivalent to the linear differential equation of order 2,

z(1− z)4P ′′(z) + (1− 2z)(1− z)3P ′(z)− 4(1− z)2P (z) = 1 + 3z.

The homogeneous equation has a regular singularity atz = 1. In such a simple case, it is not
difficult to guess the “right” solution, which can then be verified by substitution:

P (z) =
1

3

1 + 2z

(1− z)2 log
1

1− z +
1

6

4z + z2

(1− z)2 , Pn =

„
n+

1

3

«
Hn − n+ 1

6n
.

The ratioPn/n represents the mean level of a random node in a randomly grownquadtree, a
quantity which is thuslog n + O(1). Accordingly, quadtrees are on average fairly balanced,
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the expected level being within a factorlog 4
.
= 1.38 of the corresponding quantity in a perfect

tree.
The analysis of partial match reveals a curious consequenceof the imbalance of quadtrees,

where the order of growth differs from what the perfect tree model (108) predicts. The recur-
rence satisfied by the expected cost of a partial match query is determined by methods similar
to pathlength [183]. One finds, by a computation similar to (110),

(113) Qn = 1 +
4

n(n+ 1)

n−1X

k=0

(n− k)Qk, Q0 = 0,

corresponding, for the GFQ(z) =
P
Qnz

n, to the inhomogeneousdifferential equation,
L[Q(z)] = 2/(1− z), where the differential operatorL is

(114) L[f ] = z(1− z)2∂2f + 2(1− z)2∂f − 4f.

A particular solution of the inhomogeneous equation is−1/(1 − z), so thaty(z) := Q(z) +
1/(1− z) satisfies the homogeneous equationL[y] = 0.

The differential equationL[y] = 0 is singular atz = 0, 1,+∞ and it has a regular sin-
gularity atz = 1. Since one hasyn = O(n), by the origin of the problem, the singularity
at z = 1 is the one that matters. The indicial polynomial can be computed from its definition
or, equivalently, by simply substitutingy = (z−1)θ in the definition ofL and discarding lower
order terms. One finds, withZ = z − 1:

L[Zθ ] = θ(θ − 1)Zθ − 4Zθ +O
“
Zθ−1

”
.

The roots of the indicial equations are then

θ1 =
1

2

“
1−
√

17
”
, θ2 =

1

2

“
1 +
√

17
”
.

Theorem VII.9 guarantees thaty(z) admits, nearz = 1 a representation of the form

(115) y(z) = λ1(1− z)θ1H1(z − 1) + (1− z)θ2H2(z − 1),

withH1,H2 analytic at 0.
In order to complete the analysis, we still have to verify that the coefficientλ1, which

multiplies the singular element that dominates asz → 1 is nonzero. Indeed, if we hadλ1 = 0,
then, one would havey(z) → 0 asz → 1, which contradicts the fact thatyn ≥ 1. In other
words, here:the connection problem is solved by means of bounds that are available from the
combinatorial origin of the problem.Singularity analysis then yields the asymptotic form of
yn, hence ofQn. Summarizing , we have:

Proposition VII.9. Path length in a randomly grown quadtree of sizen is on averagen log n+
O(n). The expected cost of a partial match query satisfies

(116) Qn ∼ κ · nα−1, α =

√
17− 1

2

.
= 1.56155.

The analysis extends [183] to quadtrees of higher dimensions [183]. In general dimen-
siond, pathlength is on average2

d
n log n + O(n). The cost of a partial match query is of the

order ofnβ , whereβ is an algebraic number of degreed. . . . . . END OF EXAMPLE VII.21. �

� VII.42. Quadtrees and hypergeometric functions.For the plain quadtree (d = 2), the change
of variablesy = (1 − z)−θη(z) reduces the differential equationL[y] = 0 to hypergeometric
form. The constantκ in (116) is then found to satisfy

κ =
1

2

Γ(2α)

Γ(α)3
, α =

√
17− 1

2
.
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Hypergeometric solutions (Note 15, p. 696) are available for d ≥ 2 [86, 183, 194] �

� VII.43. Closed meanders.A closed meanderof sizen is a topological configuration de-
scribing the way a loop can cross a road2n times. The sequence starts as1, 1, 2, 8, 42, 262
(EISA005315). For instance, here is a meander of size 5:

There are good reasons tobelievethat the numberMn of meanders satisfies

Mn ∼ CAnn−β , with β =
29 +

√
145

12
,

based on analogies with well-established models of statistical physics [127]. �

VII. 9.2. Nonlinear differential equations. Solutions to nonlinear equations do
not necessarily have singularities that arise from the equation itself (as in the linear
case). Even the simplest nonlinear equation,

Y ′(z) = Y (z)2, Y (0) = a,

has a solutionY (z) = 1/(a − z) whose singularity depends on the initial condition
and is not visible on the equation itself. The problem of determining thelocationof
singularities is nonobvious in the case of a nonlinear ODE. Furthermore, the problem
of determining thenatureof singularities for nonlinear equations defies classification
in the general case [417, 418]. In this section, we thus limit ourselves to examining
a few examples where enough structure is present in the combinatorics, so that fairly
explicit solutions are available, which are then amenable to singularity analysis.

EXAMPLE VII.22. Increasing varieties of trees.Consider a labelled class defined by either of

(117) Y = Z2 ⋆ SEQΩ(Y), Y = Z2 ⋆ SETΩ(Y),

where a set of integersΩ ⊆ Z≥0 has been fixed. This defines trees that are either plane (SEQ)
or nonplane (SET) and increasing, in the sense that labels go in increasing order along any
branch stemming from the root. Such trees have been encountered in Subsection II. 6.3 (p. 129)
in relation to alternating permutations, general permutations, and regressive mappings. By
the symbolic translation of the boxed product, the EGF ofY satisfies a nonlinear differential
equation

(118) Y (z) =

Z z

0

φ(Y (w)) dw,

where the structure functionφ is

φ(y) =
X

ω∈Ω

yω (case SEQ), φ(y) =
X

ω∈Ω

yω

ω!
(case SET).

The integral equation (118) is our starting point; in order to unify both cases, we setφω :=
[yω]φ(y). The discussion below is excerpted from the paper [40].

First note that (118) is equivalent to the nonlinear differential equation

(119) Y ′(z) = φ(Y (z)), Y (0) = 0,
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Diff. eq. EGF ρ Sing. type Coeff..

A : Y ′ = (1 + Y )2
z

1− z 1 Z−1 Yn = n!

B : Y ′ = 1 + Y 2 tan z π
2

Z−1 Y2n+1

(2n+1)!
≍ ( 2

π
)2n+1

C: Y ′ = eY log[(1− z)−1] 1 logZ Yn = (n− 1)!

D : Y ′ =
1

1− Y 1−
√

1− 2z 1
2

Z1/2 Yn = (2n− 3)!!

FIGURE VII.21. Some classical varieties of increasing trees: (A) plane binary; (B) strict
plane binary; (C) increasing Cayley; (D) increasing plane.

which implies thatY ′/φ(Y ) = 1 and, upon integrating back,

(120)
Z Y (z)

0

dη

φ(η)
= z, i.e., K(Y (z)) = z, K(y) :=

Z y

0

dη

φ(η)
.

Thus,the EGFY (z) is the compositional inverse of the integral of the multiplicative inverse of
the structure function. We can visualize this chain of transformation as follows:

(121) Y = Inv ◦
Z

◦ 1

( · ) ◦ φ.

In simpler situations, the integration definingK(y) in (120) can be carried out explicitly
and explicit expressions may become available forY (z). Figure 21 displays data relative to
four such classes, the first three of which already encountered in Chapter II. In each case, there
is listed: the differential equation (from which the definition of the trees and the form ofφ are
apparent), the dominant positive singularity, the singularity type, and the corresponding form
of coefficients. The general analytic expressions of (120) contain much more: they allow for a
general discussion of singularity types and permit us to analyse asymptotically classes that do
not admit of an explicit GF.

Assume for simplicityφ to be an aperiodic entire function (possibly a polynomial).Let
ρ be the radius of convergence ofY (z), which is a singular point (by Pringsheim’s Theorem).
Consider the limiting valueY (ρ). One cannot haveY (ρ) <∞ since thenK(z) being analytic
at Y (ρ) would be analytically invertible (by the implicit functions theorem). Thus, one must
haveY (ρ) = +∞ and, sinceY andK are inverses of each other, we getK(+∞) = ρ. The
radius of convergence ofY (z) is accordingly determined as

ρ =

Z ∞

0

dη

φ(η)
.

The singularity type ofY (z) is then systematically determined by the rules (121). For a general
polynomial of degreed ≥ 2, we have (ignoring coefficients)

K(+∞)−K(y) ≈
Z ∞

y

dη

ηd
≈ y−d+1, Y (z) ≈ Z−1/(d−1), with Z := (ρ− z).

This back-of-the-envelope calculation shows that

(122) forφ a polynomial of degreed : Yn ∼ Cn!nf , with f = 2−d
1−d

.

In the same vein, the logarithmic singularity of the EGF of increasing Cayley trees (CaseC of
Figure 21) appears as eventually reflecting the inverse of the exponential singularity ofφ(y) =
ey. Such a singularity type must then be systematically present when considering increasing
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nonplane trees (increasing Cayley trees) with a finite collection of node degrees excluded—
in other words, whenever the SET constructor is used in (117) andΩ is a cofinite set. This
observation “explains” and extends an analysis of [358].

Consider next an additive parameter of trees18 defined by a recurrence,

(123) s(τ ) = t|τ | +
X

υ∝τ

s(υ),

where(tn) is a numeric sequence of “tolls” witht0 = 0, and the summationυ ∝ τ is carried
out over all root subtreesυ of τ . Introduce the two functions (of cumulated values)

S(z) =
X

τ∈Y
s(τ )

z|τ |

|τ |! , T (z) =
X

n≥0

tnYn
zn

n!
,

so that the ratio[z
n]S(z)

[zn]Y (z)
equals the mean value of parameters taken over all increasing trees of

sizen. By simple algebra similar to Lemma VII.1 (p. 439), it is found that the GFS(z) is

(124) S(z) = Y ′(z)

Z z

0

T ′(w)

Y ′(w)
dw.

The relation (117) defines an integral transformT 7→ S, which can be viewed as asingularity
transformer. Thanks to the methods of Subsection VI. 10.3, p. 409, its systematic study is
doable, once the singularity type ofY (z) is known.

The discussion of path length (tn = n corresponding toT (z) = zY ′(z)) is conducted
in the present perspective as follows. For polynomial varieties of increasing trees, we have
Y (z) ≈ Z−δ with δ = 1/(d − 1), so that

T ≈ Y ′ ≈ Z−δ−1, T ′ ≈ Z−δ−2,
T ′

Y ′ ≈ Z
−1,

Z
T ′

Y ′ ≈
Z

1

Z
≈ logZ.

Thus, the relation betweenY andS is of the simplified formS ≈ Y ′ logZ. Singularity
analysis, then implies that average path length is of ordern log n. Working out the constants
gives:

Proposition VII.10. LetY be an increasing variety of trees defined by a functionφ that is an
aperiodic polynomial of degreed ≥ 2 and letδ = 1/(d − 1). The number of trees of sizen
satisfies

Yn ∼ n!

Γ(δ)

„
δ

ρφd

«δ

ρ−nn−1+δ, ρ :=

Z ∞

0

dη

φ(η)
.

The expected value of path length on a tree ofYn is (δ + 1)n log n+O(n).

For naturally occurring models like those of Figure 21 and more, many parameters of in-
creasing tree varieties can be analysed in a synthetic way (e.g., the degree profile, the level
profile [40]). What stands out is the type of conceptual reasoning afforded by singularity anal-
ysis, which provides a direct path to the right order of magnitude of both combinatorial counts
and basic parameters of structures. After this, it suffices to do the bookkeeping and get the
constants right! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . END OF EXAMPLE VII.22. �

It is of interest to compare the properties of increasing trees and of simple vari-
eties of trees (examined in Subsection VII. 3.2, p. 436). Theconclusion is that simple
trees are of the “square-root” type, in the sense that the typical depth of a node and
the expected height are of order

√
n. By contrast, increasing trees, which are strongly

18Such parameters have been investigated in Subsection VI. 10.3 (p. 409), and the binary search tree
recurrence there corresponds exacty to the caseφ(w) = (1 + w)2 here.
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bound by an order constraint, have logarithmic depth and height [123, 124, 126]—they
belong to a “logarithmic” type. From a singular perspective, simple trees are associ-
ated to the universalZ1/2 law, while increasing trees exhibit a divergence behaviour
(Z−1/(d−1) in the polynomial case). Tolls then affect singularities ofGFs in rather
different ways: through a factorZ−1/2 for simple trees, through a factorlogZ in the
case of increasing trees. Such abstract observations are typical of the spirit of analytic
combinatorics.

An interesting example of the joint use of nonlinear ODEs andsingularity analy-
sis is provided byurn processesof probability theory. There, an urn may contain balls
of different colours. A fixed set of replacement rules is given (one for each colour). At
any discrete instant, a ball is chosen uniformly at random, its colour is inspected, and
the corresponding replacement rule is applied. The problemis to determine the evolu-
tion of the urn at a large instantn. In the case of two colours and urns called balanced,
it is shown in [99, 178] that the generating function of urn histories is determined by
a nonlinear first-order autonomous equation, from which many characteristics of the
urn can be effectively analysed.

A spectacular result in the general area of random discrete structures and nonlin-
ear differential equations is the discovery by Baik, Deift,and Johansson (Note VIII.20,
p. 540) of the law governing the longest increasing subsequence in a random permu-
tation. There, the solutions of the nonlinear Painlevé equation

u′′(x) = 2u(x)3 + xu(x)

play a central rôle.

VII. 10. Perspective

The theorems in this chapter demonstrate the central rôle of the singularity anal-
ysis theory developed in Chapter VI, this in a way that parallels what Chapter V did
for Chapter IV with meromorphic function analysis. Exploiting properties of complex
functions to develop coefficient asymptotics for abstract schemas help us solve whole
classes of combinatorial constructions at once.

Within the context of analytic combinatorics, the results in this chapter have broad
reach, and bring us closer to our ideal of a theory covering full analysis of combi-
natorial objects of any “reasonable” description. Analytic side conditions defining
schemas often play a significant rôle. Adding in this chapter the mathematical support
for handling set constructions (with the exp-log schema) and context-free construc-
tions (with coefficient asymptotics of algebraic functions) to the support developed
in Chapter V to handle the sequence construction (with the supercritical sequence
schema) and regular constructions (with coefficient asymptotics of rational functions)
gives us general methods encompassing a broad swath of combinatorial analysis, with
a great many applications (Figure 22).

Together, the methods covered in Chapter V, this chapter, and, next, Chapter VIII
(relative to the saddle point method) apply to virtually allof the generating functions
derived in Part A of this book by means of the symbolic techniques defined there.
The SEQ construction and regular specifications lead to poles; the SET construction
leads to algebraic singularities (in the case of logarithmic generators discussed here) or
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Combinatorial Type Coeff. asymptotics (subexp. term)
Rooted maps n−5/2 §VII. 8.2
Unrooted trees n−5/2 §VII. 5
Rooted trees n−3/2 §VII. 3, §VII. 4
Excursions n−3/2 §VII. 8.1
Bridges n−1/2 §VII. 8.1
Mappings n−1/2 §VII. 3.3
Exp-log sets nκ−1 §VII. 2
Increasingd-ary trees n−(d−2)/(d−1) §VII. 9.2

Analytic form Singularity type Coeff. asymptotics
Positive irred. (polynomial syst.) Z1/2 ζ−nn−3/2 §VII. 6
General algebraic Zp/q ζ−nn−p/q−1 §VII. 7
Regular singularity (ODE) Zθ(logZ)ℓ ζ−nn−θ−1(log n)ℓ §VII. 9.1

FIGURE VII.22. A collection of universality lawssummarized by the subexponential
factors involved in the asymptotics of counting sequences (top). A summary of the main
singularity types and corresponding asymptotic coefficient forms of this chapter (bottom).

to essential singularities (in most of the remaining cases discussed in Chapter VIII);
recursive (context-free) constructions lead to square-root singularities. The surpris-
ing end result is that the asymptotic counting sequences from all of these generating
functions have one of just a few functional forms. This universality means that com-
parisons of methods, finding optimal values of parameters, and many other outgrowths
of analysis can be very effective in practical situations. Indeed, because of the nature
of the asymptotic forms, the results are often exceedingly accurate, as we have seen
repeatedly.

The general theory of coefficient asymptotics based on singularities has many ap-
plications outside of analytic combinatorics (see the notes below). The broad reach of
the theory provides strong indications that universal lawshold for many combinatorial
constructions and schemas yet to be discovered.

The exp-log schema, like its companion, the supercritical-sequence schema, illustrates the
level of generality that can be attained by singularity analysis techniques. Refinements of the
results we have given can be found in the book by Arratia, Barbour, and Tavaré [16], which
develops a stochastic process approach to these questions;see also [15] by the same authors for
an accessible introduction.

The rest of the chapter deals in an essential manner with recursively defined structures. As
noted repeatedly in the course of this chapter, this is oftenconducive to square-root singularity
and universal behaviours of the formn−3/2. Simple varieties of trees have been introduced
in an important paper of Meir and Moon [356], that bases itself on methods developed earlier
by Pólya [395, 397] and Otter [382]. One of the merits of [356] is to demonstrate that a high
level of generality is attainable when discussing properties of trees. A similar treatment can be
inflicted more generally to recursively defined structures when their generating function satisfies
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an implicit equation. In this way, nonplane unlabelled trees are shown to exhibit properties very
similar to their plane counterparts. It is of interest to note that some of the enumerative questions
in this area had been initially motivated by problems of theoretical chemistry: see the colourful
account of Cayley and Sylvester’s works in [54], the reference books by Harary–Palmer [259]
and Finch [165], as well as Pólya’s original studies [395, 397].

Algebraic functions are the modern counterpart of the studyof curves by classical Greek
mathematicians. They are either approached by algebraic methods (this is the core of algebraic
geometry) or by transcendental methods. For our purposes, however, only rudiments of the
theory of curves are needed. For this, there exist several excellent introductory books, of which
we recommend the ones by Abhyankar [1], Fulton [223], and Kirwan [292]. On the algebraic
side, we have striven to provide an introduction to algebraic functions that requires minimal
apparatus. At the same time the emphasis has been put somewhat on algorithmic aspects, since
most algebraic models are nowadays likely to be treated withthe help of computer algebra.
As regards symbolic computational aspects, we recommend the treatise by von zur Gathen and
Jürgen [487] for background, while polynomial systems are excellentlyreviewed in the book
by Cox, Little, and O’Shea [104].

In the combinatorial domain, algebraic functions have beenused early: in Euler and Seg-
ner’s enumeration of triangulations (1753) as well as in Schröder’s famous “Vier combina-
torische Probleme” described by Stanley in [449, p. 177]. A major advance was the realization
by Chomsky and Schützenberger that algebraic functions are the “exact” counterpart of context-
free grammars and languages (see their historic paper [89]). A masterful summary of the early
theory appears in the proceedings edited by Berstel [45] while a modern and precise exposi-
tion forms the subject of Chapter 6 of Stanley’s book [449]. On the analytic-asymptotic side,
many researchers have long been aware of the power of Puiseuxexpansions in conjunction with
some version of singularity analysis (often in the form of the Darboux–Pólya method: see [397]
based on Pólya’s classic paper [395] of 1937). However, there appeared to be difficulties in cop-
ing with the fully general problem of algebraic coefficient asymptotics [77, 361]. We believe
that Section VII. 7 sketches the first complete theory (though most ingredients are of folklore
knowledge). In the case of positive systems, the “Drmota-Lalley-Woods” theorem is the key to
most problems encountered in practice—its importance should be clear from the developments
of Section VII. 6.

The applications of algebraic functions to context-free languages have been known for
some time (e.g., [174]). Our presentation of 1-dimensional walks of a general type follows
a recent article by Banderier and Flajolet [21], whch can be regarded as the analytic pendant
of algebraic studies by Gessel [231, 232]. The kernel method has its origins in problems of
queueing theory and random walks [158, 159] and is further explored in an article by Bousquet-
Mélou and Petkovšek [70]. The algebraic treatment of random maps by the quadratic method
is due to brilliant studies of Tutte in the 1960’s: see for instance his census [471] and the
account in the book by Jackson and Goulden [244]. A combinatorial-analytic treatment of
multiconnectivity issues is given in [22], where the possibility of treating in a unified manner
about a dozen families of maps appears clearly.

Regarding differential equations, an early (and at the timesurprising) occurrence of terms
of the form nα, with α an algebraic number, in an asymptotic expansion is found in the
study [203], dedicated to multidimensional search trees. The asymptotic analysis of coeffi-
cients of solutions to linear differential equations can also, in principle, be approached from the
recurrences that these coefficients satisfy. Wimp and Zeilberger [498] propose an interesting
approach based on results by George Birkhoff and his school (e.g., [57]), which are relative to
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difference equations in the complex plane. There are however some doubts amongst special-
ists regarding the completeness of Birkhoff’s programme. By contrast, the (easier) singularity
theory of linear ODEs is well established, and, as we showed in this chapter, it is possible—
in the regular singular case at least—to base on it a sound method for asymptotic coefficient
extraction.
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Saddle Point Asymptotics

Like a lazy hiker, the path crosses the ridge at a low point;
but unlike the hiker, the best path takes the steepest ascentto the ridge.

[· · · ] The integral will then be concentrated in a small interval.

— DANIEL GREENE AND DONALD KNUTH [250, sec. 4.3.3]
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A saddle pointof a surface is a point reminiscent of the inner part of a saddle or of a
geographical pass between two mountains. If the surface represents the modulus of an
analytic function, saddle points are simply determined as the zeros of the derivative of
the function.

In order to estimatecomplex integralsof an analytic function, it is often a good
strategy to adopt as contour of integration a curve that “crosses” one or several of
the saddle points of the integrand. When applied to integrals depending on a large
parameter, this strategy provides in many cases accurate asymptotic information. In
this book, we are primarily concerned with Cauchy integralsexpressing coefficients of
generating functions of large index. The implementation ofthe method is then fairly
simple, since integration can be performed along a circle centred at the origin.

The saddle point methodcan lead to accurate asymptotic estimates, including
complete asymptotic expansions. Its principle is to use a saddle point crossing path,
then estimate the integrand locally near this saddle point (where the modulus of the
integrand achieves its maximum on the contour), and deduce,by local approximations
and termwise integration, an asymptotic expansion of the integral itself. Some sort of
“localization” or “concentration” property is required toensure that the contribution
near the saddle point captures the essential part of the integral. A simplified form of
the method provides what are known assaddle point bounds—these are useful and

507
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technically simple upper bounds obtained by applying trivial bounds to an integral
relative to a saddle point crossing path.

In the context of analytic combinatorics, the method applies well to Cauchy coef-
ficient integr als, in the case of rapidly varying functions:typical instances areentire
functionsas well as functions with singularities at a finite distance that exhibit some
form of exponential growth. Saddle point analysis then complements singularity anal-
ysis whose scope is essentially the category of functions having only moderate (i.e.,
polynomial) growth at their singularities. The saddle point method is also a method of
choice for the analysis of coefficients of “large powers” of some fixed function and,
in this context, it paves the way to the study of multivariateasymptotics and limiting
distributions developed in the next chapter.

Applications are given here to Stirling’s formula, as well as the asymptotics of
the central binomial coefficients, the involution numbers and the Bell numbers asso-
ciated to set partitions. The asymptotic enumeration of integer partitions is one of the
jewels of classical analysis and we provide an introductionto this rich topic where
saddle points give access to effective estimates of an amazingly good quality. Other
combinatorial applications include balls-in-bins modelsand capacity, the number of
increasing subsequences in permutations, and blocks in setpartitions. The counting
of acyclic graphs (equivalently forests of unrooted trees), takes us beyond the basic
paradigm of simple saddle points by making use of so-called “monkey saddles”.

The plan of this chapter is as follows. First, we examine the surface determined by the
modulus of an analytic function and give a classification of points into three kinds: ordinary
points, zeros, and saddle points (Section VIII. 1). Next we develop general purpose saddle
point bounds in Section VIII. 2, which also serves to discussthe properties of saddle point
crossing paths. The saddle point methodper seis presented in Section VIII. 3, both in its most
general form and in the way it specializes to Cauchy coefficient integrals. Section VIII. 4 then
discusses three examples, involutions, set partitions, and fragmented permutations, which help
us get further familiarized with the method. We next jump to anew level of generality and in-
troduce in Section VIII. 5 the abstract concept ofadmissibility—this approach has the merit of
providing easily testable conditions, while opening the possibility of determining broad classes
of functions to which the saddle point method is applicable.In particular, many combinatorial
types whose leading construction is a SET operation are seen to be “automatically” amenable
to saddle point analysis. The case of integer partitions, which is technically more advanced,
is treated in a separate section, Section VIII. 6. The framework of “large powers”, developed
in Section VIII. 7 constitutes a combinatorial counterpartof the central limit theorem of proba-
bility theory, and as such it provides a bridge to the study oflimit distributions in Chapter IX.
Other applications to discrete probability distributionsare quickly examined in Section VIII. 8.
Finally, Section VIII. 9 serves as a brief introduction to the rich subject of multiple saddle points
and coalescence.

VIII. 1. Landscapes of analytic functions and saddle points

This section introduces a well-known classification of points on the surface rep-
resenting the modulus of an analytic function. In particular, as we are going to see,
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Ordinary point Zero Saddle point

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

FIGURE VIII.1. The different types of points on a surface|f(z)|: an ordinary point, a
zero, a simple saddle point. Top: a diagram showing the localstructure of level curves (in
solid lines), steepest descent lines (dashed with arrows pointing towards the direction of
increase) and regions (hashed) where the surface lies belowthe reference value|f(z0)|.
Bottom: the functionf(z) = cosh z and the local shape of|f(z)| near an ordinary point
(iπ/4), a zero (iπ/2), and a saddle point (0), with level lines shown on the surfaces.

saddle points, which are determined by roots of the function’s derivative, are associ-
ated with a simple geometric property that gives them their name.

Consider any functionf(z) analytic forz ∈ Ω, whereΩ is some domain ofC. Its
modulus|f(x+iy)| can be regarded as a function of the two real quantities,x = ℜ(z)
andy = ℑ(z). As such, it can be represented as a surface in three dimensional space.
This surface is smooth (because analytic functions are infinitely differentiable), but far
from being arbitrary.

Let z0 be an interior point ofΩ. The local shape of the surface|f(z)| for z near
z0 depends on which of the initial elements in the sequencef(z0), f

′(z0), f ′′(z0), . . .,
vanish. As we are going to see, its points can be of only one of three types: ordinary
points (the generic case), zeros, and saddle points; see Figure 1. The classification of
points is conveniently obtained by considering polar coordinates, writingz = z0 +
reiθ, with r small.

An ordinary pointis such thatf(z0) 6= 0, f ′(z0) 6= 0. This is clearly the generic
situation as analytic functions have only isolated zeros. In that case, one has for small
r > 0:

(1) |f(z)| =
∣∣f(z0) + reiθf ′(z0) +O(r2)

∣∣ = |f(z0)|
∣∣∣1 + λrei(θ+φ) +O(r2)

∣∣∣ ,
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where we have setf ′(z0)/f(z0) = λeiφ. The modulus then satisfies

|f(z)| = |f(z0)|
(
1 + λr cos(θ + φ) +O(r2)

)
.

Thus, forr kept small enough and fixed, asθ varies,|f(z)| is maximum whenθ = −φ
(where it is∼ 1 + r), and minimum whenθ = −φ + π (where it is∼ 1 − r). When
θ = −φ± π

2 , one has|f(z)| = |f(z0)| + o(r), which means that|f(z)| is essentially
constant. This is easily interpreted: the lineθ ≡ −φ (mod π) is (locally) asteepest
descent line; the perpendicular lineθ ≡ −φ + π

2 (mod π) is locally a level line.
In particular, near an ordinary point, the surface|f(z)| has neither a minimum nor a
maximum. In figurative terms, this is like standing on the flank of a mountain.

A zerois by definition a point such thatf(z0) = 0. In this case, the function|f(z)|
attains its minimum value 0 atz0. Locally, to first order, one has|f(z)| ∼ |f ′(z0)|r.
A zero is thus like a sink or the bottom of a lake, save that, in the landscape of an
analytic function, all lakes are at see level.

A saddle pointis a point such thatf(z0) 6= 0, f ′(z0) = 0. It is said to be asimple
saddle pointif furthermoref ′′(z0) 6= 0. In that case, a calculation similar to (1),
(2)

|f(z)| =

∣∣∣∣f(z0) +
1

2
r2e2iθf ′′(z0) +O(r3)

∣∣∣∣ = |f(z0)|
∣∣∣1 + λr2ei(2θ+φ) +O(r3)

∣∣∣ ,

where we have set12f
′′(z0)/f(z0) = λeiφ, shows that the modulus satisfies

|f(z)| = |f(z0)|
(
1 + λr2 cos(2θ + φ) +O(r3)

)
.

Thus, starting at the directionθ = −φ/2 and turning aroundz0, the following se-
quence of events regarding the modulus|f(z)| = |f(z)| is observed: it is maximal
(θ = −φ/2), stationary (θ = −φ/2 + π

2 ), minimal (θ = −φ/2 + π), stationary,
(θ = −φ/2 + 3π

2 ), maximal again (θ = −φ/2 + π), and so on. The pattern, symbol-
ically ‘+ = – =’, repeats itself twice. This is superficially similar to an ordinary point,
save for the important fact that changes are observed at twice the angular speed. Ac-
cordingly, the shape of the surface looks quite different; it is like the central part of a
saddle. Two level curves cross at a right angle: one steepestdescent line (away from
the saddle point) is perpendicular to another steepest descent line (towards the saddle
point). In a mountain landscape, this is thus much like a passbetween two mountains.
The two regions on each side corresponding to points with an altitudebelowa simple
saddle point are often referred to as “valleys”.

Generally, amultiple saddle pointhas multiplicityp if f(z0) 6= 0 and all deriva-
tivesf ′(z0), . . . , f (p)(z0) are equal to zero whilef (p+1)(z0) 6= 0. In that case, the
basic pattern ‘+ = – =’ repeats itselfp + 1 times. For instance, from a double saddle
point (p = 2), three roads go down to three different valleys separated by the flanks of
three mountains. A double saddle point is also called a “monkey saddle” since it can
be visualized as a saddle having places for the legs and the tail: see Figure 11 (p. 559)
and Figure 13 (p. 562).

Theorem VIII.1 (Classification of points on modulus surfaces). A surface|f(z)| at-
tached to the modulus of a function analytic over an open setΩ has points of only
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0.0

x

−1.0

−0.5

0.0

y

0.5

−1.0 −0.5−1.5

1.0

FIGURE VIII.2. The “tripod”: two views of|1+ z+ z2 + z3| as function ofx = ℜ(z),
y = ℑ(z): (left) the modulus as a surface inR3; (right) the projection of level lines on
thez-plane.

three possible types:(i) ordinary points, (ii) zeros, (iii) saddle points. Under projec-
tion on the complex plane, a simple saddle point is locally the common apex of two
curvilinear sectors with angleπ2 , referred to as “valleys”, where the modulus of the
function is smaller than at the saddle point.

As a consequence, the surface defined by the modulus of an analytic function has
no maximum: this property is known as theMaximum Modulus Principle. It has no
minimum either, apart from zeros. It is therefore a peaklesslandscape in de Bruijn’s
words [111]. Accordingly, for a meromorphic function, peaks are at∞ and minima
are at 0, the other points being either ordinary or saddle points.

EXAMPLE VIII.1. The tripod: a cubic polynomial.An idea of the typical shape of the surface
representing the modulus of an analytic function can be obtained by examining Figure 2 relative
to the third degree polynomialf(z) = 1 + z + z2 + z3. Sincef(z) = (1− z4)/(1− z), the
zeros are at

−1, i, −i.
There are saddle points at its derivative has zeros at the zeros of the derivativef ′(z) = 1 +
2z + 3z2, that is, at the points

ζ :=
1

3
+
i

3

√
2, ζ′ =

1

3
− i

3

√
2.

The diagram below summarizes the position of these “interesting” points:

(3) −1 (zero)

i (zero)

−i (zero)

− 1
3
− i

3

√
2 (saddle point)

− 1
3
− i

3

√
2 (saddle point)

(0)
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The three zeros are especially noticeable on Figure 2 (left), where they appear at the end of the
three “legs”. The two saddle points are visible on Figure 2 (right) as intersection points of level
curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . END OF EXAMPLE VIII.1. �

� VIII.1. The Fundamental Theorem of Algebra.This theorem asserts that a polynomial has at
least one root (hencen roots if its degree isn). LetP (z) = 1+a1z+ · · · anz

n be a polynomial
of degreen. Considerf(z) = 1/P (z). By basic analysis, one can takeR sufficiently large, so
that on|z| = R, one has|f(z)| < 1

2
. Assumea contrario thatP (z) has no zero. Then,f(z)

which is analytic in|z| ≤ R should attain its maximum at an interior point (sincef(0) = 1),
so that a contradiction has been reached. �

� VIII.2. Saddle points of polynomials and the convex hull of zeros.Let P be a polynomial
andH the convex hull of its zeros. Then any root ofP ′(z) lies inH. (Proof: assume distinct
zeros and consider

φ(z) :=
P ′(z)

P (z)
=

X

α : P (α)=0

1

z − α .

If z lies outsideH, thenz sees all zerosα in a half-plane, this by elementary geometry. By
projection on the normal to the half plane boundary, there results that, for someθ, one has
ℜ(eiθφ(z)) < 0, so thatP ′(z) 6= 0.) �

VIII. 2. Saddle point bounds

Saddle point analysis is a general method suited to the estimation of integrals of
analytic functionsF (z),

(4) I =

∫ B

A

F (z) dz,

whereF (z) ≡ Fn(z) involves some large parametern. The method is instrumental
when the integrandF is subject to rather violent variations, typically when there oc-
curs in it some exponential or some fixed function raised to a large powern → +∞.
In this section, we discuss some of theglobalproperties of saddle point contours, then
specialize the discussion to Cauchy coefficient integrals.General bounds, known as
saddle point bounds, which are easy to derive, result from simple geometric consider-
ations.

Starting from the general form (4), we letC be a contour joiningA andB and
taken in a domain of the complex plane whereF (z) is analytic. By standard inequal-
ities, we have

(5) |I| ≤ ||C|| · sup
z∈C

|F (z)|,

with ||C|| representing the length ofC. This is the commontrivial boundfrom integra-
tion theory applied to a fixed contourC.

For an analytic integrandF with A andB inside the domain of analyticity, there
is an infinite classP of acceptable paths to choose from, all in the analyticity domain
of F . Thus, by optimizing the bound (5), we may write

(6) |I| ≤ inf
C∈P

[
||C|| · sup

z∈C
|F (z)|

]
,
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where the infimum is taken over all pathsC ∈ P. Broadly speaking, a bound of this
type is called asaddle point bound1.

The length factor||C|| usually turns out to be unimportant for asymptotic bound-
ing purposes—this is for instance the case when paths remainin finite regions of the
complex plane. If there happens to be a pathC from A to B such that no point is
at an altitude higher thansup(|F (A)|, |F (B)|), then a simple bound results, namely,
|I| ≤ ||C||·sup(|F (A)|, |F (B)|): this is in a sense the uninteresting case. The common
situation, typical of Cauchy coefficient integrals of combinatorics, is that paths have
to go at some higher altitude than the end points. A pathC that traverses a saddle point
by connecting two points at a lower altitude on the surface|F (z)| and by following
two steepest descent lines across the saddle point is clearly a local minimum for the
path functional

Φ(C) = sup
z∈C

|F (z)|,

as neighbouring paths must possess a higher maximum. Such a path is called asaddle–
point pathor steepest descent path. Then, the search for a path minimizing

inf
C

[
sup
z∈C

|F (z)|
]

(a simplification of (6) to its essential feature) naturallyleads to considering saddle
points and saddle-point paths. This leads to the variant of (6),

(7) |I| ≤ ||C0|| · sup
z∈C0

|F (z)|, C0 minimizessup
z∈C

|F (z)|,

also referred to as asaddle point bound.
We can summarize this stage of the discussion by a simple generic statement.

Theorem VIII.2 (General saddle point bounds). Let F (z) be a function analytic in
a domainΩ. Consider the class of integral

∫
γ
F (z) dz where the contourγ connects

two pointsA,B and is constrained to a classP of allowable paths inΩ (e.g., the ones
that encircle0). Then one has thesaddle point bounds2:

(8)

∣∣∣∣
∫

γ

F (z) dz

∣∣∣∣ ≤ ||C0|| · sup
z∈C0

|F (z)|,
whereC0 is any path that minimizessup

z∈C
|F (z)|.

If A andB lie in opposite valleys of a saddle pointz0, then the minimization problem
is solved by saddle point pathsC0 made of arcs connectingA toB throughz0.

Borrowing a metaphor of de Bruijn [111], the situation may be described as fol-
lows. Estimating a path integral is like estimating the difference of altitude between
two villages in a mountain range. If the two villages are in different valleys, the best
strategy (this is what road networks often do) consists in following paths that cross
boundaries between valleys at passes,i.e., through saddle points.

1Notice additionally that the optimization problem need notbe solved exactly, as any approximate
solution to (6) still furnishes a valid upper bound because of the universal character of the trivial bound (5).

2The form given by (8) is in principle weaker than the form (6),since it does not take into account the
length of the contour itself, but the difference is immaterial in practically all our asymptotic problems.
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The statement of Theorem VIII.2 does no fix all details of the contour, when
there are several saddle points “separating”A andB—the problem is like finding the
most economical route across a whole mountain range. But at least its suggests the
construction of a composite contour made of connected arcs crossing saddle points
from valley to valley. Furthermore, in cases of combinatorial interest some strong
positivity is present and the selection of the suitable saddle point contour is normally
greatly simplified, as we explain next.

� VIII.3. An integral of powers.Consider the polynomialP (z) = 1+z+z2+z3 of Example 1.
Define the line integral

In =

Z +i

−1

P (z)n dz.

On the segment connecting the end point, the maximum of|P (z)| is 0.63831, giving the weak
trivial boundIn = O(0.63831n). In contrast, there is a saddle point atζ = 1

3
+ i

3

√
2 where

|P (ζ)| = 1
3
, resulting in the bound

|In| ≤ λ
„

1

3

«n

, λ := |ζ + 1|+ |i− ζ| .= 1.44141,

as follows from adopting a contour made of two segments connecting−1 to i throughζ. Discuss

further the bounds on
R α′

α
, when(α, α′) ranges over all pairs of roots ofP . �

Saddle point bounds for Cauchy coefficient integrals.Saddle point bounds can
be applied to Cauchy coefficient integrals,

(9) gn ≡ [zn]G(z) =
1

2iπ

∮
G(z)

dz

zn+1
,

for which we can avail ourselves of the previous discussion,with Fn(z) = G(z)z−n−1.
In (9) the symbol

∮
indicates that the allowable paths are constrained to encircle the

origin (the domain of definition of the integrand is a subset of C\{0}; the pointsA,B
can then be seen as coinciding and taken somewhere along the negative real line).

In the particular case whereG(z) is a function with nonnegative coefficients, there
is usually a saddle point on the positive real axis. Indeed, assume thatG(z), which has
radius of convergenceRwith 0 < R ≤ +∞, satisfiesG(x) → +∞ asx→ R−. Then
the integrandF (z) := G(z)z−n−1 satisfiesF (0+) = F (R−) = +∞. This means
that there exists at least one local minimum, hence, at leastone positive valueζ such
that the derivativeF ′(x) of the real functionF (x) vanishes in(0, R). (Actually, there
can be only one such point; see Note 4, p. 516.) But this pointζ is also a derivative
of the complex functionF (z). Sinceζ is a local minimum, we have additionally
F ′′(ζ) < 0, and the saddle point is crossed transversally by a circle ofradiusζ. Thus,
the saddle point bound, specialized to circles centred at the origin, becomes:

Corollary VIII.1 (Saddle point bounds for generating functions). LetG(z) be ana-
lytic at 0 with nonnegative coefficients and radius of convergenceR ≤ +∞. Assume
thatG(R−) = +∞. Then one has

(10) [zn]G(z) ≤ G(ζ)

ζn
, with ζ ∈ (0, R) the unique root ofζ

G′(ζ)

G(ζ)
= n+ 1.
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FIGURE VIII.3. The modulus of the integrands ofJn (central binomials) andKn (in-
verse factorials) forn = 5 and the corresponding saddle point contours.

This corollary is very similar to Proposition IV.1, p. 233, on which it sheds a new
light, while paving the way to the full saddle-point method to be developed in the next
section.

We examine below two particular cases related to the centralbinomial and the
inverse factorial. The corresponding landscapes in Figure3 which bear a surprising
resemblance to one another are, by the previous discussion,instances of a general
pattern for functions with nonnegative coefficients. It is seen on these two examples
that the saddle point bounds already catch the proper exponential growths, being off
only by a factor ofO(n−1/2).

EXAMPLE VIII.2. Saddle point bounds for central binomials and inverse factorials. Consider
the two contour integrals around the origin,

(11) Jn =
1

2iπ

I
(1 + z)2n dz

zn+1
, Kn =

1

2iπ

I
ez dz

zn+1
,

whose values are otherwise known, by virtue of Cauchy’s coefficient formula, to beJn =
`
2n
n

´

andKn = 1/n!. In that case, one can think of the end pointsA andB as coinciding and taken
somewhat arbitrarily on the negative real axis, while the contour has to encircle the origin once
and counter-clockwise.

The landscapes of the two integrands are represented on Figure 3. The saddle point equa-
tions are respectively

2n

1 + z
− n+ 1

z
= 0, 1− n+ 1

z
= 0,
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the corresponding saddle points beingζ =
n+ 1

n− 1
andζ′ = n + 1. This provides the upper

bounds

(12) Jn =

 
2n

n

!
≤
„

4n2

n2 − 1

«n

≤ 4

9
4n, Kn =

1

n!
≤ en+1

(n+ 1)n
,

which are valid for all valuesn ≥ 2. . . . . . . . . . . . . . . . . . . . . . . . . END OF EXAMPLE VIII.2. �

� VIII.4. Upward convexity ofG(x)x−n. For G(z) having nonnegative coefficients at the
origin, the quantityG(x)x−n is upward convex forx > 0, so that the saddle point equation for
ζ can have at most one root. Indeed, the second derivative

(13)
d2

dx2

G(x)

xn
=
x2G′′(x)− 2nxG′(x) + n(n+ 1)G(x)

xn+2
,

is positive forx > 0 since its numerator,
X

k≥0

(n+ 1− k)(n− k)gkx
k, gk := [zk]G(z),

has only nonnegative coefficients. (See Note IV.44, p. 266, for an alternative derivation.) �

� VIII.5. A minor optimization.The bounds of Eq. (6), p. 512, which take the length of the
contour into account, lead to estimates that closely resemble Eq. (10). Indeed, we have

[zn]G(z) ≤ G(ζ)

ζ
n , ζ root of ζ

G′(ζ)

G(ζ)
= n,

when optimization is carried out over circles centred at theorigin. �

VIII. 3. Overview of the saddle point method

Given a complex integral with a contour traversing asimplesaddle point, the
saddle point corresponds locally to a maximum of the integrand along the path. It is
then natural to expect thata small neighbourhood of the saddle point might provide the
dominant contribution to the integral. The saddle point method is applicable precisely
when this is the caseandwhen this dominant contribution can be estimated by means
of local expansions. The method then constitutes the complex-analytic counterpart of
the method of Laplace (APPENDIX B: Laplace’s method, p. 700) for the evaluation of
real integrals depending on a large parameter, and we can regard it as being

Saddle Point Method = Choice of Contour + Laplace’s Method.

Like its real-variable counterpart, the saddle point method is a general strategy rather
than a completely deterministic algorithm, since many choices are left open in the
implementation of the method concerning details of the contour and choices of its
splitting into pieces.

To proceed, it is convenient to setF (z) = ef(z) and consider

(14) I =

∫ B

A

ef(z) dz,

wheref(z) ≡ fn(z), like F (z) ≡ Fn(z), involves some large parametern. Follow-
ing possibly some preparation based on Cauchy’s theorem, wemay assume that the
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Goal: Estimate
Z B

A

F (z) dz, settingF = ef .

— A contourC through a saddle pointζ such thatf ′(ζ) = 0 has been chosen.
— The contour is split asC = C(0) ∪ C(1).
The following conditions are to be verified.

SP1: Tails pruning.On the contourC(1), the tails integral
R
C(1) is negligible:

Z

C(1)

F (z) dz = o

„Z

C
F (z) dz

«
.

SP2: Central approximation.Along C(0), a quadratic expansion,

f(z) = f(ζ) +
1

2
f ′′(ζ)(z − ζ) +O(ηn),

is valid, withηn → 0 asn→∞, uniformlywith respect toz ∈ C(0).
SP3: Tails completion.The incomplete Gaussian integral taken over the central range is asymp-
totically equivalent to a complete Gaussian integral (withǫ = ±1):

Z

C(0)

e
1
2

f ′′(ζ)(z−ζ)2 dz ∼ εi
Z ∞

−∞
e−|f ′′(ζ)|x2/2 dx ≡ εi

s
2π

|f ′′(ζ)| .

Result: AssumingSP1, SP2, andSP3, one has, withε = ±1:

1

2iπ

Z B

A

ef(z) dz ∼ ε ef(ζ)

p
2π|f ′′(ζ)|

.

FIGURE VIII.4. The saddle point strategy.

contourC connects two end pointsA andB lying in opposite valleys of the saddle
pointζ. The saddle point equation isF ′(ζ) = 0, or equivalently sinceF = ef :

f ′(ζ) = 0.

The saddle point method, of which a summary is given in Figure4, is based on
a fundamental splitting of the integration contour. We decomposeC = C(0) ∪ C(1),
whereC(0) called the “central part” containsζ (or passes very near to it) andC(1)

is formed of the two remaining “tails”. This splitting has tobe determined in each
case in accordance with the growth of the integrand. The basic principle rests on two
major conditions: the contributions of the two tails shouldbe asymptotically negligible
(conditionSP1); in the central region, the quantityf(z) in the integrand should be
asymptotically well approximated by a quadratic function (conditionSP2). Under
these conditions, the integral is asymptotically equivalent to an incomplete Gaussian
integral. It then suffices to verify—this is conditionSP3, usually a minora posteriori
technical verification—that tails can be completed back, introducing only negligible
error terms. By this sequence of steps, the original integral is asymptotically reduced
to a complete Gaussian integral, which evaluates in closed form.

Specifically, the three steps of the saddle method involve checking conditions
expressed by Equations (15), (16), and (18) below.
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SP1: Tails pruning.On the contourC(1), the tail integral
∫
C(1) is negligible:

(15)
∫

C(1)

F (z) dz = o

(∫

C
F (z) dz

)
.

This condition is usually established by proving thatF (z) remains small enough (e.g.,
exponentially small in the scale of the problem) away fromζ, for z ∈ C(1).

SP2: Central approximation.Along C(0), a quadratic expansion,

(16) f(z) = f(ζ) +
1

2
f ′′(ζ)(z − ζ) +O(ηn),

is valid, withηn → 0 asn→ ∞, uniformly for z ∈ C(0). This guarantees that
∫
ef is

well-approximated by an incomplete Gaussian integral:

(17)
∫

C(0)

ef(z) dz ∼ ef(ζ)

∫

C(0)

e
1
2 f ′′(ζ)(z−ζ)2 dz.

SP3: Tails completion.The tails can be completed back, at the expense of asymp-
totically negligible terms, meaning that the incomplete Gaussian integral is asymptot-
ically equivalent to a complete one,

(18)
∫

C(0)

e
1
2 f ′′(ζ)(z−ζ)2 dz ∼ εi

∫ ∞

−∞
e−|f ′′(ζ)|x2/2 dx ≡ εi

√
2π

|f ′′(ζ)| .

whereε = ±1 is determined by the orientation of the original contourC. This last step
deserves a word of explanation. Along a steepest descent curve acrossζ, the quantity
f ′′(ζ)(z−ζ)2 is real and negative, as we saw when discussing saddle point landscapes.
Indeed, iff ′′(ζ) = eiφ|f ′′(ζ)|, one hasarg(z− ζ) ≡ −φ (mod π). Thus, the change
of variablesx = ±i(z− ζ)eiφ/2 reduces the left side of (18) to an integral taken along
(or close to) the real line. The condition (18) then demands that this integral can be
completed to a complete Gaussian integral, which itself evaluates in closed form.

If these conditions are granted, one has the chain

∫

C
ef dz ∼

∫

C(0)

ef dz ∼ ef(ζ)

∫

C(0)

e
1
2 f ′′(ζ)(z−ζ) dz ∼ ±ief(ζ)

√
2π

|f ′′(ζ)
,

by virtue of Equations (15), (17), (18). In summary:

Theorem VIII.3 (Saddle Point Algorithm). Consider an integral
∫ B

A
F (z) dz, where

the integrandF = ef is an analytic function depending on a large parameter and
A,B lie in opposite valleys across a saddle pointζ, which is a root of the saddle point
equation

f ′(ζ) = 0,

or, equivalently,F ′(ζ) = 0. Assume that the contourC connectingA toB can be split
into C = C(0) ∪ C(1) in such a way that the following conditions are satisfied:

(i) tails are negligible, in the sense of Equation(15)of SP1,
(ii) a central approximation hold, in the sense of Equation(16)of SP2,

(iii) tails can be completed back, in the sense of Equation(18)of SP3.
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Then one has, withε ∈ {−1 + 1} reflecting orientation:

(19)
1

2iπ

∫ B

A

ef(z) dz ∼ ε
ef(ζ)

√
2π|f ′′(ζ)|

.

It can be verified at once that a blind application of the formula to the two integrals
of Example 19 produces the correct asymptotic estimates

(20) Jn ≡
(

2n

n

)
∼ 4n

√
πn

and Kn ≡ 1

n!
∼ 1

nne−n
√

2πn
.

The complete justification in the case ofKn is given in Example 3 below. The case
of Jn is treated by the general theory of “large powers” of SectionVIII. 7, p. 547.

In order for the saddle point method to work, conflicting requirements regard-
ing the dimensioning ofC(0) andC(1) must be satisfied. The tails pruning and tails
completion conditions,SP1 andSP3, forceC(0) to be chosen large enough, so as
to capture the main contribution to the integral; the central approximation condition
SP2 requiresC(0) to be small enough, to the effect thatf(z) can be suitably reduced
to its quadratic expansion. Usually, one has to take||C(0)||/||C|| → 0, and the following
observation may help make the right choices. The error in thetwo-term expansion be-
ing likely given by the next term, which involves a third derivative, it is a good guess
to dimensionC(0) so that it be of lengthδ ≡ δ(n) chosen in such a way that

(21) f ′′(ζ)δ2 → ∞, f ′′′(ζ)δ3 → 0,

so that both tail and central approximation conditions can be satisfied. We call this
choice the saddle pointdimensioning heuristic.

On another register, it often proves convenient to adopt integration paths that
come close enough to the saddle point but need not pass exactly through it. In the same
vein, a steepest descent curve may be followed only approximately. Such choices
will still lead to valid conclusions, as long as the conditions of Theorem VIII.3 are
verified. (Note carefully that these conditionsneitherimpose that the contour should
pass strictly through the saddle point,nor that a steepest descent curve should be
exactly followed.)

Saddle point method for Cauchy coefficient integrals.For the purposes of an-
alytic combinatorics, the general saddle point method specializes. We are given a
generating functionG(z), assumed to be analytic at the origin and with nonnegative
coefficients, and seek an asymptotic form of the coefficients, given in integral form by

[zn]G(z) =
1

2iπ

∫

C
G(z)

dz

zn+1
.

There,C encircles the origin, lies within the domain whereG is analytic, and is posi-
tively oriented. This is a particular case of the general integral (14) considered earlier,
with the integrand being nowF (z) = G(z)z−n−1.

The geometry of the problem is simple, and, for reasons seen in the previous
section, it suffices to consider as integration contour a circle centred at the origin and
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passing through (or very near) a saddle point present on the positive real line. It is
then natural to make use of polar coordinates and set

z = reiθ ,

where the radiusr of the circle is chosen equal to (or close to) the saddle pointvalueζ.
Under the circumstances, the basic split of the contourC = C(0) ∪ C(1) involves

a central partC(0), which is an arc of the circle of radiusr determined by|θ| ≤ θ0 for
some suitably chosenθ0. OnC(0), a quadratic approximation should hold, according
to SP2 [central approximation]. On the restC(1) of the contour the functionG(z)
should be small in comparison to its valueG(r), according toSP1 [tails pruning].
(Observe that|z−n−1| remains constant along any circle centred at the origin.) The
choice of the angleθ0 often turns out to be successful, when one follows thedimen-
sioning heuristicof (21). In this range of problems, checking the conditionSP3 [tail
completion] is normally a mere formality.

The example below details the main steps of the saddle point analysis of inverse
factorials, based on the foregoing principles.

EXAMPLE VIII.3. Saddle point analysis of the exponential and the inverse factorial. The goal
is to estimate1

n!
= [zn]ez, the starting point being

Kn =
1

2iπ

Z

|z|=r

ez dz

zn+1
,

where integration is performed along a circle of radiusr. The landscape of the modulus of the
integrand has been already displayed in Figure 3, p. 515—there is a saddle point ofG(z)z−n−1

atζ = n+ 1 with an axis perpendicular to the real line. We thus expect anasymptotic estimate
to derive from adopting a circle passing though the saddle point, or about. In our treatment, we
fix the choicer = n, by which calculations develop somewhat more smoothly.

We switch to polar coordinates and setz = neiθ. The original integral becomes, in polar
coordinates,

(22) Kn =
en

nn
· 1

2π

Z +π

−π

en(eiθ−1−iθ) dθ,

where, for readability, we have taken out the factorG(r)/rn ≡ en/nn. Seth(θ) = eiθ−1−iθ.
The function|eh(θ)| = ecos θ−1 is unimodal with its peak atθ = 0 and the same property holds
for |enh(θ)|, representing the modulus of the integrand in (22), which gets more and more
strongly peaked atθ = 0, asn→ +∞; see Figure 5.

In agreement with the saddle point strategy, the estimationof Kn proceeds by isolating a
small portion of the contour, corresponding toz near the real axis. We thus introduce

K(0)
n =

Z +θ0

−θ0

enh(θ) dθ, K(1)
n =

Z 2π−θ0

θ0

enh(θ) dθ,

and chooseθ0 in accordance with the general heuristic of Equation (21), which instantiates to
the two conditionsnθ20 →∞, andnθ30 → 0 . One way of realizing the compromise is to adopt
θ0 = na, wherea is any number between− 1

2
and− 1

3
. We hence fix, rather arbitrarily,

(23) θ0 ≡ θ0(n) = n−2/5.

In particular, the angle of the central region tends to zero.
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FIGURE VIII.5. Plots of |ezz−n−1| for n = 3 andn = 30 (scaled according to the
value of the saddle point) illustrate the essential concentration condition as higher values
of n produce steeper saddle point paths.

(i) Tails pruning.For z = neiθ one has|ez| = en cos θ, and, by unimodality properties of
the cosine, the tail integralK(1) satisfies

(24)
˛̨
˛K(1)

n

˛̨
˛ = O

“
e−n cos θ0

”
= O

“
exp

“
−Cn1/5

””
,

for someC > 0. The tail integral is thus is exponentially small.

(ii) Central approximation.Nearθ = 0, one hash(θ) ≡ eiθ − 1− iθ = − 1
2
θ2 +O(θ3),

so that, for|θ| ≤ θ0,

enh(θ) = e−nθ2/2
`
1 +O(nθ30)

´
.

Sinceθ0 = n−2/5, we have

(25) K(0)
n =

Z +n−2/5

−n−2/5

e−nθ2/2 dθ
“
1 +O(n−1/5)

”
,

which, by the change of variablest = θ
√
n, is conveniently rewritten as

(26) K(0)
n =

1√
n

Z +n1/10

−n1/10

e−t2/2 dt
“
1 +O(n−1/5)

”
.

The central integral is thus asymptotic to an incomplete Gaussian integral.

(iii) Tails completion. Given (26), the task is now easy. We have, elementarily, fora > 0,

(27)
Z +∞

a

e−t2/2 dt = O
“
e−a2/2

”
,

which expresses the exponential smallness of Gaussian tails. As a consequence,

(28) K(0)
n ∼ 1√

n

Z +∞

−∞
e−t2/2 dt ≡

r
2π

n
.

Assembling (24) and (28), we obtain

K(0)
n +K(1)

n ∼
r

2π

n
, i.e., Kn =

1

2π

en

nn

“
K(0)

n +K(1)
n

”
∼ en

nn
√

2πn
.

The proof also provides a relative error term ofO(n−1/5). Stirling’s formula is thus seen to be
(inter alia!) a consequence the saddle point method. . . . . . . . . . END OF EXAMPLE VIII.3. �
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Complete asymptotic expansions.Just like Laplace’s method, the saddle point
method can be made to provide full asymptotic expansions. The idea is still to localize
the main contribution in the central region, but now take into account corrections terms
to the quadratic approximation. As an illustration of thesegeneral principles, we make
explicit here the calculations relative to the inverse factorial.

It suffices to revisit the estimation ofK(0) sinceK(1) is exponentially small. One
first rewrites

K(0)
n =

∫ θ0

−θ0

e−nθ2/2en(cos θ−1− 1
2 θ2) dθ

=
1√
n

∫ θ0
√

n

−θ0
√

n

e−w2/2enξ(w/
√

n) dw, ξ(θ) := cos θ − 1 − 1

2
θ2.

The calculation proceeds exactly in the same way as for the Laplace method (APPEN-
DIX B: Laplace’s method, p. 700). It suffices to expandh(θ) to any fixed order, which
is legitimate in the central region. In this way, a representation of the form,

K(0)
n =

1√
n

∫ θ0
√

n

−θ0
√

n

e−w2/2

(
1 +

M−1∑

k=1

Ek(w)

nk/2
+O

(
1 + w3M

nM/2

))
dw,

is obtained, where theEk(w) are computable polynomials of degree3k. Distributing
the integral operator over terms in the asymptotic expansion and completing the tails
yields an expansion of the form

K(0)
n ∼ 1√

n

(
M−1∑

k=0

dk

nk/2
+O(n−M/2)

)
,

whered0 =
√

2π, dk :=

∫ +∞

−∞
e−w2/2Ek(w) dw.

All odd terms disappear by parity. The net result is then:

Proposition VIII.1 (Stirling’s formula). The factorial numbers satisfy

1

n!
∼ enn−n

√
2πn

(
1 − 1

12n
+

1

288n2
+

139

51840n3
− 571

2488320n4
+ · · ·

)
.

Notice the amazing similarity with the form obtained directly for n! in APPEN-
DIX B: Laplace’s method, p. 700.

� VIII.6. A factorial surprise.Why is it that the expansion ofn! and1/n! involve the same
set of coefficients, up to sign? �

VIII. 4. Three combinatorial examples

The saddle point method gives access to a number of asymptotic problems coming
from analytic combinatorics. In this section, we further illustrate its use by treating in
some detail3 three combinatorial examples:

3The purpose of these examples is to get some familiarity withthe practice of the saddle point method
in analytic combinatorics. The impatient reader can jump directly to the next section, where she will find a
general theory that covers these and many more cases.
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Involutions(I), Set partitions(S), Fragmented permutations(F).

These are all labelled structures introduced in Chapter II.Their specifications and
EGFs are

(29)






Involutions: I = SET(SET1,2(Z)) =⇒ I(z) = ez+z2/2

Set Partition: S = SET(SET≥1(Z)) =⇒ S(z) = eez−1

Fragmented perms: F = SET(SEQ≥1(Z)) =⇒ F (z) = ez/(1−z).

The first two are entire functions (i.e., they only have a singularity at∞), while the
last one has a singularity atz = 1. Each of these functions exhibits a fairly vio-
lent growth—of an exponential type—near its positive singularity, at either a finite or
infinite distance. As the reader will have noticed, all threecombinatorial types are
structurally characterized by a set construction applied to some simpler structure.

Each example is treated, starting from the easier saddle point bounds and pro-
ceeding with the saddle point method. The procedure, which follows the treatment of
the functionez, is rather systematic. For Cauchy coefficient integrals, the saddle point
is best carried out in polar coordinates, which calls for evaluating

(30) [zn]G(z) =
1

2iπ

∮
G(z)

dz

zn+1
=
G(r)r−n

2π

∫ +π

−π

G(reiθ)e−niθ dθ.

Under the trigonometrical form, it is seen that the best bound of type (6) is

(31) [zn]G(z) ≤ G(r)

rn
, where

rG′(r)

G(r)
= n.

We shall also refer to the equation definingr as thesaddle point equation. (The
bound (31) is almost the same as the bound provided by TheoremVIII.2, which is
G(ζ)ζ−n−1, whereζG′(ζ)/G(ζ) = n+ 1.) Setting

(32) f(z) := logG(z) − n log z

we see that,locally, a quadratic approximation without linear terms holds, namely,
with β(r) a computable quantity (in terms off(r), f ′(r), f ′′(r))

(33) f(reiθ) − f(r) = −1

2
β(r)θ2 + o(θ3),

for fixedr (i.e., fixedn), asθ → 0.
It then suffices tochoosea cutoff angleθ0, then carry out a verification of the

validity of the three conditions of the saddle point method,SP1, SP2, andSP3 of
Theorem VIII.3, p. 518, adjusted to take into account polar coordinate notations. The
cutoff angleθ0 is chosen as a function ofn (or, equivalently,r) in accordance with the
saddle point heuristic (21).

The example of involutions treats a problem that is only a little more complicated
than inverse factorials. The case of set partitions (Bell numbers) illustrates the need in
general of a good asymptotic technology for implicitly defined saddle points. Finally,
fragmented permutations, with their singularity at a finitedistance, pave the way for
the (harder) analysis of integer partitions in Section VIII. 6.
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EXAMPLE VIII.4. Involutions. A permutationτ such thatτ 2 is the identity is aninvolution

(p. 113). The corresponding EGF isI(z) = ez+z2/2. We have in the notation of (32)

f(z) = z +
z2

2
− n log z,

and the saddle point equation is

r(1 + r) = n, implying r = −1

2
+

1

2

√
4n+ 1 ∼ √n− 1

2
+

1

8
√
n

+O(n−3/2).

The use of the saddle point bound (31) then gives mechanically

(34)
In

n!
≤ e−1/4 e

n/2+
√

n

nn/2
(1 + o(1)), In ≤ e−1/4

√
2πne−n/2+

√
nn−n/2(1 + o(1)).

(Notice that if we use instead the approximate saddle point value,
√
n, we only lose a factor

e−1/4 .
= 0.77880.)

The cutoff point between the central and noncentral regionsis determined, in agreement
with (21), by the fact that the lengthδ of the contour (inz coordinates) should satisfyf ′′(r)δ2 →
∞ andf ′′′(r)δ3 → 0. In terms of angles, this means that we should use a cutoff angle θ0 that
satisfies

r2f ′′(r)θ20 →∞, r3f ′′′(r)θ30 → 0.

Here, we havef ′′(r) = O(1) andf ′′′(r) = O(n−1/2). Thus,θ0 should be chosen of an order
somewhere in betweenn−1/2 andn−1/3, and we fix here

θ0 = n−2/5.

(i) Tails pruning. First, some general considerations are in order regardingthe behaviour
of |I(z)| along large circles,z = reiθ. One has

log |I(reiθ)| = r cos θ +
r2

2
cos 2θ.

As a function ofθ, this function decreases on(0, π
2
) as it is the sum of two decreasing functions.

Thus,|I(z)| attains its maximum(er+r2/2) at r and its minimum(e−r2/2) at z = ri. In the
left half plane, first forθ ∈ (π

2
, 3π

4
), the modulus|I(z)| is at moster sincecos 2θ < 0. Finally,

for θ ∈ ( 3π
4
, π) smallness is granted by the fact thatcos θ < −1/

√
2 resulting in the bound

|I(z)| ≤ er2/2−r/
√

2. The same argument applies to the lower half planeℑ(z) < 0. As
a consequence of these bounds,I(z)/I(

√
n) is strongly peaked atz = r; in particular, it is

exponentially small away from the positive real axis, in thesense that

(35)
I(reiθ)

I(r)
= O

„
I(reiθ0)

I(r)

«
= O (exp(−nα)) , θ 6∈ [−θ0, θ0],

for someα > 0.

(ii) Central approximation. We then proceed and consider the central integral

J(0)
n =

ef(r)

2π

Z +θ0

−θ0

exp
“
f(reiθ)− f(r)

”
dθ.

What is required is a Taylor expansion with remainder near the pointr ∼ √n. In the central
region, the relationsf ′(r) = 0 f ′′(r) = 2 +O(1/n), andf ′′′(z) = O(n−1/2) yield

f(reiθ)− f(r) =
r2

2
f ′′(r)(eiθ − 1)2 +O

“
n−1/2r3θ30

”
= −r2θ2 +O(n−1/5).
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This is enough to guarantee that

(36) J(0)
n =

ef(r)

2π

Z +θ0

−θ0

e−r2θ2

dθ
“
1 +O(n−1/5)

”
.

(iii) Tails completion.Sincer ∼ √n andθ0 = n−2/5, we have

(37)
Z +θ0

−θ0

e−r2θ2

dθ =
1

r

Z +θ0r

−θ0r

e−t2 dt =
1√
r

„Z +∞

−∞
e−t2 dt+O

“
e−n1/5

”«
.

Finally, Equations (35), (36), and (37) give:

Proposition VIII.2. The numberIn of involutions satisfies

(38)
In

n!
=
e−1/4

2
√
πn

n−n/2en/2+
√

n

„
1 +O(

1

n1/5
)

«
.

Comparing the saddle point bound (34) to the true asymptoticform (38), we see that the
former is only off by a factor ofO(n1/2). Here is a table further comparing the asymptotic
estimateI◦n provided by the right side of (38) to the exact value ofIn:

n = 10 n = 100 n = 1000
I10 = 9496 I100 = 2.40533 · 1082 I1000 = 2.14392 · 101296

I◦10 = 8839 I◦100 = 2.34149 · 1082 I◦1000 = 2.12473 · 101296 .

The relative error is empirically close to0.3/
√
n, a fact that could be proved by developing a

complete asymptotic expansion along the lines exposed in the previous section, p. 522.
The estimate (38) ofIn is given by Knuth in [302], whose derivation is carried out by

means of the Laplace method applied to the binomial sum that expressesIn. Our derivation
here follows Moser and Wyman’s in [367]. . . . . . . . . . . . . . . . . . END OF EXAMPLE VIII.4. �

EXAMPLE VIII.5. Set partitions and Bell numbers.The number of partitions of a set ofn
elements defines the Bell numberSn (p. 100) and one has

Sn = n!e−1[zn]G(z) where G(z) = eez

.

The saddle point equation relative toG(z)z−n−1 is

ζeζ = n+ 1.

This famous equation admits an asymptotic solution obtained by iteration (or “bootstrapping”):
it suffices to writeζ = log(n+1)−log ζ, and iterate (say, starting fromζ = 1), which provides
the solution,

(39) ζ ≡ ζ(n) = log n− log log n+
log log n

log n
+O

„
log2 log n

log2 n

«

(see [111, p. 26] for a detailed discussion). The corresponding saddle point bound reads

Sn ≤ n!
eeζ−1

ζn
.

The approximate solutionbζ = log n provides in particular the simplified upper bound

Sn ≤ n!
en−1

(log n)n
.

which is enough to check that there are much fewer set partitions than permutations, the ratio
being bounded from above by a quantitye−n log log n+O(n).
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In order to implement the saddle point strategy, integration will be carried out over a circle
of radiusr = ζ. We then set

f(z) = log

„
G(z)

zn+1

«
= ez − (n+ 1) log z,

and proceed to estimate the integral,

Jn =
1

2iπ

Z

γ

G(z)
dz

zn+1
,

along the circleγ of radiusr. The usual saddle point heuristic suggests to define the range of
the saddle point by a quantityθ0 ≡ θ0(n) such that the quadratic terms in the expansion ofh
at r tend to infinity, while the cubic terms tend to zero. In order to carry out the calculations,
it is convenient to express all quantities in terms ofr alone, which is possible sincen can be
disposed of by means of the relationn+ 1 = rer. We find:

f ′′(r) = er(1 + r−1), f ′′′(r) = er(1− 2r2).

Thus,θ0 should be chosen such thatr2erθ20 →∞, r3erθ30 → 0, and the choicerθ0 = e−2r/5

is suitable.

(i) Tails pruning. First, observe that the functionG(z) is strongly concentrated near the
real axis since, withz = reiθ, there holds

(40) |ez| = er cos θ,
˛̨
˛eez

˛̨
˛ ≤ eer cos θ

.

In particularG(reiθ) is exponentially smaller thanG(r) for any fixedθ 6= 0, whenr gets large.

(ii) Central approximation. One then considers the central contribution,

J(0)
n :=

1

2iπ

Z

γ0

G(z)
dz

zn+1
,

whereγ0 is the part of the circlez = reiθ such that|θ| ≤ θ0 ≡ e−2r/5r−1. Since onγ0, the
third derivative is uniformlyO(er), one has there

f(reiθ) = f(r)− 1

2
r2θ2f ′′(r) +O(r3θ3er).

This approximation can then be transported into the integral J(0)
n .

(iii) Tails completion. Tails can be completed in the usual way. The net effect is the
estimate

[zn]G(z) =
ef(r)

p
2πf ′′(r)

`
1 +O

`
r3θ3er

´´
,

which, upon making the error term explicit rephrases, as follows.

Proposition VIII.3. The numberSn of set partitions of sizen satisfies

(41) Sn = n!
eeζ−1

ζn
p

2πζ(ζ + 1)eζ

“
1 +O(e−ζ/5)

”
,

whereζ is defined implicitly byζeζ = n+ 1, so thatζ = log n− log log n+ o(1).

Here is a numerical table of the exact valuesSn compared to the main termS◦
n of the

approximation (41):

n = 10 n = 100 n = 1000
S10 = 115975 S100

.
= 4.75853 · 10115 S1000

.
= 2.98990 · 101927

S◦
10

.
= 114204 I◦100

.
= 4.75537 · 10115 S◦

1000
.
= 2.99012 · 101927 .
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The error is about1.5% forn = 10, less than10−3 and10−4 for n = 100 andn = 1, 000.
The asymptotic form in terms ofζ itself is the proper one as no back substitution of an

asymptotic expansion ofζ (in terms ofn andlog n) can provide an asymptotic expansion for
Sn solely in terms ofn. Regarding explicit representations in terms ofn, it is only log Sn that
can be expanded as

1

n
log Sn = log n− log log n− 1 +

log log n

log n
+

1

log n
+O

 „
log log n

log n

«2
!
.

(Saddle point estimates of coefficient integrals often involve such implicitly defined quantities.)
This example probably constitutes the most famous application of saddle point techniques

to combinatorial enumeration. The first correct treatment by means of the saddle point method
is due to Moser and Wyman [366]. It is used for instance by de Bruijn in [111, p. 104–108] as
a lead example of the method. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . END OF EXAMPLE VIII.5. �

EXAMPLE VIII.6. Fragmented permutations.These correspond toF (z) = exp(z/(1− z)).
The example now illustrates the case of a singularity at a finite distance. We set as usual

f(z) =
z

1− z − (n+ 1) log z,

and start with saddle point bounds. The saddle point equation is

(42)
ζ

(1− ζ)2 = n+ 1,

so thatζ comes close to the singularity at1 asn gets large:

ζ =
2n+ 3−√4n+ 5

2n+ 2
= 1− 1√

n
+

1

2n
+O(n−3/2).

Here, the approximationbζ(n) = 1− 1/
√
n, leads to

[zn]F (z) ≤ e−1/2e2
√

n(1 + o(1)).

The saddle point method is then applied with integration along a circle of radiusr = ζ.
The saddle point heuristic suggests to localize the integral to a small sector of angle2θ0 and
sincef ′′(r) = O(n3/2) while f ′′′(r) = O(n2), this means takingθ0 such thatn3/4θ0 → ∞
andn2/3θ0 → 0. For instance, the choiceθ0 = n−7/10 is suitable. Concentration is easily
verified: we have

˛̨
˛e1/(1−z)

˛̨
˛
z=reiθ

= e · exp

„
1− r cos θ

1− 2r cos θ + r2

«
,

which is a unimodal function ofθ for θ ∈ (−π, π). (The maximum of this function ofθ is of
orderexp((1− r)−1) attained atθ = 0; the minimum isO(1) attained atθ = π.) In particular,
along the noncentral part|θ| ≥ θ0 of the saddle point circle, one has

(43)
˛̨
˛e1/(1−z)

˛̨
˛
z=reiθ

= O(exp
“√

n− n1/10
”
,

so that tails are exponentially small. Local expansions then enable us to justify the use of the
general saddle point formula (Theorem VIII.3) in this case.The net result is:

Proposition VIII.4. The number of fragmented permutations,Fn = n![zn]F (z), satisfies

(44)
Fn

n!
∼ e−1/2e2

√
n

2
√
πn3/4

.
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The estimate (44) is onlyO(n−3/4) off the corresponding saddle point bound. The relative
error of the approximation is about 4%, 1%, 0.3% forn = 10, 100, 1000, respectively.

The expansion above has been extended by E. Maitland Wright [505, 506] to several
classes of functions with a singularity whose type is an exponential of a function of the form
(1− z)−ρ. (For the case of (44), Wright [505] refers to an earlier article of Perron published in
1914.) His interest was due, at least partly, to applications to generalized partition asymptotics,
of which the basic cases are discussed in Section VIII. 6, p. 540. END OF EXAMPLE VIII.6. �

� VIII.7. Wright’s expansions.Here is a special case. Consider the function

F (z) = (1− z)−β exp

„
A

(1− z)ρ

«
, A > 0, ρ > 0.

Then, a saddle point analysis yields, e.g., whenρ < 1,

[zn]F (z) ∼ Nβ−1−ρ/2 exp (A(ρ+ 1)Nρ)p
2πAρ(ρ+ 1)

, N :=

„
n

Aρ

« 1
ρ+1

.

(The caseρ ≥ 1 involves more terms of the asymptotic expansion of the saddle point.) The
method generalizes to analytic and logarithmic multipliers, as well as to a sum of terms of the
formA(1− z)−ρ inside the exponential. See [505, 506] for details. �

� VIII.8. Some oscillating coefficients.Define the function

s(z) = sin

„
z

1− z

«
.

The coefficientssn = [zn]s(z) are seen to change sign atn = 6, 21, 46, 81, 125, 180, . . . . Do
signs change infinitely many times? (Hint: Yes. there are twocomplex conjugate saddle points
and their asymptotic form combine a growth of the formnaeb

√
n with an oscillating factor

similar tosin
√
n.) The sum

Un =

nX

k=0

 
n

k

!
(−1)k

k!

exhibits similar fluctuations. �

VIII. 5. Admissibility

The saddle point method is a versatile approach to the analysis of coefficients
of fast-growing generating functions, but one which is often cumbersome to apply
step-by-step. Fortunately, it proves possible to encapsulate the conditions encoun-
tered in the analysis of our previous examples into a generalframework. This leads
to the notion of anadmissible functionpresented in Subsection VIII. 5.1. By design,
saddle point analysis applies to such functions and asymptotic forms for their coef-
ficients can be systematically determined, following an approach initiated by Hay-
man in 1956. A great merit of abstraction in this context is that admissible functions
satisfy useful closure properties, so that aninfinite classof admissible functions of
relevance to combinatorial applications can be determined—we develop this theme
in Subsection VIII. 5.2, relative to enumeration, and VIII.5.3, relative to moments of
combinatorial parameters.
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VIII. 5.1. Admissibility theory. The notion of admissibility is in essence an ax-
iomatization of the conditions underlying Theorem VIII.3 specialized to the case of
Cauchy coefficient integrals. In this section, we base our discussion onH–admis-
sibility, the prefixH being a token of Hayman’s original contribution [263]. A crisp
account of the theory is given in Section II.7 of Wong’s book [502] and in Odlyzko’s
authoritative survey [377, Sec. 12].

We consider here a functionG(z) that is analytic at the origin and whose coef-
ficients [zn]G(z), not necessary all nonnegative, are to be estimated. The switch to
polar coordinates is natural, and the expansion ofG(reiθ) for small θ should play a
central rôle. Withr a positive real number lying within the disc of analyticity of G(z),
the fundamental expansion is then

(45) logG(reiθ) = logG(r) +
∞∑

ν=1

αν(r)
(iθ)ν

ν!
.

Not surprisingly, the most important quantities are the first two terms, and onceG(z)
has been put into exponential form,G(z) = eh(z), a simple computation yields

(46)

{
a(r) := α1(r) = rh′(r)
b(r) := α2(r) = r2h′′(r) + rh′(r), with h(z) := logG(z).

In terms ofG, itself, one has

(47) a(r) = r
G′(r)

G(r)
, b(r) = r

G′(r)

G(r)
+ r2

G′′(r)

G(r)
− r2

(
G′(r)

G(r)

)2

.

WheneverG(z) has nonnegative Taylor coefficients at the origin,b(r) is positive for
r > 0 anda(r) increases unboundedly asr → ρ. (This follows from the argument
encountered in Note 4, p. 516.)

Definition VIII.1 (Hayman–admissibility). LetG(z) have radius of convergenceρ
with 0 < ρ ≤ +∞ and be always positive on some subinterval(R0, ρ) of (0, ρ). The
functionG(z) is said to beadmissibleif it satisfies the following three conditions.

H1. [Capture condition]lim
r→ρ

b(r) = +∞.

H2. [Locality condition]For some functionθ0(r) defined over(R0, ρ) and sat-
isfying0 < θ0 < π, one has

G(reiθ) ∼ G(r)eiθa(r)−θ2b(r)/2 asr → R0,

uniformly in |θ| ≤ θ0(r).
H3. [Decay condition]Uniformly in θ0(r) ≤ |θ| < π

G(reiθ) = o

(
G(r)√
b(r)

)
.

Admissible functions in the above sense are also calledHayman admissibleor H–
admissible.

Note that the conditions in the definition areintrinsic to the function: they only
make reference tothe function’s values along circles, no parametern being involved
yet. It can be easily verified that the functionsez, eez−1, andez+z2/2 are admissible
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with ρ = +∞, and that the functionez/(1−z) is admissible withρ = 1. On the
negative side, functions likeez2

and ez2

+ ez are not admissible since they attain
values that are too large whenarg(z) is nearπ.

Coefficients ofH–admissible functions can be systematically analysed to first
asymptotic order, as expressed by the following theorem. The proof simply amounts
to transcribing the definition of admissibility into the conditions of Theorem VIII.3.

Theorem VIII.4 (Coefficients of admissible functions). LetG(z) be anH–admissible
function andζ ≡ ζ(n) be the unique solution in the interval(R0, ρ) of the the saddle
point equation

(48) ζ
G′(ζ)

G(ζ)
= n.

The Taylor coefficients ofG(z) satisfy

(49) gn ≡ [zn]G(z) ∼ G(ζ)

ζn
√

2πb(ζ)
asn→ ∞

with b(z) = z2h′′(z) + zh′(z) andh(z) = logG(z).

PROOF. Integration is carried out over a circle centred at the origin, of some radiusr
to be specified shortly. Under the change of variablesz = reiθ , the Cauchy coefficient
formula becomes

(50) gn ≡ [zn]G(z) =
r−n

2π

∫ +π

−π

G(reiθ)e−niθ dθ.

In order to obtain a quadratic approximationwithout a linear term, one chooses
the radius of the circle as the positive solutionζ of the equationa(ζ) = n, that is,
a solution of Equation (48). (Thusζ is a saddle point ofG(z)z−n.) By the remarks
accompanying (47), we haveζ → ρ− asn → +∞. Following the general saddle
point strategy, we decompose the integration domain and set

J (0) =

∫ +θ0

−θ0

G(ζeiθ)e−niθ dθ, J (1) =

∫ 2π−θ0

θ0

G(ζeiθ)e−niθ dθ.

(i) Tails pruning. By the capture conditionH1 and the decay conditionH3, we
have the trivial bound, which proves sufficient for our purposes:

(51) J (1) = o

(
f(ζ)√
b(ζ)

)
,

(ii) Central approximation. The uniformity of locality conditionH2 implies

(52) J (0) ∼ f(ζ)

∫ +θ0

−θ0

e−θ2b(ζ)/2 dθ.

(iii) Tails completion.A combination of the locality conditionH2 and the decay
conditionH3 instantiated atθ = θ0, shows thatb(ζ)θ2 → +∞ asn → +∞. There
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FIGURE VIII.6. The families of Boltzmann distributions associated with involutions
(G(z) = ez+z2/2 with r = 4 . . 8) and set partitions (G(z) = eez−1 with r = 2 . . 3) obey
an approximate Gaussian profile.

results that tails can be completed back, and
(53)
∫ +θ0

−θ0

e−b(r)θ2/2 dθ ∼ 1√
b(r)

∫ +θ0/
√

b(ζ)

−θ0/
√

b(ζ)

e−t2/2 dt ∼ 1√
b(r)

∫ +∞

−∞
e−t2/2 dt.

From (51), (52), and (53) (or equivalently via an application of Theorem VIII.3),
the conclusion of the theorem follows. �

The usual comments regarding the choice of the functionθ0(r) apply. Consider-
ing the expansion (45), we must haveα2(r)θ

2
0 → ∞ andα3(r)θ

3
0 → 0. Thus, in order

to succeed, the method necessitatesa priori α3(r)
2/α2(r)

3 → 0. Then,θ0 should be
taken according to thesaddle point heuristic,

(54)
1

α
1/2
2

≪ θ0 ≪ 1

α
1/3
3

,

a possible choice being the geometric mean of the two boundsθ0(r) = α
−1/4
2 α

−1/6
3 .

The original proof by Hayman [263] contains in fact a general result that describes
the shape of the individual termsgnr

n in the Taylor expansion ofG(z) as r gets
closer to its limit valueρ: it appears that the termsgnr

n exhibit a bell-shaped profile.
Precisely, define a family of discrete random variablesX(r) indexed byr ∈ (0, R) as
follows:

P(X(r) = n) =
gnr

n

G(r)
.

The model in which a randomF structure with GFG(z) is drawn with its size being
the random valueX(r) is known as aBoltzmann model. Then:

Proposition VIII.5. The Boltzmann probabilities associated to an admissible function
G(z) satisfy, asr → ρ−, the Gaussian estimate,

(55) gnr
n =

G(r)√
2πb(r)

[
exp

(
− (a(r) − n)2

b(r)

)
+ ǫn

]
,
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where the error term satisfiesǫn = o(1) asr → ρ uniformly with respect to integers
n, i.e.,limr→ρ supn |ǫn| = 0.

The proof is entirely similar to that of Theorem VIII.4; see Note 9.
� VIII.9. Admissibility and Boltzmann models.The Boltzmann distribution is accessible from

gnr
n =

1

2π

Z 2π−θ0

−θ0

G(reiθ)e−inθ dθ.

The estimation of this integral is once more based on a fundamental split

gnr
n = J(0) + J(1) where J(0) =

1

2π

Z +θ0

−θ0

, J(1) =
1

2π

Z 2π−θ0

+θ0

,

andθ0 = θ0(n) is as specified by the admissibility definition. Only the central approximation
and tails completion deserve a adjustments. The “locality”conditionH2 gives uniformly inn,

(56)
J(0) =

G(r)

2π

Z +θ0

−θ0

ei(a(r)−n)θ− 1
2

b(r)θ2

(1 + o(1)) dθ

=
G(r)

2π

»Z +θ0

−θ0

ei(a(r)−n)θ− 1
2

b(r)θ2

dθ + o

„Z +∞

−∞
e−

1
2

b(r)θ2
«–

.

and setting(a(r)− n)(2/b(r))1/2 = c, we obtain

(57) J(0) =
G(r)

π
p

2b(r)

"Z +θ0

√
b(r)/2

−θ0

√
b(r)/2

e−t2+ict + o(1)

#
.

The integral in (57) can then be routinely extended to a complete Gaussian integral, introducing
only o(1) error terms,

(58) J(0) =
G(r)

π
p

2b(r)

»Z +∞

−∞
e−t2+ict + o(1)

–
.

The Gaussian integral evaluates to
√
πe−c2/4, as is seen bycompleting the squareandshifting

vertically the integration line. �

� VIII.10. Non-admissible functions.singularity analysis andH–admissibility conditions are
in a sense complementary. Indeed, the functionG(z) = (1 − z)−1 fails to be be admissible

as the asymptotic form that Theorem VIII.4 would imply is theerroneous[zn]
1

1− z
!!∼ e−1

√
2π
,

corresponding to a saddle point near1−n−1. The explanation of the discrepancy is as follows:
Expansion (45) hasαν(r) of the order of(1−r)−ν, so that the locality condition and the decay
condition cannot be simultaneously satisfied.

Singularity analysis salvages the situation by using a larger part of the contour and by
normalizing to a global Hankel Gamma integral instead of a more “local” Gaussian integral.
This is also in accordance with the fact that the saddle pointformula gives in the case of[zn](1−
z)−1 a fraction0.14676 of the true value, namely,1. (More generally, functions of the form
(1− z)−β are typical instances with too slow a growth to be admissible.) �

Closure properties.An important characteristic of Hayman’s work is that it leads
to general theorems, which guarantee that large classes of functions are admissible.

Theorem VIII.5 (Closure ofH–admissible functions). LetG(z) andH(z) be admis-
sible functions and letP (z) be a polynomial with real coefficients. Then:

• (i) The productG(z)H(z) and the exponentialeG(z) are admissible func-
tions.
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• (ii) The sumG(z) +P (z) is admissible. If the leading coefficient ofP (z) is
positive thenG(z)P (z) andP (G(z)) are admissible.

• (iii) If the Taylor coefficients ofeP (z) are eventually positive, theneP (z) is
admissible.

PROOF. The easy proofs essentially reduce to making an inspired guess for the choice
of the θ0 function, which may be guided by Equation (54) in the usual way, and
then routinely checking the conditions of the admissibility definition. For instance,
in the case of the exponential,K(z) = eG(z), the conditionsH1,H2,H3 of Defi-
nition VIII.1 are satisfied if one takesθ0(r) = (G(r))−2/5. We refer to Hayman’s
original paper [263] for details. �

Exponentials of polynomials.The closure theorem also implies as a very special
case that any GF of the formeP (z) with P (z) a polynomial with positive coefficients
can be subjected to saddle point analysis, a fact noted by Moser and Wyman [368,
369].
Corollary VIII.2 (Exponentials of polynomials). LetP (z) =

∑m
j=1 ajz

j have non-
negative coefficients and be aperiodic in the sense thatgcd{j | aj 6= 0} = 1. Let
f(z) = eP (z). Then, one has

fn ≡ [zn]f(z) ∼ 1√
2πλ

eP (r)

rn
, where λ =

(
r
d

dr

)2

P (r),

andr is a function ofn given implicitly byr d
drP (r) = n.

The computations are in this case purely mechanical, since they only involve the
asymptotic expansion (with respect ton) of an algebraic equation.

Granted the basic admissibility theorem and closures properties, many functions
are immediately seen to be admissible, including

ez, eez−1, ez+z2/2,

which have previously served as lead examples for illustrating the saddle point method.
Corollary VIII.2 also covers involutions, permutations ofa fixed order in the symmet-
ric group, permutations with cycles of bounded length, as well as set partitions with
bounded block sizes: see Note 11 below. More generally, Callorollary VIII.2 applies
to any labelled set construction,F = SET(G), when the sizes ofG–components are
restricted to a finite set, in which case one has

F [m] = SET
(
∪r

j=1Gj

)
, =⇒ F [m](z) = exp




m∑

j=1

Gj
zj

j!


 .

This covers all sorts of graphs (plain or functional) whose connected components are
of bounded size.
� VIII.11. Applications of “exponentials of polynomials”.Corollary VIII.2 applies to the
following combinatorial situations:

Permutations of orderp (σp = 1) f(z) = exp
“P

j | p
zj

j

”

Permutations with longest cycle≤ p f(z) = exp
“Pp

j=1
zj

j

”

Partitions of sets with largest block≤ p f(z) = exp
“Pp

j=1
zj

j!

”
.
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For instance, the number of solutions ofσp = 1 in the symmetric group satisfies

fn ∼
“n
e

”n(1−1/p)

p−1/2 exp(n1/p),

for any fixed primep ≥ 3 (Moser and Wyman [368, 369]). �

Complete asymptotic expansions.Harris and Schoenfeld have introduced in [261]
a technical condition of admissibility that is stronger than Hayman admissibility and
is calledHS-admissibility. Under suchHS-admissibility, a complete asymptotic ex-
pansion can be obtained. We omit the definition here due to itstechnical character but
refer instead to the original paper [261] and to Odlyzko’s survey [377]. Odlyzko and
Richmond [378] later showed that, ifg(z) isH–admissible, thenf(z) = eg(z) isHS–
admissible. Thus, takingH–admissibility to mean at least exponential growth,full
asymptotic expansions are to be systematically expected atdouble exponential growth
and beyond. The principles of developing full asymptotic expansions are essentially
the same as the ones explained on p. 522—only the discussion of the asymptotic scales
involved becomes a bit technical at this level of generality.

VIII. 5.2. Higher level structures and admissibility. The concept of admissi-
bility and its surrounding properties (Theorems VIII.4 andVIII.5, Corollary VIII.2)
afford a neat discussion of which combinatorial classes should lead to counting se-
quences that are amenable to the saddle point method. For simplicity, we restrict
ourselves here to the labelled universe.

Start from thefirst level structures, namely

SEQ(Z), CYC(Z), SET(Z),

corresponding respectively to permutations, circular graphs, and urns, with EGFs

1

1 − z
, log

1

1 − z
, ez.

The first two are of singularity analysis class; the last one resorts, as we saw, to the
saddle point method and isH-admissible.

Next considersecond level structuresdefined by arbitrary composition of two
constructionsK ◦ K′ applied to the atomic classZ, whereK andK′ taken amongst
the three constructions SEQ,CYC,SET; see Subsection II. 4.2, p. 115 for a discussion
(In the case of the internal constructionK′ it is understood that, for definiteness, the
number of components is constrained to be≥ 1.) There are three structures whose
external construction is of the sequence type, namely,

SEQ◦ SEQ, SEQ◦ CYC, SEQ◦ SET,

corresponding respectively to “labelled compositions”, alignments, and surjections.
All three have a dominant singularity that is a pole; hence they are amenable to mero-
morphic coefficient asymptotics (Chapters IV and V), or, with resulting weaker esti-
mates, to singularity analysis.

Similarly there are three structures whose external construction is of the cycle
type, namely,

CYC ◦ SEQ, CYC ◦ CYC, CYC ◦ SET,
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corresponding to cyclic versions of the previous ones. In that case, the EGFs have a
logarithmic singularity; hence they are amenable to singularity analysis (Chapters VI
and VII), or, after differentiation, to meromorphic coefficient asymptotics again.

The case of an external set construction is of interest. It gives rise to

SET◦ SEQ, SET◦ CYC, SET ◦ SET,

corresponding respectively to fragmented permutations, usual permutations, and set
partitions. The composition SET ◦ CYC appears to be special, because of the general
isomorphism, valid for any classC,

SET(CYC(C)) ∼= SEQ(C),

corresponding to the unicity of the decomposition of a permutation ofC-objects into
cycles. Accordingly, at generating function level, an exponential singularity “simpli-
fies”, when combined with a logarithmic singularity, givingrise to an algebraic (here
polar) singularity. The remaining two cases, namely, fragmented permutations and set
partitions, characteristically come under the saddle point method and admissibility, as
we have seen already.

Closure properties then make it possible to consider structures defined by an arbi-
trary nesting of the constructions in{SEQ,CYC,SET}. For instance, “superpartitions”
defined by

S = SET(SET≥ 1(SET≥1(Z))), =⇒ S(z) = eeez−1−1,

are third level structures. They can be subjected to admissibility theory and saddle
point estimates applya priori. Notes 13 and 14 further discuss such third level struc-
tures.
� VIII.12. Idempotent mappings.Consider functions from a finite set to itself (“mappings”
or “functional graphs” in the terminology of Chapter II) that are idempotent, i.e.,φ ◦ φ =
φ. The EGF isI(z) = exp(zez) since cycles are constrained to have length 1 exactly. The
functionI(z) is admissible and

In ∼ n!√
2πnζ

ζ−ne(n+1)/(ζ+1),

whereζ is the positive solution ofζ(ζ + 1)eζ = n + 1. This example is discussed by Harris
and Schoenfeld in [261]. �

� VIII.13. The number of societies.A society onn distinguished individuals is defined by
Sloane and Wieder [441] as follows: first partition then individuals into nonempty subsets and
then form an ordered set partition [preferential arrangement] into each subset. The class of
societies is thus a “third level” (labelled) structure, with specification and EGF

S = SET
`
SEQ≥1(SET≥1(Z))

´
=⇒ S(z) = exp

„
1

2− ez
− 1

«
.

The counting sequence starts as1, 1, 4, 23, 173, 1602 (EIS75729); asymptotically

Sn ∼ C e
√

2n/ log 2

n3/4(log 2)n
,

for some computableC. (The singularity is of the type “exponential-of-pole” atlog 2.) �
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� VIII.14. Third level classes.Consider labelled classes defined from atoms (Z) by three
nested constructions of the formK ◦ K′

≥1 ◦ K′′
≥1, where eachK,K′,K′′ is either a sequence

(abbreviatedS) or a set(P) construction. All cases can be analysed, either by saddle point
and admissibility (SP) or by singularity analysis (SA). Here is a table recapitulating structures,
together with their EGF, radius of convergence (ρ), and analytic type.

PPP eeez−1−1 ρ =∞ (SP) SPP 1
2−eez−1 ρ = 1 + log log 2 (SA)

PPS eez/(1−z)−1 ρ = 1 (SP) SPS 1

2−ez/(1−z) ρ = log 2
1+log 2

(SA)

PSP exp( 1
2−ez ) ρ = log 2 (SP) SSP 2−ez

3−2ez ρ = log 3
2

(SA)

PSS ez/(1−2z) ρ = 1
2

(SP) SSS 1−2z
1−3z

ρ = 1
3

(SA)

The outermost construction dictates the analytic type and precise asymptotic equivalents can be
developed in all cases. �

VIII. 5.3. Moment analyses. Univariate applications of admissibility include
the analysis of generating functions relative to moments ofdistributions, which are
obtained by differentiation and specialization of corresponding multivariate generat-
ing functions. In the context of saddle point analyses, the dominant asymptotic form
of the mean value as well as bounds on the variance usually result, often leading to
concentration of distribution (convergence in probability) properties.

The situation of interest here is that of a counting generating functionG(z), cor-
responding to a classG, which is amenable to the saddle point method. A parameterχ
onG gives rise to a bivariate GFG(z, u), which is a deformation ofG(z, u) whenu
is close to 1. Then the GFs

∂uG(z, u)|u=1 , , ∂2
uG(z, u)

∣∣
u=1

, . . . ,

relative to successive (factorial) moments, in many cases,amenable to an analysis
that closely resembles that ofG(z) itself. In this way, moments can be estimated
asymptotically.

We illustrate the analysis of moments by means of two examples:

— Example 7 provides an analysis of the mean number of blocks in a random
set partition by means of bivariate generating functions.

— Example 8 estimates the mean number of increasing subsequences in a ran-
dom permutation by means of a direct generating function construction.

EXAMPLE VIII.7. Blocks in random set partitions.The function

G(z, u) = eu(ez−1)

is the bivariate generating function of set partitions withu marking the number of blocks (or
parts). We setG(z) = G(z, 1) and define

M(z) =
∂

∂u
G(z, u)

˛̨
˛̨
u=1

= eez+z−1.

Thus, the quantity
mn

gn
=

[zn]M(z)

[zn]G(z)

represents the mean number of parts in a random partition of[1 . . n]. We already know that
G(z) is admissible and so isM(z) by closure properties. The saddle point for the coefficient
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integral ofG(z) occurs atζ such thatζeζ = n, and it is already known thatζ = log n −
log log n+ o(1).

It would be possible to analyzeM(z) by means of Theorem VIII.4 directly: the analysis
then involves a saddle pointζ1 6= ζ that is relative toM(z). An analysis of the mean would
then follow, albeit at some computational effort. It is however more transparent to appeal to
Lemma VIII.5 and analyse the coefficients ofM(z) at the saddle point ofG(z).

Let a(r), b(r) anda1(r), b1(r) be the functions of Eq. (46) relative toG(z) andM(z)
respectively:

logG(z) = ez − 1 logM(z) = ez + z − 1
a(r) = rer a1(r) = rer + r = a(r) + r
b(r) = (r2 + r)er b1(r) = (r2 + r)er + r = b(r) + r.

Thus, estimatingmn by Lemma VIII.5 with the formula taken atr = ζ, one finds

mn =
eζG(ζ)p
2πb1(ζ)

»
exp

„
− ζ2

b1(ζ)

«
+ o(1)

–
,

while the corresponding estimate forgn is

gn =
G(ζ)p
2πb(ζ)

[1 + o(1)].

Given thatb1(ζ) ∼ b(ζ) and thatζ2 is of smaller order thanb1(ζ), one has

mn

gn
= eζ(1 + o(1)) =

n

log n
(1 + o(1)).

A similar computation applies to the second moment of the number of parts which is
found to be asymptotic toe2ζ (the computation involves taking a second derivative). Thus, the
standard deviation of the number of parts is of an ordero(eζ) that is smaller than the mean.
This implies a concentration property for the distributionof the number of parts.

Proposition VIII.6. The variableXn equal to the number of parts in a random partition of the
set[1 . . n] has expectation

E{Xn} =
n

log n
(1 + o(1)).

The distribution satisfies a “concentration” property: foranyǫ > 0, one has

P

˛̨
˛̨ Xn

E{Xn} − 1

˛̨
˛̨ > ǫ

ff
→ 0 asn→ +∞.

The calculations are not difficult (see Note 15 for details) but they require care in the
manipulation of asymptotic expansions: for instance, Salvy and Shackell [426] who “do it
right” report that two discrepant estimates (differing by afactor of e−1) had been previously
published regarding the value of the mean. . . . . . . . . . . . . . . .. . . END OF EXAMPLE VIII.7. �

� VIII.15. Higher moments of the number of blocks in set partitions.LetXn be the number
of blocks in a random partition ofn elements. Then, one has

E(Xn) =
n

log n
+
n log log n (1 + o(1))

log2 n
, V(Xn) =

n

log2 n
+
n(2 log log n− 1 + o(1))

log2 n
,

which proves concentration. The calculation is best performed in terms of the saddle pointζ,
then converted in terms ofn. [See Salvy’s étude [425] and [426].] �
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� VIII.16. The shape of random involutions.Consider a random involution of sizen, the EGF
of involutions beingez+z2/2. Then the mean number of 1-cycles and 2-cycles satisfy

E(# 1-cycles) =
√
n+O(1), E(# 2-cycles) =

1

2
n−√n+O(1).

In addition, the corresponding distributions are concentrated. �

EXAMPLE VIII.8. Increasing subsequences in permutations.Given a permutation written in
linear notation asσ = σ1 · · ·σn, an increasing subsequence is a subsequenceσi1 · · ·σik which
is in increasing order, i.e.,i1 < · · · < ik andσi1 < · · ·σik . The question asked is:What is the
mean number of increasing subsequences in a random permutation?

The problem has a flavour analogous to that of “hidden” patterns in random words, which
was tackled in Chapter V, p. 292, and indeed similar methods are applicable here. Define a
tagged permutationas a permutation together with one of its increasing subsequence distin-
guished. (We also consider the null subsequence as an increasing subsequence.) For instance,

7 |3 5 2 |6 4 1 |8 9

is a tagged permutation with the increasing subsequence368 that is distinguished. The vertical
bars are used to identify the tagged elements, but they may also be interpreted as decomposing
the permutation into subpermutation fragments. We letT be the class of tagged permutations,
T (z) be the corresponding EGF, and setTn = n![zn]T (z). Themeannumber of increasing
subsequences in a random permutation of sizen is clearlytn = Tn/n!.

In order to enumerateT , we letP be the class of all permutations andP+ the subclass of
non empty permutations. Then, one has up to isomorphism,

T = P ⋆ SET(P+),

since a tagged permutation can be reconstructed from its initial fragment and theset of its
fragments (by ordering the set according to increasing values of initial elements). This combi-
natorial argument gives the EGFT (z) as

T (z) =
1

1− z exp

„
z

1− z

«
.

The generating functionT (z) can be expanded, so that the quantityTn admits a closed
form,

Tn =
nX

k=0

 
n

k

!
n!

k!
.

From there it is possible to analyseTn asymptotically by means of the Laplace method for
sums, as was done by Lifschitz and Pittel in [332]. However, analytically, the functionT (z) is
a mere variant of the EGF of fragmented permutations. Saddlepoint conditions are again easily
checked, either directly or via admissibility, to the effect that

(59) tn ≡ Tn

n!
∼ e−1/2e2

√
n

2
√
πn1/4

.

(Compare with the closely related estimate (44) on p. 527.)
The estimate (59) has the great advantage of providing information about an important and

much less accessible parameter. Indeed, letλ(σ), represent thelength of the longest increasing
subsequencein σ With ι(σ) is the number of increasing subsequences, one has the general
inequality,

2λ(σ) ≤ ι(σ),
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since the number of increasing subsequences ofσ is at leastas large as the number of subse-
quences contained in thelongestincreasing subsequence. Let nowℓn be the expectation ofλ
over permutations of sizen. Then, convexity of the function2x implies

(60) 2ℓn ≤ tn, so that ℓn ≤ 2

log 2

√
n(1 + o(1)).

In summary:

Proposition VIII.7. The mean number of increasing subsequences in a random permutation
of n elements is asymptotically

e−1/2e2
√

n

2
√
πn1/4

(1 + o(1)) .

Accordingly, the expected length of the longest increasingsubsequence in a random permutation
of sizen satisfies the inequality

ℓn ≤ 2

log 2

√
n(1 + o(1)).

The upper bound obtained on the expected lengthℓn of the longest increasing sequence
is of the form2.89

√
n while Note 19 describes a lower bound of the formℓn ≥ 1

2

√
n. In

fact, Logan and Shepp [336] independently of Vershik and Kerov [485] have succeeded in
establishing the much more difficult result

ℓn ∼ 2
√
n.

Their proof is based on a detailed analysis of the profile of a random Young tableau. (The bound
obtained here by a simple mixture of saddle point estimates and combinatorial approximations
at least provides the right order of magnitude.) This has ledin turn to attempts at characterizing
the asymptotic distribution of the length of the longest increasing subsequence. The problem
remained unsolved for two decades, despite many tangible progresses. J. Baik, P. A. Deift,
and K. Johansson [19] eventually obtained a solution (in a publication dated 1999) by relating
longest increasing subsequences to eigenvalues of random matrix ensembles. We regretfully
redirect the reader to relevant presentations of the beautiful theory surrounding this sensational
result, for instance [7, 114]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . END OF EXAMPLE VIII.8. �

� VIII.17. A useful recurrence.A decomposition according to the location ofn yields for tn
in (60) the recurrence

tn = tn−1 +
1

n

n−1X

k=0

tk, t0 = 1.

HenceT (z) satisfies the ordinary differential equation,

(1− z)2 d
dz
T (z) = (2− z)T (z), T (0) = 1,

which can be solved explicitly. Also the differential equation gives rise to the recurrence

tn+1 = 2tn − n

n+ 1
tn−1, t0 = 0, t1 = 2,

by whichtn can be computed efficiently in a linear number of operations. �

� VIII.18. Related combinatorics.The sequence of values ofTn starts as1, 2, 7, 34, 209, 1546,
and isEISA002720. It counts the following equivalent objects:(i) then × n binary matrices
with at most one entry1 in each column;(ii) the partial matchings of the complete bipartite
graphKn,n; (iii) the injective partial mappings of[1 . . n] to itself. �
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� VIII.19. A simple probabilistic lower bound.Elementary probability theory provides a sim-
ple lower bound onℓn. LetX1, . . . ,Xn be independent random variables uniformly distributed
over [0, 1]. Assumen = m2. Partition[0, 1[ into m subintervals each of the form[ j−1

m
, j

m
[

andX1, . . . ,Xn intom blocks, each of the formX(k−1)m+1, . . . ,Xkm. There is a probability
1−(1−m−1)m ∼ 1−e−1 that block numbered 1 contains an element of subinterval numbered
1, block numbered 2 contains an element of subinterval numbered 2, and so on. Then, with high
probability, at leastm

2
of the blocks contain an element in their matching subinterval. Conse-

quently,ℓn ≥ 1
2

√
n, for n large enough. (The factor1

2
can even be improved a little.) The

crisp booklet by Steele [451] describes many similar as well as more advanced applications to
combinatorial optimization. See also the book of Motwani and Raghavan [370] for applications
to randomized algorithms in computer science. �

� VIII.20. The Baik–Deift-Johansson Theorem.Consider the Painlevé II equationu′′(x) =
2u(x)3 + xu(x), and the particular solutionu0(x) that is asymptotic to−Ai(x) asx→ +∞,
with Ai(x) the Airy function, which solvesy′′−xy = 0. Define the Tracy-Widom distribution
(arising in random matrix theory)

F (t) = exp

„Z ∞

t

(x− t)u0(x)
2 dx

«
.

The distribution of the length of the longest increasing subsequence,Ln satisfies

lim
n→∞

P
“
Ln ≤ 2

√
n+ tn1/6

”
= F (t),

for any fixedt. Thus the discrete random variableLn converges to a well-characterized distri-
bution [19]. (An exact formula for associated GFs is due to Gessel; see p. 698.) �

VIII. 6. Integer partitions

We examine the asymptotic enumeration of partitions, wherethe saddle point
method serves as the main asymptotic engine. The corresponding generating function
enjoys rich properties, and the analysis, which goes back toHardy and Ramanujan in
1917, constitutes, as we pointed out in the introduction, a jewel of classical analysis.

Integer partitions represent additive decompositions of integers, when the order
of summands isnot taken into account. When all summands are allowed, the specifi-
cation and ordinary generating function are (Section I. 3, p. 37)

(61) P = MSET(SEQ≥1(Z)) =⇒ P (z) =

∞∏

m=1

1

1 − zm
,

which, by the exp-log transformation admits the equivalentform

(62)
P (z) = exp

∞∑

m=1

log(1 − zm)−1

= exp

(
z

1 − z
+

1

2

z2

1 − z2
+

1

3

z3

1 − z3
· · ·
)
.

From either of these two forms, it can be seen that the unit circle is natural boundary,
beyond which the function cannot be continued. The second form, which involves the
quantityexp(z/(1 − z)) is reminiscent of the EGF of fragmented permutations, ex-
amined in Example 6, p. 527, to which the saddle point method could be successfully
applied.
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Summands Specification Asymptotics

All, Z≥1 MSET(SEQ≥1(Z))
1

4n
√

3
eπ
√

2n/3 Ex. 2, p. 541

All distinct, Z≥1 PSET(SEQ≥1(Z))
1

4 · 31/4n3/4
eπ
√

n/3 Note 25, p. 546

Squares,1, 4, 9, 16, · · · — Cn−7/6eKn1/3

Note 25, p. 546

Primes,2, 3, 5, 7, . . . — logP (Π)
n ∼ c

r
n

log n
Note 27, p. 546

Powers of two,1, 2, 4, . . . — logM2n ∼ (log n)2

2 log 2
Note 28, p. 547

Plane — c1n
−25/36ec2n2/3

Note 26, p. 546

FIGURE VIII.7. Asymptotic enumeration of various types of partitions.

In what follows, we show (Example 9) that the saddle pont method is applicable,
though the analysis ofP (z) near the unit circle is delicate (and pregnant with deep
properties). The accompanying notes point to similar methods being applicable to a
variety of similar-looking generating functions, including those relative to partitions
into primes, squares, and distinct summands, as well as plane partitions: see Figure 7
for a summary of some of the asymptotic results known.

EXAMPLE VIII.9. Integer partitions.We are dealing here with a famous chapter of both as-
ymptotic combinatorics and additive number theory. A problem similar to that of asymptotically
enumerating partitions was first raised by Ramanujan in a letter to Hardy in 1913, and subse-
quently developed in a famous joint work of Hardy and Ramanujan (see the account in Hardy’s
Lectures[260]). The Hardy–Ramanujan expansion was later perfected by Rademacher [18]
who, in a sense, gave an “exact” formula for the partition numbersPn.

A complete derivation with all details would consume more space than what we can devote
to this questions. We outline here the proof strategy in sucha way that, hopefully, the reader
can supply the missing details by herself. (The cited references provide a complete treatment).

Like before, we start with simple saddle point bounds. LetPn denote the number of
integer partitions ofn, with OGF as stated in (61). A form amenable to bounds derivesfrom
the exp–log reorganization (62), which yields

P (z) exp

„„
1

1− z

«
·
„
z

1
+

z2

2(1 + z)
+

z3

3(1 + z + z2)
+ · · ·

««
.

The denominator of the general term in the exponential satisfies, forx ∈ (0, 1), mxm−1 <
1 + x+ · · ·+ xm−1 < m, so that

(63)
1

1− x
X

m≥1

x

m2
< logP (x) <

1

1− x
X

m≥1

xm

m2
.

This proves for realx→ 1 that

(64) P (x) = exp

„
π2

6(1− x) (1 + o(1)

«
,
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given the elementary identity
P
m−2 = π2/6. The singularity type atz = 1 resembles that

of fragmented permutations (p. 527), and at least the growthalong the real axis is similar. An
approximate saddle point is then

(65) bζ(n) = 1− π√
6n
,

which gives a saddle point bound

Pn ≤ exp
`
K
√
n(1 + o(1)

´
, K = π

r
2

3
.

Proceeding further involves transforming the saddle pointbounds into a complete sad-
dle point analysis. Based on previous experience, we shall integrate along a circle of radius
r = bζ(n). To do so, two ingredients are needed:(i) an approximation in the central range;
(ii) bounds establishing that the functionP (z) is small away from the central range so that
tails can be first neglected, then completed back. Assuming the expansion (63) to lift to an area
of the complex plane near the real axis, the range of the saddle point should be analogous to
what was found already forexp(z/(1−z)), so thatθ0 = n−7/10 will be adopted. Accordingly,
we choose to integrate along a circle of radiusr = bζ(n) given by (65) and define the central
region byθ0 = n−7/10. Under these conditions, the central region is seen under anangle that
isO(n−1/5) from the pointz = 1.

(i) Central approximation. This requires a refinement of (63) tillo(1) terms as well as an
argument establishing a lifting to a region near the real axis. We setz = e−t and start with
t > 0. The function

L(t) := logP (e−t) =
X

m≥1

e−mt

m(1− e−mt)

is a harmonic sum which is amenable to Mellin transform techniques (as described in APPEN-
DIX B: Mellin transform, p. 707). The base function ise−t/(1 − e−t), the amplitudes are
the coefficients1/m and the frequencies are the quantitiesm figuring in the exponents. The
Mellin transform of the base function, as given in the appendix, is Γ(s)ζ(s). The Dirichlet
series associated to the amplitude frequency pairs is

P
m−1m−s = ζ(s+ 1), so that

L⋆(s) = ζ(s)ζ(s+ 1)Γ(s).

ThusL(t) is amenable to Mellin asymptotics and one finds

(66) L(t) =
π2

6t
+

1

2
log t− log

√
2π − 1

24
t+O(t2), t→ 0+,

from the poles ofL⋆(s) at s = 1, 0,−1. This corresponds to an improved form of (64):

(67) logP (z) =
π2

6(1− z) +
1

2
log(1− z)− π2

12
− log

√
2π +O(1− z).

At this stage, we make a crucial observation:The precise estimate (66) extends whent lies
in any sector symmetric about the real axis, situated in the half-planeℜ(t) > 0, and with
an opening angle of the formπ − δ for an arbitrary δ > 0. This derives from the fact that
the Mellin inversion integral and the companion residue calculations giving rise to (66) extend
to the complex realm as long as|Arg(t)| < π

2
− 1

2
δ. (See the appendix on Mellin or the

article [184].) Thus, the expansion (67) holds throughout the central region given our choice
of the angleθ0. The analysis in the central region is then practically isomorphic to the one of
exp(z/(1− z)) in the previous example, and it presents no special difficulty.

(ii) Bounds in the noncentral region.This is here a nontrivial task since half of the factors
entering the product form (61) ofP (z) are infinite atz = −1, one third are infinite atz =
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FIGURE VIII.8. Integer partitions. (Left) The surface|P (z)| with P (z) the OGF of
integer partitions. The plot shows the major singularity atz = 1 and smaller peaks cor-
responding to singularities atz = −1, e±2iπ/3 and other roots of unity. (Right) A plot
of P (reiθ) for varying θ andr = 0.5, . . . , 0.75 illustrates the increasing concentration
property ofP (z) near the real axis.

e±2iπ/3, and so on. Accordingly, the landscape of|P (z)| along a circle of radiusr that tends
to 1 is quite chaotic: see Figure 8 for a rendering. It is possible to extend the analysis of
logP (z) near the real axis by way of the Mellin transform to the casez = e−t−iφ ast → 0
andφ = 2π p

q
is commensurate to2π. In that case, one must operate with

Lφ(t) =
X

m≥1

1

m

e−m(t+iφ)

1− e−m(t+iφ)
=
X

m≥1

X

k≥1

1

m
e−mk(t+iφ),

which is yet another harmonic sum. The net result is that when|z| tends radially towardse2πi p
q ,

thenP (z) behaves roughly like

(68) exp

„
π2

6q2(1− |z|)

«
,

which is a power1/q2 of the exponential growth asz → 1−1. This analysis extends next to
a small arc. Finally, consider a complete covering of the circle by arcs whose centres are of
argument2π j

N
, j = 1, . . . , N − 1, with N chosen large enough. A uniform version of the

bound (68) makes it possible to bound the contribution of thenoncentral region and prove it
to be exponentially small. There are several technical details to be filled in order to justify this
approach, so that we switch to a more synthetic one based on transformation properties ofP (z),
following [10, 13, 18, 260]. (Such properties also enter the Hardy-Ramanujan-Rademacher
formula forPn in an essential way.)



544 VIII. SADDLE POINT ASYMPTOTICS

The fundamental identity satisfied byP (z) reads

(69) P (e−2πτ ) =
√
τ exp

„
π

12

„
1

τ
− τ
««

P (e−2π/τ ),

which is valid whenℜ(τ ) > 0. The proof is a simple rephrasing of a transformation formula of
Dedekind’sη (eta) function, summarized in Note 21 below.
� VIII.21. Modular transformation for the Dedekindeta function. Consider

η(τ ) := q1/24
∞Y

m=1

(1− qm), q = e2πiτ ,

with ℑ(τ ) > 0. Thenη(τ ) satisfies the “modular transformation” formula,

(70) η

„
− 1

τ

«r
τ

i
η(τ ).

This transformation property is first proved whenτ is purely imaginaryτ = it, then extended
by analytic continuation. Its logarithmic form results from a residue evaluation of the integral

1

2πi

Z

γ

cotπs cotπ
s

τ

ds

s
,

with γ a large contour avoiding poles. (This elementary derivation is due to C. L. Siegel. The
functionη(τ ) satisfies transformation formulæ underS : τ 7→ τ+1 andT : τ 7→ −1/τ , which
generate the group of modular (in fact “unimodular”) transformationsτ 7→ (aτ + b)/(cτ + d)
with ad− bc = 1. Such functions are calledmodular forms.) �

Given (69), the behaviour ofP (z) away from the positive real axis and near the unit
circle can now be quantified. Here, we content ourselves witha representative special case, the
situation whenz → −1. Consider thusP (z) with z = e−2πt+iπ, where, for our purposes, we
may taket = 1√

24n
. Then, Equation (69) relatesP (z) toP (z′), with τ = t− i/2 and

z′ = e−2π/τ = exp

„
− 2πt

t2 + 1
4

«
eiφ, φ = − π

t2 + 1
4

.

Thus|z′| → 1 ast→ 0 with the important condition that|z′| − 1 = O
`
(|z| − 1)1/4

´
. In other

words,z′ has movedawayfrom the unit circle. Thus, since|P (z′)| < P (|z′|), we may apply
the estimate (67) toP (|z′|) to the effect that

log |P (z)| ≤ π

24(1− |z|) (1 + o(1), (z → −1+).

This is an instance of what was announced in (68) and is in agreement with the surface plot of
Figure 8. The extension to an arbitrary angle presents no major difficulty.

The two properties developed in(i) and(ii) above guarantee that the approximation (67)
can be used and that tails can be completed. We find accordingly that

Pn ∼ [zn]
e−π2/12

√
1− z exp

„
π2

6(1− z)

«
.

All computations done, this provides:

Proposition VIII.8. The numberpn of partitions of integern satisfies

(71) pn ≡ [zn]

∞Y

k=1

1

1− zk
∼ 1

4n
√

3
eπ
√

2n/3

The singular behaviour along and near the real line is comparable to that ofexp((1−z)−1),
which explains a growth of the forme

√
n. . . . . . . . . . . . . . . . . . . . END OF EXAMPLE VIII.9. �
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The asymptotic formula (71) is only the first term of a complete expansion involv-
ing decreasing exponentials that was discovered by Hardy and Ramanujan in 1917 and
later perfected by Rademacher (see Note 23 below). While thefull Hardy–Ramanujan
expansion necessitates considering infinitely many saddle–points near the unit circle
and requires the modular transformation of Note 21, the mainterm of (71) only re-
quires the asymptotic expansion of the partition generating function nearz = 1.

The principles underlying the partition example have been made into a general
method by Meinardus [355] in 1954. Meinardus’ method abstracts the essential fea-
tures of the proof and singles out sufficient conditions under which the analysis of an
infinite product generating function can be achieved. The conditions, in agreement
with the Mellin treatment of harmonic sums, requires analytic continuation of the
Dirichlet series involved inlogP (z) (or its analogue), as well as smallness towards
infinity of that same Dirichlet series. A summary of Meinardus’ method constitutes
Chapter 6 of Andrews treatise on partitions [10] to which the reader is referred. The
method applies to many cases where the summands and their multiplicities have a
regular enough arithmetic structure.
� VIII.22. A simple yet powerful formula.Define (cf [260, p. 118])

P ◦
n =

1

2π
√

2

d

dn

„
eKλn

λn

«
, K = π

r
2

3
, λn :=

r
n− 1

24
.

ThenP ◦
n approximatesPn with a relative precision of ordere−c

√
n for somec > 0. For

instance, the error is less than3 ·10−8 for n = 1000. [Hint: The transformation formula makes
it possible to evaluate the central part of the integral veryprecisely.] �

� VIII.23. The Hardy–Ramanujan–Rademacher expansion.The number of integer partitions
satisfies theexactformula

Pn =
1

π
√

2

∞X

k=1

Ak(n)
√
k
d

dn

sinh(π
k

q
2
3
(n− 1

24
))

q
n− 1

24

,

where Ak(n) =
X

h mod k,gcd(h,k)=1

ωh,ke
−2iπh/k,

ωh,k is a 24th root of unity,ωh,k = exp(πis(h, k)), andsh,k =
k−1X

µ=1

{{µ
k
}} {{hµ

k
}} is known

as a Dedekind sum, with{{x}} = x− ⌊x⌋ − 1
2
. Proofs are found in [10, 13, 18, 260]. �

� VIII.24. Meinardus’ theorem.Consider the infinite product (an ≥ 0)

f(z) =
∞Y

n=1

(1− zn)−an .

The associated Dirichlet series isα(s) =
X

n≥1

an

ns
. Assume thatα(s) is continuable into a

meromorphic function toℜ(s) ≥ −C0 for someC0 > 0, with only a simple pole at some
ρ > 0 and corresponding residueA; assume also thatα(s) is of moderate growth in the half-
plane, namely,α(s) = O(|s|C1 ), for someC1 > 0 (as |s| → ∞ in ℜ(s) ≥ −C0). Let
g(z) =

P
n≥1 anz

n and assume a concentration condition of the form

ℜg(e−t−2iπy)− g(e−t) ≤ −C2y
−ǫ.
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Then the coefficientfn = [zn]f(z) satisfies

fn = Cnκ exp
“
Knρ/(ρ+1)

”
, K = (1 + ρ−1)

ˆ
AΓ(ρ+ 1)ζ(ρ+ 1)

˜1/(ρ+1)
.

The constantsC, κ are:

C = eα′(0)(2π(1 + ρ))−1/2 [AΓ(ρ+ 1)ζ(ρ+ 1)](1−2α(0))/(2ρ+2) , κ =
α(0)− 1− 1

2
ρ

1 + ρ
.

Details of the concentration condition, and error terms arefound in [10, Ch 6]. �

� VIII.25. Various types of partitions.The number of partitions into distinct odd summands,
squares, cubes, triangular numbers, are cases of application of Meinardus’ method. For instance
the method provides, for the numberQn of partitions intodistinct summands, the asymptotic
form

Qn ∼ eπ
√

n/3

4 · 31/4n3/4
.

The central approximation is obtained by a Mellin analysis from

L(t) := logQ(et) =

∞X

m=1

(−1)m

m

e−mt

1− e−mt
, L⋆(s) = −Γ(s)ζ(s)ζ(s+ 1)(1− 2−s),

L(t) ∼ π2

12t
− log

√
2 +

1

24
t..

(See the already cited references [10, 13, 18, 260].) �

� VIII.26. Plane partitions. A plane partition of a given numbern is a two-dimensional array
of integersni,j that are nonincreasing both from left to right and top to bottom and that add up
to n. The first few terms (EISA000219) are1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859 and P.
A. MacMahon proved that the OGF is

R(z) =
∞Y

m=1

(1− zm)−m.

Meinardus’ method applies to give

Rn ∼ (ζ(3)2−11)1/36n−25/36 exp
“
3 · 2−2/3ζ(3)1/3n2/3 + 2c

”
,

wherec = − e
4π2 (log(2π) + γ − 1).

(See [10, p. 199] for this result due to Wright [504] in 1931.) �

� VIII.27. Partitions into primes.Let P (Π)
n be the number of partitions ofn into summands

that are all prime numbers,

P (Π)(z) =
∞Y

m=1

(1− z)−pm ,

wherepm is themth prime (p1 = 2, p2 = 3, . . . ). The sequence starts as (EISA000607):

1, 0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 30, 35, 40.

Then

(72) logP (Π)
n ∼

„
2

3

«1/2

π

„
n

log n

«1/2

(1 + o(1)) .

An upper bound of a form consistent with (72) can be derived elementarily as a saddle point
bound based on the property

X

n≥1

e−tpn ∼ t

log t
, t→ 0.
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This last fact results either from the Prime Number Theorem or from a Mellin analysis based
on the fact thatΠ(s) :=

P
p−s

n satisfies, withµ(m) the Möbius function,

Π(s) =
∞X

m=1

µ(m) log ζ(ms).

(See Roth and Szekeres’ study [415] as well as Yang’s article [512] for relevant references and
recent technology.) This is in sharp contrast with compositions into primes (Chapter V, p. 317)
whose analysis turned out to be especially easy. �

� VIII.28. Partitions into powers of2. Let Mn be the number of partitions of integern into
summands that are powers of 2. ThusM(z) =

Q
m≥0(1− z2m

)−1. The sequence(Mn) starts
as1, 1, 2, 2, 4, 4, 6, 6, 10 (EISA018819). One has

logM2n =
1

2 log 2

„
log

n

log n

«2

+

„
1

2
+

1

log 2
+

log log 2

log 2

«
log n+O(log log n).

De Bruijn [110] determined the precise asymptotic form ofM2n. (See also [140] for related
problems.) �

Averages and moments.Based on the foregoing analysis, it is possible to per-
form the analysis of several parameters of integer partitions in a way parallel to our
discussion of moments in Subsection VIII. 5.3. In particular, it becomes possible to
justify the empirical observations regarding the profile ofpartitions made in the course
of Example III.6, p. 160.
� VIII.29. Mean number of parts in integer partitions.The mean number of parts (or sum-
mands) in a random integer partition of sizen is

1

K

√
n log n+O(n1/2), K = π

r
2

3
.

For a partition into distinct part, the mean number of parts is

2
√

3 log 2

π

√
n+ o(n1/2).

The complex-analytic proof only requires the central estimates oflogP (e−t) andlogQ(e−t),
given the concentration properties, as well as the estimates

X

m≥1

e−mt

1− e−mt
∼ − log t+ γ

t
+

1

4
,
X

m≥1

(−1)m−1 e−mt

1− e−mt
∼ log 2

t
− 1

4
,

which result from a standard Mellin analysis, the respective transforms being

Γ(s)ζ(s)2, Γ(s)(1− 21−s)ζ(s)2.

Full asymptotic expansions of the mean and of moments of any order can be determined. In
addition, the distributions are concentrated around theirmean. (The first order estimates are
due to Erdős and Lehner [155] who gave an elementary derivation and also obtained the limit
distribution of the number of summands in both cases: they are a double exponential (forP )
and a Gaussian (forQ).) �

VIII. 7. Large powers

The extraction of coefficients in powers of a fixed function and more generally
in functions of the formA(z)B(z)n constitutes a prototypical and easy application of
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the saddle point method. We will accordingly be concerned here with the problem of
estimating

(73) [zN ]A(z) ·B(z)n =
1

2iπ

∮
A(z)B(z)n dz

zn+1
,

as bothn andN get large. This situation generalizes directly the exampleof inverse
factorials and the exponential, where we have dealt with a coefficient extraction equiv-
alent to[zn](ez)n (see pp. 515 and 520), as well as the case of the central binomial
coefficients, where an estimate of[zn](1 + z)2n is wanted (p. 515). General estimates
relative to (73) are derived in Subsections VIII. 7.1 (bounds) and VIII. 7.2 (asymp-
totics). We finally discuss perturbations of the basic saddle point paradigm in the case
of large powers (Subsection VIII. 7.3):Gaussian approximationsare obtained in a
way that generalizes “local” versions of the Central Limit Theorem for sums of dis-
crete random variables. This last subsection paves the way for the analysis of limit
laws in the next chapter, where the rich framework of“quasi-powers” will be shown
to play a central rôle in so many combinatorial applications.

VIII. 7.1. Large powers: saddle-point bounds. We consider throughout this
section two fixed functions,A(z) andB(z) satisfying the following conditions:

L1: The functionsA(z) =
∑

j≥0 ajz
j andB(z) =

∑
j≥0 bjz

j are analytic at 0
and have nonnegative coefficients; furthermore it is assumed (without loss
of generality) thatB(0) 6= 0.

L2: The functionB(z) is aperiodic in the sense thatgcd
{
j
∣∣ bj > 0

}
= 1.

(ThusB(z) is not a function of the formβ(zp) for some integerp > 0 and
someβ analytic at 0.)

L3: LetR ≤ ∞ be the radius of convergence ofB(z); the radius of convergence
of A(z) is at least as large asR.

Define the quantityT called thespread:

(74) T := lim
x→R−

xB′(x)

B(x)
.

Our purpose is to analyse the coefficients

[zn]A(z) ·B(z)n,

whenN andn are linearly related. The conditionN < Tn will be imposed: it is both
technically needed in our proof and inherent in the nature ofthe problem. (ForB a
polynomial of degreed, the spread isT = d; for a functionB whose derivative at
its dominant positive singularity remains bounded, the spread is finite; forB(z) = ez

and more generally for entire functions, the spread isT = ∞.)
Saddle point bounds result almost immediately from the previous assumptions.

Proposition VIII.9 (Saddle point bounds for large powers). Consider functionsA(z)
andB(z) satisfying the conditionsL1,L2,L3 above. Letλ be fixed a positive number
with 0 < λ < T and letζ be the unique positive root of the equation

ζ
B′(ζ)

B(ζ)
= λ.
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Then, withN = λn an integer, one has

[zN ]A(z) · B(z)n ≤ A(ζ)B(ζ)nζ−N .

PROOF. The existence and unicity ofζ is guaranteed by an argument already encoun-
tered several times (Note 44, p. 266, and Note 4, p. 516). The conclusion then follows
by an application of general saddle point bounds (CorollaryVIII.1, p. 514). �

EXAMPLE VIII.10. Entropy bounds for binomial coefficients.Consider the problem of esti-
mating the binomial coefficients

`
n

λn

´
for someλ with 0 < λ < 1. It is assumed thatN = λn

is an integer. Proposition VIII.9 provides
 
n

λn

!
= [zN ](1 + z)n ≤ (1 + ζ)nζ−N ,

where ζ
1+ζ

= λ, i.e.,ζ = λ
1−λ

. A simple computation then shows that

2−n

 
n

λn

!
≤ exp(nH(λ)), where H(λ) = −λ log λ− (1− λ) log(1− λ)

is the entropy function. Thus, forλ 6= 1
2
, the binomial coefficients

`
n

λn

´
are exponentially

smaller than the central coefficient
`

n
n/2

´
, and the entropy function precisely quantifies this

exponential gap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . END OF EXAMPLE VIII.10. �

� VIII.30. Anomalous dice games.The probability of a score equal toλn in n casts of an
unbiased die is bounded from above by a quantity of the forme−nK where

K = −6 + log

„
1− ζ6

1− ζ

«
− (λ− 1) log ζ,

andζ is an algebraic function ofλ determined by
P5

j=0(λ− j)ζj = 0. �

� VIII.31. Large deviation bounds for sums of random variables.Let g(u) = E(uX) be the
probability generating function of a discrete random variableX ≥ 0 and letµ = g′(1) be the
corresponding mean (assumeµ < ∞). SetN = λn and letζ be the root ofζg′(ζ)/g(ζ) = λ
assumed to exist within the domain of analyticity ofg. Then, forλ < µ, one has

X

k≤N

[uk]g(u)n ≤ 1

1− ζ g(ζ)
nζ−N .

Dually, forλ > µ, one finds
X

k≥N

[uk]g(u)n ≤ ζ

ζ − 1
g(ζ)nζ−N .

These are exponential bounds on the probability thatn copies of the variableX have a sum
deviating substantially from the expected value. �

VIII. 7.2. Large powers: saddle point analysis. The saddle point bounds for
large powers are technically shallow but useful, whenever only rough order of magni-
tude estimates are sought. In fact, the full saddle point method is applicable under the
very conditions of the preceding proposition.
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Theorem VIII.6 (Saddle point analysis for large powers). Under the conditions of
Proposition VIII.9, one has

(75) [zN ]A(z) · B(z)n = A(ζ)
B(ζ)n

ζN+1
√

2πnξ
(1 + o(1)).

whereζ is the unique root ofζB′(ζ)/B(ζ) = λ and

ξ =
d2

dζ2
(logB(ζ) − λ log z) .

In addition, a full expansion in descending powers ofn exists.
These estimates hold uniformly forλ in any compact interval of(0, T ), i.e., any

interval [λ′, λ′′] with 0 < λ′ < λ′′ < T , whereT is the spread.

PROOF. We discuss the analysis corresponding to a fixedλ. For any fixedr such that
0 < r < R, the function|B(reiθ)| is, by positivity of coefficientsand aperiodicity,
uniquely maximal atθ = 0 (see The Daffodil Lemma on p. 253). It is also infinitely
differentiable at 0. Consequently there exists a (small) angleθ1 ∈ (0, π) such that

|B(reiθ)| ≤ |B(reiθ1)| for all θ ∈ [θ1, π],

and at the same time,|B(reiθ)| is strictly decreasing forθ ∈ [0, θ1] (it is given by a
Taylor expansion without linear term).

We carry out the integration along the saddle point circle,z = ζeiθ, where the
previous inequalities on|B(z)| hold. The contribution for|θ| > θ1 is exponentially
negligible. Thus, up to exponentially small terms, the sought coefficient is given
asymptotically byJ(θ1), where

J(φ) =
1

2π

∫ φ1

−φ1

A(ζeiφ)B(ζeiφ)eniφ dφ.

It is then possible to impose asecondrestriction onθ, by introducingθ0 according to
the general heuristic, namely,nθ20 → ∞, nθ30 → 0. We fix here

θ0 ≡ θ0(n) = n−2/5.

By the decrease of|B(ζeiθ)| on [θ0, θ1] and by local expansions, the quantityJ(θ1)−
J(θ0) is of the formexp(−cn1/5) for somec > 0, that is, exponentially small.

Finally, local expansion are valid in the central range since θ0 tends to 0 asn →
∞. One finds forz = ζeiθ and|θ| ≤ θ0,

A(z)B(z)n ∼ A(ζ)B(ζ)nζ−N exp(−nξθ2/2).

Then the usual process applies upon completing the tails, resulting in the stated esti-
mate. A complete expansion in powers ofn−1/2 is obtained by extending the expan-
sion of logB(z) to an arbitrary order (like in the case of Stirling’s formula, p. 522).
Furthermore, by parity, all the involved integrals of odd order vanish so that the ex-
pansion turns out to be in powers of1/n (rather than1/

√
n). �
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EXAMPLE VIII.11. Central binomials and trinomials, Motzkin numbers.An automatic ap-
plication of Theorem VIII.6 is to the central binomial coefficient

`
2n
n

´
= [zn](1 + z)2n. In the

same way, one gets an estimate of the central trinomial number,

Tn := [zn](1 + z + z2)n shown to satisfy Tn ∼ 3n+1/2

2
√
πn

.

The Motzkin numbers count unary-binary trees,

Mn = [zn]M(z) where M = z(1 +M +M2).

The standard approach is the one seen earlier based on singularity analysis as the implicitly
defined functionM(z) has an algebraic singularity of the√ -type, but the Lagrange inversion
formula provides an equally workable route. It gives

Mn+1 =
1

n+ 1
[zn](1 + z + z2)n+1,

which is amenable to saddle point analysis via Theorem VIII.6, leading to

Mn ∼ 3n+1/2

2
√
πn3

.

See below p. 552 for more on this theme. . . . . . . . . . . . . . . . . . . END OF EXAMPLE VIII.11. �

We have opted for a basic formulation of the theorem with conditions onA andB
that are not minimal. It is easily recognized that the estimates of Theorem VIII.6
continue to hold, provided thatthe function|B(reiθ)| attains a unique maximum on
the positive real axis, whenr ∈ (0, T ) is fixed andθ varies on[−π, π]. Also, in order
for the statement to hold true, it is only required thatthe functionA(z) does not vanish
on (0, T ), andA(z) orB(z) could then well be allowed to have negative coefficients:
see Note 35. Finally, ifA(ζ) = 0, then a simple modification of the argument still
provides precise estimates in this vanishing case; see Note34 below.
� VIII.32. Central Stirling numbers.The central Stirling numbers of both kinds satisfy

n!

(2n)!

"
2n

n

#
∼ c1An

1n
−1/2

`
1 +O(n−1)

´
,

n!

(2n)!

(
2n

n

)
∼ c2An

2n
−1/2

`
1 +O(n−1)

´
,

whereA1
.
= 2.45540, A2

.
= 1.54413, andA1, A2 are expressible in terms of special values of

the Cayley tree function. Similar estimates hold for
ˆ
αn
βn

˜
and

˘
αn
βn

¯
. �

� VIII.33. Integral points on high-dimensional spheres.This note is based on an article by
Mazo and Odlyzko [353]. Let L(n, α) be the number of lattice points (i.e., points with integer
coordinates) inn-dimensional space that lieon the sphere of radiusN =

√
αn assumed to be

an integer. Then,

L(n, α) = [zN ]Θ(z)n, where Θ(z) :=
X

n∈Z

zn2

= 1 + 2
∞X

n=1

zn2

.

Thus, there are computable constantsC,D depending ona such thatL(n, α) ∼ Cn−1/2Dn.
The number of lattice pointsinside the sphere can be similarly estimated. (Such bounds are
useful in coding theory, combinatorial optimization, especially the knapsack problem, and cryp-
tography.) �
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� VIII.34. Coalescence of a saddle point with roots of the multiplier.Fix ζ and take a
multiplier A(z) in Theorem VIII.6 such thatA(ζ) = 0, butA′(ζ) 6= 0. The formula (75) is
then to be modified as follows:

[zN ]A(z) · B(z)n =
ˆ
A′(ζ) + ζA′′(ζ)

˜ B(ζ)n

ζN+1
p

2πn3ξ3
(1 + o(1)).

Higher order cancellations can also be taken into account. �

� VIII.35. A function with negative coefficients that is minimal along the positive axis.Take
B(z) = 1 + z − z10 with |z| ≤ 1

10
. By design,B(z) has negative Taylor coefficients. On the

other hand,|B(reiθ)| for fixed r ≤ 1
10

(say) attains its unique maximum atθ = 0. The saddle
point method still applies and an estimate of[zn]B(z)n is obtained by (75). �

Large powers: saddle points versus singularity analysis.In general, the La-
grange inversion formula establishes an exact correspondence between twoa priori
different problems, namely,

— the estimation of coefficients of large order in large powers, and
— the estimation of coefficients of implicitly defined functions.

In one direction, the Lagrange Inversion Theorem has the capacity of bringing
the evaluation of coefficients of implicit functions into the orbit of the saddle point
method. Indeed, letY be defined implicitly byY = zφ(Y ), whereφ is analytic at 0
and aperiodic. One has, by Lagrange,

[zn+1]Y (z) =
1

n+ 1
[wn]φ(w)n+1,

which is of the type (75). Then, under the assumption that thecharacteristic equa-
tion φ(τ) − τφ′(τ) has a positive root within the disc of convergence ofφ, a direct
application of Theorem VIII.6 yields

[zn]Y (z) ∼ γ
ρ−n

2
√
πn3

, ρ :=
τ

φ(τ)
, γ :=

√
2φ(τ)

φ′′(τ)
.

This last estimate is equivalent to the statement of TheoremVII.2 on page 435, ob-
tained there by singularity analysis. (As we know from Chapter VII, this provides
the number of trees in a simple variety, withφ being the degree generating function
of the variety.) This approach is in a few cases more convenient to work with than
singularity analysis, especially when explicit or uniformupper bounds are required,
since constructive bounds tend to be more easily obtained oncircles than on variable
Hankel contours (Note 36).

Conversely, the Lagrange Inversion Theorem makes it possible to approach large
powers problems by means of singularity analysis of an implicitly defined function4.
This mode of operation can prove quite useful when there occurs a coalescence be-
tween saddle points and singularities of the integrand (Note 37).

4This is in essence an approach suggested by several sectionsof the original memoir of Darboux[106,
§3–§5], in which “Darboux’s method” discussed in Chapter VI was first proposed. It is also of interest to
note that a Lagrangean change of variables transforms a saddle point circe into a contour whose geometry
is of the type used in singularity analysis.
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� VIII.36. An assertion of Ramanujan.In his first letter to Hardy, Ramanujan (1913) an-
nounced that

1

2
en = 1 +

n

1!
+
n2

2!
+ · · ·+ nn−1

(n− 1)!
+
nn

n!
θ,

where θ =
1

3
+

4

135(n + k)
,

andk lies between8
45

and 2
21

. Ramanujan’s assertion indeed holds for alln ≥ 1; see [187] for
a proof based on saddle points and effective bounds. �

� VIII.37. Coalescence between a saddle-point and a singularity.The integral in

In := [yn](1 + y)2n(1− y)−α =
1

2iπ

Z

0+

(1 + y)2n

(1− y)α

dy

yn+1
,

can be treated directly, but this requires a suitable adaptation of the saddle-point method, given
the coalescence between a saddle point at 1 [the part withoutthe (1 − y)α factor] and a
singularity at that same point. Alternatively, it can be subjected to the change of variables
z = y/(1 + y)2. Theny is defined implicitly byy = z(1 + y)2, so that

In =
1

2iπ

Z

0+

1 + y

(1− y)1+α

dz

zn+1
= [zn]

1 + y

(1− y)1+α
.

Sincey(z) has a square-root singularity atz = 1/4, the integrand is of typeZ−(1+α)/2, and

In ∼ 22n−α

Γ(α+1
2

)
n(α−1)/2.

In general, forφ(y) satisfying the assumptions (relative toB) of Theorem VIII.6, one
finds, withτ : φ(τ )− τφ′(τ ) = 0),

1

2iπ

Z

0+

φ(y)n

(φ(τ )− φ(y))α

dy

yn
∼ c

„
φ(τ )

τ

«n
n(α−1)/2

Γ(α+1
2

)
.

Van der Waerden discuses this problem systematically in [479]. See also Section VIII. 9 below
for other coalescence situations. �

VIII. 7.3. Large powers: Gaussian forms. Saddle point analysis has conse-
quences for multivariate asymptotics and it constitutes a direct way of establishing
that many discrete distributions tend to the Gaussian law inthe asymptotic limit. For
large powers, this property derives painlessly from our earlier developments, espe-
cially Theorem VIII.6, by means of a “perturbation” analysis.

First, let us examine a particularly easy problem:How do the coefficients of
[zN ]enz vary as a function ofN whenn is some large but fixed number?These
coefficients are

C
(n)
N = [zN ]enz =

nN

N !
.

By the ratio test, they have a maximum whenN ≈ n and are small whenN differs
significantly fromn; see Figure 9. The bell-shaped profile is also apparent on thefig-
ure and is easily verified by elementary real analysis. The situation is then parallel to
what is already known of the binomial coefficients on thenth line of Pascal’s triangle,
corresponding to[zN ](1 + z)n with N varying.

The asymptotically Gaussian character of coefficients of large powers is actually
universal amongst a wide class of analytic functions. We prove this within the frame-
work of large powers already investigated in Subsection VIII. 7.1 and consider the
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FIGURE VIII.9. The coefficients[zN ]enz , whenn = 100 is fixed andN = 0 . . 200
varies, have a bell-shaped aspect. (The coefficients are normalized bye−n.)

general problem of estimating the coefficients[zN ] (A(z) ·B(z)n) asN varies. In ac-
cordance with the conditions on p. 548, we postulate the following: (L1): A(z), B(z)
are analytic at 0, have nonnegative coefficients, and are such thatB(0) 6= 0; (L2):
B(z) is aperiodic;(L3) The radius of convergenceR of B(z) is a minorant of the
radius of convergence ofA(z). We also recall that thespreadhas been defined as
T := limx→R− xB′(x)/B(x).

Theorem VIII.7 (Large powers and Gaussian forms). Consider the “large powers”
coefficients:

(76) C
(n)
N := [zN ] (A(z) ·B(z)n) .

Assume that the two analytic functionsA(z), B(z) satisfy the conditions(L1), (L2),
and (L3) above. Assume also that the radius of convergence ofB satisfiesR > 1.
Define the two constants:

µ =
B′(1)

B(1)
, σ2 =

B′′(1)

B(1)
+
B′(1)

B(1)
−
(
B′(1)

B(1)

)2

(σ > 0).

Then the coefficientsC(n)
N for fixedn asN varies have an asymptotically Gaussian

profile in the precise sense that forN = µn+ x
√
n, there holds (asn→ ∞)

(77)
1

A(1)B(1)n
C

(n)
N =

1

σ
√

2πn
e−x2/(2σ2)

(
1 +O(n−1/2)

)
,

uniformly with respect tox, whenx belongs to a finite interval of the real line.

PROOF. We start with a few easy observation that shed light on the global behaviour
of the coefficients. First, sinceR > 1, we have the exact summation,

∞∑

N=0

C
(n)
N = A(1)B(1)n,
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which explains the normalization factor in the estimate (77). Next, by definition of the
spread and sinceR > 1, one has

µ =
B′(1)

B(1)
< T = lim

x→R−

xB′(x)

B(x)
,

given the general property thatxB′(x)/B(x) is increasing. Thus, the estimation of
the coefficients in the rangeN = µn±O(

√
n) falls into the orbit of Theorem VIII.6

which expresses the results of the saddle point analysis in the case of large powers.
Referring to the statement of Theorem VIII.6, the saddle point equation is

ζ
B′(ζ)

B(ζ)
=
B′(1)

B(1)
+

x√
n
,

with ζ a function ofx andn. Forx in a bounded set, we thus haveζ ∼ 1 asn→ ∞. It
then suffices to effect an asymptotic expansion of the quantitiesζ, A(ζ), B(ζ), ξ in the
saddle point formula of Equation (75). In other words, the fact thatN is close toµn
induces forζ a small perturbation with respect to the value 1. Withaj := A(j)(1) and
bj := B(j)(1), one finds mechanically

ζ = 1 +
b20

b0b2 + b0b1 − b1
2

x√
n

+O(n−1)

B(ζ)

ζµ
= b0 +

x2

2n

b30
b0b2 + b0b1 − b1

2 +O(n−3/2),

and so on. The statement follows. �

Take firstA(z) ≡ 1. In the particular case whenB(z) is the probability generating
function of a discrete random variableY , one hasB(1) = 1, and the coefficient
µ = B′(1) is the mean of the distribution. The functionB(z)n is then the probability
generating function (PGF) of a sum ofn independent copies ofY . Theorem VIII.7
then describes a Gaussian approximation of the distribution of the sum near the mean.
Such an approximation is called alocal limit law, where the epithet “local” refers
to the fact that the estimate applies to the coefficients themselves. (In contrast, an
approximation of the partial sums of the coefficients by the Gaussian error function
is known as acentral limit law or as anintegral limit law.) In the more general
case whereA(z) is also a probability generating function of a nondegenerate random
variable (i.e.,A(z) 6= 1), similar properties hold and one has:

Corollary VIII.3 (Local limit law for sums). LetX be a random variable with prob-
ability generating function (PGF)A(z) andY1, . . . , Yn be independent variables with
PGFB(z), where it is assumed thatX and theYj are supported onZ≥0. Assume that
A(z) andB(z) are analytic in some disc that contains the unit disc in its interior and
thatB(z) is aperiodic. Then the sum,

Sn := X + Y1 + Y2 + · · · + Yn,

satisfies a local limit law of the Gaussian type: Forx in any finite interval, one has

P
(
Sn = ⌊µn+ tσ

√
n⌋
)

=
e−t2/2

√
2πn

(
1 +O(n−1/2)

)
.
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PROOF. This is just a restatement of Theorem VIII.7, settingx = tσ and taking into
accountA(1) = B(1) = 1. �

Gaussian forms for large powers admit many variants. As already pointed out
in Section VIII. 4, the positivity conditions can be greatlyrelaxed. Also, estimates
for partial sums of the coefficients are possible by similar techniques. The asymp-
totic expansions can be extended to any order. Finally, suitable adaptations of The-
orems VIII.6 and VIII.7 make it possible to allowx to tend slowly to infinity and
manage what is known as a “moderate deviation” regime. We do not pursue these as-
pects here since we shall develop a more general framework, that of “Quasi-Powers”
in the next chapter.
� VIII.38. An alternative proof of Corollary VIII.3.The saddle pointζ is near 1 whenN is near
the centreN ≈ µn. It is alternatively possible to recover theC(N)

n by Cauchy’s formula upon
integrating along the circle|z| = 1, which is then only anapproximatesaddle point contour.
This convenient variant is often used in the literature, butone needs to take care of linear terms
in expansions. Its origins go back to Laplace himself in his first proof of the local limit theorem
(which was expressed however in the language of Fourier series as Cauchy’s theory was yet
to be born). See Laplace’s treatiseThéorie Analytique des Probabilités[328] first published in
1812 for much fascinating mathematics. �

VIII. 8. Saddle points and probability distributions

Saddle point methods are useful not only for estimating combinatorial counts, but
also for extracting probabilistic characteristics of large combinatorial structures. In the
previous section, we have already encountered the large powers framework, giving rise
to Gaussian laws. In this section, we further examine the waya saddle point analysis
can serve to quantify properties of random structures. There is an extreme diversity of
possible situations, which partly defy classification. so that we must content ourselves
with the discussion of a single representative example. (A good rule of thumb is once
more that the saddle point method is likely to succeed in cases involving some sort
of exponential growth of GFs.) Note that problems of a true multivariate nature will
be examined in the next chapter specifically dedicated to multivariate asymptotics and
limit distributions.

EXAMPLE VIII.12. Capacity in occupancy problems.This example is relative to random
allocations, occupancy statistics, and balls-in-bin models, as already introduced in Chapter II.
We limit ourselves here to saddle point bounds. (The variousregimes of the distribution are
well covered in [316, pp. 94–115].)

Assume thatn balls are thrown inton bins, uniformly at random. How many balls does the
most filled bin contain? We shall in fact deal with a generalized version of the problem where
n balls are thrown intom bins, in the regimen = αm for some fixedα in (0,+∞). The size
of the most filled bin will be called thecapacityand we letCn,m denote the random variable,
when allmn tables are taken equally likely. Under our conditions a random bin contains on
average a constant number,α, of balls. The proposition below proves that the most filled bin
has somewhat more, as exemplified by Figure 10.

Proposition VIII.10. Let n andm tend simultaneously to infinity, with the constraint that
n
m

= α remains constant. Then, the expected capacity satisfies

1

2

log n

log log n
(1 + o(1)) ≤ E{Cn,m} ≤ 2

log n

log log n
(1 + o(1)).
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FIGURE VIII.10. Three random allocations ofn = 50 balls inm = 50 bins.

In addition, the probability of capacity to lie outside the interval determined by the lower and
upper bounds tends to 0 asm,n→∞.

PROOF. We detail the proof whenα = 1 and abbreviateCn = Cn,m, the generalization to
α 6= 1 requiring only simple adjustments. From Chapter II, we knowthat

(78)

8
><
>:

P{Cn ≤ b} =
n!

nn
[zb](eb(z))

n

P{Cn > b} =
n!

nn
(enz − (eb(z))

n),

whereeb(z) is the truncated exponential:

eb(z) =
bX

j=0

zj

j!
.

The two equalities of (78) permit us to bound the left and right tails of the distribution. As
suggested by the Poisson approximation of balls-in-bins model, we decide to adopt saddle point
bounds based onz = 1. This gives

(79)

8
>><
>>:

P{Cn ≤ b} ≤ n!en

nn

„
eb(1)

e

«n

P{Cn > b} ≤ n!en

nn

„
1−

„
eb(1)

e

«n«
.

We set

(80) ρb(n) =

„
eb(1)

e

«n

.

This quantity represents the probability thatn Poisson variables of rate 1 all have valueb or less.
(We know for elementary probability theory that this shouldbe a reasonable approximation of
the problem at hand.) A weak form of Stirling’s formula, namely, n!en

nn < 2
√
πn (n ≥ 1),

then yields an alternative version of (79),

(81)


P{Cn ≤ b} ≤ 2

√
πnρb(n)

P{Cn > b} ≤ 2
√
πn (1− ρb(n)).

For fixedn, the functionρb(n) increases steadily frome−n to 1 asb varies from0 to∞.
In particular, the “transition region” whereρb(n) stays away from both 0 and 1 is expected to
play a rôle. This suggests definingb0 ≡ b0(n) such that

b0! ≤ n < (b0 + 1)!,

so that

b0(n) =
log n

log log n
(1 + o(1)).
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We also observe that, asn, b→∞, there holds

(82)
ρb(n) = (e−1eb(1))

n =

„
1− e−1

(b+ 1)!
+O(

1

(b+ 2)!
)

«n

= exp

„
− ne−1

(b+ 1)!
+O(

n

(b+ 2)!
)

«
.

Left tail. We takeb = ⌊ 1
2
b0⌋ and a simple computation from (82) shows that forn large

enough,ρb(n) ≤ exp(− 3
√
n). Thus, by the first inequality of (81), the probability that the

capacity be less than1
2
b0 is exponentially small:

(83) P{Cn ≤ 1

2
b0(n)} ≤ 2

√
πn exp(− 3

√
n).

Right tail. Takeb = 2b0. Then, again from (82), forn large enough, one has1− ρb(n) ≤
1− exp(− 1

n
) = 1

n
(1 + o(1)). Thus, the probability of observing a capacity that exceeds2b0

is vanishingly small, and isO(n−1/2). Taking nextb = 2b0 + r with r > 0, similarly gives the
bound

(84) P{Cn > 2b0(n) + r} ≤ 2

r
π

n

„
1

b0(n)

«r

.

The analysis of the left and right tails in Equations (83) and(84) now implies

(85)

8
>>>><
>>>>:

E{Cn} ≤ 2b0(n) +
∞X

r=0

2

r
π

n
(b0(n))−r = 2b0(n)(1 + o(1))

E{Cn} ≥
⌊ 1
2

b0(n)⌋X

r=0

ˆ
1− 2

√
πn exp(− 3

√
n)
˜

=
1

2
b0(n)(1 + o(1)).

This justifies the claim of the proposition whenα = 1. The general case (α 6= 1) follows
similarly from saddle point bounds taken atz = α. �

The saddle point bounds described above are obviously not tight: with some care in deriva-
tions, one can show by the same means that the distribution istightly concentrated around its
mean, itself asymptotic tolog n/ log log n. In addition, the saddle point method may be used
instead of crude bounds. These results, in the context of longest probe sequences in hashing,
were obtained by Gonnet [242] under the Poisson model. Many key estimates regarding random
allocations (including capacity) are to be found in the bookby Kolchinet al. [316]. Analyses of
this type are also useful in evaluating various dynamic hashing algorithms by means of saddle
point methods [171, 408]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . END OF EXAMPLE VIII.12. �

VIII. 9. Multiple saddle points

We conclude this chapter with a discussion of higher order saddle points, ac-
companied by brief indications on what are known as phase transitions or critical
phenomena in the applied sciences.

Multiple saddle point formula.All the analyses carried out so far have been in
terms of simple saddle points, which represent by far the most common situation. In
order to get a feel of what to expect in the case of multiple saddle points, consider first
the problem of estimating the tworeal integrals,

In :=

∫ 1

0

(1 − x2)n dx, Jn :=

∫ 1

0

(1 − x3)n dx.
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FIGURE VIII.11. Two views of a double saddle point also known as “monkey saddle”.

(For the purpose of this discussion, we ignore the fact that the integrals can be eval-
uated in closed form by way of the Beta function.) The contribution of any interval
[x0, 1] is exponentially small, and the ranges to be considered on the right of 0 are
aboutn−1/2 andn−1/3, respectively. One thus sets

x =
t

2
√
n

for In, x =
t

3
√
n

for Jn.

Then local expansions apply, tails can be completed in the usual way, to the effect that

In ∼ 1
2
√
n

∫ ∞

0

e−t2 dt, Jn ∼ 1
3
√
n

∫ ∞

0

e−t3 dt.

The integrals reduce to the Gamma function integral, which provides

In ∼ 1

2

Γ(1
2 )

n
1
2

, Jn ∼ 1

3

Γ(1
3 )

n
1
3

.

The repeated occurrences of1
2 in the quadratic case and of1

3 in the cubic case stand
out. The situation in the cubic case corresponds to the Laplace method for integrals
being used when a multiple critical point is present.

What has been just encountered in the case of real integrals is typical of what to
expect forcomplexintegrals and saddle points of higher orders. Consider, forsimplic-
ity, the case of a double saddle point of an analytic functionF (z). At such a pointζ,
we haveF (ζ) 6= 0, F ′(ζ) = F ′′(ζ) = 0, andF ′′′(ζ) 6= 0. Then, there are three
steepest descent lines emanating from the saddle point and three steepest ascent lines.
Accordingly, one should think of the landscape of|F (z)| as formed of three “valleys”
separated by three mountains and meeting at the common pointζ. The characteristic
aspect is that of of a “monkey saddle” (comparable to a saddlewith places for two
legs and a tail) and is displayed in Figure 11. We can then enounce a modified form
of the saddle point formula of Theorem VIII.3.

Theorem VIII.8. Consider an integral
∫ B

A F (z) dz, where the integrandF = ef is
an analytic function depending on a large parameter andA,B lie in adjacent valleys
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across adoublesaddle pointζ, which is a root of the saddle point equation

f ′(ζ) = f ′′(ζ) = 0,

or, equivalently,F ′(ζ) = F ′′(ζ) = 0. Assume that the contourC connectingA toB
can be split intoC = C(0) ∪ C(1) in such a way that the following conditions are
satisfied: (i) the tail integral

∫
C(1) is negligible; (ii) in the central domainC(0), a

cubicapproximation holds,

f(z) = f(ζ) +
1

3!
f ′′′(ζ)(z − ζ) +O(ηn), ;

with ηn → 0 asn→ ∞ uniformly; (iii) tails can be completed back. Then one has

(86)
1

2iπ

∫ B

A

ef(z) dz ∼ ±ωΓ(1
3 )

2iπ

ef(ζ)

3
√

|f ′′′(ζ)|
,

whereω is a cube root of unity (ω3 = 1) dependent upon the position of the valleys
ofA andB, while the sign± depends on orientation.

PROOF. The proof is a simple adaptation of that of Theorem VIII.3. The heart of the
matter is now the integration of

∫

C

exp

(
1

3!
f ′′′(ζ)(z − ζ)3

)
dz,

with C composed of the two rayste2ijπ/3 andte2i(j+1)π/3, for t ∈ R≥0. �

� VIII.39. Higher-order saddle points.For a saddle point of orderp + 1, the saddle point
formula reads

1

2iπ

Z B

A

ef(z) dz ∼ ±ω
Γ( 1

p
)

2iπ

ef(ζ)

p
p
|f(p)(ζ)|

,

whereωp = 1. �

� VIII.40. Vanishing multipliers and multiple saddle points.This note supplements Note 39.
For a saddle point of orderp+ 1 and an integrand of the form(z − ζ)b · ef(z), the saddle point
formula must be modified according to

Z ∞

0

xbe−axp/p! dx =
1

p

„
a

p!

«b+1

p!Γ

„
b+ 1

p!

«
.

Thus, the argument of theΓ factor is changed from1
p

to b+1
p

, as is the exponent of|f (p)(ζ)|
and ofn in the case of large power estimates. �

Forests and coalescence of saddle points.We give below an application to the
counting of forests of unrooted trees made of a large number of trees. The analysis
precisely involves a double saddle point in a certain critical region. The problem is
in particular relevant to the analysis of random graphs during the phase where a giant
component has not yet emerged.

EXAMPLE VIII.13. Forests of unrooted trees.The problem here consists in determining the
numberFm,n of ordered forests, i.e., sequences, made ofm (labelled, nonplane) unrooted trees
and comprised ofn nodes in total. The number of unrooted trees of sizen is, by virtue of
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FIGURE VIII.12. The functionH governing the exponential rate of the number of
forests exhibits a “phase transition” atα = 1

2
(left); the quantity 1

n
log(Fm,n/n!) as a

function ofα = m/n for n = 200 (right).

Cayley’s formula,nn−2 and its EGF is expressed asU = T − T 2/2, whereT is the Cayley
tree function satisfyingT = zeT . Consequently, we have

1

n!
Fm,n = [zn]

„
T (z)− T (z)2

2

«m

=
1

2iπ

Z

0+

„
T − T 2

2

«m
dz

zn+1
.

Like in the analytic proof of the Lagrange Inversion Theoremit proves convenient to adopt
t = T as an independent variable, so thatz = te−t becomes a dependent variable. Since
dz = (1− t)e−t, this provides the integral representation:

1

n!
Fm,n =

1

2iπ

Z

0+

„
t− 1

2
t2
«m

ent(1− t) dt

tn+1
.

The case of interest here is whenm andn are linearly related. We thus setm = αn, wherea
priori α ∈ (0, 1). Then, the integral representation ofFm,n becomes

(87)
1

n!
Fm,n =

1

2iπ

Z

C

enhα(t)(1− t) dt
t
, hα(t) := α log(1− t

2
)+ t+(α− 1) log t,

whereC encircles 0. This has the form of a “large power” integral. Saddle points are found as
usual as zeros of the derivativeh′

α; there are two of them given by

ζ0 = 2− 2α, ζ1 = 1.

Forα < 1
2
, one hasζ0 > ζ1 while for α > 1

2
the inequality is reversed andζ0 < ζ1. In both

cases, a simple saddle point analysis succeeds, based on thesaddle point nearer to the origin;
see Note 41 below. In contrast, whenα = 1

2
, the pointsζ0 andζ1 coalesce to the common

value 1. In this last case, we haveh′
1
2
(1) = h′′

1
2
(1) = 0 whileh′′′

1
2
(1) = −2 is nonzero: there is

adouble saddle pointat 1.
The number of forests thus presents two different regimes depending on whetherα < 1

2

or α > 1
2
, and there is a discontinuity of the analytic form of the estimates atα = 1

2
. The

situation is reminiscent of “critical phenomena” and phasetransitions (e.g., from solid to liquid
to gas) in physics, where such discontinuities are encountered. This provides a good motivation
to study what happens right at the “critical” valueα = 1

2
.
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integration contour (right).

We thus consider the special valueα = 1
2

and seth ≡ h 1
2

. What is to be determined is

therefore the number of forests of total sizen that are made ofn/2 trees, assuming naturallyn
even. Bearing in mind that the double saddle point is atζ = ζ0 = ζ1 = 1, one has

h(z) = 1− 1

3
(z − 1)3 +O((z − 1)4) (z → 1).

Thus, upon neglecting the tails and localizing the integralto a disc centred at 1 with radiusδ ≡
δ(n) such that

nδ3 →∞, nδ4 → 0

(δ = n−3/10 is suitable), we have the asymptotic equivalence (withy representingz − 1)

(88)
1

n!
Fm,n = −e

n(1− 1
2

log 2)

2iπ

Z

D

e−ny3/3y dy + exponentially small,

whereD is a certain (small) contour containing 0 obtained by transformation fromC.
The discussion so far has left aside the choice of the contourC in (87), hence of the

geometric aspect ofD near 0, which is needed in order to fully specify (88). Because of the
minus sign in the third derivative,h′′′(1) = −2, the three steepest descent half lines stemming
from 1 have angles0, e2iπ/3, e−2iπ/3. This suggest to adopt as original contourC in (87) two
symmetric segments stemming from 1 connected by a loop left of 0; see Figure 13. Elementary
calculations justify that the contour can be suitably dimensioned so as to remain always below
levelh(1). See also the right drawing of Figure 13 where the level curves of the valleysbelow
the saddle point are drawn together with a legal contour of integration that winds about 0.

Once the original contour of integration has been fixed, the orientation ofD in (88) is fully
determined. After effecting the further change of variables y = wn−1/3 and completing the
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tails, we find

(89)
1

n!
Fm,n ∼ λ

n2/3
en(1− 1

2
log 2), λ = − 1

2iπ

Z

E

e−y3/3y dy,

whereE connects∞e−2iπ/3 to 0 then to∞e2iπ/3. The evaluation of the integral givingλ is
now straightforward (in terms of the Gamma function), whichgives:

Proposition VIII.11. The number of forests of total sizen comprised ofn/2 unrooted Cayley
trees satisfies

1

n!
Fn/2,n ∼

2 · 3−1/3

Γ( 2
3
)
en(1− 1

2
log 2)n−2/3.

The numberthreeis characteristically ubiquitous in the formula. (Furthermore, the formula
displays the exponent2

3
instead of1

3
in the general case (88) because of the additional factor

(1 − z) present in the integral representation (87), which vanishes at the saddle point 1; see
Note 40.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . END OF EXAMPLE VIII.13. �

The problem of analysing random forests composed of a large number of trees has
been first addressed by the Russian School, most notably Kolchin and Britikov. We
refer the reader to Kolchin’s book [315, Ch. I] where nearly thirty pages are devoted
to a deeper study of the number of forests and of associated parameters. Kolchin’s
approach is however based on an alternative presentation interms of sums of indepen-
dent random variables and stable laws of index3

2 . As it turns out there is a striking
parallel with the analysis of the growth of the random graph in the critical region,
when the random graph stops resembling a large collection ofdisconnected tree com-
ponents.

An almost sure sign of (hidden or explicit) monkey saddles isthe occurrence of
Γ(1

3 ) factors in the final formulæ and cube roots in exponents of powers ofn. It is in
fact possible to go much further than we have done here with the analysis of forests
(where we have stayed right at the critical point) and provide asymptotic expressions
that describe the transition between regimes, here fromAnn−1/2, toBnn−2/3, then
toCnn−1/2. The analysis then appeals to the theory of coalescent saddle points well
developed by applied mathematicians (see, e.g., the exposition in [59, 381, 502]) and
the already evoked rôle of the Airy function. We do not pursue this thread further since
it properly belongs to multivariate asymptotics. It is exposed in a detailed manner in
an article of Banderier, Flajolet, Schaeffer, and Soria [22] relative to the size of the
core in a random map from, on which our presentation of forests has been modelled.

The results of several studies conducted towards the end of the previous millen-
nium do suggest that, amongst threshold phenomena and phasechanges, there is a fair
amount of universality in descriptions of combinatorial and probabilistic problems by
means of multiple and coalescing saddle points. In particular Γ(1

3 ) factors and the
Airy function surface recurrently in the works of Flajolet,Janson, Knuth, Łuczak and
Pittel [193, 282], which are relative to the Erdős–Renyi random graph modelin its
critical phase; see also [205] for a partial explanation. The occurrence of the Airy area
distribution (in the context of certain polygon models related to random walks) can be
related to this orbit of techniques, as first shown by Prellberg [401], and strong nu-
merical evidence evoked in Chapter V (p. 349) suggests that this might extend to the
difficult problem of self-avoiding walks [411]. Airy-related distributions also appear
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in problems relative to the satisfiability of random booleanexpressions [61], the path
length of trees [461, 459, 460], as well as cost functionals of random allocations[200].
The reasons are sometimes well understood in separate contexts by probabilists, statis-
tical physicists, combinatorialist, and analysts, but a global framework is still missing.
� VIII.41. Forests and simple saddle points.When0 < α < 1

2
, the number of forests

satisfies, for some computableC−(α).

1

n!
Fn,m ∼ C−(α)

eH−(α)

n1/2
, H−(α) = 1− α log 2.

When 1
2
< α < 1, the number of forests satisfies, for some computableC+(α),

1

n!
Fn,m ∼ C+(α)

eH+(α)

n1/2
, H+(α) = α logα+ 2− 2α+ (α− 1) log(2− 2α).

This results from a routinesimple saddle pointanalysis atζ1 andζ0 respectively. �

VIII. 10. Perspective

One of the pillars of classical analysis, the saddle-point method plays a major
rôle in analytic combinatorics. It provides an approach tocoefficient asymptotics and
can handle combinatorial classes, which are not amenable tosingularity analysis. The
simplest case is that of urns, whose generating functionez has no singularities at a
finite distance. Similar functions commonly arise as composed SET constructions.
Broadly speaking, for the class of generating functions that arise from the combinato-
rial constructions of Part A of this book, singularity analysis is effective for functions
that have moderate growth at their singularities; the saddle point method is effective
otherwise.

The essential idea behind the saddle point method is simple,and it is very easy
to get good bounds on coefficient growth. In effect, the Cauchy coefficient integral
defines a surface with a well-defined saddle point somewhere along the positive real
axis, and choosing a circle centred at the origin and passingthrough the saddle point
already provides useful bounds by elementary arguments. The essence of the full
saddle point method is the development of more precise bounds, which are obtained
by splitting the contour into two parts and balancing the associated errors.

Combinatorial classes that are amenable to saddle-point analysis have so far only
been incorporated into relatively few schemas, compared towhat we saw for singu-
larity analysis. The consistency of the approach certainlyargues for the existence of
many more such schemas. A positive signal in that direction is the fact that several
researchers have developed concepts of admissibility thatserve to delineate classes of
function for which the saddle point method boils down to verifying simple conditions.

The saddle point method also provides insights in more general contexts. Most
notably, the general results on analysis of large powers laythe groundwork for distri-
butional analyses and limit laws, which are the subject of the next chapter.

Saddle point methods take their sources in applied mathematics, one of them being the
asymptotic analysis by Debye (1909) of Bessel functions of large order. Saddle point analy-
sis is sometimes called steepest descent analysis, especially when integration contours strictly
coincide with steepest descent paths. Saddle points themselves are also called critical points
(i.e., points where a first derivative vanishes). Because of its roots in applied mathematics, the
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method is well covered by the literature in this area, and we refer to the books by Olver [381],
Henrici [265], or Wong [502] for extensive discussions. A vivid introduction to the subject is to
be found in De Bruijn’s book [111]. We also recommend Odlyzko’s impressive survey [376].

To a large extent, saddle point methods have made an irruption in combinatorial enumera-
tions in the 1950’s. Early combinatorial papers were concerned with permutations (involutions)
or set partitions: this includes works by Moser and Wyman [367, 368, 369] that are mostly
directed towards entire functions.

Hayman’s approach [263] which we have exposed here (see also [502]) is notable in its
generality as it envisions saddle point analysis in an abstract perspective, which makes it possi-
ble to develop general closure theorems. A similar thread was followed by Harris and Schoen-
feld who gave stronger conditions then allowing full asymptotic expansions [261]; Odlyzko
and Richmond [378] were successful in connecting these conditions with Hayman admissibil-
ity. Another valuable work is Wyman’s extension to nonpositive functions [511].

Interestingly enough, developments that parallel the onesin analytic combinatorics have
taken place in other regions of mathematics. Erwin Schrödinger introduced saddle point meth-
ods in his lectures [431] at Dublin in 1944 in order to provide a rigorous foundation to some
models of statistical physics that closely resemble balls-in-bins models. Daniels’ publica-
tion [105] of 1954 is a historical source for saddle point techniques in probability and statistics,
where refined versions of the central limit theorem can be obtained. (See for instance the de-
scription in Greene and Knuth’s book [250].) Since then, the saddle point method has proved a
useful tool for deriving Gaussian limiting distributions.We have given here some idea of this
approach which is to be developed further in a later chapter,where we shall discuss some of
Canfield’s results [76]. Analytic number theory also makes a heavy use of saddle point analysis.
In additive number theory, the works by Hardy, Littlewood, and Ramanujan relative to integer
partitions have been especially influential, see for instance Andrews’ book [10] and Hardy’s
Lectureson Ramanujan [260] for a fascinating perspective. In multiplicative number theory,
generating functions take the form of Dirichlet series while Perron’s formula replaces Cauchy’s
formula. For saddle point methods in this context, we refer to Tenenbaum’s book [468] and his
seminar survey [467].

A more global perspective on limit probability distributions and saddle point techniques
will be given in the next chapter as there are strong relations to the quasi-powers framework de-
veloped there, to local limit laws, and to large deviation estimates. General references for some
of these aspects of the saddle point method are the articles of Bender–Richmond [27], Can-
field [76], and Gardy [227, 228, 229]. Regarding multiple saddle points and phase transitions,
we refer the reader to references provided at the end of Section VIII. 9.
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Un problème relatif aux jeux du hasard,
proposé à un austère janseniste par un homme du monde,

a été à l’origine du Calcul des Probabilités1.

— SIM ÉON–DENIS POISSON
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Analytic combinatorics2 deals with the enumeration of combinatorial structures
in relation to algebraic and analytic properties of generating functions. The most ba-
sic cases are the enumeration of combinatorial classes and the analysis of moments of
combinatorial parameters. These involve generating functions in one (formal or com-
plex) variable as discussed extensively in previous chapters. They are consequently
essentiallyunivariateproblems.

Many applications, in combinatorics as well as in the applied sciences, require
quantifying the behaviour ofparametersof combinatorial structures. It is typically
useful to know that a random permutation of sizen has a number of runs whose
average (mean) equals to(n+1)/2, but it may be equally important to know to which

1“A problem relative to games of chance proposed to an austereJansenist by a man of the world has
been at the origin of the calculus of probabilities.” Poisson refers here to the fact that questions of betting
and gambling posed by the Chevalier de Méré (who was both a gambler and a philosopher) led Pascal (an
austere religious man) to develop some the first foundationsof probability theory.

2Warning : This chapter is still in avery preliminary state (November 2004). It is only included at
this stage in order to illsutrate the global architecture ofAnalytic Combinatorics.
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extent such an average isrepresentativeof what occurs in simulations or on actual
data that obey the randomness model. As a matter if fact, in a random permutation of
sizen = 1, 000, it is found that there are about 70% chances that the number of runs
be in the interval990 . . 1010. Even more dramatically, for runs and a permutation of
sizen = 1, 000 still, there is probability less than10−6 to observe a case that deviates
by more than 10% from the mean value; this probability decreases to about10−65 for
n = 10, 000, and is even less than10−653 for n = 100, 000. As illustrated by such
numeric data, there is obvious interest in analysing the “central” region near the mean,
as well as in quantifying the risk of finding instances that deviate appreciably from the
expected value. These are now typicallybivariateproblems.

It is frequently observed that the histograms of the distribution of a combinatorial
parameter (for varying size values) exhibit a common characteristic “shape”. In this
case, we say that there exists alimit law, which may be of thediscreteor thecontinu-
oustype. Our aim here is to detect such limit laws, and a few examples have already
appeared scattered in this book, in the case where they can bereduced to a collection
of univariate analyses. This chapter provides a coherent set of analytic techniques
dedicated to extracting coefficients of bivariate analyticfunctions. The mathematics
combine methods of complex asymptotic analysis as previously exposed with a small
selection of fundamental theorems from the analytic side ofclassical probability the-
ory.

In simpler cases, limit laws arediscreteand, when this happens, they often belong
to the geometric or Poisson type. In many other cases, limit laws arecontinuous, a
prime example being the Gaussian law associated with the famous bell-shaped curve,
which surfaces so frequently in elementary combinatorial structures. The goal of this
chapter is to offer a fundamental analytic framework for extracting limit laws from
combinatorics.

Symbolic methods provide bivariate generating functions for many natural pa-
rameters of combinatorial structures. Analytically, the auxiliary variable marking the
combinatorial parameter under study then induces adeformationof the (univariate)
counting generating function. This deformation may affectthe type of singularity that
the counting generating function presents in various ways.A perturbationof univari-
ate singularity analysis is then often sufficient to derive an asymptotic estimate of the
probability generating function of a given parameter, whentaken over objects of some
large size. Continuity theorems from probability theory finally allow us to conclude
on the existence of a limit law.

An especially important component of this paradigm is the framework of “Quasi-
Powers”. Large powers tend to occur for coefficients of generating functions (think
of quantities of the form≈ ρ−n that arise from radius of convergence bounds). The
collection of deformations of a single counting generatingfunction is then likely to
induce for the corresponding coefficients a collection of approximations that involve
large powers together with small error terms—these are referred to as quasi-powers.
From there, a Gaussian laws is derived along lines that are somewhat reminiscent of
the classical central limit theorem of probability theory (expressing the asymptotically
Gaussian character of sums of independent random variables).
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The direct relation that can be established between combinatorial specifications
and asymptotic properties, in the form of limit laws, is especially striking, and it is
a characteristic feature of analytic combinatorics. In fact, almost any classical law
of probability theory and statistics is likely to occur somewhere in analytic combina-
torics. Conversely, almost any simple combinatorial parameter is likely to be governed
by an asymptotic law.

IX. 1. Limit laws and combinatorial structures

What is given is a combinatorial classC, labelled or unlabelled, and an integer
valued combinatorial parameterχ. There results both a family of probabilistic models,
namely for eachn the uniform distribution overCn that assigns to anyγ ∈ Cn the
probability

P(γ) =
1

Cn
, with Cn = card(Cn),

and a corresponding family of random variables obtained by restrictingχ toCn. Under
the uniform distribution overCn, we then have

PCn(χ = k) =
1

Cn
card

{
γ ∈ Cn

∣∣ χ(γ) = k
}
.

We writePCn to indicate the probabilistic model relative toCn, but also freely abbre-
viate it toPn or writeP(χn) wheneverC is clear in context.

As n increases, the histograms of the distributions ofχ often share a common
profile; see Figure 1 for two characteristic examples that wediscuss next. Our purpose
is to relate such phenomena to the analysis of bivariate generating functions provided
by the symbolic method.

Binary words. Let us start by discussing the case of binary words with two simple
parameters, one leading to a discrete law, the other to a continuous limit. The ex-
ample is purposely chosen simple enough that explicit expressions are available for
the probability distributions at stake. Nonetheless, it istypical of the approach taken
in this chapter, and, once equipped with suitably general theorems, it is hardly more
difficult to discuss the number of leaves in a nonplane unlabelled tree or the number
of summands in a composition into prime summands.

Take the classWn of binary words of lengthn over the alphabet{a, b} and con-
sider the two parameters forw ∈ W :

χ(w) := number of initiala’s in w, ξ(w) := total number ofa’s in w.

Explicit expressions are available for the counts and

PWn(χ = k) =
1

2k+1
[[0 ≤ k < n]] +

1

2n
[[k = n]],

PWn(ξ = k) =
1

2n

(
n

k

)
.

The probabilities relative toχ then resemble, in the asymptotic limit of largen, the
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FIGURE IX.1. Histograms of probability distributions for the number of initial
a’s in a random binary string (parameterχ, left) and the total number ofa’s
(parameterξ, right). The histogram corresponding toχ is not normalized and
direct convergence to a discrete geometric law is apparent;for ξ, the horizontal
axis is scaled ton, and the histograms quickly conform to the bell-shaped curve
that is characteristic of a continuous gaussian limit.

geometric distribution. One has, for eachk,

lim
n→∞

PWn(χ = k) =
1

2k
.

(In this simple case, it is even true that the limit is exactlyattained as soon asn >
k.) We say that there is alimit law of the discrete typefor χ, this limit law being a
geometric.

In contrast, the parameterξ has meanµn := n/2 and a standard deviationσn :=
1
2

√
n. One should then centre and scale the parameterχ, introducing (overWn) the

“standardized” (or “normalized”) random variable

X⋆
n :=

ξ − n/2
1
2

√
n

,

which can be considered to lie in a fixed scale. It then becomespossible to examine
the behaviour of the (cumulative) distribution functionP(X⋆

n ≤ y) for some fixedy.
In terms ofχ itself, this means that we are consideringP(ξ ≤ µn + yσn) for real
values ofy. Then, the classical approximation of the binomial coefficients yields the
approximation:

(1) lim
n→∞

P(ξ ≤ µn + yσn) =
1√
2π

∫ y

−∞
e−t2/2 dt,

which can be derived by summation from the “local” approximation

(2)
1

2n

(
n

1
2n+ 1

2y
√
n

)
∼ e−y2/2

√
πn

.

We now say that there is alimit law of the continuous typefor ξ, this limit law being a
Gaussian.
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Though cases mixing the discrete and the continuous are theoretically conceivable
(a rare instance arises in the theory of map enumerations and“cores”, see [22]), the
discrete–continuous dichotomy applies to most combinatorial cases of interest.

Distributional properties. As illustrated by the previous discussion, there are two
major types of convergence that the discrete distribution of a combinatorial parameter
may satisfy:

Discrete−→ Discrete and Discrete−→ Continuous.

In accordance with the general notion of convergence in distribution (or weak con-
vergence, see APPENDIX C: Convergence in law, p. 722), we shall say that alimit
law exists for a parameter if there is convergence of the corresponding family of (cu-
mulative) distribution functions. In the broad context of convergence of probability
laws, one also speaks of acentral limit law when such a convergence holds. In the
discrete-to-discrete case, convergence is established without standardizing the random
variables involved. In the discrete-to-continuous case, the parameter should be centred
at its mean and scaled by its standard deviation, like in (1).

There is also interest in obtaining alocal limit law, which, when available, quan-
tifies individual probabilities and probability densities, like in (2). The distinction
between local and central limits is immaterial in the discrete-to-discrete case, where
the existence of one type of law implies the other. In the discrete-to-continuous case,
it is technically more demanding to derive a local limit law than a central one, as
stronger analytic properties are required.

Thespeed of convergencein a limit law describes the way the finite combinatorial
distributions approach their asymptotic limit. It provides useful information on the
quality of asymptotic approximations for finiten models.

Finally, quantifying the “risk” of extreme configurations necessitates estimates on
the tails of the distributions, that is, the behaviour of the probability distribution far
away from its mean. Such estimates are also calledlarge deviationestimates. Large
deviation theory constitutes a useful complement to the study of central and local
limits, as exemplified by the discussion of runs in the introduction to this chapter.

In the remainder of the this chapter, we shall first examine the situation of dis-
crete limits. After this, several sections will be dedicated to the case of continuous
limits, with special emphasis on limit laws of the Gaussian type. In each of the two
cases, the discussion of central laws starts with acontinuity theorem, which states
conditions under which convergence in law can be established from convergence of
transforms. (The transforms in question are probability generating functions for the
discrete case, characteristic functions or Laplace transforms otherwise). Refinements,
known as the Berry-Esseen inequalities when the limit law iscontinuous, then re-
late speed of convergence of the combinatorial distributions to their limit on the one
hand, a distance between transforms on the other hand. Put otherwise, distributions
are close if their transforms are close. Large deviation estimates are often obtained
by a technique of “shifting the mean”, which is familiar in probability and statistics.
The last section gives brief indications on the occurrence of non-Gaussian laws in the
discrete-to-continuous scenario.
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Limit laws and bivariate generating functions. In this chapter, the starting point of
a distributional analysis is invariably a bivariate generating function

F (z, u) =
∑

n,k

fn,ku
kzn,

wherefn,k represents (up to a possible normalization factor) the number of structures
of sizen in some classF . What is sought is asymptotic information relative to the
array of coefficients

fn,k = [znuk]F (z, u),

which could in principle be approached by an iterated use of Cauchy’s coefficient
formula,

[znuk]F (z, u) =

(
1

2iπ

)2 ∫

γ

∫

γ′

F (z, u)
dz

zn+1

du

uk+1
.

Thus, adouble coefficient extractionis to be effected. It turns out that it is in general
arduous if not unfeasible to approach a bivariate counting problem in this way, so that
another route is explored throughout this chapter3.

First, observe that the specialization atu = 1 of F (z, u) gives the counting gen-
erating function ofF , that is,F (z) = F (z, 1). Next, as seen repeatedly starting
from Chapter III, the moments of the combinatorial distribution {fn,k} for fixed n
and varyingk are attainable through the partial derivatives atu = 1, namely

first moment↔ ∂

∂u
F (z, u)

∣∣∣∣
u=1

, second moment↔ ∂2

∂u2
F (z, u)

∣∣∣∣
u=1

, · · · .

In summary:Counting is provided by the bivariate generating functionF (z, u) taken
atu = 1; moments result from the bivariate generating function taken in aninfinites-
imal neighbourhood ofu = 1.

Our approach to limit laws will be as follows.

Estimate the (unormalized) probability generating function

fn(u) :=
∑

k

fn,ku
k ≡ [zn]F (z, u).

This is viewed asingle coefficient extraction(extracting the coefficient
of zn) but parameterizedby u. Thanks to the availability of continuity the-
orems, the following can be proved for a great many cases of combinatorial
interest:The existence and the shape of the limit law derive from an analysis
of the bivariate generating functionF (z, u) taken in afixedneighbourhood
of u = 1. In addition, thanks to Berry–Esseeen inequalities,the quality
of an asymptotic estimate forfn(u) translates into a speed of convergence
estimate for the corresponding laws.Also, for the discrete-to-continuous
case,local limit laws derive from consideration of the bivariategenerating
functionF (z, u) taken on the whole of the unit circle,|u| = 1. Finally,
large deviationestimates are seen to arise from estimates offn(u) whenu

3A collection of recent works by Pemantle and coauthors [388, 389, 390] shows however that a well-
defined class of bivariate asymptotic problems can be attacked by the theory of functions of several complex
variables and a detailed study of the geometry of a singular variety.
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FIGURE IX.2. The correspondence between regions of theu–plane and asymp-
totic properties of combinatorial distributions.

is real andu < 1 (left tail) or u > 1 (right tail). This is to large extent
a reflection of saddle point bounds. In summary:Large deviations are re-
lated to the behaviour ofF (z, u) for real values ofu in an interval[α, β]
containingu = 1.

The correspondence betweenu-domains and properties of laws is summarized in Fig-
ure 2.

Singularity perturbation. As seen throughout Chapters IV–VIII, analytic combina-
torics approaches the univariate problem of counting objects of sizen starting from
the Cauchy coefficient integral,

[zn]F (z) =
1

2iπ

∫

γ

F (z)
dz

zn+1
.

The singularities ofF (z) can be exploited, whether they are of a polar type (Chap-
ters IV and V), algebraic-logarithmic (Chapters VI and VII)or essential and amenable
to saddle point methods (Chapter VIII). It is in this way thatasymptotic forms of
[zn]F (z) are derived.

From the discussion above, crucial information on combinatorial distributions
is accessible from the bivariate generating functionF (z, u) whenu varies in some
domain containing 1. This suggests to considerF (z, u) not so much as an analytic
function of two complex variables, wherez andu would play a symmetric rôle, but
rather as a collection of functions ofz indexed by a secondary parameteru. In other
words,F (z, u) is considered as adeformationof F () ≡ F (z, 1) whenu varies in a
domain containingu = 1. Cauchy’s coefficient integral gives

fn(u) ≡ [zn]F (z, u) =
1

2iπ

∫

γ

F (z, u)
dz

zn+1
.

We can then examine the way the parameteru affects the analysis of singularities
performed in the aymptotic counting problem of estimating[zn]F (z, 1). Such an
approach is called asingularity perturbation analysis. It consists in tracing the effect
of a perturbation byu on the standard singularity analysis assocaited to the univariate
problem.
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The essential feature of the analysis of coefficients by means of complex tech-
niques as seen in Chapters IV–VIII is to be “robust”. Being based on explicit estimates
of contour integrals, it is usually amenable to smooth perturbations whose effect can
be traced throughout calculations. Explicit estimates normally result (though added
care in estimations is needed to ensure uniformity). In thischapter, we are going to
see many applications of this strategy.

Regarding binary words and the two parametersχ (initial run of a’s) andξ (total
number ofa’s), the general strategy of singularity perturbation instantiates as follows.
In the case ofWχ, there are two components in the BGF

Wχ(z, u0) =
1

1 − u0z
· 1 − z

1 − 2z
,

and, in essence, the dominant singular part—a simple pole atz = 1/2—arises from
the second component, which does not change whenu0 varies. Accordingly, one has

Wχ(z, u0) ∼
z→1

1
2

1 − u0

2

W (z), [zn]Wχ(z, u0) ∼
1
2

1 − u0

2

2n.

The probability generating function ofχ overWn is then obtained upon dividing by
2−n, and

1

2n
[zn]Wχ(z, u0) ∼

1
2

1 − u0

2

=

∞∑

k=0

1

2k+1
uk

0 ,

where the last expression is none other than the probabilitygenerating function of
a discrete law, namely, the geometric distribution of parameter 1

2 . As we shall see
in section IX. 2 where we enounce a continuity theorem for probability generating
functions, this is enough to conclude that the distributionofχ converges to a geometric
law.

In the second case, that ofWξ, the auxiliary parameter modifies the location of
the singularity,

Wξ(z, u0) =
1

1 − z (1 + u0)
.

Then, the singular behaviour is strongly dependent upon a singularity at

ρ(u0) =
1

(1 + u0)

thatmovesask varies, while the type of singularity (here a simple pole) remains the
same. Accordingly, the coefficients obey a “large power law”(here of an exact type)
and, as regards the probability generating function ofξ overWn, one has

1

2n
[zn]Wξ(z, u0) =

(
1

2ρ(u0)

)n

,

This analytical form is reminiscent of the central limit theorem of probability theory
after which large powers, corresponding to sums of a large number of independent
random variables, entail convergence to a Gaussian law. By continuity theorems for
integral transforms exposed in Sections IX. 4, there results a continuous limit law of
the Gaussian type in this case.
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F (z, u) whenu ≈ 1 Type of law Method and classes

Sing. + expo. fixed Discrete limit Subcritical composition § xxx
(Neg. binom, Poisson, . . . ) Subcritical Seq., Set, . . .§ xxx

Sing. moves, expo. fixed Gaussian(n, n) Supercritical composition § xxx
— — Meromorphic perturb. § xxx
— — (Rational fns) § xxx
— — Sing. Analysis pertub. § xxx
— — (Alg., implicit fns) § xxx
Sing. fixed, expo. moves Gaussian(log n, log n) Exp-log struct. § xxx
— — (Differential eq.) § xxx
Sing. + expo. move Gaussian [Gao-Richmond [226]]
Essential singularity often Gaussian Saddle point perturbation § xxx
Discontinuous singular type non-Gaussian (Various cases) § xxx
— Stable Critical composition § xxx

FIGURE IX.3. A rough typology of bivariate generating functionsF (z, u) and
limit laws.

The foregoing discussion suggests that a “minor” perturbation of bivariate gener-
ating function that affects neither the location nor the nature of the singularity could
lead to a discrete limit law. A “major” change in exponent or even like here in loca-
tion is likely to be conducive to a continuous limit law, of which the prime example
is the normal distribution. Figure 3 outlines a typology of limit laws in the context
of bivariate asymptotics. A bivariate generating functionF (z, u) is to be analysed.
The deformation induced byu may affect the type of singularity thatF (z, u) has in
various ways. An adapted complex coefficient extraction then provides various types
of limit laws.

IX. 2. Discrete limit laws

Take a classC on which a parameterχ is defined. This determines for eachn
a random variableXn, which isχ restricted toCn, whereCn is endowed with the
uniform probability distribution. In this section, we givethe general definitions and
results that are suitable for the discrete-to-discrete situation, where a discrete parame-
ter tends without normalization to a discrete distribution. The corresponding notion of
convergence is given in Subsection IX. 2.1. Probability generating functions (PGFs)
are important since, by virtue of a continuity theorem stated in Subsection IX. 2.2,
convergence in law results from convergence of PGFs. At the same time, the fact that
PGFs of two distributions are close entails that the original distribution functions are
close. Finally, large deviation estimates for a distribution can be easily related to an-
alytic continuation of its PGFs, a fact introduced in Subsection IX. 2.3. This section
organizes some general tools and accordingly we limit ourselves to a single combina-
torial application, that of the number of cycles of some small fixed size in a random
permutation. The next section will provide a number of deeper applications to random
combinatorial structures.
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IX. 2.1. Convergence to a discrete law.In order to specify precisely what a
limit law is, we base ourselves on the general context described in APPENDIX C:
Convergence in law, p. 722. The principles exposed there provide for what should be
the “right” notion convergence of a family of discrete distributions to a limit discrete
distribution. Here is a self-standing definition.

Definition IX.1 (Discrete-to-discrete convergence). The random variableXn (su-
ported byZ≥0) is said to converge in law to a discrete variableY supported byZ≥0

if for eachk ≥ 0, one has

(3) lim
n→∞

P(Xn ≤ k) = P(Y ≤ k), i.e., lim
n→∞

∑

j=k

pn,j =
∑

j≤k

qj ,

wherepn,k = P(Xn ≤ k) andqk := P(X = k). One also says that the parameterχ
onC admits a limit lawof typeX .

Convergence is said to take place atspeedǫn if

(4) sup
k

∣∣∣∣∣∣

∑

j≤k

P(Xn = j) −
∑

j≤k

qj

∣∣∣∣∣∣
≤ ǫn,

The condition in (3) can be rewritten in terms of the distribution functionsFn, G
of Xn, Y as

limFn(k) = G(k),

pointwise for eachk. When such a property of type (3) relative to distribution func-
tions holds, it is also called a “central” limit law. (One good reason for this termi-
nology is that convergence of distribution functions is principally informative in the
“central part” of the distribution, where a fair proportionof the probability mass lies.)
By differencing, the condition of (3) is clearly equivalentto the condition that, for
eachk,

(5) lim
n
pn,k = qk,

andδn is called a local speed of convergence if

sup
k

|pn,k − qk| ≤ δn.

The property (5) is said to constitute alocal limit law, as probabilitiespn,k are esti-
mated “locally”. Thus:For the convergence of a discrete law to a discrete law, there
is complete equivalence between the existence of central and local limits. Note 1
below shows elementarily that there always exists a speed ofconvergence thattends
to 0 asn tends to infinity. In other words, plain convergence of distribution functions
or of individual probabilities implies uniform convergence (this is in fact a general
phenomenon).
� IX.1. Uniform convergence.Local and central convergences to a discrete limit law are always
uniform. In other words, there always exists speedsǫn, δn tending to 0 asn→∞.

Assume simply the condition (3) and its equivalent form (5).Fix a smallǫ > 0. First
dispose of the tails: there exists ak0 such that

P
k≥k0

qk ≤ ǫ, so that
P

k<k0
qk > 1− ǫ. Now,

by simple convergence, there exists ann0 such that, for alln larger thann0 and eachk < k0,
|pn,k − qk| < ǫ/k0. Thus, we have

P
k<k0

pn,k > 1 − 2ǫ, hence
P

k≥k0
pn,k ≤ 2ǫ. In

other words,
P

k≥k0
qk and

P
k≥k0

pn,k are both in[0, 2ǫ]. There results that convergece of
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distribution functions is uniform, with speed5ǫ at most. At the same time, the local speedδn is
at most4ǫ. �

� IX.2. Speed in local and central estimates.Let Mn be the spread ofχ on Cn defined as
Mn := maxγ∈Cn χ(γ). Then, a speed of convergence in (4) is given by

ǫn := Mnδn +
X

k>Mn

pk.

(Refinements of these inequalities can obtained from tail estimates detailed below.) �

� IX.3. Total variation distance.The total variation distancebetweenX andY is classically

dTV (X,Y ) := sup
E⊆Z≥0

|PY (E)− PX(E)| = 1

2

X

k≥0

|P(Y = k)− P(X = k)| .

(Equivalence between the two forms is established elementarily by considering the particular
E for which the supremum is attained.) The argument of Note 1 shows that convergence in
distribution also implies that the total variation distance betweenXn andX tends to 0. In
addition, by Note 2, one hasdTV (Xn,X) ≤Mnδn +

P
k>Mn

pk. �

� IX.4. Escape to infinity.The sequenceXn, where

P{Xn = 0} =
1

3
, P{Xn = 1} =

1

3
, P{Xn = n} =

1

3
,

does not satisfy a discrete limit law in the sense above, although limn P{Xn = k} exists for
eachk. Some of the probability mass escapes to infinity and, in a way, convergence takes place
in Z ∪ {+∞}. �

A highly plausible indication of the occurrence of a discrete law is the fact that
µn = O(1), σn = O(1). Examination of initial entries in the table of values of the
probabilities will then normally permit one to decide whether a limit law holds.

EXAMPLE IX.1. Singleton cycles in permutations.The case of the number of singleton cycles
(cycles of length 1) in a random permutation of sizen illustrates the basic definitions and it can
be analysed with minimal analytic apparatus. The exponential BGF is

P (z, u) =
exp(z(u− 1))

1− z ,

which determines the meanµn = 1 and the standard deviationσn = 1 (for n ≥ 2). The table
of numerical values of the probabilitiespn,k = [znuk]P (z, u) immediately tells what goes on.

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

n = 4 0.375 0.333 0.250 0.000 0.041
n = 5 0.366 0.375 0.166 0.083 0.000 0.008
n = 10 0.367 0.367 0.183 0.061 0.015 0.003
n = 20 0.367 0.367 0.183 0.061 0.015 0.003

The exact distribution is easily extracted from the bivariate GF,

pn,k := [znuk]P (z, u) =
1

k!
[zn−k]

e−z

1− z =
dn−k

k!
,

wheren!dn is the number of derangements of sizen, that is,

dn = [zn]
e−z

1− z =
nX

j=0

(−1)j

j!

Asymptotically, one hasdn ∼ e−1. Thus, for fixedk, we have

lim
n→∞

pn,k = pk, pk =
e−1

k!
.
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As a consequence, the distribution of singleton cycles in a random permutation of large size
tends to a Poisson law of rateλ = 1.

Convergence is quite fast. Here is a table of differences,δn,k = pn,k − e−1

k!
:

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

n = 10 2.3 10−8 −2.5 10−7 1.2 10−6 −3.7 10−6 7.3 10−6 1.0 10−5

n = 20 1.8 10−20 −3.9 10−19 3.9 10−18 −2.4 10−17 1.1 10−16 −3.7 10−16

The speed of convergence is easily bounded. One hasdn = e−1 +O(1/n!), by the alternating
series property, so that

pn,k =
e−1

k!
+O

„
1

k! (n− k)!

«
=
e−1

k!
+O

 
1

n!

 
n

k

!!
=
e−1

k!
+O

„
2n

n!

«
.

As a consequence, one obtains local (δn) and central (ǫn) speed estimates

δn = O

„
2n

n!

«
, ǫn = O

„
n2n

n!

«
.

These bounds are quite tight. For instance one computes thatδ50
.
= 1.5 10−52 while the quan-

tity 2n/n! evaluates to3.7 10−50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . END OF EXAMPLE IX.1. �

IX. 2.2. Continuity theorem for PGFs. A higher level approach to discrete
limit laws in analytic combinatorics is based on asymptoticestimates ofpn(u), the
PGF of the random variableXn. If, for sufficiently many values ofu, one has

pn(u) → q(u) (n→ +∞),

one can infer that the coefficientspn,k = [uk]pn(u) (for any fixedk) tend to the limit
qk with generating functionq(u). A continuity theoremfor characteristic functions
describes precisely sets of conditions under which convergence of probability gener-
ating functions to a limit entails convergence of coefficients to a limit, that is to say
the occurrence of a discrete limit law. We state here a continuity theorem with very
general analytic conditions.

Theorem IX.1 (Continuity Theorem, discrete laws). Let Ω be an arbitrary set con-
tained in the unit disc and having at least one accumulation point in theinteriorof the
disc. Assume that the PGFspn(u) =

∑
k≥0 pn,ku

k andq(u) =
∑

k≥0 qku
k are such

that there is convergence,
lim

n→+∞
pn(u) = q(u),

pointwisefor eachu in Ω. Then a discrete limit law holds in the sense that, for eachk,

lim
n→+∞

∑

j≤k

pn,j =
∑

j≤k

qj .

PROOF. Thepn(u) area priori analytic in |u| < 1 and uniformly bounded by 1 in
modulus throughout|u| ≤ 1. Vitali’s Theorem is a classical result of analysis whose
statement (see [469, p. 168] or [265, p. 566]) is as follows:

Vitali’s theorem. Let F be a family of analytic functions defined in a re-
gionS (i.e., an open connected set) and uniformly bounded on everycom-
pact subset ofS. Let{fn} be a sequence of functions ofF that converges
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FIGURE IX.4. The PGFs of singleton cycles in random permutations ofsizen =
4, 8, 12 (left to right and top to bottom) illustrate convergence to the limit PGF of
the Poisson(1) distribution (bottom right). Here the modulus of each PGF for
|ℜ(u)|, |ℑ(u)| ≤ 3 is displayed.

on a setΩ ⊂ S having a point of accumulationq ∈ S. Then{fn} converges
in all of S, uniformly on every compact subsetT ⊂ S.

Here,S is the open unit disc on which all thepn(u) are bounded. The sequence in
question is{pn(u)}. By assumption, there is convergence ofpn(u) to q(u) on Ω.
Vitali’s theorem implies that this convergence is uniform in any compact subdisc of
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the unit disc, for instance,|u| ≤ 1
2 . Then, Cauchy’s coefficient formula provides

(6)

qk =
1

2iπ

∫

|u|=1/2

q(u)
du

uk+1

= lim
n→∞

1

2iπ

∫

|u|=1/2

pn(u)
du

uk+1

= lim
n→∞

pn,k.

Uniformity granted by Vitali’s theorem combined with continuity of the contour inte-
gral (with respect to the integrand) establishes the statement. �

Feller gives the sufficient set of conditions:pn(u) → q(u) pointwise for all real
u ∈]0, 1[; see [161, p. 280] for a proof that only involves elementary real analysis. It
is perhaps surprising that very different sets can be taken,for instance,

Ω =
[
− 1

3 ,− 1
2

]
, Ω = { 1

n}, Ω =
{√

−1
2 + 1

2n

}
.

The next statement relates a measure of distance between twoPGFS,p(u) and
q(u) to the distance betwen distributions. It is naturally of interest when quantifying
speed of convergence to the limit in the discrete-to-discrete case.

Theorem IX.2 (Speed of convergence, discrete laws). Consider two discrete laws
supported byZ≥0, with corresponding distribution functionsF (x), G(x) and proba-
bility generating functionsp(u), q(u).

(i) Assume that the laws have first moments. Then, for anyT ∈ (0, π), one has,
for some absolute constantsc = 1

4 ,
(7)

sup
k

|F (k) −G(k)| ≤ c

∫ +T

−T

|p(eit) − q(eit)|
t

dt+
c

T
sup

T≤|t|≤π

∣∣p(eit) − q(eit)
∣∣ .

(ii) Assume thatp(u) andq(u) are analytic in|u| < ρ for someρ > 1. Then, for
anyr satisfying1 < r < ρ, one has

sup
k

|F (k) −G(k)| ≤ c(r) sup
|u|=r

|p(u) − q(u)| , c(r) :=
1

r(r − 1)
.

PROOF. (i) Observe first thatp(1) = q(1) = 1, so that the integrand is of the form
0
0 at u = 1. By APPENDIX C: Transforms of distributions, p. 718, the existence
of first moments, sayµ andν, implies that, for smallt, one hasp(eit) − q(eit) =
(µ− ν)t+ o(t), so that the integral is well defined.

For any givenk, Cauchy’s coefficient formula provides

(8) F (k) −G(k) =
1

2iπ

∫

γ

p(u) − q(u)

1 − u

du

uk+1
,

whereγ is the circle|u| = 1. (The factor(1 − u)−1 sums coefficients.) Setu = eit

and split the interval of integration accordingly. For allt, one has
∣∣∣∣

t

eit − 1

∣∣∣∣ ≤
π

2
.
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This makes it possible to replace(1 − u)−1 by 1/t, up to a constant multiplier. The
statement follows upon splitting the interval of integration according to|t| ≤ T and
|t| > T , and then applying trivial bounds.

(ii) Start again from (8), but integrate along|u| = r. Trivial bounds provide the
statement. � The first form is universal holds with
strictly minimal assumptions (existence of expectations); the second form is a priori
only usable for distributions that have exponential tails.In the context of limit laws,
the first form of the theorem serves to relate the distance on the unit circle between
the PGFpn(u) of a combinatorial parameter and the limit PGFq(u) to the speed of
convergence to the limit law. (In this sense, it prefigures the Berry-Esseen inequalities
discussed in the continuous context below.)

EXAMPLE IX.2. Cycles of lengthm in permutations.Let us first revisit the case of singleton
cycles,m = 1, in this new light. The BGFP (z, u) = ez(u−1)/(1− z) has for eachu a simple
pole atz = 1 and is otherwise analytic inC \ {1}. Thus, a meromorphic analysis provides
instantly, pointwise for any fixedu,

[zn]F (z, u) = e(u−1) +O(R−n),

with anyR > 1. This, by the continuity theorem, Theorem IX.1, implies convergence to a
Poisson law.

Next, one should estimate a distance between characteristic functions over the unit circle.
One has (foru = eit)

pn(u)− q(u) = [zn]
ez(u−1) − e(u−1)

1− z .

There is a removable singularity atz = 1. Thus, integration over the circle|z| = 2 in the
z-plane coupled with trivial bounds yields

|pn(u)− q(u)| ≤ 2−n sup
|z|=2

˛̨
˛ez(u−1) − e(u−1)

˛̨
˛ = O

`
2−n|1− u|

´
.

One can then apply Theorem IX.2 with an arbitrary choice ofT to the effect that a speed of
convergence to the limit isO(2−n). (AnyO(R−n) is possible by the same argument.)

This approach generalizes to the number ofm–cycles in a random permutation. The ex-
ponential BGF is

F (z, u) =
e(u−1)zm/m

1− z .

Then, singularity analysis of the meromorphic function ofz (for u fixed) gives immediately

lim
n→∞

[zn]F (z, u) = e(u−1)/m.

The right side of this equality is none other than the PGF of a Poisson law of rateλ = 1
m

. The
continuity theorem and the first form of the speed of convergence theorem then imply:

Proposition IX.1 (m-Cycles in permutations). The number ofm–cycles in a random permuta-
tion of large size converges in law to a Poisson distributionof rate1/m with speed of conver-
genceO(R−n) for anyR > 1.

This vastly generalizes our previous observations on singleton cycles.
END OF EXAMPLE IX.2. �
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� IX.5. Poisson law for rare events.Consider the Bernoulli distribution with PGF(p+ qu)n.
If q depends onn in such a way thatq = λ/n for some fixedλ, then the limit law of the
Bernoulli random variable is Poisson of rateλ. (This “law of small numbers” explains the
Poisson character of activity in radioactive decay as well as the probability of accidental deaths
of soldiers in the Prussian army resulting from the kick of a horse [Bortkiewicz, 1898].) �

IX. 2.3. Large deviations. In the case of discrete limit laws, the study of large
deviations is related to saddle-point bounds and is consequently often quite easy. We
give with a general statement which is nothing but a rephrasing of saddle point bounds
(Chapter IV) in the context of discrete probability distributions.

Theorem IX.3 (Large deviations, discrete laws). Letp(u) = E(uX) be a probability
generating function that is analytic for|u| ≤ r wherer is some number satisfying
r > 1. Then, the following “local” and “central” large deviationbounds hold:

P(X = k) ≤ p(r)

rk
, P(X > k) ≤ p(r)

rk(r − 1)
.

PROOF. The local bound is a direct consequence of saddle point bounds given in
Chapter IV. The central bound derives from the equality

P(X > k) =
1

2iπ

∫

|u|=r

p(u)

(
1 +

1

u
+

1

u2
+ · · ·

)
du

uk+2
=

1

2iπ

∫

|u|=r

p(u)
du

uk+1(u − 1)
,

upon applying trivial bounds. �

In accordance with this theorem and as is easily checked directly, the geometric
and the negative binomial laws have exponential tails; the Poisson law has a “super-
exponential” tail, beingO(r−k) for anyr > 1, as the PGF is entire. (See definitions
in APPENDIX C: Special distributions, p. 720.) By their nature, the bounds can be
simultaneously applied to a whole family of probability generating functions. Hence
their use in obtaining uniform estimates in the context of limit laws. The bound pro-
vided always exhibits a geometric decay in the value ofk—this is both a stength and
a limitation on the method.

IX. 3. Combinatorial instances of discrete laws

In this section, we focus our attention on a general analyticschema based on com-
positions. The subcritical case of this schema is such that the perturbations induced
by the secondary variable (u) affect neither the location nor the nature of the basic
singularity involved in the univariate counting problem. The limit laws are then of the
discrete type: for sequences, labelled sets, and labelled cycles, theese limit laws are in-
variably of the negative binomial (NB[2]), Poisson, and geometric type, respectively.
Additionally, it is easy to describe the profiles of combinatorial objects resulting from
such subcritical constructions.

First, we consider the generalcomposition schema,

F (z, u) = g(uh(z)).

This schema expresses over generating functions the combinatorial operationG[H] of
substitutionof componentsH enumerated byh(z) inside “templates”G enumerated
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byg(z). (See Chapters I and II for the unalabelled and labelled versions.) The variable
z marks size as usual, and the variable marks the size of theG template.

We assume globally thatg andh have nonnegative coefficients and thath(0) = 0
so that the compositiong(h(z)) is well-defined. We letρg andρh denote the radii of
convergence off andg, and define

(9) τg = lim
x→ρ−

g

g(x) and τh = lim
x→ρ−

h

h(x).

The (possibly infinite) limits exist due to nonnegativity ofcoefficients. As already
seen in Chapter VI, three cases are to be distinguished.

Definition IX.2. The composition schemag(uh(z)) is said to be:subcriticalif τh <
ρg, critical if τh = ρg, supercriticalif τh > ρg.

In terms of singularities, the behaviour ofg(h(z)) at its dominant singularity
is dictated by the dominant singularity ofg (subcritical case), or by the dominant
singularity off (supercritical case), or it should involve a mixture of the two (critical
case). This section discusses thesubcritical case. First, a general statement about
subcritical compositions:

Proposition IX.2 (Subcritical composition). Consider the bivariate composition
schemeF (z, u) = g(uh(z)). Assume thatg(z) and h(z) satisfy thesubcriticality
conditionτh < ρg, and thath(z) has a unique singularity atρ = ρh on its disc of
convergence, which is of the algebraic–logarithmic type

h(z) = τ − c(1 − z

ρ
)λ + o

(
(1 − z

ρ
)λ

)
,

whereτ = τh, c ∈ R+, 0 < λ < 1. Then, a discrete limit law holds,

lim
n→∞

fn,k

fn
= qk, qk =

kgkτ
k−1

g′(τ)
,

with probability generating functionq(u) =
ug′(τu)

g′(τ)
.

What stands out is that, via its PGF,the limit law is a direct reflection of the derivative
of the outer function involved in the composition.
PROOF. First, for the univariate problem, sinceg(z) is analytic atτ , the function
g(h(z)) is singular atρh and is analytic in a∆–domain. Its singular expansion is
obtained by composing the regular expansion ofg(z) atτ with the singular expansion
of h(z) atρh:

F (z) ≡ g(h(z)) = g(τ) − cg′(τ)(1 − z/ρ)λ(1 + o(1)).

Thus,F (z) satisfies the conditions of singularity analysis, and

(10) fn ≡ [zn]F (z) = − cg′(τ)

Γ(−λ)n
−λ−1(1 + o(1)).

Also, the mean and variance of the distribution are clearlyO(1).
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Next, for the bivariate problem, fix anyu with, say,u ∈ (0, 1). The BGFF (z, u)
is still singular atz = ρ, and its singular expansion obtained fromF (z, u) = g(uh(z))
by composition, is

F (z, u) = g(uh(z)) = g(uτ − cu(1 − z/ρ)λ + o((1 − z/ρ)λ))
= g(uτ) − cug′(uτ)(1 − z/ρ)λ + o((1 − z/ρ)λ).

Thus, singularity analysis implies immediately:

lim
n→∞

[zn]F (z, u)

[zn]F (z, 1)
=
ug′(uτ)

g′(τ)
.

By the continuity theorem for PGFs, this is enough to imply convergence to the dis-
crete limit law with PGFug′(τu)/g′(τ), and the proposition is established. �

Under the subcritical composition scheme, it is also true that the tails have a
uniformly geometric decay. Letu0 be any number of the interval(1, ρg/τh). Then
f(z, u0) a a function ofz is analytic near the origin with a dominant singularity atρh

obtained by composing the regular expansion ofg with the singular expansion ofh:

f(z, u0) = h(u0τh) − ch′(u0τh)(1 − z/ρ)λ + o((1 − z/ρ)λ).

There results the asymptotic estimate

pn,k =
[zn]f(z, u0)

[zn]f(z, 1)
∼ h′(u0τh).

Thus, for some constantK ≡ K(u0), one has

pn(u0) < K.

It is easy also to verify thatpn(u) is analytic atu0, so that, by Theorem IX.3,

pn,k < K(u0) · u−k
0 ,

∑

j>k

pj,k <
K(u0)

u0 − 1
u−k

0 .

Thus the combinatorial distributions satisfy uniformly (with respect ton) a large de-
viations bound. In particular the probability that there are more than a logarithmic
number of components satisfies

(11) Pn(χ > logn) = O(n−θ), θ = log u0.

Such tail estimates may additionally serve to evaluate the speed of convergence to the
limit law (as well as the total variation distance) in the subcritical composition schema.
� IX.6. Semi-small powers and singularity analysis.Let h(z) satisfy the stronger singular
expansion

h(z) = τ − c(1− z/ρ)λ +O(1− z/ρ)ν ,

for 0 < λ < ν < 1. Then, fork ≤ C log n (someC > 0), the results of singularity analysis
can be extended (as stated and proved in Chapter VI, they are only valid for fixedk)

[zn]h(z)k = kcρ−nn−λ−1
“
1 +O(n−θ1 )

”
,

for someθ1 > 0, uniformly with respect tok. [The proof recycles all the ideas of Chapter VI
and only needs some care in checking uniformity with respectto k of the major steps.] �
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� IX.7. Speed of convergence in subscritical compositions.Combining the exponential tail
estimate (11) and local estimates deriving from the singularity analysis of “semi-small” powers
in the previous notes, one obtains for the distribution functions associated withpn,k andpk the
speed estimate

sup
k
|Fn(k)− F (k)| ≤ L

nθ2
.

There,L andθ2 are two positive constants. �

In the labelled universe, the functional composition schema encompasses the se-
quence, set, and cycle constructions. It suffices to take forthe outer functiong in the
compositiong ◦ h the quantities

(12) Q(w) =
1

1 − w
, E(w) = ew, L(w) = log

1

1 − w
.

We state:

Proposition IX.3 (Subcritical constructions). Consider the constructions ofsequence
S(H), whether labelled or not, labelledsetP(H) and labelledcycleC(H) Assume
the subcriticality conditions of the previous proposition, namelyτ < 1, τ < ∞,
τ < 1, respectively, whereτ is the singular value ofh(z). Then, the distribution of
the numberχ of components determined byfn,k/fn, is such thatχ = 1 + Y admits a
discrete limit law that is of type, respectively: negative binomialNB[2], Poisson, and
geometric. Fork ≥ 1, the limit form forqk = limn P(Y = k) are respectively

qS
k = (1 − τ)2(k + 1)τk, qP

k = e−τ τk

(k)!
, qC

k = (1 − τ)τk .

In an object of positive size, the number of components is always≥ 1. In terms of
the standard definition of the three laws (APPENDIX C: Special distributions, p. 720)
the distribution of the number of components isχ = 1 + Y whereY is supported by
Z≥0.
PROOF. In accordance with Proposition IX.2 and Equation (12), thePGF of the dis-
crete limit law involves the derivatives

Q′(w) =
1

(1 − w)2
, E′(w) = ew, L′(w) =

1

1 − w
.

The last two cases precisely give rise to the classical Poisson and geometric law. The
first case gives rise to the negative binomial lawNB[2] which also appears in this
form as a sum of two geometricly distributed random variables. �

The technical simplicity with which limit laws are pulled out of combinatorics is
worthy of note.

EXAMPLE IX.3. Root degrees in trees.Consider first the number of components in a sequence
(ordered forest) of general Catalan trees. The bivariate OGF is

F (z, u) =
1

1− uh(z) , h(z) =
1

2

`
1−
√

1− 4z
´
.

We haveτh = 1/2 < ρg = 1, so that the composition schema is subcritical. Thus, for a forest
of total sizen, the numberXn of tree components satisfies

lim
n→∞

P{Xn = k} =
k

2k+1
(k ≥ 1).
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Since a tree is equivalent to a node appended to a forest, thisasymptotic estimate also holds for
the root degree of a general Catalan tree.

Consider next the number of components in a set (unordered forest) of Cayley trees. The
bivariate EGF is

F (z, u) = euh(z), h(z) = zeh(z).

We haveτh = 1 < ρg = +∞, again a subcritical composition schema. Thus the numberXn

of tree components in a random unordered forest of sizen admits the limit distribution

lim
n→∞

P{Xn = k} = e−1/(k − 1)!, (k ≥ 1),

a shifted Poisson law of parameter 1; asymptotically, the same property also holds for the root
degree of a random Cayley tree

The same method applies more generally to a simple variety oftreesV (see Chapter VII)
with generatorφ, under the condition of the existence of a rootτ of the characteristic equation
φ(τ )− τφ′(τ ) = 0 at a point interior to the disc of convergence ofφ. The BGF satisfies

V (z, u) = zφ(uV (z)), V (z) = 1− γ
p

1− /zρ+O(1− z/ρ).
so that

V (z, u) ∼
z→ρ

ρφ(uτ )− γ uφ
′(uτ )

φ′(τ )

p
1− /zρ.

The PGF of the distribution of root degree is accordingly

uφ′(τu)

φ′(τ )
=
X

k≥1

kφkτ
k

φ′(τ )
uk.

(A limit law was established directly under its local form inChapter VII.)
END OF EXAMPLE IX.3. �

The root degree in a random labelled nonplane tree (Cayley tree) admits in the
asymptotic limit a Poisson law, while the root degree of a large plane tree (a Catalan
tree) tends to a negative binomial (NB[2]) distribution. Proposition IX.2 shows, in
a precise technical sense, that the negative binomial law for Catalan trees is a direct
reflection of planarity specified by a sequence construction, while the Poisson law
arises from the set construction attached to nonplanarity.
� IX.8. Bell number distributions.Consider the “set-of-sets” schema

F (z, u) = exp(euh(z) − 1),

assuming subcriticality. This corresponds to a schemeF = P(P≥1(H)). Then the numberχ
of components satisfies asymptotically a “derivative Bell”law:

P(χ = k) =
1

K

kSkτ
k

k!
, K = e−eτ−τ−1,

whereSn = n![zn]eez−1 is a Bell number. There exists parellel results: for sequence-of-sets,
involving the surjection numbers; for set-of-sequences involving the fragmented permutation
numbers. �

� IX.9. High levels in Cayley trees.The number of nodes at level 5 (i.e., at distance 5 from the
root) in a Cayley tree has the nice PGF

u
d

du

0
BB@e
−1 + e−1 + e−1 + e−1 + e−1+u 1

CCA ,
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and thus involves “super Bell” numbers. �

A further direct application of continuity of PGFs is the distribution of the number
of H-components of a fixed sizem in a compositionΓ[H] with GF g(h(z)), again
under thesubcriticality condition. In the terminology of Chapter III, we are thus
characterizing theprofile of combinatorial objects, at least as regards components of
some fixed size. The bivariate GF is then

F (z, u) = g(h(z) + (u− 1)hmz
m),

with hm = [zm]h(z). The singular expansion atz = ρ is

F (z, u) = g(τ+(u−1)hmρ
m)−cg′(τ+(u−1)hmρ

m)(1−z/ρ)λ)+o((1−z/ρ)λ).

Thus, the PGFpn(u) for objects of sizen satisfies

(13) lim
n→∞

pn(u) =
g′(τ + (u − 1)hmρ

m)

g′(τ)
.

Like before this specializes in the case of sequences, sets,and cycles giving a result
analogous to Proposition IX.2.

Proposition IX.4 (Fixed size components). Under the subcriticality conditions of
Propositions IX.2 and IX.3, the number of components of a fixed sizem in a random
sequence, set, or cycle construction applied to a class withGF h(z) admits a discrete
limit law. Withhm := [zm]h(z), ρ the radius of convergence ofh(z), andτ := h(ρ),
the distributions are as follows:

For sequences, the limit law is a negative binomial (NB[2]) of parametera =
hmρ

m

1 − τ + hmρm
. For sets, the limit law is Poisson with parameterλ = hmρ

m. For

cycles, the limit is geometric of parametera =
hmρ

m

1 − τ + hmρm
.

EXAMPLE IX.4. Root subtrees of sizem. In a Cayley tree, the number of root subtrees of
some fixed sizem has, in the limit, a Poisson distribution,

pk = e−λ λ
k

k!
, λ =

mm−1e−m

m!
.

In a general Catalan tree, the distribution is a negative binomialNB[2]

pk = (1− a)2(k + 1)ak, a−1 = 1 +
m22m−1

`
2m−2
m−1

´ .

Generally, for a simple variety of trees under the usual conditions of existence of a solution to
the characteristic equation,V = zφ(V ), one finds“en deux coups de cuillère à pot”,

V (z, u) = zφ(V (z) + Vmz
m(u− 1))

V (z, u) ∼ ρφ(τ + Vmρ
m(u− 1))− ργφ′(τ + Vmρ

m(u− 1))
p

1− z/ρ
limit PGF =

φ′(τ + Vmρ
m(u− 1))

φ′(τ )
.

(Notations are the same as in Example 3.) . . . . . . . . . . . . . . . . .. . . . END OF EXAMPLE IX.4. �
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Arbitrarily many schemas leading to discrete limit laws could be listed. Roughly,
conditions are that the auxiliary variableu does not affect the location nor the nature
of the dominant singularity ofF (z, u). Such conditions are met by the subcritical
schemas, since eventually the auxiliary variable only appears as a multiplicative coef-
ficient in a local singular expansion.
� IX.10. The product schema.Define

F (z, u) = A(uz) · B(z),

that corresponds to a product construction,F = A × B, with u marking the size of theA–
component in the product. Assume that the radii of convergence satisfyρA > ρB and that
B(z) has a unique dominant singularity of the algebraic-logarithmic type. Then, the size of the
A component in arandomF structure has a discrete limit law with PGF,

p(u) =
A(ρu)

A(ρ)
.

The proof results directly from singularity analysis. Alternatively, an elementary proof can be
given based on the weaker requirement that the coefficient ofB satisfybn+1/bn → ρ−1. �

Regarding the number of components, the case of a supercritical composition
leads to continuous limit laws of the Gaussian type, as we shall see in the next sec-
tions. The critical case may lead to a variety of probabilistic laws due to the confluence
of singularities that then manisfests itself. In the example that follows, we show that a
particular critical composition scheme already studied inChapter VII leads to a collec-
tion of Poisson laws describing the small component profile of composite structures.

EXAMPLE IX.5. Small components in sets of logarithmic structures.Consider first the exp–
log schema in the simpler labelled case: it is corresponds tothe constructionF = P(G),
that is,F (z, u) = exp(uG(z)) under the assumption thatG(z) is logarithmic. This means
(Chapter VII) thatG(z) is ∆-singular and satisfies locally

G(z) = κL(z/ρ) + λ+ η(z), where L(z) := log(1− z)−1,

andη(z) = O(1/L(z/ρ)2) asz → ρ in a ∆ domain. We already know from Chapter VII
that the number of components has mean and variance each of the order oflog n, so that a
discrete limit law is not to be expected for the total number of components. However, the
situation becomes quite different iffixedsize components are considered. A limit distribution
has already been obtained in Chapter VII under its local formand it may be revisited in the light
of methods of the present chapter as follows. Letm be a fixed integer larger than 1. The BGF
of F objects withu marking the number ofm components is

F (z, u) = exp ((u− 1)grz
r) .

Under the logarithmic assumption, one has for anyu in a small neighbourhood of1 asz → ρ
in a∆-domain:

F (z, u) ∼ eλw(u)(1− z/ρ)−κ, w(u) = exp ((u− 1)grρ
r) .

By singularity analysis, this tells us thatthe number ofm–components in a randomF–structure
of large size tends to a Poisson distribution with parameterλ := grρ

r.
This result applies for anym less than some arbitrary fixed boundB. In addition, tru-

ely multivariate methods discused at the end of this chapterenable one to prove that the
the number of components of sizes1, 2, . . . , B areasymptotically independent. This gives a
very precise model of the probabilistic profile of small components in randomF–objects as
a product of independent Poisson laws of parametergrρ

r for r = 1, . . . , B. Similar results
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FIGURE IX.5. Small components of size≤ 20 in random permutations (left)
and random mappings (right) of size 1,000: each object corresponds to a line and
each component is represented by a square of proportional area.

hold for unlabelled multisets, but with the negative binomial law replacing the Poisson law.
END OF EXAMPLE IX.5. �

The previous example covers well known exp-log structures introduced by Flajo-
let and Soria in [210]. In the labelled case, we have permutations (as sets of cycles),
random mappings and 2–regular graphs (as sets of connected components). A render-
ing of the cycle structure of random permutations already appears in Chapter III; see
also Figure 5. In the unlabelled case, the prime example is that of polynomials over
finite fields to which we return later in this chapter.

In contrast,large component sizes cannot be independently distributed. (E.g., a
permutation can have only cycle one larger thann/2, two cycles larger thann/3, etc.)
A general probabilistic theory of the joint distribution oflargest components in exp–
log structures has been developed by Arratia, Barbour, and Tavaré [16] and some of its
developments draw their inspiration from earlier studies conducted under the analytic
combinatorial angle. This joint distribution of large components can be characterized
in terms of what is known as the Poisson–Dirichlet process. For instance, as shown by
Gourdon [246], the largest component itself involves the Dickmann function otherwise
known to describe the distribution of the largest prime divisor of a random integer over
a large interval of the form[1 . . N ].

� IX.11. Random mappings.The number of components of some fixed sizem in a large
random mapping (functional graph) is asymptotically Poisson(λ) whereλ = Kme

−m/m! and
Km = m![zm] log(1 − T )−1 enumerates connected mappings. (ThereT is the Cayley tree
function.) The fact thatKme

−m/m! ≈ 1/(2m) explains the fact that small compoents are
somewhat sparser for mappings than for permutations. �
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FIGURE IX.6. Walks, excursions, bridges, and meanders: random samples of
length 50.

As a last example here, we discuss the length of the longest initial run of a’s in
random binary words satisfying various types of constraints. This discussion com-
pletes the informal presentation of Section IX. 1. The basiccombinatorial objects are
the setW = {a, b}⋆ of binary words. A wordw ∈ {W} can also be viewed as de-
scribing a walk in the plane, provided one interpretsa andb as the vectors(+1,+1)
and(+1,−1) respectively. Such walks in turn describe fluctuations in coin tossing
games, as described by Feller [161]. What is especially interesting here is to observe
the complete chain where a specific constraint leads in succession to a combinatorial
decomposition, a specific analytic type of BGF, and a local singular structure that is
then reflected by a particular limit law.

EXAMPLE IX.6. Initial runs in random walks.We consider here walks in the right half plane
that start from the origin and are made of stepsa = (1, 1), b = (1,−1). According to the
discussion of Chapters V and VII, one can distinguish four major types of walks (Figure 6).

• Unconstrained walks(W) corresponding to words and freely described byW =
S(a, b);

• Dyck paths(D) that always have a nonnegative ordinate and end at level0; the
closely related classG = Db represents the collection of gambler’s ruin sequences.
In probability theory, Dyck paths are also refereed to asexcursions.

• Bridges(B) that are walks that may have negative ordinates but must finish at level 0.
• Meanders(M) which have have always a nonnegative altitude and may end atan

arbitrary nonnegative altitude.

The parameterχ of interest is in all cases the length of the longest initial run ofa’s.
First, the unconstrained walks obey the decomposition

W = S(a)S(bS(a)),

already employed in Chapters I and IV. Thus, the BGF is

W (z, u) =
1

1− zu
1

1− z(1− z)−1
.

By singularity analysis of the pole atρ = 1/2, the PGF ofχ on random words ofWn satisfies

pn(u) ∼
1
2

1− u
2

,
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and, as expected, this corresponds to a limit geometric law of parameter1
2
. This is the first

example presented (Section IX. 1) in order to introduce discrete limit laws.
As it is well-known, Dyck pathsD play an important rôle in combinatorial constructions

related to lattice paths (Chapters I and V). A sequence decomposes into “arches” that are
themselves Dyck paths encapsulated by a paira, b,

D = S(aDb),
which yields a GF of the Catalan domain,

D(z) =
1

1− z2D(z)
, D(z) =

1−
√

1− 4z2

2z2
.

In order to extract the initial run ofa’s, we observe that a word whose initiala-run isak con-
tainsk components of the formbD. This corresponds to a decomposition in terms of the first
traversals of altitudesk − 1, . . . , 1, 0,

D =
X

k≥0

ak(bD)k,

illustrated by the following diagram:

Thus, the BGF is

D(z, u) =
1

1− z2uD(z)
.

This is an even function ofz. In terms of the singular element,δ = (1− 4z)1/2, one finds

F1(z
1/2, u) =

2

2− u −
2u

(2− u)2 δ +O(δ2),

asz → 1/4. Thus, the PGF ofχ on random words ofD2n satisfies

p2n(u) ∼ u

(2− u)2 ,

which is the PGF of a negative binomialNB[2] of parameter1
2

shifted by 1. (Naturally, in this
case, explicit expressions for the combinatorial distribution are available, as this is equivalent
to the classical ballot problem.)

A bridge decomposes into a sequence of arches, either positive or negative,

B = S(aDb + bDa),
whereD is likeD, but with the rôles ofa andb interchanged. In terms of OGFs, this gives

B(z) =
1

1− 2z2D(z)
=

1√
1− 4z2

.

The setB+ of nonempty walks that start with at least onea admits a decomposition similar to
thatD,

B+(z) =

0
@X

k≥1

akb(Db)k−1

1
A · B,
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since the paths factor uniquely as aD component that hits 0 for the first time followed by aB
oscillation. Thus,

B+(z) =
z2

1− z2D(z)
B(z).

The remaining casesB− = B\B+ consist of either the empty word or of a sequence of positive
or negative arches starting with a negative arch, so that

B−(z) = 1 +
z2D(z)

1− 2z2D(z)
.

The BGF results from these decompositions:

B(z, u) =
z2u

1− z2uD(z)
B(z) + 1 +

z2D(z)

1− 2z2D(z)
.

Again, the singular expansion is obtained mechanically,

B(z1/2, u) =
1

2− u
1

δ
+O(1),

whereδ = (1− 4z)1/2. Thus, the PGF ofχ on random words ofB2n satisfies

p2n(u) ∼ 1

2− u .

The limit law is geometric of parameter1/2.
A meander decomposes into an initial runak, a succession of descents with their compan-

ion (positive) arches in some numberℓ ≤ k, and a succession of ascents with their correspond-
ing (positive) arches. The computations are similar to the previous cases, more intricate, but
still “automatic”. One finds that

M(z, u) =

„
XY

(1−X)(1− Y )
− XY 2

(1−XY )(1− Y )

«
1

1− Y +
1

1−X ,

withX = zu, Y = zW1(z), so that

M(z, u) = 2
1− u− 2 z + 2uz2 + (u− 1)

√
1− 4 z2

(1− zu)
`
1− 2 z −

√
1− 4 z2

´ `
2− u+ u

√
1− 4 z2

´ .

There are now two singularities atz = ± 1
2
, with singular expansions,

M(z, u) =
z→1/2

u
√

2

(2− u)2
1√

1− 2z
+O(1), M(z, u) =

z→−1/2

4− u
4− u2

+ o(1),

so that only the singularity at1/2 matters asymptotically. Then, we have

pn(u) ∼ u

(2− u)2 ,

and the limit law is a shifted negative binomialNB[2] of parameter1/2. In summary:

Proposition IX.5. The length of the initial run ofa’s in unconstrained walks and bridges is
asymptotically distributed like a geometric; in Dyck excursions and meanders like a negative
binomialNB[2].

Similar analyses can be applied to walks with a finite set of steps [21].
END OF EXAMPLE IX.6. �
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� IX.12. The number of meanders.A meander uniquely decomposes into an excursion
followed by a (possibly empty) sequence of elements of the form aD. There results that
M(z) = D(z)/(1− zD(z)), and

M(z) =

√
1− 4z2 − 1 + 2z

2z(1− 2z)
,

so thatMn =
`

n
⌊n/2⌋

´
. �

� IX.13. Leftmost branch of a unary-binary (Motzkin) tree.The class of unary-binary trees
(or Motkzkin trees) is defined as the class of unlabelled rooted plane trees where (out)degrees
of nodes are restricted to the set{0, 1, 2}. The parameterχ under consideration is the length
of the lefmost branch measured by the number of nodes it contains. A tree can be viewed as
a leftmost branch at each node of which is grafted either nothing (the node has degree 1) or a
tree, except for the last node on the branch. Hence the decomposition and the BGF:

M(z) =
X

k≥1

zkM(z)k−1, M(z, u) =
z

1− zuM(z)
.

The first equation corresponds toM = z(1+M +M2) as it should. The dominant singularity
is at z = 1/3 whereM( 1

3
) = 1. There results that the limit PGF ofχ is 4u/(3 − u)2. The

limit distribution is a negative binomialNB[2] with parameter1
3
, shifted by 1. �

IX. 4. Continuous limit laws

Throughout this chapter, our goal is to quantify sequences of random variables
Xn that arise from an integer valued combinatorial parameterχ defined on a combi-
natorial classF . It is a fact that, when the meanµn and the standard deviationσn of χ
onFn tend to infinity asn gets large, then a continuous limit law usually holds. That
limit law arises not from theXn themselves (as was the case for discrete-to-discrete
convergence in the previous section) but from their standardized versions:

X⋆
n =

Xn − µn

σn
.

In this section, we provide definitions and major theorems needed to deal with the
discrete-to-continuous situation.

A random variableY specified by itsdistribution function,

P{Y ≤ x} = F (x),

is said to becontinuousif F (x) is continuous (see APPENDIX C: Random variables,
p. 717). In that case,F (x) has no jump, and there is no single value in the range ofY
that bears a nonzero probability mass. If in additionF (x) is differentiable, the random
variableY is said to have adensity, g(x) = F ′(x), so that

P(Y ≤ x) =

∫ x

−∞
g(x) dx, P{x < Y ≤ x+ dx} = g(x) dx.

A particularly important case for us here is the standardGaussianor normaldistribu-
tion function,

Φ(x) =
1√
2π

∫ x

−∞
e−w2/2 dw,
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also called theerror function(erf), the corresponding density being

ξ(x) ≡ Φ′(x) =
1√
2π
e−x2/2.

This section and the next ones are relative to the existence of limit laws of the con-
tinuous type, with Gaussian limits playing a prominent rôle. The general definitions
of convergence in law (or in distribution) and of weak convergence (see APPENDIXC:
Convergence in law, p. 722) instantiate as follows.

Definition IX.3 (Discrete-to-continuous convergence). LetY be acontinuousrandom
variable with distribution functionFY (x). A sequence of random variablesYn with
distribution functionsFYn(x) is said to converge in distribution toY if, pointwise, for
eachx,

lim
n→∞

FYn(x) = FY (x).

In that case, one writesYn
D

=⇒Y andFYn

D
=⇒FY .

Convergence is said to take place at speedǫn if

sup
x∈R

|FYn(x) − FY (x)| ≤ ǫn.

The definition does nota priori require uniform convergence. It is a known fact
that convergence to a continuous limit is always uniform. This uniformity means that
there always exists a speedǫn that tends to 0 asn→ ∞.

Discrete limit laws can be established via convergence of probability generating
functions to a common limit, as asserted by the continuity theorem for PGFs, Theo-
rem IX.1. In the case of continuous limit laws, one has to resort to integral transforms
(see APPENDIX C: Transforms of distributions, p. 718), whose definitions we now
recall.

— The Laplace transform—also called themoment generating function—
λY (s) is defined by

λY (s) := E{esY } =

∫ +∞

−∞
esx dF (x).

— the Fourier transform—also called thecharacteristic function— φY (t) is
defined by

φY (t) := E{eitY } =

∫ +∞

−∞
eitx dF (x).

(Integrals are taken in the sense of Lebesgue-Stieltjes or Riemann-Stieltjes; cf AP-
PENDIX C: Probability spaces and measure, p. 715.)

There are two classical versions of the continuity theorem,one for characteris-
tic functions, the other for Laplace transforms. Both may beviewed as extensions
of the continuity theorem for PGF’s. Characteristic functions always exist and the
corresponding continuity theorem gives a necessary and sufficient condition for con-
vergence of distributions. As they are a universal tool, characteristic functions are
therefore often favoured in the probabilistic literature.In the context of this book,
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strong analyticity properties go along with combinatorialconstructions so that both
transforms usually exist and can be put to good use.

Theorem IX.4 (Continuity of integral transforms). Let Y, Yn be random variables
with Fourier transforms (characteristic functions)φ(t), φn(t), and assume thatY has
a continuous distribution function. A necessary and sufficient condition for the con-

vergence in distribution,Yn
D

=⇒Y , is that,pointwise, for each realt,

lim
n→∞

φn(t) = φ(t).

LetY, Yn be random variables with Laplace transformsλ(s), λn(s) that exist in
a common interval[−s0, s0]. If, pointwisefor each reals ∈ [−s0, s0],

lim
n→∞

λn(s) = λ(s),

then theYn converge in distribution toY : Yn
D

=⇒Y .

The first part of this thorem is also known asLévy’s continuity theoremfor char-
acteristic functions.
PROOF. See Billingsley’s book [55, Sec. 26], for Fourier transforms, and [55, p. 408],
for Laplace transforms. �

� IX.14. Laplace transforms need not exists.Let Yn be a mixture of a Gaussian and a Cauchy
distribution:

P(Yn ≤ x) =

„
1− 1

n

«Z x

−∞

e−w2/2

√
2π

dw +
1

πn

Z x

−∞

dw

1 +w2
.

ThenYn convergences in distribution to a standard Gaussian limitY , thoughλn(s) only exists
for ℜ(s) = 0. �

The continuity theorem for PGFs eventually relies on continuity of the Cauchy
coefficient formula that realizes the inversion needed in recovering coefficients from
PGFs. Similarly, the continuity theorem for integral transforms may be viewed as
expressing the continuity of inverse Laplace or Fourier transforms, this in the specific
context of probability distribution functions.

The next theorem is an effective version of the Fourier inversion theorem that
proves especially useful for characterizing speeds of convergence. It bounds in a
constructive manner the sup-norm distance between two distribution functions by a
special metric distance between their characteristic functions. Recall that||f ||∞ :=
supx∈R |f(x)|.
Theorem IX.5 (Berry-Esseen inequality). Let F,G be distribution functions with
characteristic functionsφ(t), γ(t). Assume thatG has a bounded derivative. There
exist absolute constantsc1, c2 such that for anyT > 0,

||F −G||∞ ≤ c1

∫ +T

−T

∣∣∣∣
φ(t) − γ(t)

t

∣∣∣∣ dt+ c2
||G′||∞
T

.

PROOF. See Feller [162, p. 538] who gives

c1 =
1

π
, c2 =

24

π

as possible values for the constants.2
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FIGURE IX.7. The standardized distribution functions of the binomial law
(top), the corresponding Fourier transforms (middle), andthe Laplace trans-
forms (bottom), forn = 3, 6, 9, 12, 15. The distribution functions centred
around the meanµn = n/2 and scaled according to the standard devia-
tion σn = n1/2/2 converge to a limit which is the Gaussian error function,

Φ(x) =
1√
2π

∫ x

−∞
e−w2/2 dw. Accordingly, the corresponding Fourier trans-

forms —or characteristic functions— converge toφ(t) = e−t2/2, while the
Laplace transforms —or moment generating functions— converge to λ(s) =

es2/2.

This theorem is typically used withG being the limit distribution function (often
a Gaussian for which||G′||∞ = (2π)−1/2) andF = Fn a distribution that belongs to
a sequence converging toG. The quantityT may be assigned an arbitrary value; the
one giving the best bound in a specific application context isthen normally chosen.

� IX.15. A general version of Berry–Esseen.Let F,G be two distributions functions. Define
Lévy’s “concentration function”,QG(h) := supx(G(x+h)−G(x)), h > 0. There exists
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an absolute constantC such that

||F −G||∞ ≤ CQG(
1

T
) + C

Z +T

−T

˛̨
˛̨φ(t)− γ(t)

t

˛̨
˛̨ dt.

See Elliott’s book [151, Lemma 1.47] and the article by Stef and Tenenbaum for a discus-
sion [452]. The latter provides inequalities analogous to Berry-Esseen, but relative to Laplace
transforms on the real line (bounds tend to be much weaker dueto the smoothing nature of the
Laplace transform). �

Large powers and the central limit theorem. The binomial distribution is defined
as the distribution of a random variableXn with PGF

pn(u) =

(
1

2
+
u

2

)n

,

and characteristic function,φn(t) = pn(eit). The mean isµn = n/2 and the vari-
ance isσ2

n = n/4. Therefore, the standardized variableX∗
n = (Xn − µn)/σn has

characteristic function

(14) φ∗n(t) ≡ E(eitX⋆
n) =

(
cosh(

it√
n

)n

.

The asymptotic form is directly found by taking logarithms,and one finds

(15) logφ∗n(t) = n log

(
1 − t2

2n
+

t4

6n2
+ · · ·

)
= − t

2

2
+O(

1

n
),

pointwise, for any fixedt, asn → ∞. This establishes convergence to the Gaussian
limit. In addition, the Berry-Esseen inequalities show that the speed of convergence is
O(n−1/2), a fact that is otherwise easily verified directly using Stirling’s formula.
� IX.16. De Moivre’s Central Limit Theorem.Characteristic functions extend the normal limit
law for unbiased Bernoulli distributions to the general case with PGF(p+ qu)n, for fixedp, q
with p+ q = 1. (The result is accessible directly from Stirling’s formula, which constitutes De
Moivre’s original derivation.) �

Thecentral limit theorem(CLT, then term was coined by Pólya in 1920, originally
because of its “zentralle Rolle” in probability theory) of probability theory expresses
the Gaussian character of sums of random variables. It was first discovered4 in the
particular case of Bernoulli variables by De Moivre. The general version is due to
Gauss (who, around 1809, had realized from his works on geodesy and astronomy
the universality of the “Gaussian” law but had only unsatisfactory arguments) and to
Laplace (in the period 1812–1820). Laplace in particular uses Fourier methods and his
formulation of the CLT is fully general, though some of the precise validity conditions
of his arguments only became apparent a century later.

Theorem IX.6 (Basic CLT). Let Tj be independent random variables supported by
Z≥0 with a common distribution of (finite) meanµ and (finite) standard deviationσ.

4For a perspective on historical aspects of CLT, we refer to Hans Fischer’s well-informed mono-
graph [167].
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LetSn := T1 + · · · + Tn. Then the standardized sumS⋆
n converges to the standard

normal distribution,

S⋆
n ≡ Sn − µn

σ
√
n

D
=⇒N (0, 1).

PROOF. The proof is based on local expansions of characteristic functions. First, by a
general theorem, the existence of the first two moments implies that

φT (t) = 1 + iµt− 1

2
(µ2 + σ2)t2 + o(t2), t→ 0.

By shifting, it suffices to consider the case of zero-mean variables (µ = 0). We then
have, pointwise for eacht asn→ ∞,

φT

(
t

σ
√
n

)n

=

(
1 − t2

2n
+ o(

t2

2n
)

)n

→ e−t2/2,

like in Equations (14) and (15). The conclusion follows fromthe continuity theorem.
(This theorem is in virtually any basic book on probability theory, e.g., [162, p. 259]
or [55, Sec. 27].) �

The central limit theorem in the independent case is the subject of Petrov’s com-
prehensive monograph [394]. There are many extensions of the CLT, to variables that
are independent but not necessarily identically distributed (the Lindeberg–Lyapunov
conditions) or variables that are only dependent in some weak sense (mixing condi-
tions); see the discussion by Billingsley [55, Sec. 27]. In the particular case where the
T ’s are discrete, a stronger “local” form of the Theorem results from the saddle point
method; see our discussion in Chapter VIII, the classic treatment by Gnedenko and
Kolmogorov [237], and extensions in Section IX. 9.
� IX.17. Poisson distributions of large parameter.LetXλ be Poisson with rateλ. Asλ tends to
infinity, Stirling’s formula provides easily convergence to a Gaussian limit. The error terms can
then be compared to what the Berry-Esseen bounds provide. (In terms of speed of convergence,
such Poisson approximations to combinatorial distributions are sometimes of a better quality
than the standard Gaussian law; see Hwang’s comprehensive study [276] for a general analytic
approach.) �

IX. 5. Quasi-powers and Gaussian limits

The central limit theorem of probability theory admits a fruitful extension in the
context of analytic combinatorics. As we now show, it suffices that the PGF of a
combinatorial parameter behaves nearly like a large power of a fixed function to en-
sure convergence to a Gaussian limit. We first illustrate this point by considering the
Stirling cycle distribution.

EXAMPLE IX.7. The Stirling cycle distribution.Consider the Stirling cycle numbers
ˆ
n
k

˜
, and

letXn be the corresponding random variable with probability distribution
ˆ 1

n!
nk

˜
, with PGF,

pn(u) =

 
n+ u− 1

n

!
=
u(u+ 1)(u+ 2) · · · (u+ n− 1)

n!
=

Γ(u+ n)

Γ(u)Γ(n+ 1)
.

We have for fixedu near 1,

(16) pn(u) =
nu−1

Γ(u)

„
1 +O(

1

n
)

«
=

1

Γ(u)

“
e(u−1)

”log n
„

1 +O(
1

n
)

«
.
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As results from Stirling’s formula for the Gamma function (or from singularity analysis of
[zn](1 − z)−u, Chapter VI), the error term in (16) isO(n−1) whenu stays in a small enough
neighbourhhod of 1, for instance|u − 1| ≤ 1

2
. Thus, asn → +∞, pn(u) is approximately a

“large power” ofeu−1 taken with exponentlog n, multiplied by a fixed function,(Γ(u))−1. By
analogy to the central limit theorem, we may expect a Gaussian law.

The mean satisfiesµn = log n+γ+o(1), the standard deviation satisfiesσn =
√

log n+
o(1). We thus consider the standardized random variable,

X∗
n =

Xn − L− γ√
L

, L = log n,

whose characteristic function is

φ∗
n(t) =

e−it(L1/2+γL−1/2)

Γ(eit/
√

L)
exp

“
L(eit/

√
L − 1)

” „
1 +O(

1

n
)

«
.

For fixedt, with L→∞, the logarithm is then found mechanically to satisfy

log φ∗
n(t) = − t

2

2
+O((log n)−1/2).

This is sufficient to establish a Gaussian limit law,

(17) lim
n→∞

P

n
Xn ≤ log n+ γ + x

p
log n

o
=

1√
2π

Z x

−∞
e−w2/2 dw.

Proposition IX.6 (Goncharov’s Theorem). The Stirling cycle distribution,P(Xn = k) =
1
n!

ˆ
n
k

˜
, describing the number of cycles and the number of records ina random permutation of

sizen is asymptotically normal.

This result was obtained by Goncharov as early as 1944, see [240], albeit without an error
term as his investigations predate the Berry-Esseen inequalities. END OF EXAMPLE IX.7. �

The cycle example is characteristic of the occurrence of Gaussian laws in analytic
combinatorics. What happens is that the approximation (16)by a power with “large”
exponentβn = logn leads after normalization, to the characteristic functionof a
Gaussian variable, namelye−t2/2. From there, the limit distribution (17) results by
the continuity theorem. This is in fact a very general phenomenon, as demonstrated
by a theorem of Hsien-Kuei Hwang [272, 275] that we state next and that builds upon
earlier statements of Bender and Richmond [36].

The following notations prove especially convenient: given a functionf(u) ana-
lytic at u = 1, we set

(18) m(f) =
f ′(1)

f(1)
, v(f) =

f ′′(1)

f(1)
+
f ′(1)

f(1)
−
(
f ′(1)

f(1)

)2

.

The notationsm, v suggest their probabilistic counterparts while neatly distinguishing
between the analytic and probabilistic realms: Iff is the PGF of a random variableX ,
thenf(1) = 1 andm(f), themean, coincides with the expectationE(X); the quantity
v(f) then coincides with the varianceV(X).

Theorem IX.7 (Quasi-Powers, Central law). Let theXn be nonnegative discrete ran-
dom variables with probability generating functionpn(u). Assume that,uniformly in
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a fixed complex neighbourhood ofu = 1, for sequencesβn, κn → +∞, there holds

(19) pn(u) = A(u) (B(u))
βn

(
1 +O(

1

κn
)

)
,

whereA(u), B(u) are analytic atu = 1 andA(1) = B(1) = 1. Assume finally that
B(u) satisfies the so-called “variability condition”,

v(B(u)) ≡ B′′(1) +B′(1) −B′(1) 6= 0.

Under these conditions, the distribution ofXn is asymptotically Gaussian, and the
speed of convergence to the Gaussian limit isO(κ−1

n + β
−1/2
n ):

P

{
Xn − βnU

′(0)√
βnU ′′(0)

≤ x

}
= Φ(x) +O

(
1

κn
+

1√
βn

)
.

The mean and variance ofXn satisfy

(20)
µn ≡ E(Xn) = βn m(B(u)) + m(A(u)) +O(

1

κn
)

σ2
n ≡ V(Xn) = βn v(B(u)) + v(A(u)) +O(

1

κn
)

This theorem is a direct application of the following lemma,also due to Hwang,
that applies more generally to arbitrary discrete or continuous distributions, and is thus
entirely phrased in terms of integral transforms.

Lemma IX.1 (Quasi-Powers, general distributions). Assume that the Laplace trans-
formsλn(s) = E{esXn} of a sequence of random variablesXn are analytic in a disc
|s| < ρ, for someρ > 0, and satisfy there an expansion of the form

(21) λn(s) = eβnU(s)+V (s)

(
1 +O(

1

κn
)

)
,

with βn, κn → +∞ asn → +∞, andU(s), V (s) analytic in |s| ≤ ρ. Assume also
the variability condition,

U ′′(0) 6= 0.

Under these assumptions, the mean and variance ofXn satisfy

(22)
E{Xn} = βnU

′(0) + V ′(0) +O(κ−1
n ),

V{Xn} = βnU
′′(0) + V ′′(0) +O(κ−1

n ).

The distribution ofXn is asymptotically Gaussian and the speed of convergence to the
Gaussian limit isO(κ−1

n + β
−1/2
n ).

PROOF. This closely follows the lines of Hwang’s works [272, 275]. First, we estimate
the mean and variance. The variables is a priori restricted to a small neighbourhood
of 0. By assumption, the functionlogλn(s) is analytic at 0 and it satisfies

logλn(s) = βnU(s) + V (s) +O(
1

κn
)
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This asymptotic expansion carries over, with the same type of error term, to deriva-
tives at 0 because of analyticity: this can be checked directly from Cauchy integral
representations,

1

k!

dr

dsr
logλn(s)

∣∣∣∣
s=0

=
1

2iπ

∫

γ

logλn(s)
ds

sr+1
,

upon using a small but fixed integration contourγ and taking advantage of the basic
expansion oflogλn(s). In particular, the mean and variance satisfy the estimates
of (22).

Next, we consider the standardized variable,

X⋆
n =

Xn − βnU
′(0)√

βnU ′′(0)
, λ⋆

n(s) = E{esX⋆
n}.

We have

log λ⋆
n(s) = − βnU

′(0)√
βnU ′′(0)

s+ logλn(
s√

βnU ′′(0)
).

Local expansions to third order based on the assumption (21)show that

(23) logλ⋆
n(s) =

s2

2
+O(

|s| + |s|3

β
1/2
n

) +O(
1

κn
),

uniformly with respect tos in a disc of radiusO(β
1/2
n ), and in particular in any fixed

neighbourhood of 0. This is enough to conclude as regards convergence in distribution
to a Gaussian limit, by the continuity theorem of either Laplace transforms (restrict-
ing s to be real) or of Fourier transforms (takings = it).

Finally, the speed of convergence results from the Berry-Esseen inequalities. Take
T ≡ Tn = cβ

1/2
n , wherec is taken sufficiently small but nonzero, in such a way that

the local expansion ofλn(s) at 0 applies. Then, the expansion (23) instantiated at
s = it entails that the quantity

∆n :=

∫ Tn

−Tn

∣∣∣∣∣
λ⋆

n(it) − e−t2/2

t

∣∣∣∣∣ dt+
1

Tn

satisfies
∆n = O(β−1/2

n + κ−1
n ),

and the statement follows by the Berry-Esseen theorem. �

Theorem IX.7 applies immediately to the Stirling cycle distribution for which
the estimate (16) was derived. It shows in addition that the speed of convergence is
O((log n)−1/2) for this distribution.

The Quasi-Powers Theorem under either form (19) or (21) can be readformally
as expressing the distribution of a (pseudo)random variable

Z = Y0 +W1 +W2 + · · · +Wβn ,

whereY0 “corresponds” toeV (s) (orA(u)) and eachWj to eU(s) (orB(u)). However,
there is noa priori requirement thatβn should be an integer, nor thateU(s), eV (s)

be Laplace transforms of probability distribution functions. In a way, the theorem
recycles the intuition that underlies the central limit theorem and makes use of the
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analytic machinery behind it. But, in applications, functions likeeU(s), eV (s) do not
necessarily admit a direct probabilistic interpretation.

It is of particular importance to note that the conditions ofTheorem IX.7 and
Lemma IX.1 are purely local:what is required islocal analyticity of the quasi-power
approximation atu = 1 for PGF’s or, equivalently,s = 0 for Laplace-Fourier trans-
forms. This important feature is ultimately due the normalization of random variables
and transforms that goes along with continuous limit laws
� IX.18. Higher moments under Quasi-powers.Following Hwang [275], one has under the
conditions of the Quasi-Powers Theorem, Lemma IX.1, and foreach fixedk,

E(Xk
n) = k!̟k(βn) +O

„
βk

n

κn

«
, ̟k(s) := [sk]eβnU(s)+V (s).

(̟k is a polynomial of degreek, which describes precisely the behaviour of higher moments.)
�

Singularity perturbation and Gaussian laws. The main thread of this chapter is
bivariate generating functions. In general, we are given a BGFF (z, u) and aim at
extracting a limit distribution from it. The quasi-power paradigm in the form (19) is
what one should look for, in the case where the mean and the standard deviation both
tend to infinity with the sizen of the model.

We proceed heuristically in this informal discussion. Start from the BGF and
consideru as a parameter. If singularity analysis applies to the counting generating
functionF (z, 1), it leads to an approximation,

fn ≈ C · ρ−nnα,

whereρ is the dominant singularity ofF (z, 1) andα is related to the critical exponent
of F (z, 1) atρ. A similar type of analysis is often applicable toF (z, u) for u near 1.
Then, it is reasonable to expect an approximation for thez-coefficients of the bivariate
GF,

fn(u) ≈ C(u)ρ(u)−nnα(u).

In this perspective, the corresponding PGF is of the form

pn(u) ≈ C(u)

C(1)

(
ρ(u)

ρ(1)

)−n

nα(u)−α(1).

The strategy envisioned here is thus a perturbation analysis of singular expansions
with the auxiliary parameteru being restricted to a small neighbourhood of 1.

In particular if only the dominant singularity moves withu, we have a rough form

pn(u) ≈ C(u)

C(1)

(
ρ(u)

ρ(1)

)−n

,

suggesting a Gaussian law with mean and variance that are both O(n). If only the
exponent moves, then

pn(u) ≈ C(u)

C(1)
nα(u)−α(1),

suggests again a Gaussian law, but with mean and variance that are bothO(log n).
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These cases point to the fact that a rather simple perturbation of a univariate
analysis may yield limiting Gaussian distributions. Each major coefficient extrac-
tion method of Chapters IV–VIII plays a rôle, and the present chapter illustrates this
important point in the following contexts:

— meromorphic analysisfor functions with polar singularities (Section IX. 6
below, based on a perturbation of methods of Chapters IV and V);

— singularity analysisfor functions with algebraic–logarithmic singularity
(Section IX. 7 below, based on a perturbation of methods of Chapters VI
and VII);

— saddle point analysisfor functions with fast growth at their singularity (Sec-
tion IX. 8 below, based on a perturbation of methods of Chapters VIII).

Roughly, the decomposable character of many elementary combinatorial struc-
tures is reflected by strong analyticity properties of bivariate GF’s that, after perturba-
tion analysis, lead, via the Quasi-Powers Theorem (TheoremIX.7), to Gausssain laws.
The coefficient extraction methods being based on contour integration supply the nec-
essary uniformity conditions. (In contrast, Darboux’s method or Tauberian theorems,
being nonconstructive, arenot normally applicable in this context.)

IX. 6. Perturbation of meromorphic asymptotics

This section discusses schemas that rely on the analysis of coefficients of mero-
morphic functions, as discussed in Chapters IV and V. It is largely based on works
of Bender who, starting with his seminal article [28], was the first to propose abstract
analytic schemas leading to Gaussian laws in analytic combinatorics. Our presenta-
tion also follows subsequent works of Bender, Flajolet, Hwang, Richmond, and So-
ria [36, 210, 212, 272, 273, 274, 275, 443].

EXAMPLE IX.8. The surjection distribution.We revisit the distribution of image cardinality in
surjections for which the concentration property has been established in Chapter V. This exam-
ple serves to introduce bivariate asymptotics in the meromorphic case. Consider the distribution
of image cardinality in surjections, with BGF

F (z, u) =
1

1− u(ez − 1)
.

Restrictu near 1, for instance|u − 1| ≤ 1
10

. The functionF (z, u), as a function ofz, is
meromorphic with singularities at

ρ(u) + 2ikπ, ρ(u) = log(1 +
1

u
).

The principal determination of the logarithm is used (withρ(u) nearlog 2 whenu is near 1). It
is then seen thatρ(u) stays within0.06 from log 2, for |u − 1| ≤ 1

10
. Thusρ(u) is the unique

dominant singularity ofF , the next nearest one beingρ(u)± 2iπ with modulus certainly larger
than6.

From the coefficient analysis of meromorphic functions (Chapter IV), the quantities
fn(u) = [zn]F (z, u) are estimated as follows,

(24)
fn(u) = Res

`
F (z, u)z−n−1´

z=ρ(u)
+

1

2iπ

Z

|z|=5

F (z, u)
dz

zn+1

=
1

uρ(u)eρ(u)
ρ(u)−n +O(5−n).
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It is important to note that the error term isuniform with respect tou, onceu has been con-
strained to satisfy|u − 1| ≤ 0.1. This fact derives from the coefficient extraction method,
since, in the remainder Cauchy integral of (24), the denominator of F (z, u) stays bounded
away from 0.

The second estimate in Equation (24), constitutes a prototypical case of application of the
quasi-power schema. Thus, the numberXn of image points in a random surjection of sizen
obeys in the limit a Gaussian law. The local expansion ofρ(u),

ρ(u) ≡ log(1 + u−1) = log 2− 1

2
(u− 1) +

3

8
(u− 1)2 + · · · ,

yields
ρ(1)

ρ(u)
= 1 +

1

2 log 2
(u− 1) − 3 ln(2) − 2

8(log 2)2
(u− 1)2 +O

`
(u− 1)3

´
,

so that the mean and standard deviation satisfy

µn ∼ C1n, σn ∼
√
C2 n, C1 :=

1

2 log 2
, C2 :=

1− log 2

4(log 2)2
.

In particular, the variability condition is satisfied. Finally, one obtains, withΦ the Gaussian
error function,

P{Xn ≤ C1n+ x
√
C2n} = Φ(x) +O

„
1√
n

«
.

This estimate can alternatively be viewed as a purely asymptotic statement regarding Stirling
partition numbers.

Proposition IX.7. The surjection distribution defined as1
Sn

˘
n
k

¯
, with Sn =

P
k k!
˘

n
k

¯
the

normalizing factor (the surjection number), satisfiesuniformly for all realx,

1

Sn

X

k≤C1n+x
√

C2n

k!

(
n

k

)
=

1√
2π

Z x

−∞
e−w2/2 dw+O

„
1√
n

«
.

This result already appears in Bender’s foundational study[28], . END OF EXAMPLE IX.8. �

The following analytic schema vastly generalizes the case of surjections. It is
again strongly inspired by the works of Bender [28].

Theorem IX.8 (Meromorphic schema). Let F (z, u) be a bivariate function that is
bivariate analytic at(z, u) = (0, 0) and has nonnegative coefficients there. Assume
that F (z, 1) is meromorphic inz ≤ r with only a simple pole atz = ρ for some
positiveρ < r. Assume also the following conditions.

(i) Meromorphic perturbation:there existsǫ > 0 and r > ρ such that in the
domain,D = {|z| ≤ r} × {|u− 1| < ǫ} , the functionF (z, u) admits the
representation

F (z, u) =
B(z, u)

C(z, u)
,

whereB(z, u), C(z, u) are analytic for(z, u) ∈ D withB(ρ, 1) 6= 0. (Thus
ρ is a simple zero ofC(z, 1).)

(ii) Nondegeneracy:one has∂zC(ρ, 1) · ∂uC(ρ, 1) 6= 0, ensuring the existence
of a nonconstantρ(u) analytic atu = 1, such thatC(ρ(u), u) = andρ(1) =
ρ.
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(iii) Variability: one has

v

(
ρ

ρ(u)

)
6= 0.

Then, the random variable with probability generating function

pn(u) =
[zn]F (z, u)

[zn]F (z, 1)

converges in distribution to a Gaussian variable with a speed of convergence that is
O(n−1/2). The mean and the standard deviation ofXn are asymptotically linear inn.

First we offer a few comments. Given the analytic solutionρ(u) of the implicit
equationC(ρ(u), u) = 0, the PGFE(uXn) satisfies a quasi-powers approximation of
the formA(u)(ρ(1)/ρ(u))n, as we prove below. The meanµn and varianceσ2

n are
then of the form

(25) µn = m

(
ρ(1)

ρ(u)

)
n+O(1), σ2

n = v

(
ρ(1)

ρ(u)

)
n+O(1).

The variability condition of the Quasi-Powers Theorem is precisely ensured by condi-
tion (iii). Set

ci,j :=
∂i+j

∂zi∂uj
C(z, u)

∣∣∣∣
(ρ,1)

.

The numerical coefficients in (25) can themselves be solely expressed in terms of
partial derivatives ofC(z, u) by series reversion,
(26)

ρ(u) = ρ− c0,1

c1,0
(u− 1)− c21,0c0,2 − 2c1,0c1,1c0,1 + c2,0c

2
0,1

2c31,0

(u− 1)2 +O((u− 1)3).

In particular the fact thatρ(u) is nonconstant, analytic, and a simple root corresponds
to c0,1c1,0 6= 0 (by the analytic Implicit Function Theorem). The variance condition
is then computed to be equivalent to the cubic inequality in theci,j :

(27) ρ c1,0
2c0,2 − ρ c1,0c1,1c0,1 + ρ c2,0c0,1

2 + c0,1
2c1,0 + c0,1c1,0

2ρ 6= 0.

PROOF. We can now proceed with asymptotic estimates. Consider a domain|u−1| ≤
δ inside the region of analyticity ofB,C. Then, one has

fn(u) := [zn]F (z, u) =
1

2iπ

∮
F (z, u)

dz

zn+1
,

where the integral is taken along a small enough contour encircling the origin. We
use the analysis of polar singularities described in Chapter IV, exactly like in (24). As
F (z, u) has at most one (simple) pole in|z| ≤ r, we have

(28) fn(u) = Res

(
B(z, u)

C(z, u)
z−n−1

)

z=ρ(u)

+
1

2iπ

∫

|z|=r

F (z, u)
dz

zn+1
,

where we may assumeu suitably restricted by|u − 1| < δ in such a way that|r −
ρ(u)| < 1

2 (r − ρ).
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The modulus of the second term in (28) is bounded from above by

(29)
K

rn
where K =

sup|z|=r,|u−1|≤δ |B(z, u)|
inf|z|=r,|u−1|≤δ |C(z, u)| .

Since the domain|z| = r, |u− 1| ≤ δ is closed,C(z, u) attains its minimum that must
be nonzero, given the unicity of the zero ofC. At the same time,B(z, u) being
analytic, its modulus is bounded from above. Thus, the constantK in (29) is finite.

A residue computation of the first term, in accordance with the analysis of mero-
morphic functions, then yields

fn(u) =
B(ρ(u), u)

C′(ρ(u), u)
ρ(u)−n−1 +O(r−n),

uniformly for u in a small enough fixed neighbourhood of1. The mean and variance
then satisfy (25), with the coefficient in the leading term ofthe variance term that is,
by assumption, nonzero. Thus, the conditions of the Quasi-Powers Theorem in the
form (19) are satisfied, and the law is Gaussian in the asymptotic limit. �

Some form of condition regarding nondegeneracy is a necessity. For instance, the
functions

1

1 − z
,

1

1 − zu
,

1

1 − zu2
,

1

1 − z2u
,

each fail to satisfy the nondegeneracy and the variability condition, and the variance
of the corresponding discrete distribution is identically0. The combinatorial variance
isO(1) for a related function like

F (z, u) =
1

1 − z(u+ 2) + 2z2u
=

1

(1 − 2z)(1 − zu)
,

which is excluded by the variability condition of the theorem—there a discrete limit
law, a geometric, is known to hold; see page 572. Yet another situation arises when
considering

F (z, u) =
1

(1 − z)(1 − zu)
.

There is now a double pole at 1 whenu = 1 that arises from “confluence” atu = 1 of
two analytic branchesρ1(u) = 1 andρ2(u) = 1/u. In this particular case, the limit
law is continuous but non-Gaussian; in fact, this limit is the uniform distribution over
the interval[0, 1], since

F (z, u) = 1 + z(1 + u) + z2(1 + u+ u2) + z3(1 + u+ u2 + u3) + · · · .
In addition, for this case, the mean isO(n) but the variance isO(n2). Such situations
are briefly examined in Section IX. 11 at the end of this Chapter.
� IX.19. Higher order poles.Under the conditions of Theorem IX.8, a limit Gaussian law holds
for the distributions generated by the BGFF (z, u)m, which has anmth order pole. See [28].
�

EXAMPLE IX.9. The Central Limit Theorem and discrete renewal theory.Let g(u) be any
PGF (g(1) = 1) of a random variable supported byZ≥0 that is analytic at 1 and nondegenerate
(i.e.,v(g) > 0). Then

F (z, u) =
1

1− zg(u)



IX. 6. PERTURBATION OF MEROMORPHIC ASYMPTOTICS 609

has a singularity at1/g(u) that is a simple pole,

ρ(u) =
1

g(u)
.

Theorem IX.8 then applies to give a weak form of the central limit theorem for discrete prob-
ability distributions with PGFs that are analytic at 1. (In such a case, a refined Gaussian con-
vergence property—a local limit law, see Chapter VIII and Section IX. 9 below—also derives
from the saddle point method.)

Under the same analytic assumptions ong, consider now the “dual” BGF,

G(z, u) =
1

1− ug(z) ,

where the rôles ofz andu have been interchanged. In addition, we must impose for consis-
tency thatg(0) = 0. There is a simple probabilistic interpretation in terms ofrenewal processes
of classical probability theory. Assume a light bulb has a lifetime ofm days with probabil-
ity gm = [zm]g(z) and is replaced as soon as it ceases to function. LetXn be the number
of light bulbs consumed inn days assuming independence, conditioned upon the fact thata
replacement takes place on thenth day. Then the PGF ofXn is [zn]G(z, u)/[zn]G(z, 1).
(The normalizing quantity[zn]G(z, 1) is precisely the probability that a renewal takes place on
dayn.) Theorem IX.8 applies. The functionG has a simple dominant pole atz = ρ(u) such
thatg(ρ(u)) = 1/u, with ρ(1) = 1 sinceg is by asumption a PGF. One finds

1

ρ(u)
= 1 +

1

g′(1)
(u− 1) +

1

2

g′′(1) + 2g′(1)− 2g′(1)2

g′(1)3
(u− 1)2 + · · · .

Thus the limit distribution ofXn is normal with mean and variance satisfying

E(Xn) ∼ n

µ
, V(Xn) ∼ nσ

2

µ3
,

whereµ := m(g) andσ2 := v(g) are the mean and variance attached tog. (This calcula-
tion checks the variability conditionen passant.) The mean value result certainly conforms to
probabilistic intuition. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . END OF EXAMPLE IX.9. �

� IX.20. Renewals every day.In the renewal scenario, no longer condition on the fact thata
bulb breaks down on dayn. LetYn be the number of bulbs consumed so far. Then the BGF of
Yn is found by expressing that there is a sequence of renewals followed by a last renewal that is
to be credited to all intermediate epochs:

X

n≥1

E(uY
n )zn =

1

1− ug(z)
g(u)− g(zu)

1− z .

A Gaussian limit also holds forYn. �

� IX.21. A mixed CLT–renewal scenario.ConsiderG(z, u) = 1/(1 − g(z, u)) whereg has
nonnegative coefficients, satisfiesg(1, 1) = 1, and is analytic at(z, u) = (1, 1). This models
the situation where bulbs are replaced but a random cost is incurred, depending on the duration
of the bulb. Under general conditions, a limit law holds and it is Gaussian. This applies for
instance toH(z, u) = 1/(1 − a(z)b(u)), wherea andb are nondegenerate PGFs (a random
repairman is called). �

The preceding discussion of renewal processes also brings us extremely close
analytically to a sequence schemaF = S(G) and

F (z, u) =
1

1 − ug(z)
,



610 IX. MULTIVARIATE ASYMPTOTICS

0.70.60.50.40.3

4

0.20.1

2

5

0

3

1

0
0.50.4

5

0.3

4

3

0.2

2

1

0.1
0

0
0

0.20.10

5

4

0.4

3

2

1

0.3

FIGURE IX.8. When components are sorted by size and represented by vertical
segment of corresponding length, supercritical sequencespresent various profiles
described by Proposition IX.8. The diagrams display the mean profiles of large
surjections, alignments, and compositions for component sizes≤ 5.

in the case where the schema iscritical. It is then possible to refine the moment
estinmates of Chapter V and obtain the probabilistic profileof supercritical sequences.

Proposition IX.8 (Supercritical sequences). Consider a sequence schema that is su-
percritical, i.e., the value ofg at its dominant positive singularity satisfiesτg > 1.
Assumingg to be aperiodic andg(0) = 0, the numberXn of G–components in a
randomFn structure of some large sizen is asymptotically Gaussian with

E(Xn) ∼ n

g′(σ)
, V(Xn) ∼ n

g′′(σ) + g′(σ) − g′(σ)2

g′(σ)3
,

where σ is the radius of convergence ofg. The numberX(m)
n of components

of some fixed sizem is asymptotically normal with mean∼ θmn, whereθm =
gmσ

m/(σg′(σ)).

PROOF. The first part is a direct consequence of Theorem IX.8 and of the previous
calculations withρ replacing 1. The second part results from the BGF

1

1 − (u− 1)gmzm − g(z)
,

and from the fact thatu = 1 induces a smooth perturbation of the pole atρ corre-
sponding tou = 1. �

This proposition aplies to alignments, surjections, compositions of various
sorts—including compositions into prime summands. The profile of supercritical se-
quences is then appreciably different from what was obtained in the subcritical case,
where discrete limit laws prevail. Fundamentally, the proportion of fixed size com-
ponents is close toθm, up to Gaussian fluctuations. The diagrams of Chapter V and
Figure 8 clearly illustrate this situation.
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� IX.22. Alignments and Stirling cycle numbers.Alignments are sequences of cycles (Chap-
ter II), corresponding toS(C≥1(Z)), with exponential BGF

F (z, u) =
1

1− u log(1− z)−1
.

The functionρ(u) is explicit,ρ(u) = 1− e−1/u, and the number of cycles in a random align-
ment is asymptotically Gaussian. This yields an asymptoticstatement on Stirling cycle num-
bers:Uniformly for all realx, withOn =

P
k k!
ˆ
n
k

˜
the alignment number, there holds

1

On

X

k≤C1n+x
√

C2n

k!

"
n

k

#
=

1√
2π

Z x

−∞
e−w2/2 dw +O

„
1√
n

«
,

where the two constantsC1, C2 areC1 =
1

e− 1
,C2 =

1

(e− 1)2
. �

� IX.23. Summands in constrained integer compositions.Consider integer compositions where
the summands are constrained to belong to a setΓ ⊆ N+, and letXn be the number of sum-
mands in a random composition of integern. The ordinary BGF is

F (z, u) =
1

1− ug(z) , g(z) =
X

γ∈Γ

zγ .

Assume thatΓ contains at least two relatively prime elements, so thatg(z) is aperiodic. The
radius of convergence ofg(z) can only be∞ (wheng(z) is a polynomial) or 1 (wheng(z)
comprises infinitely many terms but is dominated by(1−z)−1). At any rate, the sequence con-
struction is supercritical, so that the distribution ofXn is asymptotically normal. For instance, a
Gaussian limit holds for compositions into prime or even twin-prime summands of Chapter V.
�

The next two examples are relative to runs in permutations and patterns in words.
They do not resort to a supercritical sequence but their analytic structure is very much
similar. It is of interest to note that the BGFs were each deduced in Chapter III by an
inclusion-exclusion argument that involves sequences in an essential way.

EXAMPLE IX.10. Ascending runs in permutations and Eulerian numbers.The exponential
BGF of Eulerian numbers (that count runs in permutations) is

F (z, u) =
u(1− u)
e(u−1)z − u ,

where, foru = 1, we haveF (z, 1) = (1− z)−1. The roots of the denominator are then

ρk(u) := ρ(u) +
2ikπ

u− 1
, ρ(u) =

log u

u− 1
,

wherek is an arbitrary element ofZ. As u is close to 1,ρ(u) is close to 1, while the other
polesρk(u) with k 6= 0 escape to infinity. This fact is also consistent with the limit form
F (z, 1) = (1− z)−1 which has only one pole at1. If one restrictsu to |u| ≤ 2, there is clearly
at most one root of the denominator in|z| ≤ 2 that is given byρ(u). Thus, we have foru close
enough to 1,

F (z, u) =
1

ρ(u)− z +R(z, u),

with R(z, u) analytic in|z| ≤ 2, and

[zn]F (z, u) = ρ(u)−n−1 +O(2−n).
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FIGURE IX.9. The diagrams of poles of the BGFF (z, u) associated to the
patternabaa with correlation polynomialc(z) = 1+z3 whenu varies on the unit
circle. The denominator is of degree4 in z: one branch,ρ(u) clusters near the
dominant singularityρ = 1

2 of F (z, 1) while three other singularities stay away
from the disc|z| ≤ 1

2 and escape to infinity asu→ 1.

The variability conditions are satisfied since

ρ(u) =
log u

(u− 1)
= 1− 1

2
(u− 1) +

1

3
(u− 1)2 + · · · ,

so thatv(1/ρ(u)) = 1
12

is nonzero.

Proposition IX.9. The Eulerian distribution is asymptotically Gaussian, with mean and vari-
ance given byµn = n+1

2
, σ2

n = n+1
12

.

This example is a famous one and our derivation follows Bender’s paper [28]. The Gauss-
ian character of the distribution has been known for a long time; it is for instance to be found in
David and Barton’sCombinatorial Chance[108] published in 1962. There are in this case inter-
esting connections with elementary probability theory: ifUj are independent random variables
that are uniformly distributed over the interval[0, 1], then one has

[znuk]F (z, u) = P{⌊U1 + · · ·+ Un⌋ < k}.

Because of this fact, the normal limit is thus often derived aconsequence of the central limit
theorem of probability theory, after one takes care of unimportant details relative to the integer
part⌊·⌋ function; see [108, 422]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . END OF EXAMPLE IX.10. �

EXAMPLE IX.11. Patterns in strings.Consider the classF of binary strings (the “texts”),
and fix a “pattern”w of lengthk. Let χ be the number of (possibly overlapping) occurrences
of w. (The patternw occurs if it is a factor,i.e., if its letters occur contiguously in the text.) Let
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F (z, u) be the BGF relative to the pair(F , χ). The Guibas-Odlyzko correlation polynomial5

c(z) ≡ cw(z) relative tow is defined for instance in [434], where it is shown that the OGF of
words with patternw excluded is

F (z, 0) =
c(z)

zk + (1− 2z)c(z)
.

By similar string decompositions, the full BGF is found to be[192, p. 145]

F (z, u) =
1− (c(z)− 1)(u− 1)

1− 2z − (u− 1)(zk + (1− 2z)(c(z)− 1))
.

Let D(z, u) be the denominator. ThenD(z, u) depends analytically onz, for u near 1 and
z near1/2. In addition, the partial derivativeD′

z(
1
2
, 1) is nonzero. Thus,ρ(u) is analytic

atu = 1, with ρ(1) = 1/2. The local expansion of the rootρ(u) of D(ρ(u), u) follows from
local series reversion,

2ρ(u) = (1− 2−k(u− 1) + (k2−2k − 2−kc(
1

2
)) (u− 1)2 +O((u− 1)3).

Theorem IX.8 applies.

Proposition IX.10. The number of occurrences of a fixed pattern in a random large string is
asymptotically normal. The number of occurrences has mean and varianceσ2

n that satisfy

n

2k
+O(1), σ2

n =

„
2−k(1 + 2c(

1

2
)) + 2−2k(1− 2k)

«
n+O(1).

The mean does not depend on the order of letters, only on the length of the pattern.
END OF EXAMPLE IX.11. �

� IX.24. Patterns in Bernoulli texts.Asymptotic normality also holds when letters in strings
are chosen independently but with an arbitrary probabilitydistribution. It suffices to use the
weighted correlation polynomial described in a note of Chapter III. �

EXAMPLE IX.12. Parallelogram polyominoes.Polyominoes are plane diagrams that are
closely related to models of statistical physics, while having been the subject of a vast com-
binatorial literature. This example has the merit of illustrating a level of difficulty somewhat
higher than in previous examples and typical of many “real–life” applications. Our presentation
follows an early article of [30] and a more recent paper of Louchard [342]. We consider here
the variety of polyominoes calledparallelograms. A parallelogram is a sequence of segments,

[a1, b1], [a2, b2], . . . , [am, bm], a1 ≤ a2 · · · ≤ am, b1 ≤ b2 ≤ · · · ≤ bm,
where theaj andbj are integers withbj − aj ≥ 1, and one takesa1 = 0 for definiteness. A
parallelogram can thus be viewed as a stack of segments (with[aj+1, bj+1] placed on top of
[aj , bj ]) that leans smoothly to the right:

5The correlation polynomial, as defined in Chapter I, has coefficients in{0, 1}, with [zj ]c(z) = 1 iff
w matches its left shifted image byj positions.
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(This instance has area 39, width 13, height 9, and perimeter13 + 9 = 22.)
The quantitym is called the height, the quantitybm − a1 the width, their sum is called

the (semi)perimeter, and the grand total
P

j(bj − aj) is called the area. We examine paral-
lelograms of fixed area and investigate the distribution of the perimeter. The ordinary BGF of
parallelograms, withz marking area andu marking perimeter turns out to be

(30) F (z, u) = u
J1(z, u)

J0(z, u)
,

whereJ0, J1 belong to the realm of “q–analogues” and generalize the classical Bessel functions,

J0(q, u) :=
X

n≥0

(−1)nunqn(n+1)/2

(q; q)n(uq; q)n
, J1(q, u) :=

X

n≥1

(−1)n−1unqn(n+1)/2

(q; q)n−1(uq; q)n
,

with the “q–factorial” notation being used:

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1).

The expression (30) of the BGF results from a simple construction: a parallelogram is
either an interval, or it is derived from an existing parallelogram by stacking on top a new
interval. LetG(w) ≡ G(x, y, z, w) be the OGF withx, y, z, w marking width, height, area,
and length of top segment, respectively. The GF of a parallelogram made of a single nonzero
interval is

a(w) ≡ a(x, y, z, w) =
xyzw

1− xzw .
The operation of piling up a new segment on top of a segment of lengthm that is represented
by a termwm is described by

y

„
zmwm

1− xzw + · · ·+ zw

1− xzw

«
= xyzw

1− xmwm

(1− zw)(1− xzw)
.

Thus,G satisfies the functional equation,

(31) G(w) =
xyzw

1− xzw +
xyzw

(1− zw)(1− xzw)
[G(1)−G(xzw)] .

This is the method of “adding a slice” already employed in Chapter III. and reflected by the
relation (31). Now, an equation of the form,

G(w) = a(w) + b(w)[G(1) −G(λw)],

is solved by iteration:

G(w) = a(w) + b(w)G(1)− b(w)G(λ(w))
=

`
a(w)− b(w)a(λw) + b(w)b(λw)a(λ2w)− · · ·

´

+G(1)
`
b(w)− b(w)b(λw) + b(w)b(λw)b(λ2w)− · · ·

´
.

One then isolatesG(1) by settingw = 1. This expressesG(1) as the quotient of two similar
looking series (formed with sums of products ofb–values). Here, this givesG(x, y, z, 1), from
which the form (30) ofF (z, u) derives, sinceF (z, u) = G(u, u, z, 1).

In such a seemingly difficult situation, one should first estimate[zn]F (z, 1), the number
of parallelogram of “size” (i.e., area) equal ton. We haveF (z, 1) = J1(z, 1)/J0(z, 1), where
the denominator is

J0(z, 1) = 1− z

(1− z)2 +
z3

(1− z)2(1− z2)2
− z6

(1− z)2(1− z2)2(1− z3)2
+ · · · .

Clearly,J0(z, 1) andJ1(z, 1) are analytic in|z| < 1, and it is not hard to see thatJ0(z, 1)
decreases from 1 to about−0.24 whenz varies between0 and 1

2
, with a root at

ρ
.
= 0.43306 19231 29252,
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whereJ ′
0(ρ, 1)

.
= −3.76 6= 0, so that the zero is simple6. SinceF (z, 1) is by construction

meromorphic in the unit disc, andJ1(ρ, 1)
.
= 0.48 6= 0, the number of parallelograms satisfies

[zn]F (z, 1) ∼ J1(ρ, 1)

ρJ ′
0(ρ, 1)

„
1

ρ

«n

= α1 · αn
2 ,

where
α1

.
= 0.29745 35058 07786, α2

.
= 2.30913 85933 31230.

As is common in meromorphic analyses, the approximation of coefficients is quite good; for
instance, the relative error is only about10−8 for n = 35.

We are now ready for bivariate asymptotics. Take|z| ≤ r = 7
10

and|u| ≤ 11
10

. Because

of the form of their general terms that involvezn2/2un in the numerators while the denomi-
nators stay bounded away from 0, the functionsJ0(z, u) andJ1(z, u) remain analytic there.
Thus,ρ(u) exists and is analytic foru in a sufficiently small neighbourhood of 1 (by Weier-
strass preparation or implicit functions). The nondegeneracy conditions are easily verified by
numerical computations. There results that Theorem IX.8 applies.

Proposition IX.11. The perimeter of a random parallelogram polyomino of arean admits a
limit law that is Gaussian with mean and variance that satisfy: µn ∼ µn, σn ∼ σ

√
n, with

µ
.
= 0.84176 20156, σ

.
= 0.42420 65326.

This indicates that a random parallelogram is most likely toresemble a slanted stack of
fairly short segments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . END OF EXAMPLE IX.12. �

� IX.25. Width and height of parallelogram polyominoes are normal. Similar perturbation
methods show that the expected height and width are eachO(n) on average, again with Gauss-
ian limits. �

� IX.26. The base of a coin fountain.A coin fountain (Chapter IV) is defined as a vector
v = (v0, v1, . . . , vℓ), such thatv0 = 0, vj ≥ 0 is an integer,vℓ = 0 and|vj+1− vj | = 1. Take
as size thearea, n =

P
vj . Then the distribution of the base lengthℓ in a random coin fountain

of sizen is asymptotically normal. (This amounts to considering allruin sequences of a fixed
area as equally likely, and considering the number of steps in the game as a random variable.)
Similarly the number of vector entries equal to 0 is asymptotically Gaussian. �

Perturbation of systems of linear equations.There is usually a fairly transparent
approach to the analysis of BGFs defined implicitly as solutions of functional equa-
tions. One should start with the analysis atu = 1 and then examine the effect on
singularities whenu varies in a very small neighbourhood of 1. In accordance with
what we have already seen many times, the process is a perturbation analysis of the
solution to a functional equation near a singularity, here one thatmoves.

We illustrate, mostly by way of examples, the application ofTheorem to functions
defined implicitly by a linear system of positive equations.Positive rational functions
arise in connection with problems that can be equivalently described by finite state
devices, by paths in graphs, and by Markov chains. The bivariate problem is then
expressed by a linear equation

(32) Y (z, u) = V (z, u) + T (z, u) · Y (z, u),

6As usual, such computations can be easily validated by carefully controlled numerical evaluations
coupled with Rouché’s theorem (see Chapter IV).
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whereT (z, u) is anm×mmatrix with polynomial entries inz, u having nonnegative
coefficients,Y (z, u) is anm×1 column vector of unknowns, andV (z, u) is a column
vector of nonnegative initial conditions.

Regarding the univariate problem,

(33) Y (z) = V (z) + T (z) · Y (z).

, whereY (z) = Y (z, 1) and so on, we place ourselves under the assumptions of
Corollary V.1 of Chapter V. This means that properness, positivity, irreducibility, and
aperiodicity are assumed throughout. In this case (see the developments of Chapter V),
Perron-Frobenius theory applies to the univariate matrixT (z). In other words, the
function

C(z) = det(I − T (z))

has a unique dominant rootρ > 0 that is a simple zero. Accordingly, any component
F (z) = Yi(z) of a solution to the system (32) has a unique dominant singularity
atz = ρ that is a simple pole,

F (z) =
B(z)

C(z)
,

with B(ρ) 6= 0.
In the bivariate case, each component of the solution to the system (32) can be

put under the form

F (z, u) =
B(z, u)

C(z, u)
, C(z, u) = det(I − T (z, u)).

SinceB(z, u) is a polynomial, it does not vanish for(z, u) in a sufficiently small
neighbourhood of(ρ, 1). Similarly, by the analytic Implicit Function Theorem, there
exists a functionρ(u) locally analytic nearu = 1, such that

C(ρ(u), u) = 0, ρ(1) = ρ.

Thus, it is sufficient that the variability conditions (26) be satisfied to infer a limit
Gaussian distribution.

Theorem IX.9 (Positive rational systems). Let F (z, u) be a bivariate function that
is analytic at(0, 0) and has nonnegative coefficients. Assume thatF (z, u) coincides
with the componentY1 of a system of linear equations inY = (Y1, . . . , Ym)T ,

Y = V + T · Y,
whereV = (V1(z, u), . . . , Vm(z, u)), T = (Ti,j(z, u))

m
i,j=1, and each ofVj , Ti,j

is a polynomial inz, u with nonnegative coefficients. Assume also thatT (z, 1) is
transitive, proper, and primitive, and letρ(u) be the unique solution of

det(I − T (ρ(u), u)) = 0,

assumed to be analytic at 1, such thatρ(1) = ρ. Then, provided the variability condi-
tion,

v

(
ρ(1)

ρ(u)

)
> 0,

is satisfied, a Gaussian Limit Law holds for the coefficients of F (z, u) with mean and
variance that areO(n) and speed of convergence that isO(n−1/2).
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The constantsµ, σ involved in estimates of the mean and standard deviation,
µn ∼ µn, σn ∼ σ

√
n, are then determined fromC(z, u) = det(I − T (z, u)) by

Eq. (26). Thus, in any particular application, one can determine by computation
whether the variability condition is satisfied. It may be however more difficult to
check these conditions for a whole classes of problems.

EXAMPLE IX.13. Limit theorem for Markov chains.Assume thatM is the transition matrix
of an irreducible aperiodic Markov chain, and consider the parameterχ that records the number
of passages through state 1 in a path of lengthn that starts in state 1. Then, the theorem applies
with

V = (1, 0, . . . , 0)T , Ti,j(z, u) = zMi,j + z(u− 1)Mi,0δj,0.

We therefore derive a classical limit theorem for Markov chains:

Proposition IX.12. In an irreducible and aperiodic (finite) Markov chain, the number of times
that a designated state is reached whenn transitions are effected is asymptotically Gaussian.

The conclusion also applies to paths in any strongly connected aperiodic digraph as well
as to paths conditioned by their source and/or destination.. . . . . END OF EXAMPLE IX.13. �

� IX.27. Sets of patterns in words.This note extends Example 11 relative to the occurrence of
asinglepattern in a random text. Given the classW = S(A) of words over a finite alphabetA,
fix a finite set of “patterns”S ⊂ W and define the parameterχ(w) as the total number of
occurrences of members ofS in the wordw ∈ W. It is possible to build finite automaton
(essentially a digital tree built onS equipped with return edges) that records simultaneously the
number of partial occurrences of each pattern. Then, the limit law of χ is Gaussian; see Bender
and Kochman’s paper [35] and [189, 192] for an approach based on the de Bruin graph.�

Virtually all of the combinatorial classes that resort to transfer matrix methods
exposed in Chapter V lead to Gaussian laws in the asymptotic limit.

EXAMPLE IX.14. Tilings. (See Bender [37].) Take an(2 × n) chessboard of 2 rows andn
columns, and consider coverings with “monomer tiles” that are(1×1)-pieces, and “dimer tiles”
that are either of the horizontal(1×2) or vertical(2×1) type. The parameter of interest is here
the number of tiles. Consider next the collection of all “partial coverings” in which each column
is covered exactly, except possibly for the last one. The partial coverings are of one of 4 types
and the legal transitions are described by a compatibility graph. For instance, if the previous
column started with one horizontal dimer and contained one monomer, the current column has
one occupied cell, and one free cell that may then be occupiedeither by a monomer or a dimer.
This finite state description corresponds to a set of linear equations over BGFs (withz marking
the area covered andu marking the total number of tiles), with the transition matrix found to be

T (z, u) = z

0
BB@

u u2 u2 u2

1 0 0 0
u 0 0 0
u 0 0 0

1
CCA .

In particular, we have

det(I − T (z, u)) = 1− zu− z2(u2 + u3).

Then, Theorem IX.9 applies: the number of tiles is asymptotically normal. The method clearly
extends to(k × n) chessboards, for any fixedk. . . . . . . . . . . . . . END OF EXAMPLE IX.14. �

� IX.28. Succession-constrained integer compositions.Consider integer compositions where
consecutive summands add up to at least 4. The number of summands in such a composition of
large size is asymptotically normal. [Hint: see Bender and Richmond [37]] �
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� IX.29. Height in trees of bounded width.Consider general Catalan trees of width less than a
fixed boundw. (The width is the maximum number of nodes at any level in the tree.) In such
trees, the distribution of height is asymptotically Gaussian. �

IX. 7. Perturbation of singularity analysis asymptotics

In this section, we examine schemes that arises when generating functions con-
tain algebraic-logarithmic singularities. For instance,trees often lead to singularities
that are of the square-root type and such a singular behaviour persists for a num-
ber of bivariate generating functions associated to aditively inherited parameters. In
such cases, the underlying machinery is the method of singularity analysis detailed in
Chapter VI, on which suitable perturbative developments are applied.

An especially important feature of the method of singularity analysis and of the
associated Hankel contours is the fact that it preserves uniformity of expansions7.
This feature is crucial in translating bivariate expansion, where we need to estimate
uniformlya coefficientfn(u) = [zn]F (z, u) that depends on the parameteru, given
some (uniform) knowledge on the singular structure ofF (z, u) in terms ofz. We state
here an easy but crucial lemma that takes care of remainder terms in expansions and
hence enables the use of singularity analysis in a perturbedcontext.

Lemma IX.2 (Uniformity lemma, singularity analysis). Letfu(z) be a family of func-
tions analytic in a common∆-domain∆, withu a parameter taken in a bounded setU .
Suppose that there holds

|fu(z)| < K(u)|1 − z|−α(u),

whereK(u) is uniformly bounded,K(u) < K for u ∈ U , andα(u) is such that
−ℜ(α(u) > B for some finite realB. Then, there exists a constantK̃ (computable
from∆,K,B such that

|[zn]fu(z)| < K̃nB−1.

PROOF. It suffices to revisit the proof of the Big-Oh transfer (O-transfer) theorem
of Chapter VI, paying due attention to uniformity. The proofproceeds by Cauchy’s
formula,

fu, n ≡ [zn]fu(z) =
1

2iπ

∫
γfu(z)

dz

zn+1
,

whereγ = ∪jγj is the contour used earlier. Accordingly, we letf
(j)
u,n be the contribu-

tion in Cauchy’s integral arising from partγj of the contour. Letr be the radius of the
circular part of the contour, corresponding in earlier notations toγ3. Without loss of
generality, we may assume|r − 1| < 1. Trivial bounds imply whenB > 0 that that

|f (3)
u,n| ≤

K

(r − 1)B+1
r−n,

7For instance, Darboux’s method only providesnon-constructiveerror terms, as it is based on the
Riemann-Lebesgue lemma; it cannot be employed for bivariate asymptotics. A similar comment applies to
most Tauberian theorems.
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FIGURE IX.10. A display of the family of GF’sF (z, u0) corresponding to
leaves in general Catalan trees whenu0 ∈ [ 12 ,

3
2 ]. It is seen that the singularities

are all of the square root type (dashed line), with a movable singularity atρ̃(u) =
(1 + u1/2)−2.

with an analogous formula ifB < 0. The partγ1 corresponding to the small circular
arc at distance1/n from 1 is similarly dealt with by trivial bounds to the effectthat

|f (1)
u,n| ≤ KnB−1.

The two conjugate rectlinear parts corresponding toγ2, γ4 each lead to

|fu,n(2)| = |f (4)
u,n| ≤

K

2π
Jnn

B−1, Jn :=

∫ ∞

1

t−B

(
1 +

1

n
t cos θ

)n

.

Combining the four majorizations yields the result. � What this lemma expresses
is more general than the meromorphic scheme; only the error terms in estimates of
PGFs tend to be naturally less good as we replace an exponentially small error term
inherent to meromorphic functions by a term that is usuallyO(n−β) in the context of
singularity analysis. (Note that the proof above also supplies the uniformity estimates
needed in the proof of the little-oh transfer (o-transfer) of Chapter VI.)

� IX.30. Uniformity in the presence of lagarithmic multipliers.Similar estimates hold when
f(z) is multiplied by a power ofL(z) = − log(1− z). �

EXAMPLE IX.15. Leaves in general Catalan trees.As an introductory example, let us briefly
revisit the analysis of the number of leaves in general Catalan trees, a problem already treated
in Chapter III. where an explicit expression (a product of two binomial coefficients) has been
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derived. The computations are a little simpler if we adopt asBGF

G(z, u) = F (z, u2) =
1

2

“
1 + (u2 − 1)z −

p
1− 2(u2 + 1)z + (u2 − 1)2z2

”
,

so that we consider a parameter equal to twice the number of leaves. In this case, the discrimi-
nant factors nicely:

1− 2(u2 + 1)z + (u2 − 1)2z2 = (1− z(1 + u)2)(1− z(1− u)2),
which leads to the expression

(34) G(z, u) = A(z, u) +B(z, u)
p
C(z, u),

with

A(z, u) =
1

2
(1 + (u2 − 1)z), B(z, u) = −1

2

p
1− z(1− u)2,

C(z, u) =
1

2

`
1− z(1 + u)2

´
.

This decomposition clearly shows that, whenu is close enough to 1, the functionG(z, u) has a
dominant singularity of the square-root type at

ρ(u) =
1

(1 + u)2
.

At the same time, ifu is kept such that|1 − u| ≤ 1
2
, thenB(z, u) remains analytic in both of

its arguments for|z| < 2. For any such fixedu, we have for the BGF, by (34),

(35) G(z, u) = a0(u) + b(u)
p

1− z/ρ(u) + a1(u)(1− z/ρ(u)) +O((1− z/ρ(u))3/2),

for some computable coefficientsa0, a1, b, c that depend onu and are in fact analytic inu near
u = 1. Singularity analysis then provides, pointwise for eachu,

(36) [zn]G(z, u) =
−2√
π
B(ρ(u), u) ρ(u)−nn−3/2

„
1 +O(

1

n
)

«
.

The expansion (35) is uniform whenu lies in a sufficiently small complex neighbourhood of 1.
It can be seen (details below) that the expansion of the coefficient in (36) is also uniform by
virtue of of the general uniformity preserving property of the singularity analysis process,
as expressed by Lemma IX.2. We are thus exactly in a case of application of the Quasi-
Powers Theorem, so that the limit law for the number of leavesis asymptotically Gaussian.
END OF EXAMPLE IX.15. �

IX. 7.1. General algebraic-logarithmic conditions. The example of leaves in
tres leads to simple computations, but is is characteristicof the machinery needed in
more general cases. The theorem that follows is relative to any singular exponentα
not in Z≤0.

Theorem IX.10 (Algebraic singularity schema). LetF (z, u) be a bivariate function
that is bivariate analytic at(z, u) = (0, 0) and has nonnegative coefficients there.
Assume the following conditions:

(i) Algebraic perturbation:there exist three functionsA,B,C, analytic in a
domainD = {|z| ≤ r} × {|u − 1| < ǫ}, for somer > 0 andǫ > 0, such
that the following representation holds,

(37) F (z, u) = A(z, u) +B(z, u)C(z, u)−α,
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thatρ < r is the unique (simple) root in|z| ≤ r of the equationC(z, 1) = 0,
and thatB(ρ, 1) 6= 0.

(ii) Nondegeneracy: one has∂zC(ρ, 1) · ∂uC(ρ, 1) 6= 0, ensuring the existence
of a nonconstantρ(u) analytic atu = 1, such thatC(ρ(u), u) = 0 and
ρ(1) = ρ.

(iii) Variability: one has

v

(
ρ

ρ(1)

)
6= 0.

Then, the random variable with probability generating function

pn(u) =
[zn]F (z, u)

[zn]F (z, 1)

converges in distribution to a Gaussian variable with a speed of convergence that is
O(n−1/2). The meanµn and the standard deviationσn are asymptotically linear inn.

The remarks following the statement of Theorem IX.8 apply. Accordingly, the
meanµn and varianceσ2

n are computable by the general formula (25), and the vari-
ability condition is expressible in terms of the values ofC and its derivatives at(ρ, 1)
by means of Equation (27).

PROOF. Observe first that one does not need to worry about thea priori domain of
existence ofF (z, u) since Equation (37) provides automatically analytic continuation
to a collection of∆–domains atρ(u) whenu varies. Thus, it suffices that the repre-
sentation (37) be established initially in some open domainof {|z| < ρ}× {|u| < 1},
by unicity of analytic continuation.

By the assumptions made, the functionF (z, 1) admits a singular expansion of the
form
(38)
F (z, 1) = (a0 + a1(z − ρ) + · · · )

+ (b0 + b1(z − ρ) + · · · )
(
c1(z − ρ) + c2(z − ρ)2 + · · ·

)−α
.

There, theaj, bj , cj represent the coefficients of the expansion inz of A,B,C for
z nearρ whenu is instantiated at 1. (We may considerC(z, u) normalized by the
condition thatc1 is positive real, and take, e.g.,c1 = 1.) Singularity analysis then
implies the estimate

(39) [zn]F (z, 1) = b0(−c1ρ)−αρ−nn
α−1

Γ(α)

(
1 +O(

1

n
)

)
.

All that is needed now is a “lifting” of relations (38) and (39), for u in a small
neighbourhood of1. First, we observe that by the analyticity assumption onA, the
coefficient[zn]A(z, u) is exponentially small compared toρ−n, for u close enough
to 1. Thus, for our purposes, we may freely restrict attention toB(z, u)C(z, u)−α.
(The functionA is only needed in some cases so as to ensure nonnegativity of the
first few coefficients ofF .) Next, it is convenient to operate with afixedrather than
movable singularity. This is simply achieved by considering the normalized function

Φ(z, u) := B

(
z

ρ(u)
, u

)
C

(
z

ρ(u)
, u

)−α

.
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Providedu is restricted to a suitably small neighbourhood of 1 andz to |z| < R for
someR >′, the functionsB(z/ρ(u), u) andC(z/ρ(u), u) are analytic in bothz andu,
with C(z, u) having a fixed simple zero atz = 1. There results that the function

1

1 − z
C

(
z

ρ(u)
, u

)

has a removable singularity atz = 1 and is in fact analytic in|z| < r, |u − 1| < δ.
Thus,Φ satisfies an expansion of the form

Φ(z, u) = (1 − z)−α
∑

n≥0

φn(u)(1 − z)n,

that is convergent and such that each coefficientφj(u) is an analytic function ofu for
|u− 1| < δ.

We may restrict this neighbourhood as we please, with|u − 1| ≤ δ provided we
keepǫ ≥ δ > 0. First, by Weierstrass preparation, there is foru sufficiently near to 1,
a unique simple rootρ(u) nearρ of the equation

C(ρ(u), u) = 0.

We haveρ(1) = ρ with ρ(u) being locally analytic at 1. One can then expandA,B,C
near(ρ(u), u). This gives the bivariate expansion
(40)
F (z, u) = (a0(u) + a1(z − ρ(u)) + · · · )

+ (b0(u) + b1(u)(z − ρ(u)) + · · · )
(
c1(u)(z − ρ(u)) + c2(u)(z − ρ(u))2 + · · ·

)−α
.

There, by assumption, we have thataj(u), bj(u), cj(u) are analytic in|u − 1| ≤ ǫ,
and are eachO(r−n). In addition,ρ(u)α and(−c1(u))α are well-defined by principal
values, since their specializations atu = 1 are positive. Thus, we have a singular
expansion forF (z, u); for instance, whenα ∈] − 1, 0[,

(41)
F (z, u) = a0(u) + a1(u)(z − ρ(u))

+ b0(u)(−c1(u)ρ(u))−α(1 − z/ρ(u))−α +R(z),

where
R(z) = O

(
(1 − z/ρ(u))α+1

)
,

and theO–error term is uniform for|u− 1| < δ:

|R(z)| ≤ K · |1 − z/ρ(u)|,
for some absolute constantK. We thus have

(42) [zn]F (z, u) = b0(u)(−c1(u)ρ(u))−αρ(u)−nn
α−1

Γ(α)

(
1 +O(

1

n
)

)
.

where the error term is again uniform. An especially important fact for this argument
is the following: the singularity analysis process is a uniform coefficient extraction
method.This is precisely provided by Lemma IX.2.

Equation (42) shows thatfn(u) = [zn]F (z, u) satisfies precisely the conditions
of the Quasi-Powers Theorem. Therefore, the law with PGFfn(u)/fn(1) is asymptot-
ically normal with a mean and a standard deviation that are bothO(n). Since the error
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term in (42) isO(1/n), the speed of convergence to the Gaussian limit isO(1/
√
n).

�

� IX.31. Logarithmic multipliers. The conclusions of Theorem IX.10 extend to functions
representable under the more general form

F (z, u) = A(z, u) +B(z, u)C(z, u)−α (logC(z, u))k .

(The proof follows exactly the same pattern.) �

EXAMPLE IX.16. Leaves in classical varieties of trees.We start with binary Catalan trees and
with the BGF

F (z, u) = z(u+ 2zF (z, u) + F (z, u)2),

so that

F (z, u2) =
1

2z

“
1− 2z −

p
(1− 2z(1 + u))(1− 2z(1− u))

”
.

This is almost the same as the BGF of leaves in general Catalantrees. The dominant singularity
is at ρ(u) = 1

2(1+u)
, and the limit law is Gaussian. The asymptotic form of the mean and

variance are immediately derived fromρ, and we find that the number of leavesXn in a binary
Catalan tree satisfies

E{Xn} =
n

4
+O(1), σ{Xn} =

√
n

4
+O(n−1/2).

In the case of Cayley trees, the BGF equation8 is

F (z, u) = z(u− 1 + eF (z,u)).

By Lagrange inversion, the distribution is related to the Stirling partition numbers. The func-
tional equation admits an explicit solution in terms of Lambert’s “W -function”, which is such
thatz = WeW , with the branch choice thatW = 0 whenz = 0. Thus,W (z) = −T (−z),
whereT = zeT is the classical “Cayley tree function”. Here, we have

F (z, u) = z(u− 1)−W (−zez(u−1)).

The functionW has a dominant singularity of the square-root type at−e−1. Thus, one can
solve forρ(u), again in terms of theW function. Here, we find

ρ(u) =
1

u− 1
W (e−1(u− 1)).

In particular, we getρ(1) = e−1, as we should. The expansion nearu = 1 then comes
automatically

ρ(u)

ρ(1)
= 1− e−1(u− 1) +

3

2
e−2(u− 1)2 +O((u− 1)3).

Hence the mean and the variance of the numberXn of leaves in a random tree of sizen satisfy:

E{Xn} ∼ e−1 n ≈ 0.36787 n, σ2{Xn} ∼ e−2(e− 2)n ≈ 0.09720 n,

and the limit law is a Gaussian. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . END OF EXAMPLE IX.16. �

� IX.32. Leaves in Motzkin trees.The number of leaves in a unary-binary (Motzkin) tree is
asymptotically Gaussian. �

8This example constitutes a typical application of symbolicmanipulation systems.
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EXAMPLE IX.17. Patterns in binary Catalan trees.We develop here a more sophisticated
example coming from the analysis of pattern matching in trees [456, 209] that generalizes the
problem of leaves. Fix a nonempty binary treew and letω[t] ≡ ωw[t] be the number of
occurrences of patternw in treet. By this, we mean the number of internal nodesν in t such
that the subtree oft rooted atν is isomorphic tow. The problem is of interest in the analysis
of some symbolic manipulation algorithms and of “sharing” strategies; see [456, 209] for the
algorithmic context.

A pattern occurs either in the left root subtreet0 or in the right root subtreet1 or at the
root iself if t coincides withw. This gives rise to the recursive definition

ω[t] = ω[t0] + ω[t1] + [[t = w]], ω[∅] = 0,

where[[P ]] denotes the indicator function ofP whose value is 1 ifP is true, and 0 otherwise.
The functionuω[t] is almost multiplicative, and

uω[t] = u[[t=w]]uω[t0]uω[t1] = uω[t0]uω[t1] + [[t = w]] · (u− 1).

Thus, the bivariate generating functionF (z, u) wherez marks internal nodes andu marks the
number of occurrences ofw,

F (z, u) :=
X

t

z|t|uω[t],

satisfies the algebraic equation,

F (z, u) = 1 + (u− 1)zm + zF (z, u)2,

withm = |w| the number of internal nodes ofw.
The quadratic equation forF leads to

F (z, u) =
1

2z

“
1−

p
1− 4z − 4zm+1(u− 1)

”
.

The discriminant has a unique rootρ = 1/4 whenu = 1, while it hasm + 1 roots foru 6= 1.
By general properties of implicit and algebraic functions (implicit function theorem, Weierstrass
preparation), asu tends to 1, one of these roots, call itρ(u) tends to1/4 while all the other ones
{ρj(u)}mj=1 escape to infinity. We have

H(z, u) :=
1− 4z − 4zm+1(u− 1)

1− z/ρ(u) =

mY

j=1

(1− z/ρj(u)),

which is an analytic function in(z, u) for (z, u) in a complex neighbourhood of(1/4, 1). This
results from the fact that the algebraic function1/ρ(u) is analytic atu = 1. It gives the singular
expansion ofG(z, u) = zF (z, u):

G(z, u) =
1

2
− 1

2

p
H(z, u)

p
1− z/ρ(u).

Thus, we are exactly under the conditions of the theorem. Thequantityω taken over a random
binary tree of sizen+ 1 has mean and variance given asymptotically by

m

„
1

4ρ(u)

«
n, v

„
1

4ρ(u)

«
n.

The expansion ofρ(u) at1 is computed easily by iteration of the defining equation:

z =
1

4
− zm+1(u− 1) =

1

4
− (

1

4
− zm+1(u− 1))m+1(u− 1) + · · · .

Thus,

ρ(u) =
1

4
− 1

4m+1
(u− 1) +

m+ 1

42m+1
(u− 1)2 + · · · .
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This shows that the meanµn and the varianceσ2
n of the number of occurrences of a pattern

of sizem in a random binary tree of sizen satisfy

µn ∼ n

4m
, σ2

n ∼ n(
1

4m
− 2m+ 1

42m
);

also, the distribution is asymptotically Gaussian. In particular, the probability of occurrence of
a pattern at a random node of a random trees decreases fast (the factor of4−m in the estimate of
averages) with the size of the pattern, a property that was tobe expected and that also holds for
strings. The paper of Steyaert and Flajolet [456] shows that similar properties (equivalent to the
mean value analysis) hold for any simply generated family. The expression of the BGFF (z, u)

is given by Flajolet, Sipala, and Steyaert in [209], where similar developments are used to show
that the minimal “dag representation” of a random tree —identical subtrees are “shared” and
represented only once— is of average sizeO(n(log n)−1/2). . . END OF EXAMPLE IX.17. �

� IX.33. Patterns in classical varieties of trees.Patterns in general Catalan trees and Cayley
trees can be similarly analysed. �

We shall see later that such laws, established here via explicit representations of
the BGFs, extend to varieties of trees whose generating functions are only accessible
implicitly via functional equations (Subsection IX. 7.3).

IX. 7.2. The exponential–logarithmic schema.So far, the occurrence of a
Gaussian law has been related to amovable singularitythat causes coefficients of
a bivariate generating functionF (z, u) to obey a rough power law of the form

fn(u) = [zn]F (z, u) ≈ ρ(u)−n,

so that the Quasi-Powers Theorem applies with a scaling factor βn = n. In this
section, we discuss the situation of a fixed singularity andvariable exponentin sin-
gular expansions. This means a somewhat stronger decomposition property for a
BGF as the singularity remains constant when the auxiliary parameteru varies, as
in F (z, u) = C(z)−α(u). Typical cases of application are to the set constructions,
where the analysis of number of components can be rephrased as the estimation of
coefficients in

F (z, u) = exp (uG(z)) ,

whenG(z) is, roughly speaking, logarithmic. In this case, we have parameters whose
mean and variance grow logarithmically, a typical instancebeing the number of cycles
in permutations. Analytically, this comes from an approximate form

F (z, u) ≈ (1 − z/ρ)−α(u),

so that

fn(u) = [zn]F (z, u) ≈ ρ−nnα(u)−1 ≡ ρ−n

n
exp(α(u) log n).

This is again a case of application of the Quasi-Powers Theorem, but now with a
scaling factorβn = logn. The developments in this section are inspired by a paper
of Flajolet and Soria [210] who first extracted certain universally valid laws for such
assemblies of logarithmic structures.
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Theorem IX.11 (General variable exponent schema). LetF (z, u) be a bivariate func-
tion that is analytic at(z, u) = (0, 0) and has nonnegative coefficients there. Assume
the following conditions.

(i) Exponent perturbation.Assume that there existǫ > 0 andr > ρ such that
in the domain,

D =
{
(z, u)

∣∣ |z| ≤ r, |u− 1| ≤ ǫ
}
,

the functionF (z, u) admits the representation

(43) F (z, u) = A(z, u) +B(z, u)C(z)−α(u)

whereA(z, u), B(z, u) are analytic for(z, u) ∈ D, the functionα(u) is
analytic in |u − 1| ≤ ǫ with α(1) 6∈ {0,−1,−2, . . .}, andC(z) is analytic
for |z| ≤ r, the equationC(ζ) = 0 having a unique rootζ = ρ in |z| ≤ r
that is simple, withB(ρ, 1) 6= 0.

(ii) Variability: one has

α′(1) + α′′(1) 6= 0.

Then the variable with probability generating function

pn(u) =
[zn]F (z, u)

[zn]F (z, 1)

converges in distribution to a Gaussian variable and the speed of convergence is
O((log n)−1/2). The corresponding meanµn and varianceσ2

n satisfy

µn ∼ α′(1) logn, σ2
n ∼ α′′(1) logn.

PROOF. Clearly, for the univariate problem, by singularity analysis, one has

[zn]F (z, 1) = B(ρ, 1)(−ρC′(ρ))−α(1)ρ−n n
α(1)−1

Γ(α(1))

(
1 +O(

1

n

)
.

For the bivariate problem, the contribution arising from[zn]A(z, u) is exponentially
small, sinceA(z, u) is z-analytic in|z| ≤ r.

Write next
B(z, u) = (B(z, u) −B(ρ, u)) +B(ρ, u).

The first term satisfies

B(z, u) −B(ρ, u) = O((z − ρ)),

uniformly with respect tou, since

B(z, u) −B(ρ, u)

z − ρ

is analytic inz andu, by division of power series representations. LetA be an upper
bound onα(u) on |u − 1| ≤ ǫ. Then, by singularity analysis and its companion
uniformity,

[zn](B(z, u) −B(ρ, u))C(z)−α(u) = O(ρ−nnA−2).

By suitably restricting the domain ofu to |u − 1| ≤ δ, one may freely assume that
A− 2 < α(1) − 7

4 . Thus, the contribution from this part is small.
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It only remains to analyse

[zn]B(ρ, u)C(z)−α(u).

This is done exactly like in the univariate case, again taking advantage of the unifor-
mity afforded by singularity analysis. We find, uniformly for u in a small neighbour-
hood of 1,

[zn]F (z, u) =
B(ρ, u)ρ−n

nΓ(α(u))
(−ρC′(ρ))−α(u)eα(u) log n

(
1 +O(n−1/2)

)
.

Thus, the Quasi-Powers Theorem applies and the law is Gaussian in the limit. �

The next proposition covers a scheme closely related to the exponential logarith-
mic setting. Its proof only requires a slight modification ofthe calculations involved
in the error terms. It complements Example 5 where the numberof small components
has been found to be Poisson.

Proposition IX.13 (Sets of labelled logarithmic structures). Consider the labelled
set constructionF = P(G). Assume thatG(z) has radius of convergenceρ and is
∆-continuable with a singular expansion of the form

G(z) = κ log
1

1 − z/ρ
+ λ+O

(
1

log2(1 − z/rho)

)
.

Then, the limit law of the number ofG-components in a largeF -structure is asymp-
totically Gaussian with mean and variance both asymptotic to κ logn.

The bivariate EGF forpermutationswith u marking the number of cycles is

F (z, u) =
∑[

n

k

]
uk z

n

n!
= (1 − z)−u = exp

(
u log

1

1 − z

)
·,

so that we are in the simplest case of an exponential-logarithmic schema. Theo-
rem IX.11 implies thatthe number of cycles in a random permutation of sizen con-
verges to a Gaussian limiting distribution.This classical result stating the asymptot-
ically normal distribution of the Stirling numbers (of the first kind) constitutes Gon-
charov’s Theorem. It has already been stated with a direct proof in Proposition IX.6,
thanks to the explicit character of the “horizontal” generating functions (the Stirling
polynomials) in this particular case.

EXAMPLE IX.18. Cycles in derangements.The number of cycles is asymptotically normal
in generalized derangements where a finite setS of cycle lengths are forbidden. This results
immediately from the BGF

F (z, u) = exp(uG(z)), G(z) = log
1

1− z −
X

s∈S

zs

s
.

The classical derangement problem corresponds toS = {1}; see [98].
END OF EXAMPLE IX.18. �

EXAMPLE IX.19. Clouds and 2-regular graphs.“Clouds” are defined in [98, p. 274] and they
have already been encountered in Chapters II and VI: letn straight lines in the plane be given
in general position, so that there are

`
n
2

´
intersecting points; a cloud of sizen is a (maximal)

set ofn intersection points, no three of which are collinear. By duality, there is a one–to–
one correspondence between clouds and2–regular graphs. A 2–regular graph of sizen is an
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undirected graph withn edges, such that each vertex has degree exactly 2. Any 2–regular graph
may be decomposed into a product of connected components that are (undirected) cycles of
length at least 3. Hence the bivariate EGF for 2–regular graphs, withu marking the number of
connected components, is:

F (z, u) = exp

„
u(

1

2
log

1

1− z −
z

2
− z2

4
)

«
=
e−uz/2−uz2/4

(1− z)u/2
.

The function exp(u(z/2 + z2/4)) is entire, so that the conditions of Theorem IX.11
are satisfied. Thus, the number of connected components in a 2–regular graph, (this is
equivalent to the number of polygons in a cloud) has a Gaussian limiting distribution.
END OF EXAMPLE IX.19. �

EXAMPLE IX.20. Random mappings.Let f denote a function that maps the setN =
{1, 2, · · · , n} into itself. Such a functionf may be represented by a directed graphGf with
vertex setN and edge set{(i, f(i)); i ∈ N}. Such graphs, in which every point has out–degree
one, are calledfunctional digraphs; see [259, p. 68]. A functional digraph may be viewed as
a set of components that are themselves cycles of rooted labelled trees. The bivariate EGF for
functional digraphs withu marking connected components is

F (z, u) = exp
`
u(log

1

1− T (z)
)
´
,

where the generating function of rooted labelled treesT (z) is the Cayley tree function defined
implicitly by the relationT (z) = z exp(T (z)). By the inversion theorem for implicit functions
we have

T (z) = 1−
p

2(1− ez) +
X

k≥2

ck(1− ez)k/2.

Thus,

F (z, u) = exp
n
u

„
1

2
log

1

1− ez +H((1− ez)1/2)

«o
,

whereH(v) is analytic atv = 0. From this form and Theorem IX.11, we obtain a theorem
of Stepanov [454]: The number of components in functional digraphs has a limiting Gaussian
distribution.

This approach extends to functional digraphs satisfying various degree constraints as con-
sidered in [14]. This analysis and similar ones are relevant to integer factorization, using Pol-
lard’s “rho” method [198, 304, 434]. . . . . . . . . . . . . . . . . . . . . . . . . END OF EXAMPLE IX.20. �

Unlabelled constructions.In the case of unlabelled structures, the classF of multi-
sets over a classG have OGF,

∑

n≥0

Fnz
n =

∏

n≥1

(1 − zn)−Gn .

By taking logarithms and reorganizing the corresponding series, we get the alternative
form

F (z) = exp

(
G(z)

1
+
G(z2)

2
+
G(z3)

3
+ · · ·

)
.
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Similarly, in the bivariate case, whereu marks the number of components, the bivari-
ate GF is (see Chapter III),

F (z, u) =
∑

n,k≥0

Fn,ku
kzn = exp

(
u

1
G(z) +

u2

2
G(z2) +

u3

3
G(z3) + · · ·

)
,

which is of the formexp(G(z))u ·B(z, u). Here, we are interested in structures such
thatG(z) has a logarithmic singularity, in which case Theorem IX.11 applies, as soon
asG(z) has radius of convergenceρ < 1.

EXAMPLE IX.21. Polynomial factorization.Fix a finite fieldK = GF (q) and consider the
classP of monic polynomials (having leading coefficient 1) inK[z], with I the subclass of
irreducible polynomials. Obviously,Pn = qn, so that

P (z) = (1− qz)−1.

Because of the unique factorization property, a polynomialis a multiset of irreducible polyno-
mial, whence the relation

P (z) = exp

„
I(z)

1
+
I(z2)

2
+
I(z3)

3
+ · · ·

«
.

The preceding relation can be inverted using Möbius inversion. If we setL(z) = logP (z),
then we have

I(z) =
X

k≥1

µ(k)
L(zk)

k
= log

1

1− qz +
X

k≥2

µ(k)
L(zk)

k
,

whereµ is the Mb̈ius function.
SinceL(zk) is analytic for|z| < q−1/2 wheneverk ≥ 2, and |L(zk)| < cst|z|k, the

sum
P

k≥2 µ(k)L(zk)/k is analytic for|z| ≤ τ , with q−1 < τ < q−1/2. HenceI(z) has an

isolated singularity of logarithmic type atz = q−1 < 1.
Thus the average number of irreducible factors in a polynomial, and its variance, are both

asymptoticallylog n + O(1) (this result appears in [304, Ex. 4.6.2.5]). LetΩn be the random
variable representing the number of irreducible factors ofa random polynomial of degreen over
GF (q), each factor being counted with its order of multiplicity. Then asn tends to infinity, for
any two real constantsλ < µ, we have

P{log n+ λ
p

log n < Ωn < log n+ µ
p

log n} → 1√
2π

Z µ

λ

e−t2/2 dt.

This statement [210] is a counterpart of the famous Erdös–Kac Theorem (1940) for the number
of prime divisors of natural numbers (with herelog n that replaceslog log n when dealing with
integers at mostn). A similar result holds for the parameterωn that represents the number of
distinct irreducible factors in a random polynomial of degreen. END OF EXAMPLE IX.21. �

It is perhaps instructive to re-examine this last example atan abstract level, in the
light of general principles of analytic combinatorics.

A polynomial over a finite field is determined by thesequence
of its coefficients. Hence, the class of all polynomials, as ase-
quence class, has a polar singularity. On the other hand, unique
factorization entails that a polynomial is also amultisetof irre-
ducible factors (“primes”). Thus, the class of irreduciblepoly-
nomials, that is implicitly determined, is logarithmic, since the
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multiset construction to be inverted is in essence an exponential
operator. Consequently, the number of irreducible factorsobeys
the exponential-logarithmic scheme, so that it is asymptotically
Gaussian.

Eventually, the limit law arises because of the purely analytic character of the gener-
ating functions involved, together with permanence of analytic relations implied by
combinatorial constructions.

EXAMPLE IX.22. Mapping patterns. Let f and g be two functions mapping the set
{1, 2, · · · , n} into itself. Mappingsf andg are said to be equivalent if there exists a permutation
π of {1, 2, · · · , n} such thatf(i) = j iff g(π(i)) = π(j). Mapping patterns are thus equiv-
alence classes of mapping functions, or equivalently functional digraphs on unlabelled points.
They correspond to multisets of cycles of rooted unlabelledtrees. The OGF for rooted unla-
belled trees satisfies the implicit relationA(z) = z exp(

P
1
k
A(zk)), and Otter [382] proved

that
A(z) = 1− c1

p
(1− z/η) +

X

k≥2

ck(1− z/η)k.

for someη < 1: see our detailed account in Chapter VII.
On the other hand, by the translation of the cycle construction, if G is the unlabelled cycle

construction applied toA, then (see Chapter III),

G(z) =
X

k≥1

φ(k)

k
log

1

1− A(zk)
,

whereφ(k) is the Euler totient function. In the present context, sinceA(z) has radius of con-
vergenceη strictly less than1,

G(z) = log
1

1− A(z)
+ S(z),

whereS(z) is analytic atη. Finally the bivariate OGF for random mapping patterns satisfies

F (z, u) = exp
`X

k≥1

ukG(zk)

k

´

= exp
`
u log

1

1− A(z)
+ uS(z) + T (z, u)

´

= exp

„
u

2
log

1

1− z/η + u
`
(1− z/η)1/2´+ uS(z) + T (z, u)

«
,

whereS(z) is analytic atη, T (z, u) is analytic forz = η andu = 1, andH is analytic around
0, with H(0) = 0. Thus conditions for applying Theorem IX.11 are satisfied and the number
of components in random mapping patterns has a Gaussian limiting distribution. The mean
value is asymptotic to1

2
log n (this result appears in [357] and the variance is1

2
log n+ O(1).

END OF EXAMPLE IX.22. �

EXAMPLE IX.23. Arithmetical semigroups.Knopfmacher [297] defines an arithmetical semi-
group as a semigroup with unique factorization, and a size function (or degree) such that

|xy| = |x|+ |y|,
where the number of elements of a fixed size is finite. IfP is an arithmetical semigroup andI
its set of ‘primes’ (irreducible elements), axiomA# of Knopfmacher asserts the condition

card{x ∈ P / |x| = n} = cqn +O(qαn) (α < 1).
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It is shown by Knopfmacher that several algebraic structures forming arithmetical semigroups
satisfy axiomA#, and thus the conditions of Theorem IX.11 are automaticallysatisfied. There-
fore, the results deriving from Theorem IX.11 fit into the framework of Knopfmacher’s “ab-
stract analytic number theory”, since they provide generalconditions under which theorems of
the Erdös–Kac type must hold true. Examples of applicationare Galois polynomial rings (the
example of polynomial factorization), finite modules or semisimple finite algebras over a finite
fieldK = GF (q), integral divisors in algebraic function fields, ideals in the principal order of
a algebraic function field, finite modules, or semisimple finite algebras over a ring of integral
functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . END OF EXAMPLE IX.23. �

IX. 7.3. Algebraic and implicit functions. Many combinatorial problems, es-
pecially as regards paths and trees, lead to descriptions bycontext–free languages.
Accordingly, the GF’s are algebraic functions. The most frequent situation is that of
univariate GF’s having singularities of the square-root type.

Corollary IX.1 (Algebraic functions). LetF (z, u) be a bivariate function that is an-
alytic at (0, 0) and has nonnegative coefficients. Assume thatF (z, u) is one of the
solutionsy of a polynomial equation

Φ(z, u, y) = 0,

whereΦ is an irreducible polynomial of total degreem, of degreed ≥ 2 in y. Assume
thatF (z, 1) is has a unique dominant singularity atρ > 0, with a singular behaviour
of the square-root type there. Define the resultant polynomial,

∆(z, u) = resulty

(
Φ(z, u, y),

∂

∂y
Φ(z, u, y)

)
,

and assume thatρ is a simple root of∆(z, 1). Let ρ(u) be the unique root of the
equation

∆(ρ(u), u),

analytic at 1, such thatρ(1) = ρ. Then, provided the variability condition

v

(
ρ(1)

ρ(u)

)
> 0,

is satisfied, a Gaussian Limit Law holds for the coefficients of F (z, u).

PROOF. The assumption of a square-root singularity (see ChaptersVI and VII)
means that the polynomialΦ(ρ, 1, y) has a double zero aty = τ , where τ =
limz→ρ− F (z, 1). Equivalently, we have

(
∂

∂y
Φ(ρ, 1, y)

)

y=τ

= 0,

(
∂2

∂y2
Φ(ρ, 1, y)

)

y=τ

6= 0.

Thus, Weierstrass preparation gives the local factorization

Φ(z, u, y) = (y2 + c1(z, u)y + c2(z, u))H(z, u, y),

whereH(z, u, y) is analytic and nonzero at(ρ, 1, τ) while c1(z, u), c2(z, u) are ana-
lytic at (z, u) = (ρ, τ).
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From the solution of the quadratic equation, we must have locally

y =
1

2

(
−c1(z, u)±

√
c1(z, u)2 − 4c2(z, u)

)
.

Consider first(z, u) restricted by0 ≤ z < ρ and0 ≤ u < 1. SinceF (z, u) is real
there, we must havec1(z, u)2 − 4c2(a, u) also real and nonnegative. SinceF (z, u) is
continuous and increasing withz for fixedu, and since the discriminantc1(z, u)2 −
4c2(a, u) vanishes at 0, the determination with the minus sign has to beconstantly
taken. In summary, we have

F (z, u) =
1

2

(
−c1(z, u) −

√
c1(z, u)2 − 4c2(z, u)

)
.

The functionC(z, u) = c21(z, u) − 4c2(z, u) has a simple real zero at(ρ, 1).
Thus there is locally a unique analytic branch of the solution toC(ρ(u), u) = 0 such
that ρ(1) = ρ.. This branch is also by necessity a root of the resultant equation
∆(ρ(u), u) = 0. The conditions of Theorem IX.10 therefore apply and the Gaussian
law follows.2

This theorem asserts that, under suitable conditions, the only possible dominant
singularity of the BGF is a “lifting” of the singularity of the univariate GFF (z, 1)
and the nature of the singularity —the square-root type— does not change. The result
generalizes to the case of a functionΦ that is analytic in sufficiently large bounded
domains,e.g., an entire function. The condition is that the analytic curves

Φ(z, u, y) = 0,
∂

∂y
Φ(z, u, y) = 0

have an intersection that “moves analytically” and nontrivially for u near1, and a
sufficient condition for this is the nonvanishing of the Jacobian determinant

(44) J(z, u, y) :=

∣∣∣∣∣

∂
∂z Φ(z, u, y) ∂

∂y Φ(z, u, y)
∂2

∂zy Φ(z, u, y) ∂2

∂y2 Φ(z, u, y)

∣∣∣∣∣

and its first derivative with respect tou at (ρ, 1, τ),

(45) J(ρ, 1, τ) 6= 0,
∂

∂u
J(z, u, y)

∣∣∣∣
(ρ,1,τ)

6= 0.

In the case of Corollary IX.1 and of these extensions, the expansion ofρ(u) atu = 1,
hence the mean and variance of the distribution, are computable explicitly fromΦ, its
derivatives, and the quantitiesρ andτ = F (ρ, 1).

The corollary applies to a great variety of decomposable parameters of context–
free languages, tree like objects, and more generally many recursively defined com-
binatorial types. Examples of parameters covered are leaves, node types, and various
sorts of patterns in combinatorial tree models. Drmota has worked out a different
set of conditions for asymptotic normality. In particular,one of Drmota’s important
results [135] yields asymptotic normality, under minor technical restrictions, for a
polynomialsystemwith positive coefficients that is “irreducible”, meaning that the
dependency graph between nonterminals is strongly connected.
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� IX.34. Nodes of degreek in simple varieties of trees.Their distribution is asymptotically
Gaussian. �

� IX.35. Leaves in nonplane unlabelled trees.Their distribution is asymptotically Gaussian.
�

IX. 7.4. Differential equations. Ordinary differential equations(ODE’s, for
short) in one variable, whenlinear and with analytic coefficients, have solutions whose
singularities occur at well-defined places, namely those that entail a reduction of order.
The possible singular exponents of solutions are then obtained as roots of a polyno-
mial equation, the indicial equation. Such ordinary differential equations are usually
a reflection of a combinatorial decomposition and suitably parametrized versions then
open access to a number of combinatorial parameters. In thiscase, the ODE normally
remains an ODE in the main variablez that records size, while the auxiliary variableu
only affects the coefficients but not the global shape of the original ODE.

Three cases may then occur for a linear ODE parametrized byu.

• Movable singularity:the location of the dominant singularityρ(u) changes
with u but the singular exponent does not change; the analysis is then similar
to that of algebraic-logarithmic singularities.

• Movable exponent:the dominant singularity does not move but the sin-
gular exponentα(u) changes; the analysis then resorts to the exponential-
logarithmic schema.

• Movable singularity and movable exponent:in this case, the singular be-
haviour is essentially dictated by the movable singularitybut with an aux-
iliary contribution arising from the movable exponent; theanalysis of this
mixed case then requires an extension of the quasi-power framework, as
developed by Gao in Richmond in [226].

Here, we focus on the important case of a fixed singularity anda movable exponent.
The required singularity perturbation analysis is inspired by the treatment of Flajolet
and Lafforgue in [195]. The corresponding univariate problems resort to holonomic
asymptotics.

Linear differential equations. The example of the distribution of levels of nodes
in random binary search trees or heap–ordered trees illustrates well the situation of
a fixed singularity and movable exponent. A heap–ordered tree (HOT) is a plane
binary increasing tree. HOTs constitute an unambiguous tree representation of per-
mutations [434]. The EGF of HOTs is

F (z) =
1

1 − z
=
∑

n≥0

n!
zn

n!
,

as results either from the combinatorial bijection with permutations or from the root
decomposition of increasing trees that translates into thefunctional equation,

(46) F (z) = 1 +

∫ z

0

F 2(t) dt,

a Riccati equation in disguise. LetF (z, u) be the BGF of HOT’s whereu records the
depth of external nodes. In other words,fn,k = [znuk]F (z, u) is such that1nfnn, k
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represents the probability that a random external node in a random tree of sizen is at
depthk in a random tree. The probability space is then a product set of cardinality
(n + 1) · n!, as there aren! trees each containing(n + 1) external nodes. By a
standard equivalence principle, the quantities1

nfnn, k also give the probability that a
random unsuccessful search in a random binary search tree ofsizen necessitatesk
comparisons.

Since the depth of a node is inherited from subtrees, the functionF (z, u) satisfies
the linear integral equation,

(47) F (z, u) = 1 + 2u

∫ z

0

F (t, u)
dt

1 − t
,

or, after differentiation,

∂

∂z
F (z, u) =

2u

1 − z
F (z, u), F (0, u) = 1.

This equation is in fact a linear ODE withu entering as a parameter,

d

dz
y(z) − 2u

1 − z
y(z) = 0, y(0) = 0.

The solution of any separable first-oder ODE is obtained by quadratures, here,

F (z, u) =
1

(1 − z)2u
.

From singularity analysis, providedu avoids{0,− 1
2 ,−1, . . .}, we have

fn(u) := [zn]F (z, u) =
n2u−1

Γ(2u)

(
1 +O(

1

n
)

)
,

and the error term is uniform inu provided, say,|u − 1| ≤ 1
4 . Thus, Theorem IX.11

applies, and the law with PGFfn(u)/fn(1) converges to a Gaussian limit.
A similar result holds for levels of internal nodes, and is proved by similar de-

vices. The Gaussian profile is even perceptible on single instance (see the particular
figure in Chapter III), which actually suggests a stronger “functional limit theorem”
for these objects: this has been proved by Chauvin and Jabbour [84] using martingale
theory.

Naturally, explicit expressions are available in such a simple case,

fn(u)

fn(1)
=

2u · (2u+ 1) · · · (2u+ n− 1)

(n+ 1)!
,

so a direct proof of the Gaussian limit in the line of Goncharov’s theorem is clearly
possible; see Mahmoud’s book [351, Ch. 2], for this result originally due to Louchard.
What is interesting here is the fact thatF (z, u) viewed as a function ofz has a singu-
larity at z = 1 that does not move and, in a way, originates in the combinatorics of
the problem—the EGF(1− z)−1 of permutations. The auxiliary parameteru appears
here directly in the exponent, so that the application of singularity analysis or of the
more sophisticated Theorem IX.11 is immediate.



IX. 7. PERTURBATION OF SINGULARITY ANALYSIS ASYMPTOTICS 635

Corollary IX.2 (Linear differential equations). LetF (z, u) be a bivariate generating
function with nonnegative coefficients that satisfies a linear differential equation

a0(z, u)
∂rF

∂zr
+
a1(z, u)

(ρ− z)

∂r−1F

∂zr−1
+ · · · + ar(z, u)

(ρ− z)r
F = 0,

with aj(z, u) analytic atρ, anda0(ρ, 1) 6= 0. Letfn(u) = [zn]F (z, u), and assume
the following conditions:

• [Nonconfluence]The indicial polynomial

(48) J(α) = a0(ρ, 1)(α)(r) + a1(ρ, 1)(α)(r−1) + · · · + ar(ρ, 1)

has a unique rootσ > 0 which is simple and such that all other rootsα 6= σ
satisfyℜ(α) < σ;

• [Dominant growth]fn(1) ∼ C · ρ−nnσ−1, for someC > 0.
• [Variability condition]

sup
v(fn(u))

logn
> 0.

Then the coefficients ofF (z, u) admit a limit Gaussian law.

PROOF. (See the paper by Flajolet and Lafforgue [195] for a detailed example or the
books by Henrici [265] and Wasow [490] for a general treatment of singularities of lin-
ear ODEs.) We assume in this proof that no two roots of the indicial polynomial (48)
differ by an integer. Consider first the univariate problem.A differential equation,

(49) a0(z)
drF

dzr
+

a1(z)

(ρ− z)

dr−1F

dzr−1
+ · · · + ar(z)

(ρ− z)r
F = 0,

with the aj(z) analytic atρ anda1(ρ) 6= 0 has a basis of local singular solutions
obtained by substituting(ρ − z)−α and cancelling the terms of maximum order of
growth. The candidate exponents are thus roots of theindicial equation,

J(α) ≡ a0(ρ)(α)(r) + a1(ρ)(α)(r−1) + · · · + ar(ρ) = 0.

If there is a unique (simple) root of maximum real part,α1, then there exists a solution
to (49) of the form

Y1(z) = (ρ− z)−α1h1(ρ− z),

whereh1(w) is analytic at 0 andh1(0) = 1. (This results easily from a solution by
indeterminate coefficients.) All other solutions are then of smaller growth and of the
form

Yj(z) = (ρ− z)−αjhj(ρ− z) (log(z − ρ))kj ,

for some integerskj and some functionshj(w) analytic and nonzero atw = 0. Then,
F (z) has the form

F (z) =
r∑

j=1

cjYj(z).

Then, providedc1 6= 0,

[zn]F (z) =
c1

Γ(σ)
ρ−nnα1−1(1 + o(1)).
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Under the assumptions of the theorem, we must haveσ = α1, andc1 6= 0. The reality
assumption is natural for a seriesF (z) that has real coefficients.

Whenu varies in a neighbourhood of 1, we have a uniform expansion

(50) F (z, u) = c1(u)(ρ− z)−σ(u)H1(ρ− z, u)(1 + o(1)),

for some bivariate analytic functionH1(w, u) with H1(0, u) = 1, whereσ(u) is the
algebraic branch that is a root of

J(α, u) ≡ a0(ρ, u)(α)(r) + a1(ρ, u)(α)(r−1) + · · · + ar(ρ, u) = 0,

and coincides withσ atu = 1. By singularity analysis, this entails

(51) [zn]F (z, u) =
c1(u)

Γ(σ)
ρ−nnα1(u)−1(1 + o(1)),

uniformly for u in a small neighbourhood of1, with the error term beingO(n−a) for
somea > 0. Thus Theorem IX.11 applies and the limit law is Gaussian.

The crucial point in (50,51) is the uniform character of expansions with respect
to u. This results from two facts:(i) the solution to (49) may be specified by analytic
conditions at a pointz0 such thatz0 < ρ and there are no singularities of the equation
betweenz0 andρ. (ii) there is a suitable set of solutions with an analytic component
in z andu and singular parts of the form(ρ − z)−αj(u), as results from the matrix
theory of differential systems and majorant series. (This last point is easily verified if
no two roots of the indicial equation differ by an integer; otherwise, see [195] for an
alternative basis of solutions foru near 1,u 6= 1.) 2

EXAMPLE IX.24. Node levels in quadtrees.This example is taken from [195]. Quadtrees are
one of the most versatile data structure for managing a collection of points in multidimensional
space. They are based on a recursive decomposition similar to that of BSTs.

Hered is the dimension of the data space. Letfn,k be the number of external nodes at level
k in a quadtree of sizen grown by random insertions, and letF (z, u) be the corresponding BGF.
Two integral operators play an essential rôle,

I g(z) =

Z z

0

g(t)
dt

1− t J g(z) =

Z z

0

g(t)
dt

t(1− t) .

The basic equation that reflects the recursive splitting process of quadtrees is then

(52) F (z, u) = 1 + 2duJd−1
IF (z, u).

The integral equation (52) satisfied byF then transforms into a differential equation of orderd,

I
−1

J
1−d F (z, u) = 2duF (z, u),

where
I
−1g(z) = (1− z)g′(z), J

−1g(z) = z(1− z)g′(z).
The linear ODE version of (52) has an indicial polynomial that is easily determined by

examination of the reduced form of the ODE (52) atz = 1. There, one has

J
−1g(z) = I

−1g(z)− (z − 1)2g′(z) ≈ (1− z)g′(z).
Thus,

I
−1

J
1−d(1− z)−θ = θd(1− z)−θ +O((1− z)−θ+1),

and the indicial polynomial is
J(α, u) = αd − 2du.
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In the univariate case, the root of largest real part isα1 = 2; in the bivariate case, we have

α1(u) = 2u1/d,

where the principal branch is chosen. Thus,

fn(u) = γ(u)nα1(u)(1 + o(1)).

By the combinatorial origin of the problem,F (z, 1) = (1 − z)−2, so that the coefficientγ(1)
is nonzero. Thus, the conditions of the corollary are satisfied. The law is Gaussian in the limit,
with mean and variance

µn ∼ 2

d
log n, σ2

n ∼
2

d
log n.

The same result applies to the cost of a random search, eithersuccessful or not, as shown
in [195] by an easy combinatorial argument. . . . . . . . . . . . . . . . . . END OF EXAMPLE IX.24. �

Nonlinear differential equations. Though nonlinear differential equations do not
obey a simple classification of singularities, there are a few examples in analytic com-
binatorics that can be treated by singularity perturbationmethods. We detail here
typical analysis of properties of binary search trees (BSTs), equivalently HOTs, that is
taken from [185]. The Riccati equation involved reduces, by classical techniques, to
a linear second order equation whose perturbation analysisis particularly transparent
and akin to earlier analyses of ODEs. In this problem, the auxiliary parameter induces
a movable singularity that directly resorts to the Quasi-Powers Theorem.

EXAMPLE IX.25. Paging of binary search trees.Fix a “bucket size” parameterb ≥ 2. Given
a binary search treet, its b-index is a tree that is constructed by retaining only those internal
nodes oft which correspond to subtrees of size> b. As a data structure, such an index is well-
suited to “paging”, where one has a two-level hierarchical memory structure: the index resides
in main memory and the rest of the tree is kept in pages of capacity b on peripheral storage, see
for instance [351]. We letι[t] = ιb[t] denote the size —number of nodes— of theb-index oft.

Like in Eq. (46), the bivariate generating function

F (z, u) :=
X

t

λ(t)uι[t]z|t|

satisfies a Riccati equation that reflects the root decomposition of trees,

(53)
∂

∂z
F (z, u) = uF 2(z, u) + (1− u) d

dz

„
1− zb+1

1− z

«
, F (0, u) = 1,

where the general quadratic relation (46) has to be corrected in its low order terms.
The GFs of moments are rational functions with a denominatorthat is a power of(1− z),

as results from differentiation atu = 1. Mean and variance follow:

µn =
2(n+ 1)

b+ 2
− 1, σ2

n =
2

3

(b− 1)b(b+ 1)

(b+ 2)2
(n+ 1).

(The result for the mean is well-known, refer to quantityAn in the analysis of quicksort on
p. 122 of [302].)

Multiplying both sides of (53) byu now gives an equation satisfied byH(z, u) :=
uF (z, u),

∂

∂z
H(z, u) = H2(z, u) + u(1− u) d

dz

„
1− zb+1

1− z

«
,
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that may as well be taken as a starting point sinceH(z, u) is the bivariate GF of parameter1+ιb
(a quantity also equal to the number of external pages). The classical linearization transforma-
tion of Riccati equations,

H(z, u) = −X
′
z(z, u)

X(z, u)
,

yields

(54)
∂2

∂z2
X(z, u) + u(u− 1)A(z)X(z, u) = 0, A(z) =

d

dz

„
1− zb+1

1− z

«
,

withX(0, u) = 1, X ′
z(0, u) = −u. By the classical existence theorem of Cauchy, the solution

of (54) is an entire function ofz for each fixedu, as the linear differential equation has no
singularity at a finite distance. Furthermore, the dependency of X on u is also everywhere
analytic; see the remarks of [490, Sec. 24], for which a proof derives by inspection of the
classical existence proof based on indeterminate coefficients and majorant series. Thus,X(z, u)
is actually an entire function ofbothcomplex variablesz andu. As a consequence, for any fixed
u = u0, the functionH(z, u0) is a meromorphic function ofz whose coefficients are amenable
to singularity analysis.

In order to proceed further, we need to prove that, in a sufficiently small neighbourhood of
u = 1,X(z, u) has only one simple root, corresponding forH(z, u) to a unique dominant and
simple pole. This fact itself derives from general considerations surrounding the Preparation
Theorem of Weierstrass:in the vicinity of any point(z0, u0) with X(z0, u0) = 0, the roots
of the bivariate analytic equationX(z, u) = 0 are locally branches of an algebraic function.
Here, we haveX(z, 1) ≡ 1− z. Thus, asu tends to 1, all solutions ofX(z, u) must escape to
infinity except for one branchρ(u) that satisfiesρ(1) = 1. By the nonvanishing ofX ′

u(z, 1) and
the implicit function theorem, the functionρ(u) is additionally an analytic function aboutu =
1.

The argument is now complete: foru in a sufficiently complex neighbourhood of 1, we
have a Quasi-Powers approximation,

[zn]H(z, u) = ρ(u)−n−1
`
1 +O(K−n)

´
,

for some fixed constantK > 0. The Gaussian limit results. . . . END OF EXAMPLE IX.25. �

As shown in [185], a similar analysis applies to patterns in binary search trees
and heap–ordered trees. This is related to the analysis of local order patterns in per-
mutations, for which gaussian limit laws have been obtainedby Devroye [125] using
extensions of the central limit theorem to weakly dependentrandom variables.

Similar displacements of singularity arise for node types in varieties of increasing
trees, extending the case of HOTs that are binary. This is discussed in [40]. For
instance, ifφ(w) is the degree generator a family of increasing trees, the nonlinear
ODE satisfied by the BGF of leaves is

∂

∂z
F (z, u) = (u− 1)φ(0) + φ(F (z, u)).

Wheneverφ is a polynomial, there is a spontaneous singularity at someρ(u) that
depends analytically onu. Thus, again the Quasi-Powers Theorem applies; see [40].

IX. 8. Perturbation of saddle point asymptotics

We shall be brief here, as the subject is excellently coveredin Sachkov’s book to
which we refer for details. Entire functions and functions with a fast growth at their
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singularity do not in general lead to quasi-power expansions. As we known from uni-
variate asymptotics (Chapter VIII), the coefficient expansions involve a combination
of large powers (that arise from the Cauchy kernel) and of thevery fast singular be-
haviour of the function under consideration. Accordingly,bivariate asymptotic studies
necessitate a perturbation of saddle point expansions. A framework more flexible than
the Quasi-Powers Theorem is then needed.

Here, we base our brief discussion on a theorem taken from Sachkov’s book [422].

Theorem IX.12 (Generalized quasi-powers). Assume that the generating function
pn(u) of a discrete random variableXn has a representation of the form

pn(u) = exp (hn(u)) (1 + o(1)) ,

that holds uniformly, where eachhn(u) is analytic in a fixed neighbourhoodΩ of 1.
Assume also the condition,

(55)
h′′′n (u)

(h′n(1) + h′′n(1))3/2
→ 0,

uniformly foru ∈ Ω. Then, the random variable

X∗
n =

Xn − h′n(1)

(h′n(1) + h′′n(1))1/2

converges in distribution to a normal law with parameters(0, 1).

PROOF. See [422, Sec. 1.4] for details. Setσ2 = h′n(1) + h′′n(1), and expand the
Laplace transform ofXn at t/σ. This gives

hn(et/σ) = h′n(1)
t

σ
+ (h′n(1) + h′′n(1))

t2

2σ
+ o(1).

Thus, the Laplace transform ofX∗
n converges to the transform of a standard Gauss-

ian.2
This theorem extends the quasi-power scheme. In effect, if

hn(u) = βn logB(u) +A(u),

then the quantity (55) isO(β
−1/2
n ), uniformly. The application of this theorem to

saddle point integrals is in principle routine, though the manipulation of asymptotic
scales associated with expressions involving the saddle point value may become cum-
bersome. We detail here the case of singletons in random involutions for which the
saddle point is an algebraic function ofn andu.
� IX.36. Effective speed bounds.A metric version of the theorem, with error terms, cane be
developed assuming suitable error bounds. �

EXAMPLE IX.26. Singletons in random involutions.This example is again borrowed from
Sachkov’s book [422]. The BGF is

F (z, u) = exp

„
zu+

z2

2

«
.

The saddle point equation (see Chapter VIII) is then
„
d

dz
uz +

z2

2
− (n+ 1) log z

«

z=ζ

= 0.
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This defines the saddle pointζ ≡ ζ(n, u),

ζ(n, u) = −u
2

+
1

2

p
4n+ 4 + u2

=
√
n− u

2
+
u2 + 4

8

1√
n

+O(n−1),

where the error term is uniform foru near 1. By the saddle point formula, one has

[zn]F (z, u) =
1p

2πD(n, u)
F (ζ(n, u), u)ζ(n, u)−n.

The denominator is determined in terms of second derivatives, according to the classical saddle
point formula (Chapter VIII),

D(n, u) =

„
z2 ∂

2

∂z2
+ z

∂2

∂z2

»
uz +

z2

2

–«

z=ρ

,

and its main asymptotic order does not change whenu varies in a sufficiently small neighbour-
hood of 1,

D(n, u) = 2n− u√n+O(1),

again uniformly. Thus, the PGF of the number of singleton cycles satisfies

pn(u) =
F (ζ(n,u), u)

F (ζ(n, 1), 1)

„
ζ(n, u)

ζ(n, 1)

«−n

(1 + o(1)),

uniformly, foru near 1. This is of the form

pn(u) = exp (hn(u)) (1 + o(1)),

and local expansions then yield the centering constants

an := h′
n(1) =

√
n− 1

2
+O(n−1/2), b2n := h′

n(1) + h′′
n(1) =

√
n− 1 +O(n−1/2).

The theorem applies directly to this case and the variable

1

bn
(Xn − an)

is asymptotic to a standard normal.
A little care with the error terms in the asymptotic expansions shows that the mean and

standard deviationµn, σn are asymptotic toan, bn, respectively. Therefore, the number of
singletons in a random involution of sizen has meanµn and standard deviationσn that satisfy

µn ∼ n1/2, σn ∼ n1/4.

This computation also determines the law of doubleton cycles and of all cycles, that are given
by

1

2
(n−Xn),

1

2
(n+Xn),

respectively. In particular, the number of doubleton cycles has average1
2
n −

1
2
n1/2. Thus, a random involution has a relatively small number of singleton cycles.

END OF EXAMPLE IX.26. �
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EXAMPLE IX.27. The Stirling partition numbers.The numbers
˘

n
k

¯
correspond to the BGF

F (z, u) = exp (u(ez − 1)) .

The saddle pointζ ≡ ζ(n, u) is the positive root nearn/ logn of the equation

ζeζ =
n+ 1

u
.

The theorem applies:

Proposition IX.14. The Stirling partition distribution defined by1
Sn

˘
n
2

¯
, withSn a Bell num-

ber, is asymptotically normal, with mean and variance that satisfy

µn ∼ n

log n
, σ2

n ∼
n

(log n)2
.

We refer once more to Sachkov’s book for computational details.
END OF EXAMPLE IX.27. �

Summarizing the last example as well as earlier results, we now have the fact that
all four Stirling-related distributions,

1

n!

[
n

k

]
,

k!

On

[
n

k

]
,

1

Sn

{
n

k

}
,

k!

Rn

{
n

k

}
,

associated to permutations, alignments, set partitions, and surjections are asymptoti-
cally Gaussian.

Saddle point and functional equations.The average-case analysis of the number of
nodes in random digital trees or “tries” can be carried out using the Mellin transform
technology. The corresponding distributional analysis isappreciably harder and due
to Jacquet and Régnier [278]. A complete description is offered in Section 5.4 of
Mahmoud’s book which we follow. What is required is to analyse the BGF

F (z, u) = ezT (z, u),

where the Poisson generating functionT (z, u) satisfies the nonlinear difference equa-
tion,

T (z, u) = uT 2(
z

2
, u) + (1 − u)(1 + z)e−z.

This equation is a direct reflection of the problem specification. At u = 1, one has
T (z, 1) = 1,F (z, 1) = ez. The idea is thus to analyse[zn]F (z, u) by the saddle point
method.

The saddle point analysis ofF requires asymptotic information onT (z, u) for
u = eit (the original treatment of [278] is based on characteristic functions). There,
the main idea is to “quais-linearize” the problem, setting

L(z, u) = log T (z, u),

with u a parameter. This function satisfies the approximate relation L(z, u) ≈
2L(z/2, u), and a bootstrapping argument shows that, in suitable regions of the com-
plex plane,L(z, u) = O(|z|), uniformly with respect tou. The functionL(z, u) is
then expanded with respect tou = eit atu = 1, i.e., t = 0, using a Taylor expansion,
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its companion integral representation, and the bootstrapping bounds. The moment-
like quantities,

Lj(z) =
∂j

∂tj
L(z, eit)

∣∣∣∣
t=0

,

can be subjected to Mellin analysis forj = 1, 2 and bounded forj ≥ 3. In this way,
there results that

L(z, eit) = L1(z)t+
1

2
L2(z)t

2 +O(zt3),

uniformly. The Gaussian law under a Poisson model immediately results from the
continuity theorem of characteristic functions. Under theoriginal Bernoulli model,
the Gaussian limit follows from a saddle point analysis of

F (z, eit) = ezeL(z,eit).

An even more delicate analysis has been carried out by Jacquet and Szpankowski
in [279]. It is relative to path length in digital search trees and involves the formidable
non-linear bivariate difference-differential equation

∂

∂z
F (z, u) = F 2(

z

2
, u).

IX. 9. Local limit laws

Under conditions similar to those of the Quasi-Powers Theorem, a cluster of con-
clusions may be drawn regarding densities of distributionsand probabilities of large
deviations from the mean. We examine here the occurrence of local limit laws, which
corresponds to convergence of a discrete probability distribution to theGaussian den-
sity functionrather than convergence of distribution functions to theGaussian error
function, as we have seen so far. Such local laws hold very frequently,but their proofs
require some sort of additional “smoothness” assumptions,either a combinatorial or
analytic. Under assumptions of the Quasi-Powers Theorem, it is also possible to quan-
tify precisely the exponential rate of decay for probabilities of rare events, far away
from the center of the distribution. This section explores both aspects that fit well
withing the general framework of quasi-powers. One aspectsprovides precise asymp-
totic information on values of the individual probabilities, especially near the mean;
the other aspect quantifies the smallness of probabilities far away from the mean and,
when conditions apply, it provides sharp quantitative versions of the concentration of
distribution discussed at the beginning of this chapter.

So far, we have examined the occurrence of continuous limit laws in the sense of
convergence of distribution functions. Thus, a standardizedYn converges in distribu-
tion toY , if

P{Yn ≤ x} → P{Y ≤ x}.
In the case of a Gaussian limit that arises from a sequence of discrete distributions of
variablesXn with mean and varianceµn, σ

2
n, such a property quantifies the probabil-

ities over any nonempty interval scaled according toσn,

(56) Pr{µn + aσn < Xn ≤ µn + bσn} =
1√
2π

∫ b

a

e−x2/2 dx + o(1),
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FIGURE IX.11. The histogram of the Eulerian distribution scaled to(n + 1) on
the horizontal axis, forn = 3 . . 60. The distribution is seen to quickly converge
to a bell-shaped curve corresponding to the Gaussian density e−x2/2/(2π)1/2.

for any a, b with a < b. From there, it is however in general not possible to draw
information on any individual probability,

pn,k = P{Xn = k},

by differencing, since the error terms in (56) will usually hide any nontrivial asymp-
totic information on individualpn,k.

On the other hand, numerical examination of discrete probability distributions
reveals that the histograms of thepn,k often assume a bell-shape profile in the asymp-
totic limit. For instance Figure 11, borrowed from our book [434], displays thepn,k

that correspond to the Eulerian numbers. For a given value ofn, the maximum proba-
bility pn,k is seen to occur “in the middle”, near the mean, and to obey an approximate
law,

p2n,n ≈ 1.35√
2n
,

for values nearn = 60. The standard deviation of the distribution is otherwise known
to be∼

√
n/12. Thus, the we expect an approximate formula of the form

p
n,n/2+x

√
n/12

≈ C√
n
e−x2/2,

for integral values of the argumentk = n/2 + x
√
n/12, with some constantC about

1.35.

Definition IX.4. A sequence of discrete probability distributions,pn,k = P{Xn =
k}, with meanµn and standard deviationσn is said to obey alocal limit law of the
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Gaussian typeif, for some setS of real numbers, and a sequenceǫ→ 0,

sup

∣∣∣∣σnpn,⌊µn+xσn⌋ −
1√
2π
e−x2/2

∣∣∣∣ ≤ ǫn.

The local limit law is said to hold onS and the law is said to hold withrelative speed
of convergenceǫn.

When such a local limit law exists, it usually holds on arbitrary bounded intervals
of the real line.

Theorem IX.13 (Local limit law). Let Xn be a sequence of nonnegative discrete
random variables with probability generating functionpn(u). Assume thatuniformly
in an annulus,

1 − ǫ ≤ u ≤ 1 + ǫ, ǫ > 0

the PGFs satisfy

(57) pn(u) = A(u) (B(u))
βn

(
1 +O(

1

κn
)

)
,

whereA(u), B(u) are analytic in the annulus andA(1) = B(1) = 1, v(B(u)) =
B′′(1) +B′(1)−B′(1) 6= 0. Assume also thatB(u) attains uniquely in maximum on
|u| = 1 at u = 1: for all v, with |v| = 1 andv 6= 1, one has|B(v)| < 1.

Under these conditions, the distribution ofXn satisfies a local limit law of the
Gaussian type on arbitrary bounded intervals of the real line.

Note that the mean and variance ofXn are given by Eq. (20).
PROOF. A direct application of the saddle point method, as developed in Chap-
ter VIII. 2

This theorem applies in particular to quasi-power expansions, whenever the dom-
inant singularityρ(u), that is a perturbation of the dominant singularityρ of the uni-
variate problem, is analytic at all points of|u| = 1 and uniquely attains its minimum
atu = 1.

EXAMPLE IX.28. Local laws for sums of RV’s.The simplest application is to the binomial
distribution, for which

B(u) =
1 + u

2
.

In a precise technical sense, the local limit arises in the BGF,

F (z, u) =
1

1− z(1 + u)/2
,

because the dominant singularityρ(u) = 2/(1+u) exists on the whole of the unit circle,|u| =
1, and it attains uniquely its minimum modulus atu = 1; accordingly,B(u) = ρ(1)/ρ(u) is
uniquely maximal atu = 1.

More generally, the theorem applies to any sumSn = T1 + · · · + Tn of independent,
identically, random variables whose maximal span is equal to 1 and whose PGF is analytic on
the unit circle. In that case, the BGF is

F (z, u) =
1

1− zB(u)
,

the PGF ofSn is a pure power,
pn(u) = B(u)n,
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FIGURE IX.12. The values of the functionB(u) for the Eulerian distribution
when |u| = 1, represented by a polar plot of|B(eiθ)| on the ray of angleθ
(right). (The dashed contours represent the relevant partsof the unit circle, for
comparison.) The maximum is uniquely attained atu = 1, whereB(1) = 1. This
entails a local limit law for the Eulerian distribution.

and the fact that the minimal span of theXj is 1 entails thatB(u) attains uniquely its maximum
at 1. Such cases have been known for a long time in probabilitytheory. See Chapter 9 of [237].
END OF EXAMPLE IX.28. �

At this stage, it is worth pointing an examplenot leading to a local law. Consider
the binomial distribution restricted to even values,

pn,2k =
2

2n

(
n

2k

)
, pn,2k+1 = 0.

The BGF is

F (z, u) =
1

1 − z(1 + u)/2
+

1

1 − z(1 − u)/2
− 1.

This has two poles,

ρ1(u) =
2

1 + u
, ρ2(u) =

2

1 − u
,

and it is clearly not true that a single one dominates throughout the domain|u| = 1.
Accordingly, the PGF satisfies

pn(u) = (1 + u)n + (1 − u)n,

and no quasi-power law, with a unique analyticB(u), holds uniformly foru on the
unit circle. In essence, a local limit law will be likely to hold when a PGF has a sharp
peak near 1 and stays much smaller in modulus along the rest ofthe unit circle. In
contrast, for the even binomial distribution, one haspn(1) = pn(−1).
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EXAMPLE IX.29. Local law for the Eulerian distribution.For Eulerian numbers, we have
derived the approximate expression,

pn(u) = B(u)−n−1 +O(2−n),

whenu is close enough to1, with

B(u) = ρ(u)−1 =
u− 1

log u
.

The plot of the functionB(u) whenu varies over|u| = 1 is then displayed in Fig. 12.
This case requires in fact a minor extension of Theorem IX.13since the principal deter-

mination of the logarithm cannot be extended to the whole of the unit circle, in particular at
u = −1. However, it is easily realized that the quasi-power expansion holds with the pos-
sible exception of a small segment of the integration contour nearu = −1. However, there,
the integrand is anyway exponentially smaller than on the rest of the contour, and the proof of
Theorem IX.13 is easily adjusted to cover such case.

From this enhanced argument, there results that a local limit law of the Gauss-
ian type holds for the Eulerian distribution on any compact subset of the real line.
END OF EXAMPLE IX.29. �

With a similar care to be exercised regarding principal determinations and dom-
inant singularities, many of our earlier analyses can be turned into local limit laws.
What is needed is a dominant singularityρ(u) that yields the main asymptotic form of
the PGF’s on most of the unit disc and that achieves uniquely its minimum at 1, while
the rest of the unit disc contributes negligibly. For instance, this covers the surjection
distribution, for which

ρ(u) = log(1 + u−1), B(u) =
log 2

log(1 + u−1)
,

leaves in general Catalan trees, where

B(u) =
(1 +

√
u)2

4
,

or in binary Catalan trees.
The Stirling cycle distribution satisfies

pn(u) =
e(u−1) log n

Γ(u)

(
1 +O(

1

n
)

)
.

This approximation remains uniform as long asu avoids−1, but, there,pn(u) is small
anyway (beingO(n−2)), so that again an extended form of Theorem IX.13 applies
and a local limit law holds. The same argument applies to nodelevels in quadtrees of
Example 24.

� IX.37. Peaks of distributions.It is possible to analyse asymptotically in detail the values of
the peak of the Eulerian and Stirling cycle distributions. (For the Eulerian distribution, see, e.g.,
the study of Lesieur and Nicolas [330].) �
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FIGURE IX.13. The quantitieslog pn,k relative to the Eulerian numbers illus-
trate an extremely fast decay of the distribution away from the mean. Here, the
diagrams corresponding ton = 10, 20, 30, 40 (top to bottom) are plotted. The
common shape of the curves indicates a large deviation property.

IX. 10. Large deviations

Moment inequalities constrain the shape of a distribution given its mean and vari-
ance. In particular, ifσn/µn → 1, the concentration property holds. This property
comes from Chebyshev’s inequality according to which the probability of observing
a value that deviates by more thanx standard deviations from the mean isO(x−2).
Such general bounds, though sufficient to establish a concentration property, are much
weaker than what holds under conditions of the quasi-power type, where the probabil-
ities of deviation are in fact exponentially decreasing with in x.

Figure 13 displays the logarithms of the Eulerian distribution. As logarithms of
probabilities are plotted, the distribution is seen to decay very rapidly away from the
meanµn ∼ n/2. Consider for instance extreme cases. Clearly, there is a unique
permutation that has a minimal number of rises, namely the fully sorted permutation
with probability

pn,1 =
1

n!
.

In contrast, sinceµn ∼ n/2 andσ2
n ∼ n/12, this extreme case is roughly atx =

√
3n

from the mean; thus, the Chebyshev inequalities only provides the very weak upper
bound of∼ 1

3n for this extreme case. Forn = 40, the Chebyshev upper bound on the
probability is thus about0.008 while the exact value1/40! is of the order of10−48.

Extensions of the quasi-power framework are once more well-suited to prove such
exponentially small tails, as we now explain. It turns out that the ubiquitous functions
ρ(u), B(u) are directly related tolarge deviationestimates. Such estimates nicely
supplement the already known limit laws, either central or local.

Definition IX.5. A sequence of discrete random variables{Xn}withpn,k = P{Xn =
k}, satisfies alocal large deviation propertyof type(βn,W (x)) over the interval
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[x0, x1], if for anyx ∈ [x0, x1],

(58)
1

βn
log pn,xβn ≤W (x) +O(β−1

n ).

The functionW (x) is called alarge deviation functionandβn is thescaling factor.

The inequality (58) isa priori only meaningful ifxβn is an integer, but it makes
sense as well if it is understood thatpn,w = 0 for nonintegral values ofw andlog 0 =
−∞. Of course, the large deviation property is nontrivial onlywhenW (x) ≤ 0, with
W (x) not identically 0. A global (and marginally stronger) form of large deviations
can also be defined when local probabilities are replaced by corresponding values of
the cumulative distribution function. Large deviation theory is introduced nicely in
the book of den Hollander [119].

Theorem IX.14 (Quasi-powers, large deviations). Consider a sequence of dis-
crete random variables{Xn} with PGF pn(u). Assume that there exist a func-
tionsA(u), B(u), analytic in some interval[u0, u1] with 0 < u0 < 1 < u1, such
that a quasi-power expansion holds,

(59) pn(u) = A(u)B(u)βn
(
1 +O(κ−1

n

)
,

uniformly. Then theXn satisfy a large deviation property,

(60)
1

βn
log pn,xβn ≤W (x) +O(β−1

n ),

where the large deviation functionW (x) is given by

(61) W (x) = min
u∈[u0,u1]

log

(
B(u)

ux

)
.

PROOF. The basic observation is that iff(u) =
∑

n fnu
n is an analytic function with

nonnegative coefficients, then, for positiveu,

(62) fk := [uk]f(u) ≤ f(u)

uk
≤ min

u>0

f(u)

uk
.

The first inequality holds for any positiveu in the disc of analyticity off(u); the
second bound, with a similar condition, consists in taking the best possible value ofu.
See our earlier discussion of saddle point bounds.

The combination of the principle (62) applied tof(u) = pn(u), and of the as-
sumption of the theorem (59) yields

log pn,xβn ≤ βn min
u∈[u0,u1]

log

(
B(u)

ux

)
+O(1).

Thus, a large deviation property holds withW (x) given by (61).2
In general, the functionW (x) is computable fromB(u) and its derivatives. The

minimum is attained at either an end-point or a point such that

d

du
(logB(u) − x log u) = 0.
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FIGURE IX.14. The large deviation function relative to the Eulerian distribution,
for u ∈ [0.3, 0.7].

Let η(x) be a value ofu ∈ [u0, u1] that cancels this derivative. Thus,η is an inverse
function ofuB′(u)/B(u),

η(x)
B′(η(x))

B(η(x)
= x.

Then, a large deviation function is

(63) W (x) = logB(η(x)) − x log η(x).

� IX.38. Prove similar types of bounds for the cumulative quantities

Pn,k =
X

j≤k

pn,j , Qn,k =
X

j≥k

pn,j .

�

EXAMPLE IX.30. Large deviations for the Eulerian distribution.In this case, the BGF has
a unique dominant singularity foru with ǫ < u < 1/ǫ, and anyǫ > 0. Thus, there is a
quasi-power expansion with

B(u) =
(u− 1)

log u
,

on any interval[ǫ, 1/ǫ]. Thenη(x) is computable as the inverse function of

h(u) =
u

u− 1
− 1

log u
.

This function increases from 0 to 1 asu increases from0 to 1, so that the inverse function is
well defined over any closed interval[ǫ, 1− ǫ]. The functionW (x) is then determined by (63);
see Figure 14 for a plot ofW (x) that “explains” the data of Figure 13.

We find that

W (0.3) = W (0.7) = −0.252, W (0.4) = W (0.6) = −0.061,

W (0.45) = W (0.55) = −0.015,

andW (0.5) = 0, as expected. For instance, the probability of deviating by20% from the mean
valueµn ∼ 0.5n is approximatelyexp(−0.061 n). Forn = 100, this upper bound is about
e−6.07, while the exact value of the probability givesp100,60

.
= e−8.58. In the same vein, there
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is probability less than10−6 of deviating by 10% from the mean, whenn = 1, 000; the upper
bound becomes less than10−65, for n = 10, 000, less than10−653, for n = 100, 000. (These
are the estimates stated at the very beginning of this chapter.) . . END OF EXAMPLE IX.30. �

� IX.39. Quasi-Powers and large deviations.Under the Quasi-Powers assumption, it is usually
possible to convert the upperbound into an equality. This has been done by Hwang [272, 273,
274], who bases himself on a technique of Cramér. Roughly, by shiting the mean, the main
Quasi-Powers Theorem can be applied at someu = u0 with u0 6= 1. �

IX. 11. Non-Gaussian continuous limits

Previous sections of this chapter have developed two basic paradigms for bivariate
asymptotics (see also Figure 3):

— a “minor” singularity perturbation mode leading to discrete laws,
— a “major” singularity perturbation mode leading to continuous laws.

However, in both cases, the assumption has been made so far that the collection of sin-
gular expansions parameterized by the auxiliary variable all belong to a common ana-
lytic class and exhibit no sharp discontinuity when the secondary parameter traverses
the valueu = 1. In this section we briefly explore by means of examples the way dis-
continuities in singular behaviour induce no-Gaussian laws (Subsection IX. 11.1), then
conclude with a fairly general discussion of the critical composition schema (Subsec-
tion IX. 11.2), thereby completing the classification of analytic composition schemes.
The discontuities observed in the cases discussed here are reminiscent of what is
known as phase transition phenomena in statistical physics, and we find it suggestive
to borrow this terminology here.

IX. 11.1. Phase transition diagrams.Perhaps the simplest case of discontinuity
in singular behaviour is the already discussed BGF,

F (z, u) =
1

(1 − z)(1 − zu)
,

whereu records the number ofa’s in a random word ofa⋆b⋆. The limit law is clearly
the continuous uniform distribution over the interval[0, 1]. From the point of view of
the singular structure ofF (z, u), as a function ofz, three distinct cases arise depending
on the values ofu:

• u < 1: simple pole atρ(u) = 1;
• u = 1: double pole atρ(1) = 1;
• u > 1: simple pole atρ(u) = 1/u.

Thus both the singularity location atρ(u) and the singular exponentα(u) experience
a nonanalytic transition atu = 1. This arises from a “confluence” of two singular
terms whenu = 1.

To visualize such cases, it is useful to introduce a simplified diagram representa-
tion, called aphase transition diagramand defined as follows. WriteZ = ρ(u) − z
and reduce the singular expansion to its dominant singular termZα(u). Then, the
diagram representingF (z, u) above is
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FIGURE IX.15. Histograms of the distribution of the maximum of a random
walk forn = 10 . . 60 (left) and the density of the arcsine law (right).

u = 1 − ǫ u = 1 u = 1 + ǫ
ρ(u) = 1 ρ(1) = 1 ρ(u) = 1/u
Z−1 Z−2 Z−1

A complete classification of such confluences and discontinuities is still lack-
ing (see however Marianne Durand’s thesis [142] for interesting fragments), and is
perhaps beyond reach given the vast diversity of situationsencountered in a combina-
torialist’s practice.

EXAMPLE IX.31. Arcsine law for unbiased random walks.This problem is studied in detail
by Feller [161, p. 94] who notes: “Contrary to intuition, the maximum accumulated gain is
much more likely to occur towards the very beginning or the very end of a coin-tossing game
than somewhere in the middle.” See Figure 15. In fact, ifXn is the time of the first occurrence
of the maximum in a random game (walk with±1 steps) of durationn, one has

P{Xn < xn} ∼ 2

π
arcsin

√
x,

a distribution function with density

f(x) =
1

π
p
x(1− x)

.

The BGF results from the standard decomposition of positivewalks. Roughly, there is a
sequence of steps ascending to the (nonnegative) maximum accompanied by “arches” (the left
factor) followed by an excursion below than back to the maximum, followed by a sequence of
descending steps with their companion arches. This translates directly into an equation satisfied
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values between12 and5

4 (left). The exponent functionα(u) and the singular value
ρ(u) for u ∈ [1/2, 3/2] (right).

by the BGFF (z, u) of the location of the first maximum.

(64) F (z, u) =
1

1− zuD(zu)
· D(z) · 1

1− zD(z)
,

which involves the GF of gambler’s ruin sequences (Example 6),

D(z) =
1−
√

1− 4z2

2z
.

In such a simple case, explicit expressions are available from (64), as it suffices to expand first
with respect tou, then toz. We obtain in this way the ultra-classical result:

Proposition IX.15 (Arc sine law). Setu2ν := 2−2ν
`
2ν
ν

´
. The probability that the first maxi-

mum in a random walk of lengthn = 2ν occurs atk = 2ρ or k = 2ρ + 1 is 1
2
u2ρu2ν−2ρ, for

0 < k < 2ν. For anyx ∈ (0, 1), the positionTn of the first maximum satisfies

lim
n→∞

Pn(Xn < xn) =
2

π
arcsin

√
x.

(The asymptotic form reflects by summation that ofu2ν sinceu2ν ∼ (πnu)−1/2.)



IX. 11. NON-GAUSSIAN CONTINUOUS LIMITS 653

It is instructive to compare this to the way singularities evolve asu crosses the value 1.
The dominant positive singularity is atρ(u) = 1/2 if u < 1, while ρ(u) = 1/(2u), if u > 1.
Local expansions show that, withc<(u), c(u) > two computable functions, there holds:

F (z, u) ∼ c<(u)
1√

1− 2z
, F (z, u) ∼ c>(u)

1√
1− 2z

.

Naturally, atu = 1, all words are counted and

F (z, 1) =
1

1− 2z
.

Thus, the corresponding phase transition diagram is (see Figure 16):

u = 1− ǫ u = 1 u = 1 + ǫ

ρ(u) = 1
2

ρ(1) = 1
2

ρ(u) = 1
2u

Z−1/2 Z−1 Z−1/2

(Negative singularities have a smaller weight and may be discarded.)
END OF EXAMPLE IX.31. �

In this particular case, elementary combinatorics yields the arcsine distribution
without the need of a recourse to singularities. The point tobe made here is that
the arcsine law could be expected when a similar phase transition diagram occurs.
There is of course universality in this singular view of the arcsine law, which can be
extended to walks with zero drift (Chapter VII). This kind ofuniversality is a parallel
to the universality of Brownian motion, which is otherwise familiar to probabilists.
� IX.40. Number of maxima and other stories.The construction underlying (64) also serves
to analyse;(i) the number of times the maximum is attained.(ii) the difference between the
maximum and the final altitude of the walk;(iii) the duration of the period following the last
occurrence of the maximum. �

EXAMPLE IX.32. Path length in trees.A final example is the distribution of path length
in trees, which has been studied by Louchard, Takacs and others [339, 340, 461, 462]. The
distribution is knownnot to be Gaussian as results from computation of the first few moments.
In the case of general Catalan trees, the analysis reduces tothat of the functional equation

F (z, u) =
1

1− zF (zu, u)
.

This definesF (z, u) as a formal continued fraction, which suggests setting (cf Chapters III
and V as well as our discussion of coin fountains and polyomino models)

F (z, u) =
A(z)

B(z)
,

the variableu being viewed as a parameter. From the basic functional equation, there results

A(z) = B(zu), B(z) = B(zu)− zB(zu2).

The functional equation forB may now be solved by indeterminate coefficients:

B(z) = 1 +
∞X

n=1

(−1)n un(n−1)zn

(1− u)(1− u2) · · · (1− un)
.

Because of the quadratic exponents involved, the functionsB(z) andF (z, u) have radius of
convergence0 whenu > 1, and are thus nonanalytic. In contrast, whenu < 1, thenB(z, u) is
an entire function ofz, so thatF (z, u) is meromorphic inz. Hence the singularity diagram:
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u = 1− ǫ u = 1 u = 1 + ǫ

ρ(u) > 1
4

ρ(1) = 1
4

ρ(u) = 0

Z−1 Z1/2 —

The limit law is theAiry area distribution, that is related to the Airy function [340, 339, 461,
462]. By an analyticaltour de force, Prellberg [401] has developed a method based on cintegral
representations and oalescing saddle points (Chapter VIII) that permits us to extract the phase
transition diagram above, together with precise uniform asymptotic expansions. As similar
problems occur in relation to connectivity of random graphs[205], future years should see
more applications of Prellberg’s method. . . . . . . . . . . . . . . .. . . . . END OF EXAMPLE IX.32. �

IX. 11.2. Semi-large powers, critical compositions, and stable laws. We con-
clude this section by a discussion of critical compositionsthat typically involve con-
fluences of singularities and lead to a general class of continuous distributions closely
related tostable lawsof probability theory. We start with an example where every-
thing is explicit, that of zero contacts in random bridges, then state a general theorem
on “semi-large” powers of functions of singularity analysis type, and finally discuss
combinatorial applications.

EXAMPLE IX.33. Zero-contacts in bridges.Consider once more fluctuations in coin tossings,
and specifically bridges, corresponding to a conditioning of the game by the fact that the final
gain is 0 (negative capitals are allowed). These are sequences of arbitrary positive or negative
“arches”, and the number of arches in a bridge is exactly equal to the number of intermedaite
steps at which the capital is 0. From the arch decomposition,theer results that the ordinary BGF
of bridges withz marking length andu marking zero-contacts is

B(z, u) =
1

1− 2uz2D(z)
.

Analysing this function is conveniently done by introducing

F (z, u) ≡ B
„

1

2

√
z, u

«
=

1

1− u(1−√1− z) .

The phase transition diagram is then easily found to be:

u = 1− ǫ u = 1 u = 1 + ǫ

ρ(u) = 1 ρ(1) = 1 ρ(u) = 1− (1− u−1)2

Z1/2 Z−1/2 Z−1

Thus, there are discontinuities, both in the location of thesingularity and the exponent. But
these are of a type different from what gave rise to the arcsine law of random walks.

The problem of the limit law is here easily solved since explicit expressions are provided
by the Lagrange Inversion Theorem. One finds:

[uk][zn]F (z, u) = [zn]
`
1−
√

1− z
´k

=
k

n
[wn−k](2− w)−n = 2k−2n k

n

 
2n− k − 1

n− 1

!
.

Then Stirling’s formula provides:

Proposition IX.16. The numberXn of zero-contacts of a random bridge of size2n satisfies,
as→∞ the local limit law,

lim
n→∞

P(Xn = x
√
n) =

x

2
√
n
e−x2/4,
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FIGURE IX.17. TheG-functions forλ = 0.1 . .0.8 (left; from bottom to top)
and forλ = 1.2 . . 1.9 (right; from top to bottom); the thicker curves represent the
Rayleigh law (left,λ = 1

2 ) and the Airy law (right,λ = 3
2 ).

for x in any compact set of[0,+∞[.

A random variable with density and distribution function given by

(65) r(x) =
x

2
e−x2/4, R(x) = 1− ex2/4,

is called a Rayleigh law. Thus the number of zero contacts obeys a Rayleigh law in the asymp-
totic limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . END OF EXAMPLE IX.33. �

� IX.41. Cyclic points in mappings.The number of cyclic points in mappings has exponential
BGF (1− uT (z))−1, with T the Cayley tree function. The singularity diagram is of the same
form as in Example 33. Explicit forms are available by Lagrange inversion, and the limit law is
again Rayleigh. (Note: This has been vastly generalized by Drmota and Soria [137, 138].) �

Both Example 33 and Note 41 exemplify the situation of an analytic composition
scheme of the form(1 − uf(z))−1 which is critical, since in each casef assumes
value 1 at its singularity. Both can be treated elementarilysince they involve powers
that are amenable to Lagrange inversion, eventually resulting in a Rayleigh law. As
we now explain, there is a family of functions that appear to play a universal rôle
in problems sharing such singular types. What follows is taken from an article by
Banderieret al. [22].

We first introduce a functionG that otherwise naturally surfaces in the study of
stable9 distributions in probability theory. For any parameterλ ∈ (0, 2), define the
entire function

9In probability theory, stable laws are defined as the possible limit laws of sums of independent iden-
tically distributed random variables. The functionG is a trivial variant of the density of the stable law of
indexλ; see Feller’s book [162, p. 581–583]. Valuable informations regarding stable lawsmay be found in
the books by Breiman [72, Sec. 9.8], Durett [143, Sec. 2.7], and Zolotarev [516].
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(66) G(x, λ) :=





1

π

∑

k≥1

(−1)k−1xk Γ(1 + λk)

Γ(1 + k)
sin(πkλ) (0 < λ < 1)

1

πx

∑

k≥1

(−1)k−1xk Γ(1 + k/λ)

Γ(1 + k)
sin(πk/λ) (1 < λ < 2)

The functionG(x; 1
2 ) is a normalized variant of the Rayleigh distribution (65). The

functionG(x; 3
2 ) constitutes the density of the “Airy map” distribution found in ran-

dom maps as well as in other colascence phenomena and discussed in detail below,
see (73).

Theorem IX.15 (Semi-large powers). The coefficient ofzn in a powerH(z)k of a∆-
continuable functionH(z) with singular exponentλ admits the following asymptotic
estimates.

(i) For 0 < λ < 1, that is,H(z) = σ − hλ(1 − z/ρ)λ + O(1 − z/ρ), and when
k = xnλ, with x in any compact subinterval of(0,+∞), there holds

(67) [zn]Hk(z) ∼ σkρ−n 1

n
G

(
xhλ

σ
, λ

)
.

(ii) For 1 < λ < 2, that is,H(z) = σ − h1(1− z/ρ) + hλ(1− z/ρ)λ +O((1 −
z/ρ)2), whenk = σ

h1
n + xn1/λ, with x in any compact subinterval of(−∞,+∞),

there holds

(68) [zn]Hk(z) ∼ σkρ−n 1

n1/λ
(h1/hλ)1/λG

(
xh

1+1/λ
1

σh
1/λ
λ

, λ

)
.

(iii) For λ > 2, a Gaussian approximation holds. In particular, for2 < λ < 3,
that is,H(z) = σ− h1(1− z/ρ)+ h2(1− z/ρ)2 − hλ(1− z/ρ)λ +O((1 − z/ρ)3) ,
whenk = σ

h1
n+ x

√
n, withx in any compact subinterval of(−∞,+∞), there holds

(69) [zn]Hk(z) ∼ σkρ−n 1√
n

σ/h1

a
√

2π
e−x2/2a2

with a = 2(h2

h1
− h1

2σ )σ2/h2
1.

The term “semi-large” refers to the fact that the exponentsk in case(i) are of the
formO(nθ) for someθ < 1 chosen in accordance with the region where an “interest-
ing” renormalization takes place and dependent on each particular singular exponent.
When the interesting region reaches theO(n) range in case(iii), the analysis of large
powers, as detailed in Chapter IX, starts to apply and Gaussian forms results.
PROOF. The proofs are somewhat similar to the basic ones in singularity analysis, but
they require a suitable adjustment of the geometry of the Hankel contour and of the
corresponding scaling.

Case(i). A classical Hankel contour, with the change of variablez = ρ(1− t/n),
yields the approximation

[zn]Hk(z) ∼ −σ
kρ−n

2iπn

∫
et−hλx

σ tλ

dt
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The integral is then simply estimated by expandingexp(−hλx
σ tλ) and integrating

termwise

(70) [zn]Hk(z) ∼ −σ
kρ−n

n

∑

k≥1

(−x)k

k!

(
hλ

σ

)k
1

Γ(−λk) ,

which is equivalent to Equation (67), by virtue of the complement formula for the
Gamma function.

Case(ii). When1 < λ < 2, the contour of integration in thez-plane is chosen
to be a positively oriented loop, made of two rays of angleπ/(2λ) and−π/(2λ) that
intersect on the real axis at a distance1/n1/λ left of the singularity. The coefficient
integral ofHk is rescaled by settingz = ρ(1 − t/n1/λ), and one has

[zn]Hk(z) ∼ − σkρ−n

2iπn1/λ

∫
e

hλ
h1

tλ

e−
xh1

σ t dt.

There, the contour of integration in thet-plane comprises two rays of angleπ/λ and
−π/λ, intersecting at−1. Settingu = tλhλ/h1, the contour transforms into a clas-
sical Hankel contour, starting from−∞ over the real axis, winding about the origin,
and returning to−∞. So, withα = 1/λ, one has

[zn]Hk(z) ∼ −σ
kρ−n

2iπnα
α

(
h1

hλ

)α ∫
eu e

− xh
α+1
1

σhα
λ

uα

uα−1 du .

Expanding the exponential, integrating termwise, and appealing to the complement
formula for the Gamma function finally reduces this last formto (68).

Case(iii). This case is only included here for comparison purposes, but, as
recalled before the proof, it is essentially implied by the developments of Chapter IX
based on the saddle point method. When2 < λ < 3, the angleφ of the contour of
integration in thez–plane is chosen to beπ/2, and the scaling is

√
n: under the change

of variablez = ρ(1 − t/
√
n), the contour is transformed into two rays of angleπ/2

and−π/2 (i.e., a vertical line), intersecting at−1, and

[zn]Hk(z) ∼ − σkρ−n

2iπ
√
n

∫
ept2−h1x

σ t dt ,

with p = h2

h1
− h1

2σ . Complementing the square, and lettingu = t− h1x
2pσ , we get

[zn]Hk(z) ∼ −σkρ−n

2iπ
√
n
e
− h2

1
4pσ2 x2

∫
epu2

du ,

which gives Equation (69). By similar means, such a Gaussianapproximation can be
shown to hold for any non-integral singular exponentλ > 2. �

� IX.42. Zipf laws. Zipf’s law, named after the Harvard linguistic professor George Kingsley
Zipf (1902–1950), is the observation that, in a language like English, the frequency with which
a word occurs is roughly inversely proportional to its rank—the kth most frequent word has
frequency proportional to1/k. Thegeneralized Zipf distributionof parameterα > 1 is the law
of a variableZ such that

P(Z = k) =
1

ζ(α)

1

kα
.

It has infinite mean forα ≤ 2 and infinite variance forα ≤ 3. It was proved in Chapter VI that
polylogarithms are amenable to singularity analysis. Consequently, the sum of a large number
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of independent Zipf variables satisfies a local limit law of the stable type with indexα − 1
(α 6= 2). �

EXAMPLE IX.34. Mean level profiles of trees.Consider the depth of a random node in
a random tree taken from a simple varietyY that satisfies the usual analytic assumptions of
Chapter VII. The problem of quantifying this distribution is equivalent to that of determining
themeanlevel profile, that is the sequence of numbersMn,k representing the mean number of
nodes at distancek from the root. (The probability that a random node lies at level k is then
Mn,k/n.) The first few levels have been characterized in Chapter VII, and the analysis of that
chapter can now be completed thanks to Theorem IX.15. The problem was solved by Meir
and Moon [356] in an important article that launched the analytic study ofsimple varieties of
trees. As usual, we letφ(w) be the generator of the simple varietyY, with Y (z) satisfying
Y = zφ(Y ), and we designate byτ the positive root of the characteristic equation:

τφ′(τ )− φ(τ ) = 0.

It is known from Chapter VII that the GFY (z) has a square root singularity atρ = τ/φ(τ ).
We also assume aperiodicity ofφ. Then Meir and Moon’s major result (Theorem 4.3 of [356])
is as follows

Proposition IX.17 (Mean level profiles). The mean profile of a large tree in a simple variety
obeys a Rayleigh law in the asymptotic limit: fork/

√
n in any bounded interval ofR≥0, the

mean number of nodes at altitudek satisfies asymptotically

Mn,k ∼ AkeAk2/(2n),

whereA = τφ′′(τ ).

(Note: Meir and Moon base their analysis on a Lagrangean change of variable and on the
saddle point method.)
PROOF. For eachk, defineYk(z, u) to be the BGF withu marking the number of nodes at
depthk. Then, the root decomposition of trees translates into the recurrence:

Yk(z, u) = zφ(Yk−1(z, u)), Y0(z, u) = zuφ(Y (z)) = uY (z).

By construction, we have

Mn,k =
1

Yn
[zn]

„
∂

∂u
Yk(z, u)

«

u=1

.

On the other hand, the fundamental recurrence yields
„
∂

∂u
Yk(z, u)

«

u=1

=
`
zφ′(Y (z))

´k
Y (z).

Now, φ′(Y ) has, likeY , a square root singularity. The semi-large powers theorem applies
with λ = 1

2
, and the result follows. � The same method of gives access to the

variance of the number of nodes at any depthk. The variance of the altitude of a random node
is also easily computed [356]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . END OF EXAMPLE IX.34. �

� IX.43. The number of cyclic points in mappings.In the basic case of random mapping, we
are dealing withF (z, u) = (1 − uT (z))−1, and a Rayleigh law holds. This extends to the
number of cyclic points in a simple variety of mappings (e.g., mappings defined by a finite
constraint on degrees). �
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� IX.44. The width of trees.The expectation of the widthW of a tree in a simple variety
satisfies

C1

√
n ≤ EYn(W ) ≤ C2

p
n log n,

for someC1, C2 > 0. This is due to Odlyzko and Wilf [379] in 1987. (Better bounds are
now known, sinceWn/

√
n has been later recognized to be related to Brownian excursion. In

particular, the expected width is∼ c√n.) �

The results of Theorem IX.15 provide in addition useful information on compo-
sition schemas of the form

M(z, u) = C(uH(z)),

providedC andH are algebraic-logarithmic in the sense above. Combinatorially,
this represents a substitution between structures,M = C ◦ H, and the coefficient
[znuk]M(z, u) counts the number ofM-structures of sizen whoseC-componnet,
also calledcore in what follows, has sizek. Then the probability distribution of core-
sizeXn in M-structures of sizen is given by

P(Xn = k) =
[zk]C(z)

[zn]C(H(z))
[zn]H(z)k.

The case where the schema is critical, in the sense thatH(rH) = rG with rH , rC
the radii of convergence ofH,G, follows as a direct consequence of Theorem IX.15.
What comes out is the following informally stated general principle (details would
closely mimic the statement of Theorem IX.15 and are omitted).

Proposition IX.18 (Critical compositions). In a composition schemaG(uH(z))
whereH andG have singular exponentsλ, λ′ with λ′ ≤ λ:

(i) for 0 < λ < 1, the normalized core-sizeXn/n
λ is spread over(0,+∞)

and it satisfies a local limit law whose density involves the stable law of indexλ; in
particular,λ = 1

2 corresponds to a Rayleigh law.
(ii) for 1 < λ < 2, the distribution ofXn is bimodal and the “large region”

Xn = cn+ xn1/λ leads to a stable law of indexλ;
(iii) for 2 < λ, the standardized version ofXn admits a local limit law that is of

Gaussian type.

Similar phenomena occur whenλ′ > λ, but with a greater preponderance of
the “small” region. Many instances have already appeared scattered in the literature.
especially in connection with rooted trees. For instance, this proposition explains well
the occurrence of the Rayleigh law (λ = 1

2 ) as the distribution of cyclic points in
random mappings and of zero-contacts in random bridges. Thecaseλ = 3/2 appears
in forests of unrooted trees (see the discussion in Chapter VIII for a complementary
approach based on coalescing saddle points) and it is ubiquitous in planar maps, as
attested by the article of Banderieret al. on which this subsection is largely based [22].
We detail one of the cases in the following example, which explains the meaning of
the term “large region” in Proposition IX.18.

EXAMPLE IX.35. Biconnected cores of planar maps.The OGF of rooted planar maps, with
size determined by the number ofedges, is by Chapter VII,

(71) M(z) = − 1

54z2

“
1− 18z − (1− 12z)3/2

”
,
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FIGURE IX.18. Left: The standard Airy distribution. Right: Observed frequen-
cies of core-sizesk ∈ [20; 1000] in 50,000 random maps of size 2,000, showing
the bimodal character of the distribution.

with a characteristic3
2

exponent. Define a separating vertex orarticulation point in a map to
be a vertex whose removal disconnects the graph. LetC denote the class of nonseparable maps,
that is, maps without an articulation point (also known as biconnected maps). Starting from
the root edge, any map decomposes into a nonseparable map, called the “core” on which are
grafted arbitrary maps, as illustrated by the following diagram:

There results the equation:

(72) M(z) = C(H(z)), H(z) = z(1 +M(z))2.

This gives in passing the OGF of nonseparable maps as the algebraic function of degree 3
specified implicitly by the equation

C3 + 2C2 + (1− 18z)C + 27z2 − 2z = 0,

with expansion at the origin (EISA000139):

C(z) = 2 z + z2 + 2 z3 + 6 z4 + 22 z5 + 91 z6 + · · · , Ck = 2
(3k)!

(k + 1)!(2k + 1)!
.

(The closed form results from a Lagrangean parameterization.) Now the singularity ofC is also
of theZ3/2 type as seen by inversion of (72) or from the Newton diagram attached to the cubic
equation. We find in particular

C(z) =
1

3
− 4

9
(1− 27z/4) +

8
√

3

81
(1− 27z/4)3/2 +O((1− 27z/4)2),

which is reflected by the asymptotic estimate,

Ck ∼ 2

27

√
3

π

„
17

4

«k

k−5/2.
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The parameter considered here is the distribution of the sizeXn of the core (containing
the root) in a random map of sizen. The composition relation isM = C ◦ H , whereH =
Z(1 +M)2. The BGF is thusM(z, u) = C(uH(z)) where the compositionC ◦H is of the
singular typeZ3/2 ◦ Z3/2. What is peculiar here is the “bimodal” caracter of the distribution
of core-size (see Figure 18 borrowed from [22]), which we now detail.

First straight singularity analysis shows that, forfixedk,

P(Xn = k) = Ck
[zn]H(z)k

Mn
∼

n→∞
kCkh

k−1
0 ,

whereh0 = 4
27

is the value ofH(z) at its singularity. In other words, there is local convergence
of the probabilities to a fixeddiscretelaw. The estimate above can be proved to remain uniform
as long ask tends to infinity sufficiently slowly. We shall call this the “small range” ofk values.
Now, summing the probabilities associated to this small range gives the valueC(h0) = 1

3
.

Thus,one-third of the probability mass of core-size arises from the small range, where a discrete
limit law is observed.

The other part of the distribution constitutes the “large range” to which Theorem IX.15
applies. This contains asymptotically2

3
of the probability mass of the distribution ofXn. In

that case, the limit law is given by aG(x; 3
2
) law, also known as “map Airy” law and one finds

for k = 1
3
n+ xn2/3, the continuous local limit:

(73) P(Xn) ∼ 1

3
A(

3

4
22/3x), A(x) = 2e−2x2/3

`
xAi(x2)− Ai′(x2)

´
.

ThereAi(x) is the Airy function , andA(x) defines the map Airy distribution displayed in
Figure 18, a variant of the stable law of index3

2
. . . . . . . . . . . . . . END OF EXAMPLE IX.35. �

The bimodal character of the law can now be bettler understood following [22].
A random maps decomposes completely into biconnected components and the largest
biconnected component has, with high probability, a size that isO(n). There are also a
large number (O(n)) “dangling” biconnected components. In a rooted map, the root is
in a sense placed “at random”. Then, with a fixed probability is either lies in the large
compoent (in which case, the distribution of that large component is observed, this is
the continuous part of the distribution given by the Airy maplaw), or else one of the
small components is picked up by the root (this is the discrete part of the distribution).
� IX.45. Critical cycles. The theory adapts to logarithmic factors. For instance the critical
compositionF (z, u) = − log(1− ug(z)) leads to developments similar to those of the critical
sequence. In this way, it becomes possible for instance to analyse the number of cyclic points
in a random connected mapping. �

� IX.46. The base of supertrees.Supertrees defined in Chapter VI are trees rooted on trees.
Here we consider the bicoloured variantK = G(2ZG), with G the class of general Catalan
trees. Then, the law of the externalG-component is related to a stable law of index1

4
. �

IX. 12. Multivariate limit laws

There exist natural extensions of continuity theorems, both for PGFs and for inte-
gral transforms. Consider for instance the joint distribution of the numbersχ1, χ2 of
singletons and doubletons in random permutations. Then, the parameterχ = (χ1, χ2)
has a trivariate EGF

F (z, u1, u2) =
exp((u1 − 1)z + (u2 − 1)z2/2)

1 − z
.
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Thus, the bivariate PGF satisfies, by meromorphic analysis,

pn(u1, u2) = [zn]F (z, u1, u2) ∼ e(u1−1) e(u2−1)/2.

The joint distribution of(χ1, χ2) is then a product of a Poisson(1) and a Poisson(1/2)
distribution; in particularχ1 andχ2 are asymptotically independent. Such a fact
results from an extension of the continuity theorem (Theorem IX.1) to multivariate
PGF’s that is proved by multiple Cauchy integration.

Consider next the joint distribution ofχ = (χ1, χ2), whereχj is the number of
j-summands in a random integer composition. Each parameter individually obeys a
limit Gaussian law, since the sequence construction is supercritical. The trivariate GF
is

F (z, u1, u2) =
1

1 − z(1 − z)−1 − (u1 − 1)z − (u2 − 1)z2
.

By meromorphic analysis, a higher dimensional quasi-powerapproximation may be
derived:

[zn]F (z, u1, u2) ∼ c(u1, u2)ρ(u1, u2)
−n,

for some 3rd degree algebraic functionρ(u1, u2). In such cases, multivariate versions
of the continuity theorem for integral transforms can be applied. See the book by Gne-
denko and Kolmogorov [237], and especially the treatment of Bender and Richmond
in [36]. As a result, the joint distribution is, in the asymptotic limit, a bivariate Gauss-
ian distribution. Such generalizations are typical and involve essentially no radically
new concept, just natural technical adaptations.

A highly interesting approach to multivariate problems is that of functional limit
theorems.There the goal is to characterize the joint distribution of apotentially in-
finite collections of parameters. The limit process is then astochastic process. For
instance, the joint distribution of all altitudes in randomwalks gives rise to Brownian
motion. The joint distribution of all cycle lengths in random permutations is described
explicitly by Cauchy’s formula (Chapter III), and DeLaurentis and Pittel [115] have
also shown convergence to the standard Brownian motion process. A rather spec-
tacular application of this context of ideas was provided in1977 by Logan, Shepp,
Vershik and Kerov [336, 485]. These authors show that the shape of the pair of Young
tableaux [302] associated to a random permutation conforms, in the asymptotic limit
and with high probability, to a deterministic trajectory defined as the solution to a
variational problem. In particular, the width of a Young tableau associated to a per-
mutation gives the length of the longest increasing sequence of the permutation. By
specializing their results, the authors were able to show that the expected length in a
random permutation of sizen is asymptotic to2

√
n, a long standing conjecture at the

time.

IX. 13. Notes

This chapter is primarily inspired by the works of Bender andRichmond [28, 36,
37], Canfield [76], Flajolet, Soria, and Drmota [134, 135, 137, 138, 210, 212, 443] as
well as Hwang [272].

Bender’s seminal paper [28] initiated the study of bivariate analytic schemes that
lead to Gaussian laws and the paper [28] may rightly be considered to be at the origin
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of the field. Canfield [76], building upon earlier works showed the approach to extend
to saddle point schemas.

Tangible progress was next made possible by the developmentof the singular-
ity analysis method [199]. Earlier works were mostly restricted to methods based on
subtraction of singularities, as in [28], which is in particular effective for meromor-
phic cases. The extension to algebraic–logarithmic singularities was however difficult
given that the classical method of Darboux does not provide for uniform error terms.
In contrast, singularity analysisdoesapply to classes of analytic functions, since it al-
lows for uniformity of estimates. The papers by Flajolet andSoria [210, 212] were the
first to make clear the impact of singularity analysis on bivariate asymptotics. Gao and
Richmond [226] were then able to extend the theory to cases where both a singularity
and its singular exponent are allowed to vary.

From there, Soria developed considerably the framework of schemas in her doc-
torate [443]. Hwang extracted the very important concept of “quasi-powers” in his
thesis [272] together with a wealth of properties like full asymptotic expansions,
speed of convergence, and large deviations. Drmota established general existence
conditions leading to Gaussian laws in the case of implicit,especially algebraic, func-
tions [134, 135]. The “singularity perturbation” framework for solutionsof linear
differential equations first appears under that name in [195]. The presentation in
this chapter is very liberally based on the survey paper [191]. Finally, the books
by Sachkov, see [420] and especially [422], offer a modern perspective on bivariate
asymptotics applied to classical combinatorial structures.

As pointed out in the introduction, the way combinatorial constructions induce
limit laws via schemas based on a purely local perturbation of a singular structure
is quite striking. Take for instance the principle that any fixed pattern occurs almost
surely in a large random object and its number of occurrencesis governed by Gaussian
fluctuations. We have shown this property to hold true for strings, uniform tree models,
and search trees. In a context that involves either a rational function, an algebraic
function, or a solution to a nonlinear differential equation, it eventually reduces to a
very simple property, a singularity that smoothly moves. . .

I can see looming ahead one of those terrible exercises in probability where
six men have white hats and six men have black hats and you haveto

work it out by mathematics how likely it is that the hats will get
mixed up and in what proportion. If you start thinking about

things like that, you would go round the bend. Let me assure you of that!

—AGATHA CHRISTIE

(The Mirror Crack’d. Toronto, Bantam Books, 1962.)
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APPENDIX A

Auxiliary Elementary Notions

This appendix contains entries arranged in alphabetical order regarding the following topics:

Arithmetical functions; Asymptotic Notations; Combinatorial probability; Cycle
construction; Formal power series; Lagrange Inversion; Regular languages; Stir-
ling numbers; Tree concepts.

The corresponding notions and results are used throughout the book, and in particular in Part A
relative toSymbolic Methods.

1. Arithmetical functions. A general reference for this section is Apostol’s book [12].
First, theEuler totient functionϕ(k) intervenes in the unlabelled cycle construction.
It is defined as the number of integers in[1, k] that are relatively prime tok. Thus,
one hasϕ(p) = p− 1 if p ∈ {2, 3, 5, . . .} is a prime. More generally when the prime
number decomposition ofk is k = pα1

1 · · · pαr
r , then

ϕ(k) = pα1−1
1 (p1 − 1) · · · pαr

r (pr − 1).

A number is squarefree if it is not divisible by the square of aprime. TheMöbius
functionµ(n) is defined to be 0 ifn is not squarefree and otherwise is(−1)r if n =
p1 · · · pr is a product ofr distinct primes.

Many elementary properties of arithmetical functions are easily established by
means of aDirichlet generating functions(DGF). Let (an)n≥1 be a sequence; its
DGF formally defined by

α(s) =

∞∑

n=1

an

ns
.

In particular, the DGF of the sequencean = 1 is the Riemann zeta function,ζ(s) =∑
n≥1 n

−s. The fact that every number uniquely decomposes into primesis reflected
by Euler’s formula,

(1) ζ(s) =
∏

p∈P

(
1 − 1

ps

)−1

,

wherep ranges over the setP of all primes. (As observed by Euler, the fact that
ζ(1) = ∞ in conjunction with (1) provides a simple analytic proof that there are
infinitely many primes! See Note IV.1, p. 215)

Equation (1) implies elementarily that

(2) M(s) :=
∑

n≥1

µ(n)

ns
=
∏

p∈P

(
1 − 1

ps

)
=

1

ζ(s)
,

whereµ(n) is the Möbius coefficient defined above.

667
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Finally, if (an), (bn), (cn) have DGFα(s), β(s), γ(s), then one has the equiva-
lence

α(s) = β(s)γ(s) ⇐⇒ an =
∑

d | n

bdcn/d.

In particular, takingcn = 1 (γ(s) = ζ(s)) and solving forβ(s) shows (using (2)) the
implication

an =
∑

d | n

bd ⇐⇒ bn =
∑

d | n

µ(d)an/d,

which is known asMöbius inversion. This relation is used in the enumeration of
irreducible polynomials (Section I. 6.3).

2. Asymptotic Notations. Let S be a set ands0 ∈ S a particular element ofS. We
assume a notion of neighbourhood to exist onS. Examples areS = Z>0∪{+∞} with
s0 = +∞, S = R with s0 any point inR, andS = C or a subset ofC with s0 = 0,
and so on. Two functionsφ andg from S \ {s0} to C are given.

— O–notation: write
φ(s) =

s→s0

O(g(s))

if the ratioφ(s)/g(s) stays bounded ass → s0 in S. In other words, there
exists a neighbourhoodV of s0 and a constantC > 0 such that

|φ(s)| ≤ C |g(s)| , s ∈ V , s 6= s0.

One also says that“ φ is of order at mostg, or φ is big–Oh ofg (ass tends
to s0)” .

— ∼–notation: write
φ(s) ∼

s→s0

g(s)

if the ratioφ(s)/g(s) tends to 1 ass→ s0 in S. One also says that “φ andg
are asymptotically equivalent (ass tends tos0)”.

— o–notation: write
φ(s) =

s→s0

o(g(s))

if the ratioφ(s)/g(s) tends to 0 ass → s0 in S. In other words, for any
(arbitrarily small)ε > 0, there exists a neighbourhoodVε of s0 (depending
onε), such that

|φ(s)| ≤ ε |g(s)| , s ∈ Vε, s 6= s0.

One also says that“ φ is of order smaller thang, or φ is little–oh ofg (ass
tends tos0)” .

These notations are due to Bachmann and Landau towards the end of the nineteenth
century. See Knuth’s note for a historical discussion [309, Ch. 4].

Related notations, of which however we only make scanty use,are

— Ω-notation: write
φ(s) =

s→s0

Ω(g(s))

if the ratioφ(s)/g(s) stays bounded from below in modulus by a nonzero
quantity, ass→ s0 in S. One then says thatφ is of order at leastg.
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— Θ-notation: write
φ(s) =

s→s0

Θ(g(s))

if φ(s) = O(s) andφ(s) = Ω(s). One then says thatφ is of order exactlyg.

For instance, one has asn→ +∞ in Z>0:

sinn = o(logn); logn = O(
√
n); logn = o(

√
n);(

n
2

)
= Ω(n

√
n); πn+

√
n = Θ(n).

As x→ 1 in R≤1, one has
√

1 − x = o(1); ex = O(sinx); log x = Θ(x− 1).

We take as granted in this book the elementary asymptotic calculus with such no-
tations (see, e.g., [434, Ch. 4] for a smooth introduction close to the needs of analytic
combinatorics and de Bruijn’s classic [111] for a beautiful presentation.). We shall
retain here in particular the fact that Taylor expansions imply asymptotic expansions;
for instance, the convergent expansions valid for|u| < 1,

log(1+u) =

∞∑

k=1

(−1)k

k
uk, exp(u) =

∑

k≥0

1

k!
uk, (1−u)−α =

∑

k≥0

(
k + α− 1

k

)
uk,

imply (asu→ 0)

log(1+u) = u+O(u2), exp(u) = 1+u+
u2

2
+O(u3), (1−u)1/2 = 1− u

2
+O(u2),

and, in turn, (asn→ +∞)

log

(
1 +

1

n

)
=

1

n
+O

(
1

n2

)
,

(
1 − 1

logn

)1/2

= 1 − 1

2 logn
+ o

(
1

logn

)
.

Two important asymptotic expansions are Stirling’s formula for factorials and the
harmonic number approximation, valid forn ≥ 1,

(3)
n! = nne−n

√
2πn (1 + ǫn) , 0 < ǫn <

1
12n

Hn = logn+ γ +
1

2n
− 1

12n2
+ ηn ηn = O

(
n−4

)
, γ

.
= 0.57721,

that are best established as consequences of the Euler–Maclaurin summation formula
(see [111, 434] as well as APPENDIX B: Mellin transform, p. 707).

Asymptotic scales.An important notion due to Henri Poincaré is that of anas-
ymptotic scale. A sequence of functionsω0, ω1, . . . is said to constitute an asymptotic
scale if all functionsωj exist in a common neighbourhood ofs0 ∈ S and if they satisfy
there, for allj ≥ 0:

ωj+1(s) = o(ωj(s)), i.e., lim
s→s0

ωj+1(s)

ωj(s)
= 0.

Examples at0 are the scales:uj(x) = xj ; v2j(x) = xj log x andv2j+1(x) = xj ;
wj(x) = xj/2. Examples at infinity aretj(n) = n−j, and so on. Given a scale
Φ = (ωj(s))j≥0, a functionf is said to admit anasymptotic expansionin the scaleΦ
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if there exists a family of complex coefficients(λj) (the family is then necessarily
unique) such that, for each integerm:

(4) f(s) =

m∑

j=0

λjωj(s) +O(ωm+1(s)) (s→ s0).

In this case, one writes

(5) f(s) ∼
∞∑

j=0

λjωj(s), (s→ s0)

with an extension of the symbol ‘∼’. (Some authors prefer the notation ‘≈”.) The
scale may be finite and in most cases, we do not need to specify it as it clear from
context. For instance, one can write

Hn ∼ logn+ γ +
1

12n
, tanx ∼ x+

1

3
x3 +

2

15
x5.

In the first case, it is understood thatn → ∞ and the scale islogn, 1, n−1, n−2, . . . .
In the second case,x → 0 and the scale isx, x3, x5, . . . . Note that in the case of an
infinite expansion, convergence of the infinite sum is not implied in (5): the relation is
to be interpreted literaly in the sense of (4) as a collectionof more and more precise
descriptions off ass becomes closer and closer tos0.

� I.1. Simplification rules for the asymptotic calculus.Some of them are

O(λf) −→ O(f) (λ 6= 0)
O(f) ±O(g) −→ O(|f | + |g|)

−→ O(f) if g = O(f)
O(f · g) −→ O(f)O(g).

Similar rules apply foro(·). �

� I.2. Harmonics of harmonics.The harmonic numbers are readily extended to non-integral
index by (cf also theψ function p. 692)

Hx :=

∞X

k=1

„
1

k
− 1

k + x

«
.

For instance,H1/2 = 2− 2 log 2. This extension is related to the Gamma function [492], and it
can be proved that the asymptotic estimate (3), withx replacingn, remains valid asx→ +∞.
A typical asymptotic calculation shows that

HHn = log log n+ γ +
γ + 1

2

log n
+O

„
1

log2 n

«
.

What is the shape of an asymptotic expansion ofHHHn
? �
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� I.3. Stackings of dominos. A stock of dominos of length 1cm is given. It is well known that
one can stack up dominos in a harmonic mode:

1/21/31/4

Estimate within 1% the minimal number of dominos needed to achieve a horizontal span of
1m (=100cm). [Hint: about 1.509261043 dominos!] Set up a scheme to evaluate this integer
exactly, and do it! �

� I.4. High precision fraud.Why is it that, to forty decimal places, one finds

4

500,000X

k=1

(−1)k−1

2k − 1

.
= 3.141590653589793240462643383269502884197

π
.
= 3.141592653589793238462643383279502884197,

with only four “wrong” digits in the first sum? (Hint: consider the simpler problem
1

9801

.
= 0.00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 · · · .)

Many fascinating facts of this kind are found in works by Jon and Peter Borwein [63, 64]. �

Uniform asymptotic expansions.The notions previously introduced admit of
uniform versions in the case of families dependent on a secondary parameter [111,
pp. 7–9]. Let{fu(s)}u∈U be a family of functions indexed byU . An asymptotic
equivalence like

fu(s) = O (g(s)) (s→ s0),

is said to beuniform with respect tou if there exists an absolute constantK (indepen-
dent ofu ∈ U ) and a fixed neighbourhoodV of s0 such that

∀u ∈ U, ∀s ∈ V : |fu(s)| ≤ K|g(s)|.
This definition in turn gives rise to the notion of a uniform asymptotic expansion: it
suffices that, for eachm, theO error term in (4) be uniform in the sense above. Such
notions are central for the determination of limit laws in Chapter IX, where a uniform
expansion of a class of generating functions near a singularity is usually required.
� I.5. Examples of uniform asymptotics.One hasuniformly, for u ∈ R andu ∈ [0, 1] respec-
tively:

sin(ux) =
x→∞

O(1),

„
1 +

1

n

«u

=
n→∞

1 +
u

n
+O

„
1

n2

«
.

However, the second expansion no longer holds uniformly with respect tou whenu ∈ R (take
u = ±n), though it holdspointwise(non-uniformly) for any fixedu ∈ R. What about the

assertion

„
1 +

1

n

«u

=
n→∞

1 +
u

n
+O

„
u2

n2

«
for u ∈ R? �

3. Combinatorial probability . This entry gathers elementary concepts from proba-
bility theory specialized to the discrete case and used in Chapter III. A more elaborate
discussion of probability theory forms the subject of Appendix C.
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Given a finite setS, theuniform probability measureassigns to anyσ ∈ S the
probability mass

P(σ) =
1

card(S)
.

The probability of any set, also known asevent, E ⊆ S, is then measured by

P{E} :=
card(E)

card(S)
=
∑

σ∈E
P(σ)

(“the number of favorable cases over the total number of cases”).
Given a combinatorial classA, we make extensive use of this notion with the

choice ofS = An. This defines a probability model (indexed byn), in which of ele-
ments of the sizen in A are taken with equal likelihood. For this uniform probabilistic
model, we write

Pn and PAn ,

whenever the size and the type of combinatorial structure considered need to be em-
phasized.

Next consider a parameterχ, which is a function fromS to Z≥0. We regard such
a parameter as arandom variable, determined by its probability distribution,

P(χ = k) =
card ({σ | χ(σ) = k})

card(S)
.

The notions above extend gracefully to nonuniform probability models that are deter-
mined by a family of nonnegative numbers(pσ)σ∈S which add up to 1:

P(σ) = pσ, P(E) :=
∑

σ∈E
pσ, P(χ = k) =

∑

χ(σ)=k

pσ.

Moments. An important information on a distribution is provided by itsmoments.
We state here the definitions for an arbitrary discrete random variable supported byZ
and determined by its probability distribution,P(X = k) = pk where the(pk)k∈Z

are nonnegative numbers that add up to 1. Theexpectationof f(X) is defined as the
linear functional

E(f(X)) =
∑

k

P{X = k} · f(k).

In particular, the (power)momentof orderr is defined as the expectation:

E(Xr) =
∑

k

P{X = k} · kr.

Of special importance are the first two moments of the random variableX . The
expectation (also mean or average)E(X) is

E(X) =
∑

k

P{X = k} · k.

The second momentE(X2) gives rise to thevariance,

V(X) = E
(
(X − E(X))2

)
= E(X2) − E(X)2,
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and, in turn, to thestandard deviation

σ(X) =
√

V(X).

The mean deserves its name as first observed by Galileo Galilei (1564–1642): if a large
number of draws are effected and values ofX are observed, then the arithmetical mean
of the observed values will normally be close to the expectation E(X). The standard
deviation measures in a mean quadratic sense the dispersionof values around the
expectationE(X).

� I.6. The weak law of large numbers.Let (Xk) be a sequence of mutually independent
random variables with a common distribution. If the expectation µ = E(Xk) exists, then for
everyǫ:

lim
n→∞

P

„˛̨
˛̨ 1
n

(X1 + · · ·+Xn)− µ
˛̨
˛̨ > ǫ

«
= 0.

(See [161, Ch X] for a proof.) Note that the property does not require finite variance. �

Probability generating function.Theprobability generating function(PGF) of
X is by definition:

p(u) :=
∑

k

P(X = k)uk,

and an alternative expression ispn(u) = E(uX). Moments can be recovered from the
PGF by differentiation at 1, for instance:

E(X) =
d

du
p(u)

∣∣∣∣
u=1

, E(X(X − 1)) =
d2

du2
p(u)

∣∣∣∣
u=1

.

More generally, the quantity,

E(X(X − 1) · · · (X − k + 1)) =
dk

duk
p(u)

∣∣∣∣
u=1

,

is known as thekth factorial moment.

� I.7. Relations between factorial and power moments.LetX be a discrete random variable
with PGFp(u); denote byµr = E(Xr) its rth moment and byφr its factorial moment. One
has

µr = ∂r
t p(e

t)
˛̨
t=0

, φr = ∂r
up(u)|u=1 .

Consequently, with
˘

n
k

¯
and

ˆ
n
k

˜
the Stirling numbers of both kinds (APPENDIX A: Stirling

numbers, p. 680),

φr =
X

j

(−1)r−j

"
r

j

#
µj ; µr =

X

j

(
r

j

)
φj .

(Hint: for φr → µr, expand the Stirling polynomial defined in (12) below; in theconverse
direction, writep(et) = p(1 + (et − 1)).) �
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Markov-Chebyshev inequalities.These are fundamental inequalities that apply
equally well to discrete and to continuous random variables(see Appendix C for the
latter).

Theorem A.1 (Markov-Chebyshev inequalities). Let X be a nonnegativerandom
variable andY anarbitraryreal random variable. One has for an arbitraryt > 0:

P {X ≥ tE(X)} ≤ 1

t
(Markov inequality)

P {|Y − E(Y )| ≥ tσ(Y )} ≤ 1

t2
(Chebyshev inequality).

PROOF. Without loss of generality, one may assume thatx has been scaled in such
a way thatE(X) = 1. Define the functionf(x) whose value is 1 ifx ≥ t, and 0
otherwise. Then

P{X ≥ t} = E(f(X)).

Sincef(x) ≤ x/t, the expectation on the right is less than1/t. Markov’s inequality
follows. Chebyshev’s inequality then results from Markov’s inequality applied toX =
|Y − E(Y )|2. �

Theorem A.1 informs us that the probability of being much larger than the mean
must decay (Markov) and that an upperbound on the decay is measured in units given
by the standard deviation (Chebyshev).

Moment inequalities are discussed for instance in Billingsley’s reference trea-
tise [55, p. 74]. They are of great importance in discrete mathematics where they
have been put to use in order to show theexistenceof surprising configurations. This
field was pioneered by Erdős and is often known as the “probabilistic method” [in
combinatorics]; see the book by Alon and Spencer [9] for many examples. Moment
inequalities can also be used to estimate the probabilitiesof complex events by reduc-
ing the problems to moment estimates for occurrences of simpler configurations—this
is one of the bases of the “first and second moment methods”, again pioneered by
Erdős, which are central in the theory of random graphs [60, 283]. Finally, moment
inequalities serve to design, analyse, and optimize randomized algorithms, a theme
excellently covered in the book by Motwani and Raghavan [370].

4. Cycle construction. The unlabelled cycle construction is introduced in Chapter I
and is classically obtained within the framework of Pólya theory [98, 395, 397]. The
derivation given here is based on an elementary use of symbolic methods that fol-
lows [211]. It relies on bivariate GF’s developed in Chapter III, withz marking size
andu marking the number of components. Consider a classA and the sequence class
S = SEQ≥1(A). A sequenceσ ∈ S is primitive (or aperiodic) if it is not the repetition
of another sequence (e.g.,αββαα is primitive, butαβαβ = (αβ)2 is not). The class
PS of primitive sequences is determined implicitly,

S(z, u) ≡ uA(z)

1 − uA(z)
=
∑

k≥1

PS(zk, uk),
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which expresses that every sequence possesses a “root” thatis primitive. Möbius
inversion then gives

PS(z, u) =
∑

k≥1

µ(k)S(zk, uk) =
∑

k≥1

µ(k)
ukA(zk)

1 − ukA(zk)
.

A cycle is primitive if all of its linear representations areprimitive. There is an
exact one-to-ℓ correspondence between primitiveℓ-cycles and primitiveℓ-sequences.
Thus, the BGFPC(z, u) of primitive cycles is obtained by effecting the transforma-
tion uℓ 7→ 1

ℓu
ℓ onPS(z, u), which means

PC(z, u) =

∫ u

0

P (z, v)
dv

v
,

giving after term-wise integration,

PC(z, u) =
∑

k≥1

µ(k)

k
log

1

1 − ukA(zk)
.

Finally, cycles can be composed from arbitrary repetitionsof primitive cycles
(each cycle has a primitive “root”), which yields forC = CYC(A):

C(z, u) =
∑

k≥1

PC(zk, uk).

The arithmetical identity
∑

d | k µ(d)/d = ϕ(k)/k gives eventually

(6) C(z, u) =
∑

k≥1

ϕ(k)

k
log

1

1 − ukA(zk)
.

Formula (6) specializes to the one that appears in the translation of the cycle
construction in the unlabelled case (Theorem I.1), upon setting u = 1; this formula
also coincides the statement of Proposition III.5 regarding the number of components
in cycles, and it yields the general multivariate version (Theorem III.1) by a simple
adaptation of the argument.
� I.8. Around the cycle construction.Similar methods yield the BGFs of multisets of cycles
and multisets of aperiodic cycles as

Y

k≥1

1

1− ukA(zk)
and

1

1− uA(z)
,

respectively [112]. (The latter fact corresponds to the property that any wordcan be written
as a decreasing product of Lyndon words. Notably, it serves to construct bases of free Lie
algebras [337, Ch. 5].) �

� I.9. Aperiodic words.An aperiodic word is a primitive sequence of letters. The number of
aperiodic words of lengthn over anm-ary alphabet corresponds to primitive sequences with
A(z) = mz and is

PW (m)
n =

X

d | n

µ(d)mn/d.

Form = 2, the sequence starts as2, 2, 6, 12, 30, 54, 126, 240, 504, 990 (EISA027375). �
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5. Formal power series. Formal power series extend the usual operations on polyno-
mials to infinite series of the form

(7) f =
∑

n≥0

fnz
n,

wherez is a formal indeterminate. The notationf(z) is also employed. LetK be a
ring of coefficients (usually we shall take one of the fieldsQ,R,C); the ring of formal
power series is denoted byK[[z]] and it is the setKN (of infinite sequences of elements
of K) written as infinite power series (7) and endowed with the operations of sum and
product,

(
∑

n

fnz
n

)
+

(
∑

n

gnz
n

)
:=

∑

n

(fn + gn) zn

(
∑

n

fnz
n

)
×
(
∑

n

gnz
n

)
:=

∑

n

(
n∑

k=0

fkgn−k

)
zn.

A topology, known as theformal topology, is put onK[[z]] by which two se-
riesf, g are “close” if they coincide to a large number terms. First, the valuation of
a formal power seriesf =

∑
n fnz

n is the smallestr such thatfr 6= 0 and is de-
noted byval(f). (One setsval(0) = +∞.) Given two power seriesf andg, their
distanced(f, g) is then defined as2− val(f−g). With this distance (in fact an ultramet-
ric distance), the space of all formal power series becomes acomplete metric space.
Roughly, the limit of a sequence of series{f (j)} exists if, for eachn, the coefficient
of ordern in f (j) eventually stabilizes to a fixed value asj → ∞. In this wayformal
convergencecan be defined for infinite sums: it suffices that the general term of the
sum should tend to 0 in the formal topology,i.e., the valuation of the general term
should tend to∞. Similarly for infinite products, where

∏
(1 + u(j)) converges as

soon asu(j) tends to 0 in the topology of formal power series.
It is then a simple exercise to prove that the sumQ(f) :=

∑
k≥0 f

k exists (the
sum convergerges in the formal topology) wheneverf0 = 0; the quantity then de-
fines thequasi-inversewritten (1 − f)−1, with the implied properties with respect to
multiplication (namely,Q(f)(1 − f) = 1). In the same way one defines formally
logarithms and exponentials, primitives and derivatives,etc. Also, the composition
f ◦ g is defined wheneverg0 = 0 by substitution of formal power series. More gen-
erally, any (possibly infinitary) process on series that involves at each coefficient only
finitely many operations is well-defined and is accordingly acontinuous functional in
the formal topology.
� I.10. The OGF of permutations.The ordinary generating function of permutations,

P (z) :=
∞X

n=0

n!zn = 1 + z + 2z2 + 6z3 + 24z4 + 120z5 + 720z6 + 5040z7 + · · ·

exists as an element ofC[[z]], although the series has radius of convergence 0. The quantity
1/P (z) is for instance well-defined (via the quasi-inverse) and onecan compute legitimately
and effectively1−1/P (z) whose coefficients enumerate indecomposable permutations(p. 82).
The formal seriesP (z) can even be made sense of analytically as an asymptotic series (Euler),
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since Z ∞

0

e−t

1 + tz
dt ∼ 1− z + 2!z2 − 3!z3 + 4!z4 − · · · (z → 0+).

Thus, the OGF of permutations is also representable as the (formal, divergent) asymptotic series
associated to an integral. �

It can be proved that the usual functional properties of analysis extend to formal
power series provided they make sense formally. The extension to multivariate formal
power series follows along entirely similar lines.

6. Lagrange Inversion. Lagrange inversion (Lagrange, 1770) relates the coefficients
of the inverse of a function to coefficients of the powers of the function itself. It
thus establishes a fundamental correspondence between functional composition and
standard multiplication of series. Although the proof is technically simple, the result
is altogether non-elementary.

The inversion problemz = h(y) is solved by the Lagrange series given below. It
is assumed that[y0]h(z) = 0, so that inversion is formally well defined and analyt-
ically local, and[y1]h(y) 6= 0. The problem is is then conveniently standardized by
settingh(y) = y/φ(y).

Theorem A.2. Let φ(u) =
∑

k≥0 φku
k be a power series ofC[[z]] with φ0 6= 0.

Then, the equationy = zφ(y) admits a unique solution inC[[z]] whose coefficients
are given by (Lagrange form)

(8) y(z) =

∞∑

n=1

ynz
n, where yn =

1

n
[un−1]φ(u)n.

Furthermore, one has fork > 0 (Bürmann form)

(9) y(z)k =

∞∑

n=1

y(k)
n zn, where y(k)

n =
k

n
[un−k]φ(u)n.

By linearity, a form equivalent to Burmann’s (9), withH an arbitrary function, is

[zn]H(y(z)) =
1

n
[un−1] (H ′(u)φ(u)n) .

PROOF. The method of indeterminates coefficients provides a system of polynomial
equations for{yn} that is seen to admit a unique solution:

y1 = φ0, y2 = φ0φ1, y3 = φ0φ
2
1 + φ2

0φ2, . . . .

Sinceyn only depends polynomially on the coefficients ofφ(u) till order n, one may
assume without loss of generality, in order to establish (8)and (9) thatφ is a poly-
nomial. Then, by general properties of analytic functions,y(z) is analytic at 0 (see
Chapter IV and APPENDIX B: Equivalent definitions of analyticity, p. 687 for def-
initions) and it maps conformally a neighborhood of 0 into another neighbourhood
of 0. Accordingly, the quantitynyn = [zn−1]y′(z) can be estimated by Cauchy’s
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coefficient formula:

(10)

nyn =
1

2iπ

∫

0+

y′(z)
dz

zn
(Direct coefficient formula fory′(z))

=
1

2iπ

∫

0+

dy

(y/φ(y))n
(Change of variablez 7→ y)

= [yn−1]φ(y)n (Reverse coefficient formula forφ(y)n).

In the context of complex analysis, this useful result appears as nothing but an avatar
of the change-of-variable formula. The proof of Bürmann’sform is similar. �

There exist instructive (but longer) combinatorial proofsbased on what is known
as the “cyclic lemma” or “conjugacy principle” [407] for Łukasiewicz words. (See
also Note 44 in Chapter I.) Another classical proof due to Henrici relies on properties
of iteration matrices [266, §1.9]; see also Comtet’s book for related formulations [98].

Lagrange inversion serves most notably to develop explicitformulæ for simple
families of trees (Chapters I and II), random mappings (Chapter II), and more gener-
ally for problems involving coefficients of powers of functions.
� I.11. Lagrange–Bürmann inversion for fractional powers.The formula

[zn]

„
y(z)

z

«α

=
α

n+ α
[un]φ(u)n+α

holds for any real or complex exponentα, and hence generalizes Bürmann’s form. One can
similarly expandlog(y(z)/z). �

� I.12. Abel’s identity.By computing in two different ways the coefficient

[zn]e(α+β)y = [zn]eαy · eβy,

wherey = zey is the Cayley tree function, one derivesAbel’s identity

(α+ β)(n+ α+ β)n−1 = αβ

nX

k=0

 
n

k

!
(k + α)k−1(n− k + β)n−k−1.

�

7. Regular languages. A languageis a set of words over some fixed alphabetA. The
structurally simplest (yet nontrivial) languages are theregular languagesthat, as as-
serted on p. 54, can be defined in a variety of equivalent ways (see [3, Ch. 3] or [149]):
by regular expressions, either ambiguous or not, and by finite automata, either deter-
ministic or nondeterministic. Our definitions ofS-regularity (S as in specification)
andA-regularity (A as in automaton) from Chapter I correspond to definability by
unambiguousregular expression anddeterministicautomaton, respectively.

Regular expressions and ambiguity.Here is first the classical definition of a
regular language in formal language theory.

Definition A.1. The categoryRegExp of regular expressionsis defined inductively
by the property that it contains all the letters of the alphabet (a ∈ A) as well as the
empty symbolǫ, and is such that, ifR1, R2 ∈ RegExp, then the formal expressions
R1 ∪R2, R1 ·R2 andR⋆

1 are regular expressions.

Regular expressions are meant to denotelanguages. The languageL(R) asso-
ciated toR is obtained by interpreting ‘∪’ as set-theoretic union, ‘·’ as catenation
product extended to sets and ‘⋆’ as the star operation:L(R⋆) := {ǫ} ∪ L (R) ∪
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(L(R) · L (R)) ∪ · · · . These operations rely on set-theoretic operations and place no
condition on multiplicities (a word may be obtained in several different ways). Ac-
cordingly, the notions of a regular expression and a regularlanguage are useful when
studying structural properties of languages, but they mustbe adapted for enumeration
purposes, where unambiguous specifications are needed.

A wordw ∈ L(R) may be parsable in several ways according toR: theambiguity
coefficient(or multiplicity) of w with respect to the regular expressionR is defined1

as the number of parsings and writtenκ(w) = κR(w).
A regular expressionR is said to beunambiguousif for all w, we haveκR(w) ∈

{0, 1}, ambiguous otherwise. In the unambiguous case, ifL = L(R), thenL is S-
regular in the sense of Chapter I, a specification being obtained by the translation
rules:

(11) ∪ 7→ +, · 7→ ×, ( )⋆ 7→ SEQ,

and the translation mechanism afforded by Proposition I.2 p. 48 applies. (Use of the
general mechanism (11) in the ambiguous case would imply that we enumerate words
with multiplicity (ambiguity) coefficients taken into account.)

A-regularity implies S-regularity. This construction is due to Kleene [294]
whose interest had its origin in the formal expressive powerof nerve nets. Within
the classical framework of the theory of regular languages,it produces from an au-
tomaton (possibly nondeterministic) a regular expression(possibly ambiguous).

For our purposes, let a deterministic automatona be given, with alphabetA, set
of statesQ, with q0 andQ the initial state and the set of final states respectively.
The idea consists in constructing inductively the family oflanguagesL(r)

i,j of words
that connect stateqi to stateqj passing only through statesq0, . . . , qr in betweenqi
andqj . We initialize the data withL(−1)

i,j to be the singleton set{a} if the transition
(qi ◦ a) = qj exists, and the emptyset (∅) otherwise. The fundamental recursion

L(r)
i,j = L(r−1)

i,j + L(r−1)
i,r SEQ(S){L(r−1)

r,r }L(r−1)
r,j ,

incrementally takes into account the possibility of traversing the “new” stateqr. (The
unions are clearly disjoint and the segmentation of words according to passages
through stateqr is unambiguously defined, hence the validity of the sequencecon-
struction.) The languageL accepted bya is then given by the regular specification

L =
∑

qj∈Q

L||Q||
0,j ,

that describes the set of all words leading from the initial stateq0 to any of the final
states while passing freely through any intermediate stateof the automaton.

1 For instance ifR = (a ∪ aa)⋆ andw = aaaa, thenκ(w) = 5 corresponding to the five parsings:
a · a · a · a, a · a · aa, a · aa · a, aa · a · a, aa · aa.
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S-regularity ≡ Unambiguous
RegExp −→ General

RegExp
↑ K ↓ I

A-regularity ≡ Deterministic
FA

RS←− Nondeterministic
FA

FIGURE I.1. Equivalence between various notions of regularity:K is Kleene’s construc-
tion; RS is Rabin-Scott’s reduction;I is the inductive construction of the text.

S-regularity impliesA-regularity. An object described by a regular specification
r can be first encoded as a word, with separators indicating theway the word should be
parsed unambiguously. These encodings are then describable by a regular expression
using the correspondence of (11). Next any language described by a regular expression
is recognizable by an automaton (possibly nondeterministic) as shown by an inductive
construction. (We only state the principles informally here.) Let →• r •→ represent
symbolically the automaton recognizing the regular expressionr, with the initial state
on the left and the final state(s) on the right. Then, the rulesare schematically

→• r + s •→ = ր
ց
→• r •→
→• s •→

→• r × s •→ = →• r •→→• s •→

→• r⋆ •→ = ↓→• r •→↑ .
Finally, a standard result of the theory, the Rabin-Scott theorem, asserts that any non-
deterministic finite automaton can be emulated by a deterministic one. (Note: this
general reduction produces a deterministic automaton whose set of states is the pow-
erset of the set of states of the original automaton; it may consequently involve an
exponential blow-up in the size of descriptions.)

8. Stirling numbers.. These numbers count amongst the most famous ones of com-
binatorial analysis. They appear in two kinds:

• the Stirling cycle number(also called ‘of the first kind’)
[
n
k

]
enumerates

permutations of sizen havingk cycles;
• theStirling partition number(also called ‘of the second kind’)

{
n
k

}
enumer-

ates partitions of ann-set intok nonempty equivalence classes.

The notations
[
n
k

]
and

{
n
k

}
proposed by Knuth (himself anticipated by Karamata) are

nowadays most widespread; see [248].
The most natural way to define Stirling numbers is in terms of the “vertical” EGFs

when the value ofk is kept fixed:

∑

n≥0

[
n

k

]
zn

n!
=

1

k!

(
log

1

1 − z

)k

∑

n≥0

{
n

k

}
zn

n!
=

1

k!
(ez − 1)

k
.
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From there, the bivariate EGFs follow straightforwardly:

∑

n,k≥0

[
n

k

]
uk z

n

n!
= exp

(
u log

1

1 − z

)
= (1 − z)−u

∑

n,k≥0

{
n

k

}
uk z

n

n!
= exp (u(ez − 1)) .

Stirling numbers and their cognates satisfy a host of algebraic relations. For in-
stance, the differential relations of the EGFs imply recurrences reminiscent of the
binomial recurrence

[
n

k

]
=

[
n− 1

k − 1

]
+ (n− 1)

[
n− 1

k

]
,

{
n

k

}
=

{
n− 1

k − 1

}
+ k

{
n− 1

k

}
.

By expanding the powers in the vertical EGF of the Stirling partition numbers or by
techniques akin to Lagrange inversion, one finds explicit forms
[
n

k

]
=

∑

0≤j≤h≤n−k

(−1)j+h

(
h

j

)(
n− 1 + h

n− k + h

)(
2n− k

n− k − h

)
(h− j)n−k+h

h!
{
n

k

}
=

1

k!

r∑

j=0

(
k

j

)
(−1)j(k − j)n.

Though comforting, these forms are not too useful in general. (The one relative to
Stirling cycle numbers was obtained by Schlömilch in 1852 [98, p. 216].)

A more important relation is that of the generating polynomials of the
[
n
r

]
for

fixedn,

(12) Pn(u) ≡
n∑

r=0

[
n

r

]
ur = u · (u + 1) · (u + 2) · · · (u+ n− 1).

This nicely parallels the OGF for the
{

n
r

}
for fixedr

∞∑

n=0

{
n

r

}
zn =

zr

(1 − z)(1 − 2z) · · · (1 − kz)
.

� I.13. Schlömilch’s formula.It is established starting from

k!

n!

"
n

k

#
=

1

2iπ

I
logk 1

1− z
dz

zn+1
,

via the change of variablea la Lagrange:z = 1− e−t. See [98, p.216] and [202]. �

9. Tree concepts. In the abstract graph-theoretic sense, aforest is an acyclic (undi-
rected) graph and atree is a forest that consists of just one connected component. A
rooted treeis a tree in which a specific node is distinguished, theroot. Rooted trees
are drawn with the root either below (the mathematician’s and botanists’s convention)
or on top (the genealogist’s and computer scientist’s convention), and in this book, we
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employ both conventions indifferently. Here are then two planar representations of the
same rooted tree

(13)

a∗

b

c d

e f

g h i

j k

l

a∗

b

d

j e k

l

f

i g h

c

where the star distinguishes the root. (Tags on nodes,a, b, c, etc, are not part of the tree
structure but only meant to discriminate nodes here.) A treewhose nodes are labelled
by distinct integers then becomes alabelled tree, this in the precise technical sense of
Chapter II. Size is defined by the number of nodes (vertices).Here is for instance a
labelled tree of size 9:

(14)

5

9

6 4

3

8 1

7

2

In a rooted tree, theoutdegreeof a node is the number of its descendants; with the
sole exception of the root, outdeegree is thus equal to degree (in the graph-theoretic
sense, i.e., the number of neighbours) minus 1. Once this convention is clear, one
usually abbreviates “outdegree” by “degree” when speakingof rooted trees. Aleaf is
a node without descendant, that is, a node of (out)degree equal to 0. For instance the
tree in (14) has 5 leaves. Non-leaf nodes are also called internal nodes.

Many applications from genealogy to computer science require superimposing
an additional structure on a graph-theoretic tree. Aplane tree(sometimes also called
a planar tree) is defined as a tree in which subtrees dangling from a common node
are ordered between themselves and represented from left toright in order. Thus, the
two representations in (13) are equivalent as graph-theoretic trees, but they become
distinct objects when regarded as plane trees.

Binary trees play a special role in combinatorics. These arerooted trees in which
every nonleaf node has degree 2 exactly as, for instance, in the first two drawings
below:
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In the second case, the leaves have been distinguished by ‘2’. The pruned binary tree
(third representation) is obtained from a regular binary tree by removing the leaves. A
binary tree can be fully reconstructed from its pruned version, and a tree of size2n+1
always expands a pruned tree of sizen.

A few major classes are encountered throughout this book. Here is a summary2.

General plane trees (Catalan trees) G = Z × SEQ{G} (unlabelled)
Binary trees A = Z + (Z ×A×A) (unlabelled)
Nonempty pruned binary trees B = Z + 2(Z × B) + (Z × B × B) (unlabelled)
Pruned binary trees C = 1 + (Z × B × B) (unlabelled)
General nonplane trees (Cayley trees) T = Z × SET{T } (labelled)

The corresponding GFs are respectively

G(z) =
1 −

√
1 − 4z

2
, A(z) =

1 −
√

1 − 4z2

2z
, B(z) =

1 − 2z −
√

1 − 4z

2z
,

C(z) =
1 −

√
1 − 4z

2z
, T (z) = zeT (z),

being respectively of type OGF for the first four and EGF for the last one. The corre-
sponding counts are

Gn =
1

n

(
2n− 2

n− 1

)
, A2ν+1 =

1

ν + 1

(
2ν

ν

)
, Bn =

1

n+ 1

(
2n

n

)
(n ≥ 1),

Cn =
1

n+ 1

(
2n

n

)
, Tn = nn−1.

The common occurrence of the Catalan numbers, (Cn = Bn = A2n+1 = Gn+1) is
explained by pruning and by the rotation correspondence described on p. 69.

2 The term “general” refers to the fact that no degree constraint is imposed.





APPENDIX B

Basic Complex Analysis

This appendix contains entries arranged in alphabetical order regarding the following topics:

Algebraic elimination; Equivalent definitions of analyticity; Gamma function; Holo-
nomic functions; Implicit Function Theorem; Laplace’s method; Mellin transform;
Several complex variables.

The corresponding notions and results are used in particular starting with Part B, which is
relative toComplex Asymptotics.

1. Algebraic elimination. Auxiliary quantities can be eliminated from systems of
polynomial equations. In essence, elimination is achievedby suitable combinations of
the equations themselves. One of the best strategies is based on Gröbner bases and is
presented in the excellent book of Cox, Little, and O’Shea [104]. This entry develops
a more elementary approach based onresultants.

Resultants.Consider a field of coefficientsK which may be specialized as
Q,C,C(z), . . ., as the need arises. A polynomial of degreed in K[x] has at most
d roots inK and exactlyd roots in the algebraic closurēK of K. Given two polyno-
mials,

P (x) =

ℓ∑

j=0

ajx
ℓ−j , Q(x) =

m∑

k=0

bkx
m−k,

their resultant(with respect to the variablex) is the determinant of order(ℓ+m),

(1) R(P,Q, x) = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 · · · 0 0
0 a0 a1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · aℓ−1 aℓ
b0 b1 b2 · · · 0 0
0 b0 b1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · bm−1 bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

also called the Sylvester determinant. By its definition, the resultant is a polynomial
form in the coefficients ofP andQ. The main property of resultants is the follow-
ing: (i) If P (x), Q(x) ∈ K[x] have a common root in the algebraic closureK̄ of K,
thenR(P (x), Q(x), x) = 0. (ii) Conversely, ifR(P (x), Q(x), x) = 0 holds, then
eithera0 = b0 = 0 or elseP (x), Q(x) have a common root in̄K. [The idea of the
proof of (i) is as follows. LetS be the matrix in (1). Then the homogeneous linear
systemSw = 0 admits a solutionw = (ξℓ+m−1, . . . , ξ2, ξ, 1) whereξ is a common
root ofP andQ; this is only possible ifdet(S) ≡ R vanishes.] See especially van
der Waerden’s crips treatment in [480] and Lang’s treatise [327, V.10] for a detailed
presentation of resultants

685
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Equating the resultant to 0 thus provides anecessarycondition for the existence
of common roots, but not always a sufficient one. This has implications in situations
where the coefficientsaj, bk depend on one or several parameters. In that case, the
conditionR(P,Q, x) = 0 will certainly capture all the situations whereP andQ have
a common root, but it may also include some situations where there is a reduction in
degree, although the polynomials have no common root. For instance, takeP (x) =
tx − 2 andQ(x) = tx2 − 4 (with t a parameter); the resultant with respect tox is
found to be

R = 4t(1 − t).

Indeed, the conditionR = 0 corresponds to either a common root (t = 1 for which
P (2) = Q(2) = 0) or to some degeneracy in degree (t = 0 for whichP (x) = −2 and
Q(x) = −4 have no common zero).

Systems of equations.Given a system

(2) {Pj(z, y1, y2, . . . , ym) = 0}, j = 1 . .m,

defining an algebraic curve, we can then proceed as follows inorder to extract a sin-
gle equation satisfied by one of the indeterminates. By taking resultants withPm,
eliminate all occurrences of the variableym from the firstm − 1 equations, thereby
obtaining a new system ofm − 1 equations inm − 1 variables (withz kept as a pa-
rameter, so that the base field isC(z)). Repeat the process and successively eliminate
ym−1, . . . , y2. The strategy (in the simpler case where variables are eliminated in
succession exactly one at a time) is summarized in the skeletton procedureEliminate:

procedureEliminate (P1, . . . , Pm, y1, y2, . . . ym);
{Elimination ofy2, . . . , ym by resultants}
(A1, . . . , Am) := (P1, . . . , Pm);
for j from m by −1 to 2do
for k from j − 1 by −1 to 1 do

Ak := R(Ak, Aj , yj);
return (A1).

The polynomials obtained need not be minimal, in which case,one should appeal
to multivariate polynomial factorization in order to select the relevant factors at each
stage. (Groebner bases provide a neater alternative to these questions, see [104].)

Computer algebra systems usually provide implementationsof both resultants and
Groebner bases. The complexity of elimination is however exponential in the worst-
case: degrees essentially multiply, which is somewhat intrinsic asy0 in the quadratic
system ofk equations

y0 − z − yk = 0, yk − y2
k−1 = 0, . . . , y1 − y2

0 = 0

(determining the OGF of regular trees of degree2k) represents an algebraic function
of degree2k and no less.
� II.1. Resultant and roots.Let P,Q ∈ C[x] have sets of roots{αj} and{βk} respectively.
Then

R(P,Q,x) = aℓ
0b

m
0

ℓY

i=1

mY

j=1

(αi − βj) = aℓ
0

mY

i=1

Q(αi).
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Thediscriminantof P classically defined byD(P ) := a−1
0 R(P (x), P ′(x), x) satisfies

D(P ) ≡ a−1
0 R(P (x), P ′(x), x) = a2ℓ−2

0

Y

i6=j

(αi − αj).

Given the coefficients ofP and the value ofD(P ), there results an effectively computable
bound on the minimal separation distanceδ between any two roots ofP . [Hint. Let
A = 1 + maxj(|aj/a0|). Then eachαj satisfies|αj | < mA. SetL =

`
ℓ
2

´
. Then

δ ≥ |a0|2−2ℓ|D(P )|(2A)L−1.] �

2. Equivalent definitions of analyticity. Two parallel notions are introduced at the
beginning of Chapter IV: analyticity (defined by power series expansions) and holo-
morphy (defined as complex differentiability). As is known from any textbook on
complex analysis, these notions are equivalent. Given their importance for analytic
combinatorics, this appendix entry sketches a proof of the equivalence, which is sum-
marized by the following diagram:

Analyticity
[A]−→
←−
[C]

C-differentiability
↓ [B]

Null integral Property

A. Analyticity implies complex-differentiability. Let f(z) be analytic in the disc
D(z0;R). We may assume without loss of generality thatz0 = 0 andR = 1 (else
effect a linear transformation on the argumentz). According to the definition of ana-
lyticity, the series representation

(3) f(z) =

∞∑

n=0

fnz
n,

converges for allz with |z| < 1. Elementary series rearrangements first entail that
f(z) given by this representation is analytic at anyz1 interior toD(0; 1). Similar
techniques then show the existence of the derivative as wellas the fact that the deriv-
ative can be obtained by term-wise differentiation of (3).
� II.2. Proof of [A]: Analyticity implies differentiability.First, formally, the binomial theorem
provides

(4)

f(z) =
X

n≥0

fnz
n =

X

n≥0

fn(z1 + z − z1)n

=
X

n≥0

nX

k=0

 
n

k

!
fnz

k
1 (z − z1)n−k

=
X

m≥0

cm(z − z1)m, cm :=
X

k≥0

 
m+ k

k

!
fm+kz

k
1 .

Let r1 be any number smaller than1− |z1|. We observe that (4) makes analytic sense. Indeed,
one has the bound|fn| ≤ CAn, valid for anyA > 1 and someC > 0. Thus, the terms in (4)
are dominated in absolute value by those of the double series

(5)
X

n≥0

nX

k=0

 
n

k

!
CAn|z1|krn−k

1 = C
X

n≥0

An(|z1|+ r1)
n =

C

1−A(|z1|+ r1)
,

which is absolutely convergent as soon asA is chosen such thatA < (|z1|+ r1)
−1.
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Complex differentiability of at anyz1 ∈ D(0; 1) derives from the analogous calculation,
valid for small enoughδ,

(6)

1

δ
(f(z1 + δ)− f(z1))) =

X

n≥0

nfnz
n−1
1 + δ

X

n≥0

nX

k=2

 
n

k

!
fnz

k
1 δ

n−k−2

=
X

n≥0

nfnz
n−1
1 +O(δ),

where boundedness of the coefficient ofδ results from an argument analogous to (5). �

The argument of Note 2 has shown that the derivative off at z1 is obtained by
differentiating termwise the series representingf . More generally derivatives of all
orders exist and can be obtained in a similar fashion. In viewof this fact, the equalities
of (4) can also be interpreted as theTaylor expansion(by grouping terms according to
values ofk first):

(7) f(z1 + δ) = f(z1) + δf ′(z1) +
δ2

2!
f ′′(z1) + · · · ,

which is thus generally valid for analytic functions.

B. Complex differentiability implies the “Null Integral” Property. The Null Inte-
gral Property relative to a domainΩ is the property:

∫

λ

f = 0 for any loopλ ⊂ Ω.

(A loop is a closed path that can be contracted to a single point in the domainΩ, cf
Chapter IV). Its proof results simply from the Cauchy-Riemann equations and from
Green’s formula.
� II.3. Proof of [B]: the Null Integral Property.This starts from theCauchy–Riemann equa-
tions. LetP (x, y) = ℜf(x+ iy) andQ(x, y) = ℑf(x+ iy). By adopting successively in the
definition of complex differentiabilityδ = h andδ = ih, one findsP ′

x + iQ′
x = Q′

y − iP ′
y ,

implying

(8)
∂P

∂x
=
∂Q

∂y
and

∂P

∂y
= −∂Q

∂x
,

known as the Cauchy–Riemann equations. (The functionsP andQ satisfy the partial differ-
ential equations∆f = 0, where∆ is the 2-dimensionalLaplacian∆ := ∂2

∂x2 + ∂2

∂y2 ; such
functions are known asharmonic functions.) The Null Integral Property, given differentiabil-
ity, results from the Cauchy–Riemann equations, upon taking into account Green’s theorem of
multivariate calculus,

Z

∂K

Adx+Bdy =

Z Z

K

„
∂B

∂x
− ∂A

∂y

«
dx dy,

which is valid for any (compact) domainK enclosed by a simple curve∂K. �

C. Complex differentiability implies analyticity.The starting point is the formula

(9) f(a) =
1

2iπ

∫

γ

f(z)

z − a
dz,

knowing only differentiability off and its consequence, the Null Integral Property
(but preciselynot postulating the existence of an analytic expansion). Thereγ is a
simple positive loop encirclinga inside a region wheref is analytic.
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� II.4. Proof of [C]: the integral representation.The proof of (9) is obtained by decomposing
f(z) in the original integral asf(z) = f(z)− f(a) + f(a). Define accordingly

g(z) =


f(z)−f(a)

z−a
for z 6= a

f ′(a) for z = a.

By the differentiability assumption,g is continuous and holomorphic (differentiable) at any
point other thana. Its integral is thus 0 alongγ. On the other hand, we have

Z

γ

1

z − a dz = 2iπ,

by a simple computation: deformγ to a small circle alonga and evaluate the integral directly
by settingz − a = reiθ. �

Once (9) is granted, it suffices to write, e.g., for an expansion at 0,

f(z) =
1

2iπ

∫

γ

f(t)
dt

t− z

=
1

2iπ

∫

γ

f(t)

(
1 +

z

t
+
z2

t2
+ · · ·

)
dt

t

=
∑

n≥0

fnz
n, fn :=

1

2iπ

∫

γ

f(t)
dt

tn+1
.

(Exchanges of integration and summation are justified by normal convergence.) An-
alyticity is thus proved from complex-differentiability and its consequence the Null
Integral Property.
� II.5. Cauchy’s formula for derivatives.One has

f (n)(a) =
n!

2iπ

Z

γ

f(z)

(z − a)n+1
dz.

This follows from (9) by differentiation under the integralsign. �

� II.6. Morera’s Theorem.Suppose thatf is continuous [but nota priori known to be differ-
entiable] in an open setΩ and that its integral along any triangle inΩ is 0. Then,f is analytic
(hence holomorphic) inΩ. [For a proof, see, e.g, [402, p. 68].] �

3. Gamma function. The formulæ of singularity analysis in Chapter IV involve the
Gamma functionin an essential manner. The Gamma function extends to nonintegral
arguments the factorial function and we collect in this appendix a few classical facts
regarding it. Proofs may be found in classic treatises like Henrici’s [265] or Whittaker
and Watson’s [492].

Basic properties.Euler introduced the Gamma function as

(10) Γ(s) =

∫ ∞

0

e−tts−1 dt,

where the integral converges providedℜ(s) > 0. Through integration by parts, one
immediately derives the basic functional equation of the Gamma function,

(11) Γ(s+ 1) = sΓ(s).



690 B. BASIC COMPLEX ANALYSIS
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FIGURE II.1. A plot of Γ(s) for reals.

SinceΓ(1) = 1, one hasΓ(n + 1) = n!, so that the Gamma function serves to
extend the factorial function for nonintegral arguments. For combinatorial purposes,
the special value,

(12) Γ

(
1

2

)
:=

∫ ∞

0

e−t dt√
t

= 2

∫ ∞

0

e−x2

dx =
√
π,

proves to be quite important. It implies in turnΓ(− 1
2 ) = −2

√
π.

From (11), the Gamma function can be analytically continuedto the whole ofC
with the exception of poles at0,−1,−2, . . . . The functional equation used backwards
yields

Γ(s) ∼ (−1)m

m!

1

s+m
(s → −m) ,

so that the residue ofΓ(s) at s = −m is (−1)m/m!. Figure 1 depicts the graph of
Γ(s) for real values ofs.

� II.7. Evaluation of the Gaussian integral. DefineJ :=
R∞
0
e−x2

dx. The idea is to
evaluateJ2:

J2 =

Z ∞

0

Z ∞

0

e−(x2+y2) dxdy.

Going to polar coordinates,(x2 + y2)1/2 = ρ, x = ρ cos θ, y = ρ sin θ yields, via the standard
change of variables formula:

J2 =

Z ∞

0

Z π
2

0

e−ρ2

ρdρdθ.

The equalityJ2 = π/4 results. �

Hankel contour representation.Euler’s integral representation ofΓ(s) used in
conjunction with the functional equation permits us to continueΓ(s) to the whole of
the complex plane. A direct approach due to Hankel provides an alternative integral
representation valid for all values ofs.



B. BASIC COMPLEX ANALYSIS 691

Theorem B.1 (Hankel’s contour integral). Let
∫ (0)

+∞ denote an integral taken along
a contour starting at+∞ in the upper plane, winding counterclockwise around the
origin, and proceeding towards+∞ in the lower half plane. Then, for alls ∈ C,

(13)
1

π
sin(πs)Γ(1 − s) =

1

Γ(s)
= − 1

2iπ

∫ (0)

+∞
(−t)−se−t dt.

In (13),(−t)−s is assumed to have its principal determination whent is negative real,
and this determination is then extended uniquely by continuity throughout the contour.
The integral then closely resembles the definition ofΓ(1 − s). The first form of (13)
can also be rewritten as1Γ(s) , by virtue of the complement formula given below.

� II.8. Proof of Hankel’s representation.We refer to volume 2 of Henrici’s book [265, p. 35]
or Whittaker and Watson’s treatise [492, p. 245] for a detailed proof.

A contour of integration that fulfills the conditions of the theorem is typically the contour
H that is at distance 1 of the positive real axis comprising three parts: a line parallel to the
positive real axis in the upper half–plane; a connecting semi–circle centered at the origin; a line
parallel to the positive real axis in the lower half–plane. More precisely,H = H− ∪H+ ∪H◦,
where

(14)

8
<
:
H− = {z = w − i, w ≥ 0}
H+ = {z = w + i, w ≥ 0}
H◦ = {z = −eiφ, φ ∈ [−π

2
, π

2
]}.

Let ǫ be a small positive real number, and denote byǫ · H the image ofH by the trans-
formationz 7→ ǫz. By analyticity, for the integral representation, we can equally well adopt as
integration path the contourǫ · H, for anyǫ > 0. The main idea is then to letǫ tend to 0.

Assume momentarily thats < 0. (The extension to arbitrarys then follows by analytic
continuation.) The integral alongǫ · H decomposes into three parts:

The integral along the semi–circle is 0 if we take the circle of a vanishing small
radius, since−s > 0.
The contributions from the upper and lower lines give, asǫ→ 0

Z (0)

+∞
(−t)−se−t dt = (−U + L)

Z ∞

0

t−se−t dt

whereU andL denote the determinations of(−1)−s on the half-lines lying in the
upper and lower half planes respectively.

By continuity of determinations,U = (e−iπ)−s andL = (e+iπ)−s. Therefore, the right hand
side of (13) is equal to

− (−eiπs + e−iπs)

2iπ
Γ(1− s) =

sin(πs)

π
Γ(1− s),

which completes the proof of the theorem. �

Expansions.The Gamma function has poles at the nonpositive integers buthas
no zeros. Accordingly,1/Γ(s) is an entire function with zeros at0,−1, . . ., and the
position of the zeros is reflected by the product decomposition,

(15)
1

Γ(s)
= seγs

∞∏

n=1

[
(1 +

s

n
)e−s/n

]

(of the so–called Weierstraß type). Thereγ = 0.57721 denotes Euler’s constant

γ = lim
n→∞

(Hn − logn) ≡
∞∑

n=1

[
1

n
− log(1 +

1

n
)

]
.
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The logarithmic derivative of the Gamma function is classically known as the psi
function and is denoted byψ(s):

ψ(s) :=
d

ds
log Γ(s) =

Γ′(s)

Γ(s)
.

In accordance with (15),ψ(s) admits a partial fraction decomposition

(16) ψ(s+ 1) = −γ −
∞∑

n=1

[
1

n+ s
− 1

n

]
.

From (16), there results that the Taylor expansion ofψ(s + 1), hence ofΓ(s + 1),
involves values of the Riemann zeta function,

ζ(s) =

∞∑

n=1

1

ns
,

at the positive integers: for|s| < 1,

ψ(s+ 1) = −γ +
∞∑

n=2

(−1)nζ(n)sn−1.

so that the coefficients in the expansion ofΓ(s) around any integer are polynomi-
ally expressible in terms of Euler’s constantγ and values of the zeta function at the
integers. For instance, ass→ 0,

Γ(s+ 1) = 1 − γ s+

(
π2

12
+
γ2

2

)
s2 +

(
−ζ(3)

3
− π2γ

12
− γ3

6

)
s3 +O(s4).

Another direct consequence of the infinite product formulæ for Γ(s) andsinπs is
the complement formula for the Gamma function,

(17) Γ(s)Γ(−s) = − π

s sinπs
,

which directly results from the factorization of the sine function (due to Euler),

sin s = s

∞∏

n=1

(
1 − s2

n2π2

)
.

In particular, Equation (17) gives back the special value (cf (12)): Γ(1
2 ) =

√
π.

� II.9. The duplication formula.This is

22s−1Γ(s)Γ(s+
1

2
) = π1/2Γ(2s),

which provides the expansion ofΓ near1/2:

Γ(s+
1

2
) = π1/2 − (γ + 2 log 2)π1/2s+

„
π5/2

4
+

(γ + 2 log 2)2 π1/2

2

«
s2 +O(s3).

The coefficients now involvelog 2 as well as zeta values. �

Finally, a famous and absolutely fundamental asymptotic formula is Stirling’s
approximation, familiarly known as “Stirling’s formula”:

Γ(s+ 1) = sΓ(s) ∼ sse−s
√

2πs

[
1 +

1

12s
+

1

288s2
− 139

51840s3
+ · · ·

]
.
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It is valid for (large) reals > 0, and more generally for alls→ ∞ in |Arg(s)| < π−δ
(anyδ > 0). For the purpose of obtaining effective bounds, the following quantitative
relation [492, p. 253] often proves useful,

Γ(s+ 1) = sse−s(2πs)1/2eθ/(12s), where0 < θ ≡ θ(s) < 1,

an equality that holds now for alls ≥ 1. Stirling’s formula is usually proved by
appealing to the method of Laplace applied to the integral representation forΓ(s +
1), see APPENDIX B: Laplace’s method, p. 700, or by Euler-Maclaurin summation
(Note 10). It is derived by different means in APPENDIX B: Mellin transform, p. 707.
� II.10. Stirling’s formula via Euler-Maclaurin summation.Stirling’s formula can be derived
from Euler–Maclaurin summation applied tolog Γ(s). [See: [248, Sec. 9.6].] �

� II.11. The Eulerian Beta function. It is defined forℜ(p),ℜ(q) > 0 by any of the following
integrals,

B(p, q) :=

Z 1

0

xp−1(1− x)q−1 dx =

Z ∞

0

yp−1

(1 + y)p+q
dy = 2

Z π
2

0

cos2p−1 θ sin2q−1 θ dθ,

where the last form is known as a Wallis integral. It satisfies:

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
.

[See [492, p. 254] for a proof generalizing that of Note 7.] �

4. Holonomic functions. Doron Zeilberger [513] has introduced discrete mathemati-
cians to a powerful framework, theholonomic framework, which takes its roots in
classical differential algebra [58, 102] and has found innumerable applications in the
theory of special functions and symbolic computation [393], combinatorial identi-
ties, and combinatorial enumeration. In these pages, we canonly offer a (too) brief
orientation tour of this wonderful theory. Major contributions in the perspective of
Analytic Combinatoricsare due to Stanley [446], Zeilberger [513], Gessel [234], and
Lipshitz [334, 335]. As we shall see there is a chain of growing generality and power,

rational → algebraic → holonomic.

The associated asymptotic problems are examined in Subsection VII. 9.1, p. 493.
Univariate holonomic functions.Holonomic fuctions1 are solutions of linear

differential equations or systems whose coefficients are rational functions. The uni-
variate theory is elementary.

Definition B.1. A formal power series (or function)f(z) is said to beholonomicif it
satisfies a linear differential equation,

(18) c0(z)
dr

dzr
f(z) + c1(z)

dr−1

dzr−1
f(z) + · · · + cr(z)f(z) = 0,

where the coefficientscj(z) lie in the fieldC(z) of rational functions. Equivalently,
f(z) is holonomic if the vector space overC(z) spanned by the set of all its derivatives
{∂jf(z)}∞j=0 is finite dimensional.

1A synonymous name is∂-finite orD-finite.
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By clearing denominators, we can assume, if needed, the quantitiescj(z) in (18)
to be polynomials. It then follows that the coefficient sequence (fn) of a holo-
nomicf(z) satisfies a recurrence,

(19) ĉs(n)fn+s + ĉs−1(n)fn+s−1 + · · · + ĉ0(n)fn = 0,

for some polynomialŝcj(n), providedn ≥ n0 (somen0). Such a recurrence (19) is
known as aP -recurrence. (The two properties of sequences, to be the coefficients of
a holonomic function and to beP -recursive, are equivalent.)

Functions likeez, log z, cos(z), arcsin(z),
√

1 + z, andLi2(z) :=
∑

n≥1 z
n/n2

are holonomic. Formal power series like
∑
zn/(n!)2 and

∑
n!zn are holonomic.

Sequences like 1
n+1

(
2n
n

)
, 2n/(n2 + 1) are coefficients of holonomic functions and are

P -recursive. However, sequences like
√
n, logn are notP -recursive, a fact that can be

proved by an examination of singularities2 of associated generating functions [182].
For similar reasons,tan z and sec z that have infinitely many singularities arenot
holonomic.

Holonomic functions enjoy a rich set of closure properties.Define the Hadamard
product of two functionsh = f ⊙ g to be the termwise product of series:[zn]h(z) =
([zn]f(z)) · ([zn]g(z)). We have:

Theorem B.2 (Univariate holonomic closure). The class of univariate holonomic
functions is closed under the following operations: sum(+), product(×), Hadamard
product(⊙), differentiation(∂z), indefinite integration(

∫ z
), and algebraic substitu-

tion (z 7→ y(z) for some algebraic functiony(z)).

PROOF. An exercise in vector space manipulations. For instance, let VS(∂⋆f)
be the vector space overC(z) spanned by the{∂j

zf}. If h = f + g (or h =
f · g), then VS(∂⋆h) is finite dimensional since it is included in the direct sum
VS(∂⋆f) ⊕ VS(∂⋆g) (respectively the tensor productVS(∂⋆f) ⊗ VS(∂⋆g)). For
Hadamard products, ifhn = fngn, then a system ofP -recurrences can be obtained
for the quantitiesh(i,j)

n = fn+ign+j from the recurrences satisfied byfn, gn, and
then a singleP -recurrence can be obtained. Closure under algebraic substitution re-
sults from the methods of Note 12. See Stanley’s historic paper [446] and the book
chapter [449, Ch. 6] for details. �

� II.12. Algebraic functions are holonomic.Let y(z) satisfyP (z, y(z)) = 0, with P a poly-
nomial. Any nondegenerate rational fractionQ(z, y(z)) can be expressed as a polynomial
in y(z) with coefficients inC(z). [Proof: letD be the denominator ofQ; the Bezout relation
AP − BD = 1 (in C(x)[y]), obtained by a gcd calculation between polynomials (iny), ex-
presses1/D as a polynomial iny.] Then, all derivatives ofy live in the space spanned over
C(z) by 1, y, . . . , yd−1, with d = degy P (z, y). (The fact that algebraic functions are holo-
nomic was known to Abel, and an algorithm has been described in recent times by Comtet [97].)
The closure under algebraic substitutions(y 7→ y(z)) asserted in Theorem B.2 can be estab-
lished along similar lines. �

Zeilberger observed that holonomic functions with coefficients inQ can be spec-
ified by afinite amount of information. Equality is this subclass is then decidable:

2Singularities of holonomic functions, and more generally of solutions to meromorphic differential
equations are studied in Subection VII. 9.1, p. 493.
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Algorithm Z : Decide whether two holonomic functionsA(z),B(z) are equal
Let Σ, T be holonomic descriptions ofA,B (by equations or systems);
Compute a holonomic differential equationΥ for h := A−B;
(Or simply determine an upperbounde on the order ofΥ.)
Output‘equal’ iff h(0) = h′(0) = · · · = h(e−1)(0) = 0, with e the order ofΥ.

The book titled “A = B” by Petkovšek, Wilf, and Zeilberger [393] abundantly il-
lustrates this method to combinatorial and special function identities. Interest in the
approach is reinforced by the existence of powerful symbolic manipulation systems:
Salvy and Zimmermann [427] have implemented univariate algebraic closure oper-
ations; Chyzak and Salvy [90, 92] have developed algorithms for multivariate holo-
nomicity discussed below.

EXAMPLE II.1. The Euler-Landen identities for dilogarithms.Let as usualLir(z) :=P
n≥1 z

n/n2 represent the polylogarithm function. Around 1760, Landenand Euler discov-
ered the dilogarithmic identity [42, p. 247],

(20) Li2

„
− z

1− z

«
= −1

2
log2(1− z)− Li2(z),

which corresponds to the (easy) identity on coefficients (extract [zn])

(21)
nX

k=1

 
n− 1

k − 1

!
(−1)k

k2
= − 1

n2
−

n−1X

k=1

1

k(n− k) ,

and specializes (atz = 1
2
) to the infinite series evaluation

Li2

„
1

2

«
≡
X

n≥1

1

n22n
=
π2

12
− 1

2
log2 2.

WriteA andB for the left and right sides of (20), respectively. The differential equations for
A,B are built in stages, according to closure properties:
(22)

Li1(z) : (1− z)∂2y − ∂y = 0
Li1(z)

2 : (1− z)2∂3y + 3(1− z)∂2y + ∂y = 0
Li2(z) : z(1− z)∂3y + (2− 3z)∂2y − ∂y = 0
B(z) : z3(36z5 + · · · − 880)(1− z)6∂9y + · · · − 48(225z5 + · · ·+ 1240)∂y = 0
A(z) : z(1− z)2∂3y + (1− z)(2− 5z)∂2y − (3− 4z)∂y = 0

Thus,A−B lives a priori in a vector space of dimension12 = 3 + 9. It thus suffices tocheck
the coincidence of the expansions of both members of (20) till order 12 in order toprove the
identityA = B. (An upper bound on the dimension of the vector space is actually enough.)
Equivalently, given the automatic computations of (22), itsuffices toverify the particular cases
of the identity (21) in order to have a completeproof of it. . . . . . . END OF EXAMPLE II.1. �

� II.13. Holonomic functions as solutions of systems.(This is a simple outcome of Note 41,
p. 496.) A holonomic functiony(z) which satisfies a linear differential equation of ordermwith
coefficients inC(z) is also the first component of a first-order differential system of orderm
with rational coefficients:y(z) = Y1(z), where

(23)

8
>>>><
>>>>:

d

dz
Y1(z) = a11(z)Y1 + · · ·+ a1m(z)Ym(z)

...
...

...
d

dz
Ym(z) = am1(z)Y1 + · · ·+ amm(z)Ym(z),
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where eachai,j(z) is a rational function. Conversely, any solution of a system(23) with the
ai,j ∈ C(z) is holonomic. �

� II.14. The Laplace transform.Letf(z) =
P

n≥0 fnz
n be a formal power series. ItsLaplace

transformg = L[f ] is defined as the formal power series:

L[f ](x) =
∞X

n=0

n!fnz
n.

(Thus Laplace transforms convert EGFs into OGFs.) Under suitable convergence conditions,
the Laplace transform is analytically representable by

L[f ](x) =

Z ∞

0

f(xz)e−z dz.

The following property holds:A series is holonomic if and only if its Laplace transform is
holomic.[Hint: useP -recurrences (19).] �

� II.15. Hypergeometric functions.Let (a)n represent the falling factoriala(a − 1) · · · (a −
n+ 1). The function of one variable,z, and three parameters,a, b, c, defined by

(24) F [a, b; c; z] = 1 +
∞X

n=1

(a)n(bn)

(c)n

zn

n!
,

is known as ahypergeometric function. It satisfies the differential equation

(25) z(1− z)d
2y

dz2
+ (c− (a+ b+ 1)z)

dy

dz
− aby = 0,

and is consequently a holonomic function. An accessible introduction appears in [492, Ch XIV].
The generalized hypergeometric function (or series) depends on p + q parameters

a1, . . . , ap andc1, . . . , cq , and is defined by

(26) pFq [a1, . . . , ap; c1, . . . , cq ; z] = 1 +

∞X

n=1

(a1)n · · · (ap)n

(c1)n · · · (cq)n

zn

n!
,

so thatF in (24) is a2F1. Hypergeometric functions satisfy a rich set of identities[153, 438],
many of which can be verified (though not discovered) by AlgorithmZ. �

Multivariate holonomic functions. Let z = (z1, . . . , zm) be a collection of
variables andC(z) the field of all rational fractions in the variablesz. For n =
(n1, . . . , nm) a vector of integers, we definezn to bezn1

1 · · · znm
m and let∂n repre-

sent∂z
n1
1

· · · ∂znm
m

.

Definition B.2. A multivariate formal power series (or function)f(z) is said to be
holonomicif the vector space overC(z) spanned by the set of all derivatives{∂nf(z)}
is finite dimensional.

Since the partial derivatives∂j
z1
f are bound, a multivariate holonomic function

satisfies a differential equation of the form

c10(z)
∂r1

∂zr1
1

f(z) + · · · + c1r1(z)f(z) = 0,

and similarly forz2, . . . , zm. (Any system of equations with possibly mixed partial
derivatives that allows one to determine all partial derivatives in terms of a finite num-
ber of them serves to define a multivariate holonomic function.) Denominators can be
cleared, upon multiplication by the l.c.m of all the denominators that figure in the sys-
tem of defining equations. There results that coefficients ofmultivariate holonomic
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functions satisfy particular systems of recurrence equations with polynomial coeffi-
cients, which are characterized in [335].

Givenf(z) viewed as a function ofz1, z2 (with the remaining variables treated
as parameters) and abbreviated asf(z1, z2), we define thediagonalwith respect to
variablesz1, z2 as

Diagz1,z2
[f(z1, z2)] =

∑

ν

fν,νz
ν
1 , where f(z1, z2) =

∑

n1,n2

fn1,n2z
n1
1 zn2

2 .

The Hadamard product is defined like in the univariate case, with respect to a specific
variable (e.g.,z1).

Theorem B.3(Multivariate holonomic closure). The class of multiivariate holonomic
functions is closed under the following operations: sum(+), product(×), Hadamard
product(⊙), differentiation(∂), indefinite integration(

∫
), algebraic substitution, spe-

cialization (setting some variable to a constant), and diagonal.

An elementary proof of this remarkable theorem (in the sensethat it does not
appeal to higher concepts of differential algebra) is givenby Lipshitz in [334, 335].
The closure theorem and its companion algorithms [90, 463] make it possible to prove,
or verify, automatically identities, many of which are nontrivial. For instance, in his
proof of the irrationality of the numberζ(3) =

∑
n≥1 1/n3, Apéry introduced the

combinatorial sequence,

(27) An =

n∑

k=0

(
n

k

)2(
n+ k

k

)2

,

for which a proof was needed [478] of the fact that it satisfies the recurrence

(28) (n+ 1)3Bn + (n+ 2)3Bn+2 − (2n+ 3)(17n2 + 51n+ 39)Bn+1 = 0,

with B1 = 5, B2 = 73. Obviously, the generating functionB(z) of the sequence
(Bn) as defined by theP -recurrence (28) is univariate holonomic. Repeated use of
the multivariate closure theorem shows that the ordinary generating functionA(z) of
the sequenceAn of (28) is holonomic. (Indeed, start from the explicit

X

n1,n2

 
n1

n2

!
zn1
1 zn2

2 =
1

1− z1(1 + z2)
,

X

n1,n2

 
n1 + n2

n2

!
zn1
1 zn2

2 =
1

1− z1 − z2 ,

and apply suitable Hadamard products and diagonal operations.) This gives an ordi-
nary differential equation satisfied byA(z). The proof is then completed by checking
thatAn andBn coincide for enough initial values ofn.

Holonomic functions in infinitely many variables.Let f be a power series in
infinitely many variablesx1, x2, . . .. Let S ⊂ Z≥1 be a subset of indices. We write
fS for the specialization off in which all the variables whose indices do not belong
to S are set to 0. Following Gessel [234], we say that the seriesf in infinitely many
variables is holonomic if, for each finiteS, the specializationfS is holonomic (in the
variablesxs for s ∈ S). Gessel has developed a powerful calculus in the case of
seriesf that aresymmetric functions, with stunning consequences for combinatorial
enumeration.
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An undirected graph is calledk-regular if every vertex has exact degreek. A
standard Young tableauis the Ferrers diagram of an integer partition, filled with con-
secutive integers in a way that is increasing along rows and columns. The classical
Robinson-Schensted-Knuth correspondence establishes a bijection between permuta-
tions of sizen and pairs of Young tableaus of sizen having the same shape. The
common height of the tableaus in the pair associated to a permutationσ coincides
with the length of the longest increasing subsequence ofσ. A k × n Latin rectangle
is ak × n matrix with elements in the set{1, 2, . . . , n} such that entries in each row
and column are distinct. (It is thus ak-tuple of “discordant” permutations.)

Gessel’s calculus [233, 234] provides a unified approach to establishing the holo-
nomic character of many generating functions associated with combinatorial struc-
tures like: Young tableaus, permutations of uniform multisets, increasing subse-
quences in permutations, Latin rectangles, regular graphs, marices with fixed row and
matrix sum, and so on. For instance:the generating functions of Latin rectangles and
Young tableaux of height at mostk, of k-regular graphs, and of permutations whose
longest increasing subsequence is of lengthk are holonomicfunctions.In particular,
the numberYn,k of permutations of sizen with longest increasing subsequence≤ k
satisfies

(29)
∑

n≥0

Yn,k
z2n

(n!)2
= det

[
I|i−j|(2z)

]
1≤i,j≤k

, whereIν(2z) =

∞∑

n=0

x2n+ν

n!(n+ ν)!
,

that is, a corresponding GF is expressible as a determinant of Bessel functions. Other
applications are described in [91, 363].

5. Implicit Function Theorem. In its real variable version, the implicit function
theorem asserts that, for a sufficiently smooth functionF (z, w) of two variables, a
solution to the the equationF (z, w) = 0 exists in the vicinity of a solution point
(z0, w0) (therefore satisfyingF (z0, w0) = 0) provided the partial derivative satisfies
F ′

w(z0, w0) 6= 0. This theorem admits a complex-analytic extension, which is essen-
tial for the analysis of recursive structures.

Without loss of generality, one restricts attention to(z0, w0) = (0, 0). We con-
sider here a functionF (z, w) that is analytic in two complex variables in the sense
that it admits a convergent representation valid in a polydisc,

(30) F (z, w) =
∑

m,n≥0

fm,nz
mwn, |z| < R, |w| < S.

for someR,S > 0 (cf APPENDIX B: Several complex variables., p. 712).

Theorem B.4(Analytic Implicit Functions). LetF be bivariate analytic near(0, 0).
Assume thatF (0, 0) ≡ f0,0 = 0 andF ′

w(0, 0) ≡ f0,1 6= 0. Then, there exists a unique
functionf(z) analytic in a neighbourhood|z| < ρ of 0 such thatf(0) = 0 and

F (z, f(z)) = 0, |z| < ρ.

� II.16. Proofs of the Implicit Function Theorem.See Hille’s book [269] for details.
(i) Proof by residues. Make use of the principle of the argument and Rouché’s Theorem

to see that the equationF (z,w) has a unique solution near 0 for|z| small enough. Appeal then
to the related result of Chapter IV (based on the residue theorem) that expresses the sum of the
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solutions to an equation as a contour integral. Here, this expresses the solution as (C a small
enough contour around 0 in thew–plane)

f(z) =
1

2iπ

Z

C

w
F ′

w(z, w)

F (z, w)
dw,

which is checked to represent an analytic function ofz.
(ii) Proof by majorant series. SetG(z, w) := w− f−1

0,1F (z, w). The equationF (z,w) =
0 becomes the fixed-point equationw = G(z, w). The bivariate seriesG has its coefficients
dominated termwise by those of

bG(z, w) =
A

(1− z/R)(1−w/S)
− A− Aw

S
.

The equationw = bG(z, w) is quadratic. It admits a solutionbf(z) analytic at 0,

bf(z) = A
z

R
+
A(A2 + AS + S2)

S2

z2

R2
+ · · · ,

whose coefficients dominate termwise those off .
(iii) Proof by Picard’s method of successive approximants. WithG like before, define the

sequence of functions
φ0(z) := 0; φj+1(z) = G(z, φj(z)),

each analytic in a small neighbourhood of 0. Thenf(z) can be obtained as

f(z) = lim
j→∞

φj(z) ≡ φ0(z)−
∞X

j=0

(φj(z)− φj+1(z)) ,

which is itself checked to be analytic near 0 by the geometricconvergence of the series. �

Weierstrass Preparation.The Weierstrass Preparation Theorem (WPT) also
known asVorbereitungssatzis a useful complement to the Implicit Function Theo-
rem.

Given a collectionZ = (z1, . . . , zm) of variables, we designate as usual byC[[Z]]
the ring of formal power series in indeterminatesZ. We letC{Z} denote the subset
of these that are convergent in a neighbourhood of(0, . . . , 0), i.e., analytic (cf AP-
PENDIX B: Several complex variables., p. 712).

Theorem B.5 (Weierstraß Preparation). Let F = F (z1, . . . , zm) in C[[Z]] (respec-
tively C{Z}) be such thatF (0, . . . , 0) = 0 andF depends on at least one of thezj

with j ≥ 2 (i.e.,f(0, z2, . . . , zm) is not identically 0). Define a Weierstraß polynomial
to be a polynomial of the form

W (z) = zd + g1z
d−1 + · · · + gd,

wheregj ∈ C[[z2, . . . , zm]] (respectivelygj ∈ C{z2, . . . , zm}), with gj(0, . . . , 0) =
0. Then,F admits a unique factorization

F (z1, z2, . . . , zm) = W (z1) ·X(z1, . . . , zm),

whereW (z) is a Weierstraß polynomial andX is an element ofC[[z1, . . . , zm]] (re-
spectivelyC{z1, . . . , zm}) satisfyingX(0, 0 . . . , 0) 6= 0.

PROOF.[Sketch] An accessible proof and a discussion of the formalalgebraic result
are found in Abhyankar’s lecture notes [1, Ch. 16].
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The analytic version of the theorem is the one of use to us in this book. We prove
it in the representative case wherem = 2 and writeF (z, w) for F (z1, z2). First, the
number of roots of the equationF (z, w) = 0 is given by the integral formula

(31)
1

2iπ

∫

γ

F ′
w(z, w)

F (z, w)
dw,

whereγ is a small contour encircling 0 in thew-plane. There exists a sufficiently small
open setΩ containing0 such that the quantity (31), which is an analytic function ofz
while being an integer, is constant, and thus equal to its value atz = 0, which we
call d. The quantityd is the multiplicity of0 as a root of the equationF (0, w) = 0.
In other words, we have shown that ifF (0, w) = 0 hasd roots equal to 0, then there
ared values ofw near 0 (withinγ) such thatF (z, w) = 0, providedz remains small
enough (withinΩ).

Let y1, . . . , yd be thesed roots. Then, we have for the power sum symmetric
functions,

yr
1 + · · · + yd

r =
1

2iπ

∫

γ

F ′
w(z, w)

F (z, w)
wrdw,

which are analytic functions ofz whenz is sufficiently near to0. There results from
relations between symmetric functions (Note III.24, p. 177) that y1, . . . , yr are the
solutions of a polynomial with analytic coefficients,W , which is a uniquely defined
Weierstrass polynomial. The factorization finally resultsfrom the fact thatF/W has
removable singularities. �

In essence, Theorem B.5 implies that functions implicitly defined by a transcen-
dental equation (an equationF = 0) are locally of the same nature as algebraic func-
tions (corresponding to the equationW = 0). In particular, form = 2, when the
solutions have singularities, these singularities can only be branch points and com-
panion Puiseux expansions hold (Chapter VII). The theorem acquires even greater
importance when perturbative singular expansions (corresponding tom ≥ 3) become
required for the purpose of extracting limit laws (Chapter IX).

6. Laplace’s method. The method of Laplace serves to estimate asymptoticallyreal
integrals depending on a large parametern (which may be a positive integer or real
number). Though it is primarily a real analysis technique, we present it in detail in
this appendix given its relevance to the saddle point method, which deals instead with
complexcontour integrals.

Case study: a Wallis integral.In order to demonstrate the essence of the method,
consider first the problem of estimating asymptotically theWallis integral

(32) In :=

∫ π/2

−π/2

(cosx)
n
dx,

asn → +∞. The cosine attains its maximum atx = 0 (where its value is 1), and
since the integrand ofIn is a large power, the contribution to the integral outside any
fixed segment containing 0 is exponentially small and can consequently be discarded
for all asymptotic purposes. A glance at the plot ofcosn x asn varies (Figure 2) also
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suggests that the integrand tends to conform to a bell-shaped profile near the centre as
n increases. This is not hard to verify: setx = w/

√
n, then a local expansion yields

(33) cosn x ≡ exp(n log cos(x)) = exp

(
−w

2

2
+O(n−1w4)

)
,

the approximation being valid as long asw = O(n1/4). Accordingly, we choose
(somewhat arbitrarily)

κn := n1/10,

and define the central range by|w| ≤ κn. These considerations suggest to rewrite the
integralIn as

In =
1√
n

∫ +π
√

n/2

−π
√

n/2

(
cos

w√
n

)n

dw,

and expect under this new form an approximation by a Gaussianintegral arising from
the central range.

Laplace’s method proceeds in three steps:
(i) Neglect the tails of the original integral;

(ii) Centrally approximate the integrand by a Gaussian;
(iii) Complete the tails of the Gaussian integral.

In the case of the cosine integral (32), the chain is summarized in Figure 3. Details of
the analysis follow.

(i) Neglect the tails of the original integral: By (33), we have

cosn

(
κn√
n

)
∼ exp

(
−1

2
n1/5

)
,

and, as the integrand is unimodal, this exponentially smallquantity bounds the inte-
grand throughout|w| > κn, that is, on a large part of the integration interval. This

0
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FIGURE II.2. Plots ofcosn x [left] andcosn(w/
√
n) [right], for n = 1 . .. 20.
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Z π/2

−π/2

cosn x dx =
1√
n

Z π
2

√
n

− π
2

√
n

„
cos

w√
n

«n

dw Setx = w/
√
n; chooseκn = n1/10

∼ 1√
n

Z κn

−κn

„
cos

w√
n

«n

dw [Neglect the tails]

∼ 1√
n

Z κn

−κn

e−w2/2dw [Central approxim.]

∼ 1√
n

Z ∞

−∞
e−w2/2dw [Complete the tails]

∼
r

2π

n
.

FIGURE II.3. A typical application of the Laplace method.

gives

(34) In =
1√
n

∫ +κn/
√

n

−κn/
√

n

cosn xdx+O

(
exp

(
− 1

2
κ2

n

))
,

and the error term is of the order ofexp(− 1
2n

1/5).

(ii) Centrally approximate the integrand by a Gaussian: In the central region, we
have

(35)

I
(1)
n :=

∫ +κn/
√

n

−κn/
√

n

cosn xdx

=
1√
n

∫ +κn

−κn

e−w2/2 exp
(
O(n−1w4)

)
dw

=
1√
n

∫ +κn

−κn

e−w2/2
(
1 +O(n−1w4)

)
dw

=
1√
n

∫ +κn

−κn

e−w2/2 dw +O(n−3/2),

given the uniformity of approximation (33) forw in the integration interval.

(iii) Complete the tails of the Gaussian integral: The incomplete Gaussian inte-
gral in (35) can be easily estimated once it is observed that its tails are small. Precisely,
one has, forW ≥ 0,

∫ ∞

W

e−w2/2 dw ≤ e−W 2/2

∫ ∞

0

e−h2/2 dh ≡
√
π

2
e−W 2/2

(by the change of variablew = W + h). Thus,

(36)
∫ +κn

−κn

e−w2/2 dw =

∫ +∞

−∞
e−w2/2 dw +O

(
exp

(
− 1

2
κ2

n

))
.

It now suffices to collect the three approximations, (34), (35), and (36): we have
obtained in this way.

(37) In =
1√
n

∫ +∞

−∞
e−w2/2 dw +O(n−3/2) ≡

√
2π

n
+ O(n−3/2).
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These three steps are the heart of Laplace’s method.

In the asymptotic scale of the problem, the exponentially small errors in the tails
can be completely neglected. The error in (37) then arises from the central approxi-
mation (33), and its companionO(w4n−1) term. This can easily be improved and it
suffices to appeal to further terms in the expansion oflog cosx near 0. For instance,
one has (x = w/

√
n):

(38) cosn x = e−w2/2

(
1 − w4

12n
+O(n−2w8)

)
.

Proceeding like before, we find that a further term in the expansion ofIn is obtained
by considering the additive correction

ǫn := − 1√
n

∫ +∞

−∞
e−w2/2

(
w4

12n

)
dw ≡ −

√
π

8n3
,

so that

In =

√
2π

n
−
√

π

8n3
+O(n−5/2).

Clearly, a full asymptotic expansion can be obtained in thismanner.
� II.17. Wallis integrals and central binomials.The integralIn is an integral considered by
John Wallis (1616–1703). It can be evaluated through partial integration or by its relation to the
Beta integral (Note 11) asIn = Γ( 1

2
)Γ(n

2
+ 1

2
)/Γ(n

2
+ 1). There results (n 7→ 2n)

 
2n

n

!
∼ 22n

√
πn

„
1− 1

8n
+

1

128n2
+

5

1024n3
− · · ·

«
,

which is yet another avatar of Stirling’s formula. �

General case of large powers.Laplace’s method applies under very general con-
ditions to integrals involving large powers of a fixed function.

Theorem B.6(Laplace’s method). Letf andg be indefinitely differentiable real val-
ued functions defined over some compact intervalI of the real line. Assume that|g(x)|
attains its maximum at a unique pointx0 interior to I and thatf(x0), g(x0), g

′′(x0) 6=
0. Then, the integral

In :=

∫

I

f(x)g(x)n dx

admits a full asymptotic expansion:

(39) In ∼
√

2π

λn
f(x0)g(x0)

n



1 +
∑

j≥1

δj
nj



 , λ := −g
′′(x0)

g(x0)
.

� II.18. Proof of Laplace’s Theorem.It follows exactly the steps explained above. Let us
asume first thatf(x) ≡ 1. Then, one choosesκn as a function tending slowly to infinity like
before (κn = n1/10 is suitable). It suffices to expand

I(1)
n :=

Z x0+κn/
√

n

x0−κn/
√

n

en log g(x) dx,
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as the differenceIn − I(1)
n is exponentially small. Set firstx = x0 +X and

L(X) := log g(x0 +X)− log g(x0) + λ
X2

2
,

so that, withw = X
√
n, the central contribution becomes:

I(1)
n =

g(x0)
n

√
n

Z κn

−κn

e−λw2/2enL(w/
√

n) dw.

Then, it is possible to expandL(X) to any orderM ,

L(X) =

M−1X

j=3

ℓjX
j +O(XM ),

andenL(w/
√

n) admits a full expansion in descending powers of
√
n:

enL(w/
√

n) ∼ 1 +
ℓ3w

3

√
n

+
2ℓ4w

4 + ℓ23w
6

2n
+ · · · .

There, by construction, the coefficient ofn−k/2 is a polynomialEk(w) of degree3k. This
expression can be truncated to any order, resulting in

I(1)
n =

g(x0)
n

√
n

Z κn

−κn

e−λw2/2

 
1 +

M−1X

k=1

Ek(w)

nk/2
+O

„
1 + w3M

nM/2

«!
dw.

One can then complete the tails at the expense of exponentially small terms since the Gaussian
tails are exponentially small.

The full asymptotic expansion is revealed by the following device: for any power series
h(w), introduce the Gaussian transform,

G[f ] :=

Z ∞

0

e−w2/2f(w) dw,

which is understood to operate by linearity on integral powers ofw,

G[w2r] = 1 · 3 · · · (2r − 1)
√

2π, G[w2r+1] = 0.

Then, the complete asymptotic expansion ofIn is obtained by the formal expansion

(40)
g(x0)

n

√
nλ
·G
h
exp

“
λ−3/2w3yeL(λ−1/2wy)

”i
, eL(X) :=

1

X3
L(X), y 7→ 1√

n
.

The addition of the prefactorf(x) (omitted so far) induces a factorf(x0) in the in the main
term of the final result and it affects the coefficients in the smaller order terms in a computable
manner. Details are left as an exercise to the reader. �

� II.19. The next term?One has (withfj := f (j)(x0), etc):

In

√
λn√

2πg(x0)n
= f0 +

−9λ3f0 + 12λ2f2 + 12λf1g3 + 3λf0g4 + 5g2
3f0

24λ3n
+O(n−2),

which is best determined using a symbolic manipulation system. �

The method is susceptible of a large number of extensions. Roughly it requires
a point where the integrand is maximized, which induces somesort of exponential
behaviour, local expansions then allowing for a replacement by standard integrals.
� II.20. Special cases of Laplace’s method.Whenf(x0) = 0, the integral normalizes to an

integral of the form
R
w2e−w2/2. If g′′(x0) = 0 butg(iv)(x0) 6= 0 then a factorΓ( 1

4
) replaces

the characteristic
√
π ≡ Γ( 1

2
). [Hint:

R∞
0

exp(−wβ)wα dw = β−1Γ((α + 1)β−1).] If the
maximum is attained at one end of the intervalI = [a, b] while g′(x0) = 0, g′′(x0) 6= 0, then
the estimate (39) must be multiplied by a factor of1

2
. If the maximum is attained at one end of
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the intervalI while g′(x0) 6= 0, then the right normalization isw = x/n and the integrand is
reducible to an exponentiale−w. Here are some dominant asymptotic terms:

x0 6= a, b g′′(x0) 6= 0, f(x0) = 0
p

π
2λ5n3 g(x0)

n(λf ′′(x0) + f ′(x0)g
′′′(x0))

x0 6= a, b g′′(x0) = 0, g(iv)(x0) 6= 0 Γ( 1
4
) 4

q
3

2λ⋆n
f(x0)g(x0)

n
“
λ⋆ = − g(iv)(x0)

g(x0)

”

x0 = a f(x0) 6= 0, g′(x0) 6= 0 − 1
ng′(x0)

f(x0)g(x0)
n+1 .

A similar analysis is employed in Chapter VIII, when we discuss coalscence cases of the saddle-
point method. �

EXAMPLE II.2. Stirling’s formula via Laplace’s method.Start from an integral representation
involving n!, namely,

In :=

Z ∞

0

e−nxxn dx =
n!

nn+1
.

This is a direct case of application of the theorem, except for the fact that the integration interval
is not compact. The integrand attains its maximum atx0 = 1 and the remainder integral

R∞
2

is
accordingly exponentially small as proved by the chainZ ∞

2

e−nxxn dx = (2e−2)n

Z ∞

0

“
1 +

x

2

”n

e−nx dx [x 7→ x+ 2]

< (2e−2)n

Z ∞

0

enx/2e−nx dx =
2

n
(2e−2)n [log(1 + x/2) < x/2].

Then the integral from 0 to 2 is amenable to the standard version of Laplace’s method as stated
in Theorem B.6 to the effect that

n! = nne−n
√

2πn

„
1 +O

„
1

n

««
.

The asymptotic expansion ofIn derives from (40) and involves the combinatorial GF

(41) H(z, u) := exp

„
u

„
log(1− z)−1 − z − z2

2

««
.

The noticeable fact is thatH(z, u) is the exponential BGF of permutations that are generalized
derangements involving no cycles of length 1 or 2, withz marking size andu marking the
number of cycles:

H(z, u) =
X

n,k≥0

hn,ku
k z

n

n!
= 1+ 1

3
uz3+ 1

4
uz4+ 1

5
uz5+( 1

6
u+ 1

18
u2)z6+( 1

7
u+ 1

12
u2)z7+· · · .

Then, a full asymptotic expansion ofIn is obtained by applying the Gaussian transformG to
H(wy,−y−2) (with y = n−1/2), resulting in

n! ∼ nne−n
√

2πn

„
1 +

1

12n
+

1

288n2
− 139

51840n3
− · · ·

«
.

Proposition B.1 (Stirling’s formula). The factorial function admits the complete asymptotic
expansion asx→ +∞:

x! ≡ Γ(x+ 1) ∼ xxe−x
√

2πx

0
@1 +

X

q≥1

cq
xq

1
A .

The coefficients satisfycq =

2qX

k=1

(−1)k

2q+k(q + k)!
h2q+2k,k, wherehn,k counts the number of

permutations of sizen havingk cycles, all of length≥ 3.

The derivation above is due to Wrench (see [98, p. 267]). . . . . . . . . END OF EXAMPLE II.2. �
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The scope of the method goes much beyond the case of integralsof large pow-
ers. Roughly, what is needed is a localization of the main contribution of an integral
to a smaller range (“Neglect the tails”) where local approximations can be applied
(“Centrally approximate”) . The approximate integral is then finally estimated by
completing back the tails (“Complete the tails”).

The Laplace method is excellently described in books by de Bruijn [111] and
Henrici [265]. A thorough discussion of special cases and multidimensional integrals
is found in the book by Bleistein and Handelsman [59]. Its principles are fundamental
to the development of the saddle point method in Chapter VIII.

� II.21. The classical proof of Stirling’s formula.This proceeds from the integral

Jn :=

Z ∞

0

e−xxn dx ( = n!)

The maximum of the integrand is atx0 = n and the central range is now nown ± κn
√
n.

Reduction to a Gaussian integral follows, though the estimate is no longer an immediate case
of application of Theorem B.6. �

Laplace’s method for sums.The basic principles of the method of Laplace (for
integrals) can are often be recycled for the asymptotic evaluation of discrete sums.
Take a finite or infinite sumSn defined by

Sn :=
∑

k

t(n, k).

A preliminary task consists in working out the general aspect of the family of num-
bers{t(n, k)} for fixed (but large)n ask varies. In particular, one should locate the
valuek0 ≡ k0(n) of k for which t(n, k) is maximal. In a vast number of cases, tails
can be neglected; a central approximationt̂(n, k) of t(n, k) for k in the “central” re-
gion neark0 can be determined, frequently under the form [remember thatwe use in
this book ‘≈’ in the loose sense of ’approximately equal’]

t̂(n, k) ≈ s(n)φ

(
k − k0

σn

)
.

Thereφ is some simple smooth function whiles(n) andσn are scaling constants. The
quantityσn indicates the range of the asymptotically significant terms. One may then
expect

Sn ≈ s(n)
∑

k

φ

(
k − k0

σn

)
.

Then providedσn → ∞, one may further expect to approximate the sum by an inte-
gral, which after completing the tails, gives

Sn ≈ s(n)σn

∫ ∞

−∞
φ(t) dt.
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Case study: Sums of powers of binomial coefficients.Here is, in telegraphic
style, an application to sums of powers of binomial coefficients:

S(r)
n =

+n∑

k=−n

(
2n

n+ k

)r

.

The largest term arises atk0 = 0. Also, one has elementarily
(

2n
n+k

)
(
2n
n

) =

(
1 − 1

n

)
· · ·
(
1 − k−1

n

)
(
1 + 1

n

)
· · ·
(
1 + k

n

) .

Upon taking logarithms, using approximations oflog(1±x), and exponentiating back,
one finds

(42)

(
2n

n+k

)
(
2n
n

) = exp

(
−k

2

n
+O(k3n−2)

)
.

This approximation holds fork = o(n2/3), where it provides a gaussian approxima-
tion (φ(x) = e−rx2

) with a span ofσn =
√
n. Tails can be neglected to the effect

that
1(

2n
n

)rS(r)
n ∼

∑

k

exp

(
−rk

2

n

)
,

say with|k| < n1/2κn whereκn = n1/10. Then approximating the Riemann sum by
an integral and completing the tails, one gets

Sr
n ∼

(
2n

n

)r√
n

∫ ∞

−∞
e−rw2

dw, that is, Sr
n ∼ 22rn

√
r

(πn)−(r−1)/2,

which is our final estimate. l
� II.22. Elementary approximation of Bell numbers.The Bell numbers counting set partitions
are

Bn = n![zn]eez−1 = e−1
∞X

k=0

kn

k!
.

The largest term occurs fork neareu whereu is the positive root of the equationueu = n+ 1;
the central terms are approximately Gaussian. There results the estimate,

(43) Bn = n!e−1(2π)−1/2(1 + u−1)−1/2 exp

„
eu(1− u log u)− 1

2
u

«`
1 +O(e−u)

´
.

This example is taken from de Bruijn’s book [111, p. 108]. �

7. Mellin transform . The Mellin transform of a functionf defined overR>0 is the
complex-variable functionf⋆(s) defined by the integral

(44) f⋆(s) :=

∫ ∞

0

f(x)xs−1 dx.

This transform is also occasionally denoted byM[f ] or M[f(x); s]. Its importance
devolves from two properties:(i) it mapsasymptotic expansions of a function at 0
and+∞ to singularities of the transform;(ii) it factorizesharmonic sums (defined
below). The conjunction of the mapping property and the harmonic sum property
makes it possible to analyse asymptotically rather complicated sums arising from a
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linear superposition of models taken at different scales. Major properties are summa-
rized in Figure 4. In this brief review, detailed analytic conditions must be omitted:
see [184] as well as comments and references at the end of this entry.

It is assumed thatf is locally integrable. Then, the two conditions,

f(x) =
x→0+

O(xu), f(x) =
x→+∞

O(xv),

guarantee thatf∗ exists fors in a strip,

s ∈ 〈−u,−v〉, i.e., −u < ℜ(s) < −v.
Thus existence of the transform is granted providedv < u. The prototypical Mellin
transform is the Gamma function discussed earlier in this appendix:

Γ(s) :=

∫ ∞

0

e−xxs−1 dx = M[e−x; s], 0 < ℜ(s) <∞.

Similarly f(x) = (1 + x)−1 is O(x0) at 0 andO(x−1) at infinity, and hence its
transform exists in the strip〈0, 1〉; it is in fact π/ sinπs, as a consequence of the
Eulerian Beta integral. The Heaviside function defined byH(x) := [[0 ≤ x < 1]]
exists in〈0,+∞〉 and has transform1/s.

Harmonic sum propery.The Mellin transform is a linear transform. In addition,
it satisfies the simple but important rescaling rule:

f(x)
M7→ f⋆(s) implies f(µx)

M7→ µ−sf⋆(s),

for anyµ > 0. Linearity then entails the derived rule

(45)
∑

k

λkf(µkx)
M7→
(
λkµ

−s
k

)
· f⋆(s),

valid a priori for any finite set of pairs(λk, µk) and extending to infinite sums when-
ever the interchange of

∫
and

∑
is permissible. A sum of the form (45) is called

a harmonic sum, the functionf is the “base function”, theλ’s are the “amplitudes”
and theµ’s the “frequencies”. Equation (45) then yields the “harmonic sum rule”:
The Mellin transform of a harmonic sumfactorizesas the product of the transform of
the base function and a generalized Dirichlet series associated to amplitudes and fre-
quencies. Harmonic sums surface recurrently in the context of analytic combinatorics
and Mellin transforms are a method of choice for coping with them.

Here are a few examples of application of the rule (45):
X

k≥1

e−k2x2 7→
ℜ(s)>1

1
2
Γ(s/2)ζ(s)

X

k≥0

e−x2k 7→
ℜ(s)>0

Γ(s)

1− 2−s

X

k≥0

(log k)e−
√

kx 7→
ℜ(s)>2

−ζ′(s/2)Γ(s)
X

k≥1

1

k(k + x)
7→

0<ℜ(s)<1
ζ(2− s) π

sin πs
.

� II.23. Connection between power series and Dirichlet series.Let (fn) be a sequence of
numbers with at most polynomial growth,fn = O(nr), and with OGFf(z). Then, one has

X

n≥1

fn

ns
=

1

Γ(s)

Z ∞

0

f
`
e−x

´
xs−1 dx, ℜ(s) > r + 1.
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Function (f(x)) Mellin transform (f⋆(s))

f(x)

Z ∞

0

f(x)xs−1 dx definition, s ∈ 〈−u,−v〉
1

2iπ

Z c+i∞

c−i∞
f⋆(s)x−s ds f⋆(s) inversion th.,−u < c < −v

X

i

λifi(x)
X

i

λif
⋆
i (s) linearity

f(µx) µ−sf⋆(s) scaling rule (µ > 0)

xρf(xθ)
1

θ
f⋆
“s+ ρ

θ

”
power rule

X

i

λif(µix)

 X

i

λiµ
−s
i

!
· f⋆(s) harmonic sum rule (µi > 0)

Z ∞

0

λ(t)f(tx) dt

Z ∞

0

λ(t)t−s dt · f⋆(s) harmonic integral rule

f(x) logk x ∂k
s f

⋆(s) diff. I, k ∈ Z≥0, ∂s := d
ds

∂k
xf(x)

(−1)kΓ(s)

Γ(s− k) f⋆(s− k) diff. II, k ∈ Z≥0, ∂x := d
dx

∼
x→0

xα(log x)k ∼
s→−α

(−1)kk!

(s+ α)k+1
mapping: x→ 0, left poles

∼
x→+∞

xβ(log x)k ∼
s→−β

(−1)k−1k!

(s+ β)k+1
mapping: x→∞, right poles

FIGURE II.4. A summary of major properties of Mellin transforms.

For instance, one obtains the Mellin pairs

e−x

1− e−x

M7→ ζ(s)Γ(s) (ℜ(s) > 1), log
1

1− e−x

M7→ ζ(s+ 1)Γ(s) (ℜ(s) > 0).

These serve to analyse sums or, conversely, deduce analyticproperties of Dirichlet series. �

Mapping properties.Mellin transfoms map asymptotic terms in the expansions
of a functionf at 0 and+∞ onto singular terms of the transformf⋆. This property
stems from the basic identities

H(x)xα M7→ 1

s+ α
(s ∈ 〈−α,+∞〉), (1−H(x))xβ M7→ 1

s+ β
(s ∈ 〈−∞,−β〉),

as well as what one obtains by differentiation with respect to α, β.
The converse mapping property also holds. Like for other integral transforms,

there is an inversion formula: iff is continuous in an interval containingx, then

(46) f(x) =
1

2iπ

∫ c+i∞

c−i∞
f⋆(s)x−s ds,

where the abscissac should be chosen in the “fundamental strip” off ; for instance
anyc satisfying−u < c < −v with u, v as above is suitable.
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In many cases of practical interest,f⋆ is continuable as a meromorphic function
to the whole ofC. If the continuation off⋆ does not grow too fast along vertical lines,
then one can estimate the inverse Mellin integral of (46) by residues. This corresponds
to shifting the line of integration to somed 6= c and taking poles into account by the
residue theorem. Since the residue at a poles0 of f⋆ involves a factor ofx−s0 , the
contribution ofs0 will give useful information onf(x) asx → ∞ if s0 lies to the
right of c, and onf(x) asx → 0 if s0 lies to the left. Higher order poles introduce
additional logarithmic factors. The “dictionary” is simply

(47)
1

(s− s0)k+1

M−1

−→ ± (−1)k

k!
x−s0 (log x)k,

where the sign is ‘+’ for a pole on the left of the fundamental strip and ‘−’ for a pole
on the right.

Mellin asymptotic summation.The combination of mapping properties and the
harmonic sum property constitutes a powerful tool of asymptotic analysis. As an
example, let us first investigate the pair

F (x) :=
∑

k≥1

1

1 + k2x2
, F ⋆(s) =

1

2

π

sin 1
2πs

ζ(s),

whereF ⋆ results from the harmonic sum rule and is is originally defined in the strip
〈1, 2〉. The function is meromorphically continuable to the whole of C with poles at
the points0, 1, 2 and4, 6, 8, . . .. The transformF ⋆ is small towards infinity, so that
application of the dictionary (47) is justified. One then finds mechanically:

F (x) ∼
x→0+

π

2x
− 1

2
+O(xM ), F (x) ∼

x→+∞
π2

6x2
− π4

90x4
+ · · · ,

for anyM > 0.
A particularly important quantity in analytic combinatorics is the harmonic sum

Φ(x) :=

∞∑

k=0

(
1 − e−x/2k

)
.

It occurs for instance in the analysis of longest runs in words (p. 288). By the harmonic
sum rule, one finds

Φ⋆(s) = − Γ(s)

1 − 2s
, s ∈ 〈−1, 0〉

(The transform ofe−x − 1 is alsoΓ(s), but in the shifted strip〈−1, 0〉.) The singu-
larities ofΦ⋆ are ats = 0, where there is a double pole, ats = −1,−2, . . . which are
simple poles, but also at the complex points

χk =
2ikπ

log 2
.

The Mellin dictionary (47) can still be applied provided oneintegrates along a long
rectangular contour that passes in-between poles. The salient feature is here the pres-
ence of fluctuations induced by the imaginary poles, since

x−χk = exp (−2ikπ log2 x) ,
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and each pole induces a Fourier element. All in all, one finds (anyM > 0):

(48)





Φ(x) ∼
x→+∞

log2 x+
γ

log 2
+

1

2
+ P (x) +O(xM )

P (x) :=
1

log 2

∑

k∈Z\{0}
Γ

(
2ikπ

log 2

)
e−2ikπ log2 x.

The analysis forx→ 0 is also possible: in this particular case, it yields

Φ(x) ∼
x→0

∑

n≥1

(−1)n−1

1 − 2−n

xn

n!
,

which is what would result from expanding the exponential inΦ(x) and reorganiz-
ing the terms, and consequently constitutes an exact representation (i.e., ‘∼’ can be
replaced by ‘=’).
� II.24. Mellin-type derivation of Stirling’s formula.One has the Mellin pair

L(x) =
X

k≥1

log
“
1 +

x

k

”
− x

k
, L⋆(s) =

π

s sin πs
ζ(−s), s ∈ 〈−2,−1〉.

Note thatL(x) = log(e−γx/Γ(1 + x)). Mellin asymptotics provides

L(x) ∼
x→+∞

−x log x− (γ − 1)x− 1

2
log x− log

√
2π − 1

12x
+

1

360x3
− 1

1260x5
+ · · · ,

where one recognizes Stirling’s expansion ofx!,

log x! ∼
x→+∞

log
“
xxe−x

√
2πx

”
+
X

n≥1

B2n

2n(2n − 1)
x1−2n,

with Bn the Bernoulli numbers. �

� II.25. Mellin-type analysis of the harmonic numbers.For a parameterα > 0, one has the
Mellin pair:

Kα(x) =
X

k≥1

„
1

kα
− 1

(k + x)α

«
, K⋆

α(s) = −ζ(α− s)Γ(s)Γ(α− s)
Γ(α)

.

This serves to estimate harmonic numbers and their generalisations, for instance

Hn ∼
n→∞

log n+ γ − 1

2n
−
X

k≥2

Bk

k
n−k ∼ log n+ γ +

1

2n
− 1

12n2
+

1

120n4
− · · · ,

sinceK1(n) = Hn. �

EXAMPLE II.3. Euler-Maclaurin summation via Mellin analysis.Let f be continuous on
(0,+∞) and satisfyf(x) =x→+∞ O(x−1−δ), for someδ > 0, and

f(x) ∼
x→0+

∞X

k=0

fkx
k.

The summatory functionF (x) satisfies

F (x) :=
X

n≥1

f(nx), F ⋆(s) = ζ(s)f⋆(s),
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by the harmonic sum rule. The collection of (trimmed) singular expansions off⋆ at s =
0,−1,−2, . . . is summarized by the formal sum

f⋆(s) ≍
„
f0
s

«

s=0

+

„
f1
s+ 1

«

s=1

+

„
f2
s+ 2

«

s=1

+ · · · .

Thus, by the mapping properties, providedF ⋆(s) is small towards±i∞ in finite strips, one has

F (x) ∼
x→0

1

x

Z ∞

0

f(t) dt+

∞X

j=0

fjζ(−j)xj ,

where the main term is associated to the singularity ofF ⋆ at 1 and arises from the pole ofζ(s),
with f⋆(1) giving the integral off . The interest of this approach is that it is very versatile and
allows for various forms of asymptotic expansions off at 0 as well as multipliers like(−1)k,
log k, and so on; see [184] for details and Gonnet’s note [241] for alternative approaches.
END OF EXAMPLE II.3. �

General references on Mellin transforms are the books by Doetsch [131] and
Widder [493]. The term “harmonic sum” and some of the corresponding technol-
ogy originates with the abstract [204]. This brief presentation is based on the survey
article [184] to which we refer for a detailed treatment. Mellin analysisof “harmonic
integrals” is a classical topic of applied mathematics for which we refer to the books
by Wong [502] and Paris–Kaminski [386]. Useful treatments of properties of use in
discrete mathematics and analysis of algorithms appear in the books by Hofri [270],
Mahmoud [351], and Szpankowski [458].

8. Several complex variables.. The theory of analytic (or holomorphic) functions of
one complex variables extends nontrivially to several complex variables. This pro-
found theory has been largely developed in the course of the twentieth century. Here
we shall only need the most basicconcepts, not the deeper results, of the theory.

Consider the spaceCm endowed with the metric

|z| = |(z1, . . . , zm)| =

m∑

j=1

|zj |2,

under which it is isomorphic to the Euclidean spaceR2m. A functionf from Cm to C

is said to be analytic at some pointa if in a neighbourhood ofa it can be represented
by a convergent power series,
(49)
f(z) ≡ f(z1, · · · , zm) =

∑

n

fn(z−a)n ≡
∑

n1,...,nm

fn1,...,nm(z1−a1)
n1 · · · (zm−am)nm .

There and throughout the theory extensive use is made of multi-index conventions, as
encountered in Chapter III.

An expansion (49) converges in a polydisc
∏

j{|zj −aj | < rj}, for somerj > 0.
A convergent expansion at(0, . . . , 0) has its coefficients majorized in absolute value
by those of a series of the form

m∏

j=1

1

1 − zj/Rj
=
∑

n

R−nzn ≡
∑

n1,...,nm

R−n1
1 · · ·R−nm

m zn1
1 · · · znm

m .
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From there, closure of analytic functions under sums, products, and compositions re-
sult from standard manipulations of majorant series (see Chapter IV for the univariate
case). Finally, a function is analytic in an open setΩ ⊆ Cm iff it is analytic at each
a ∈ Ω.

A remarkable theorem of Hartogs asserts thatf(z) with z ∈ Cm is analyticjointly
in all thezj (in the sense of (49)) if it is analyticseparatelyin each variablezj. (The
version of the theorem that postulatesa priori continuity is elementary.)

Like in the one-dimensional case, analytic functions can beequivalently defined
by means of differentiability conditions. A function isC-differentiable or holomorphic
ata if as∆z → 0 in Cm, one has

f(a+ ∆z) − f(a) =

m∑

j=1

cj∆zj + o (|∆z|) .

The coefficientscj are the partial derivatives,cj = ∂zjf(a). The fact that this relation
does not depend on the way∆z tends to 0 implies the Cauchy-Riemann equations.
In a way that parallels the single variable case, it is provedthat two conditions are
equivalent:f is analytic;f is complex differentiable.

Iterated integrals are defined in the natural way and one finds, by a repeated use
of calculus in a single variable,

(50) f(z) =
1

(2iπ)n

∫

C1

· · ·
∫

Cm

f(ζ)

(ζ1 − z1) · · · (ζm − zm)
dζ1 · · · dζm,

whereCj is a small circle surroundingzj in thezj–plane. By differentiation under the
integral sign, Equation (50) also provides an integral formula for the partial derivatives
of f , which is the analogue of Cauchy’s coefficient formula. Iterated integrals are
independent of details of the “polypath” on which they are taken, and uniqueness of
analytic continuation holds.

The theory of functions of several complex variables develops in the direction of
an integral calculus that is much more powerful than the iterated integrals mentioned
above; see for instance the book by Aı̆zenberg and Yuzhakov [5] for a multidimen-
sional residue approach. Egorychev’s monograph [147] develops systematic applica-
tions of the theory of functions of one or several complex variables to the evaluation
of combinatorial sums. Pemantle together with several coauthors [388, 389, 390] has
launched an ambitious research programme meant to extract the coefficients of mero-
morphic multivariate generating functions by means of thistheory, with the ultimate
goal of obtaining systematically asymptotics from multivariate generating functions.
In contrast, see especially Chapter IX, we can limit ourselves to developing a pertur-
bative theory of one-variable complex function theory.

In the context of this book, the basic notion of analyticity in several complex vari-
ables serves to confer abona fideanalytic meaning to multivariate generating func-
tions. Basic definitions are also needed in the context of functionsf defined implicitly
by functional relations of the formH(z, f) = 0 or H(z, u, f) = 0, where analytic
functions of two or more complex variables (likeH) make an appearance. (See in
particular the discussion of the analytic Implicit Function Theorem and the Weierstraß
Preparation Theorem in this Appendix.)





APPENDIX C

Complements of Probability Theory

This appendix contains entries arranged in logical order regarding the following topics:

Probability spaces and measure; Random variables; Transforms of distributions;
Special distributions; Convergence in law.

In this book we start from probability spaces that are finite,since they arise from objects of a
fixed size in some combinatorial class (see Chapter III of Part A and APPENDIX A: Combi-
natorial probability, p. 671 for elementary aspects), then need basic propertiesof continuous
distributions in order to characterize asymptotic limit laws. The entries in this appendix are
used principally in Chapter IX of Part C relative toRandom Structures. They present a unified
framework that encompasses discrete and continuous probability distributions alike.

1. Probability spaces and measure. An axiomatization of probability theory1 was
discovered in the 1930s by Kolmogorov. Ameasurable spaceconsists of a setΩ,
called the set of elementary events or the sample set and aσ-algebraA of subsets ofΩ
called events (that is, a collection of sets containing∅ and closed under complement
and denumerable unions). Ameasure spaceis a measurable space endowed with a
measureµ : A 7→ R≥0 that is additive over finite or denumerable unions of disjoint
sets; in that case, elements ofA are called measurable sets. Aprobability spaceis a
measure space for which the measure satisfies the further normalizationµ(Ω) = 1; in
that case, we also writeP for µ. Any setS ⊆ Ω such thatµ(S) = 1 is called asupport
of the probability measure.

The definitions given above cover several important cases.

(i) Finite sets with the uniform measurealso known as “counting” measure. In
this case,Ω is finite, all sets are inA (i.e., are measurable), and (|| · || denotes cardinal-
ity)

µ(E) :=
||E||
||S|| .

Nonuniform measures over a finite setΩ are determined by assigning a nonnegative
weightp(ω) to each element ofΩ (with

∑
ω∈Ω p(ω) = 1) and setting

µ(E) :=
∑

e∈E

p(e).

(We also writeP(e) for P({e}) ≡ µ({e}) = p(e).) In this book,Ω is usually the sub-
classCn formed by the objects of sizen in some combinatorial classC. The uniform
probability is normally assumed, although sometimes weighted models are consid-
ered: see for instance in Chapter III the discussion of weighted word models and
Bernoulli trials as well as the case of weighted tree models and branching processes.

1For this entry we refer to the vivid and well motivated presentation in Williams’ book [497] or to
many classical treatises like the ones by Billingley [55] and Feller [161].
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(ii) Discrete probability measures over the integers(supported byZ or Z≥0). In
this case the measure is determined by a functionp : Z 7→ R≥0 and

µ(E) :=
∑

e∈E

p(e),

with µ(Z) = 1. (All sets are measurable.) More general discrete measuressupported
by denumerable sets ofR can be similarly defined.

(iii) The real lineR equipped with theσ-algebra generated by the open intervals
constitutes a standard example of a measurable space; in that case, any member of
theσ-algebra is known as a Borel set. The measure, denoted byλ, that assigns to an
interval(a, b) the valueλ(a, b) = b− a (and is extended nontrivially to all Borel sets
by additivity) is known as the Lebesgue measure. The interval [0, 1] endowed withλ
is a probability space. The lineR itself is not a probability space sinceλ(R) = +∞.

In the measure-theoretic framework, arandom variableis a mappingX from
a probability spaceΩ (equipped with itsσ-algebraA and its measurePΩ) to R

(equipped with its Borel setsB) such that the preimageX−1(B) of anyB ∈ B lies
in A. ForB ∈ B, the probability thatX lies inB is then defined as

P(X ∈ B) := PΩ(X−1(B)).

Since the Borel sets can be generated by the semi-infinite intervals(−∞, x], this prob-
ability is equivalently determined by the function

F (x) := P(X ≤ x),

which is called thedistribution functionor cumulative distribution functionof X .
It is then possible to introduce random variables directly by means of distribution
functions, see the next entry below,Random variables.

The next step is to go from measures of sets to integrals of (real valued) func-
tions. Lebesgue integrals are constructed, first for indicator functions of intervals,
then for simple (staircase) functions, then for nonnegative functions, finally for inte-
grable functions. One defines in this way, for an arbitrary measureµ, the Lebesgue
integral

(1)
∫
fdµ, also written

∫
f(x)dµ(x) or

∫
f(x)µ(dx),

where the last notation is often preferred by probabilists.The basic idea is to decom-
pose the domain ofvaluesof f into finitely many measurable sets (Ai) and, for a
positive functionf , consider the supremum over all finite decompositions (Ai)

(2)
∫
f dµ := sup

(Ai)

∑

i

[
inf

ω∈Ai

f(ω)

]
µ(Ai).

(Thus Riemman integration proceeds by decomposing the domain of the function’s
argumentswhile Lebesgue integrals decomposes the domain ofvaluesand appeals to
a richer notion of measure.)

In (1) and (2), the possibility exists thatµ assigns a nonzero measure to cer-
tain individual points. In such a context, the integral is sometimes referred to as
the Lebesgue-Stieltjesintegral. It suitably generalizes theRiemann-Stieltjesintegral
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which, given a real valued functionM , defines the following extension of the standard
Riemann integral:

(3)
∫
f(x) dM(x) = lim

(Bk)

∑

k

f(xk)∆Bk
(M).

There theBk form a finite partition of the domain in which the argument off ranges,
the limit is taken as the largestBk tends to 0, eachxk lies in Bk, and∆Bk

(M) is
the variation ofM onBk. The great advantage of Stieltjes (hence automatically of
Lebesgue) integrals is to unify many of the formulæ relativeto discrete and continuous
probability distributions while providing a simple framework adapted to mixed cases.

2. Random variables. A real random variableX is fully characterized by its (cumu-
lative) distribution function

FX(x) := P(X ≤ x),

which is a nondecreasing right-continuous function satisfying F (−∞) = 0,
F (+∞) = 1.

A variable isdiscreteif it is supported by a finite or denumerable set. Almost
all discrete distributions in this book are supported byZ or Z≥0. (An interesting
exception is the collection of limit distributions occurring in longest runs of words;
see Chapter IV.)

A variableX is continuousif it assigns zero probability mass to any finite or
denumerable set. In particular, it has no jump. An easy theorem states that any distri-
bution function can be decomposed into a discrete and a continuous part,

F (x) = c1F
d(x) + c2F

c(x), c1 + c2 = 1.

(The jumps must sum to at most 1, hence their set is at most denumerable.) A variable
is absolutely continuousif it assigns zero probability mass to any Borel set of mea-
sure 0. In that case, the Radon Nikodym Theorem asserts that there exists a function
w such that

FX(x) =

∫ x

−∞
w(y) dy.

(There, in all generality, the Lebesgue integral is required but the Riemann integral is
sufficient for all practical purposes in this book.) The functionw(x) is called adensity
of the random variableX (or of its distribution function). WhenFX is differentiable
everywhere it admits the density

w(x) =
d

dx
FX(x),

by the Fundamental Theorem of Calculus.
� III.1. The Lebesgue decomposition theorem.It states that any distribution functionF (x)
decomposes as

F (x) = c1F
d(x) + c2F

ac + c3F
s(x), c1 + c2 + c3 = 1,

whereF d is discrete,F ac is absolutely continuous, andF s is continuous butsingular, i.e., it
is supported by a Borel set of Lebesgue measure 0. Singular random variables are constructed,
e.g., from the Cantor set. �



718 C. COMPLEMENTS OF PROBABILITY THEORY

In this book, all combinatorial distributions are discrete(and then usually sup-
ported byZ≥0). All continuous distributions obtained as limits of discrete ones are,
in our context, absolutely continuous and the qualifier “absolutely” is globally under-
stood when discussing continuous distributions.

If X is a random variable, theexpectationof a functiong(X) is defined

E (g(X)) =

∫

Ω

g(X)dP =

∫

R

g(x)dF (x),

where the latter form involves the distribution functionF of X . In particular the
expectationor meanof X is E(X), and generally itsmomentof orderr is

µ(r) = E(Xr).

(These quantities may not exist forr 6= 0.)
� III.2. Alternative formulæ for expectations.If X is supported byR≥0 and has a density:

E(X) =

Z ∞

0

(1− F (x)) dx.

If X is supported byZ≥0:

E(X) =
X

k≥0

P(X > k).

Prrofs are by partial integration and summation: for instance withpk = P(X = k),

E(X) =
X

k≥1

kpk = (p1 + p2 + p3 + · · · ) + (p2 + p3 + · · · ) + (p3 + · · · ) + · · · .

Similar formulæ hold for higher moments. �

3. Transforms of distributions. The Laplace transform ofX (or of its distribution
functionF ) is defined2 by

λX(s) := E
(
esX

)
=

∫ +∞

−∞
esx dF (x),

and is also known as the moment generating function (see below for an existential
discussion). The characteristic function is defined by

φX(t) = E
(
eitX

)
=

∫ +∞

−∞
eitx dF (x),

and it is a Fourier transform. Both transforms are formal variants of one another and
φX(t) = λX(it).

If X is discrete and supported byZ, then itsprobability generating function(PGF)
is defined as

PX(u) := E(uX) =
∑

k∈Z

P(X = k)uk.

As an analytic object this always exists whenX is nonnegative (supported byZ≥0),
in which case the PGF is analytic at least in the open disc|u| < 1. If X assumes
arbitrarily large negative values, then the PGF certainly exists on the unit circle, but

2If F has a discrete component, then integration is to be taken in the sense of Lebesgue-Stieltjes or
Riemann-Stieltjes.
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sometimes not on a larger domain. The precise domain of existence of the PGF as an
analytic function depends on the geometric rate of decay of the left and right tails of
the distribution, that is, ofP(X = k) ask → ±∞. The characteristic function of the
variableX (and of its distribution functionFX ) is

φX(t) := E(eitX) = PX(eit) =
∑

k∈Z

P(X = k)eikt.

It always exists forreal values oft. The Laplace transform of a discrete distribution is

λX(s) := E(esX) = PX(es) =
∑

k∈Z

P(X = k)eks.

If X is a continuous random variable with distribution functionF (x) and density
w(x), then the characteristic function is expressed as

φX(t) := E(eitX) =

∫

R

eitxw(x) dx.

and the Laplace transform is

λX(s) := E(esX) =

∫

R

esxw(x) dx.

The Fourier transform always exists for real arguments (by integrability of the Fourier
kerneleit whose modulus is 1). The Laplace transform, when it exists ina strip,
extends analytically the characteristic function via the equalityφX(t) = λX(it). The
Laplace transform is also called themoment generating functionsince an alternative
formulation of its definition, valid for discrete and continuous cases alike, is

λX(s) :=
∑

k≥0

E(Xk)
sk

k!
,

which indeed represents the exponential generating function of moments. (We prefer
not to use this terminology so as to avoid a possible confusion with the many other
types generating functions employed in this book.)
� III.3. Centring, scaling, and standardization. Let X be a random variable. Define
Y = X−µ

σ
. The representations as expectations of the Laplace transform of the characteris-

tic function make it obvious that

φY (t) = e−µitφX

„
t

σ

«
, λY (s) = e−µsλX

“ s
σ

”
.

One says thatY is obtained fromX by centring (by a shift ofµ) and scaling (by a factor ofσ).
If µ andσ are the mean and standard deviation ofX, then one says thatY is a standardized
version ofX. �

� III.4. Moments and transforms.The moments are accessible from either transform,

µ(r) := E{Y r} =
dr

dsr
λ(s)

˛̨
˛̨
s=0

= (−i)r dr

dtr
φ(t)

˛̨
˛̨
t=0

.
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In particular, we have

(4)

µ =
d

ds
λ(s)

˛̨
˛̨
s=0

= −i d
dt
φ(t)

˛̨
˛̨
t=0

µ(2) =
d2

ds2
λ(s)

˛̨
˛̨
s=0

= − d

dt
φ(t)

˛̨
˛̨
t=0

σ2 =
d2

ds2
log λ(s)

˛̨
˛̨
s=0

= − d2

dt2
log φ(t)

˛̨
˛̨
t=0

.

The direct expression of the standard deviation in terms oflog λ(s), called thecumulant gener-
ating function, often proves computationally handy. �

� III.5. Mellin transforms of distributions.The quantityM(s) := E(Xs−1) is called the
Mellin transform ofX (or of its distribution functionF ), whenX is supported byR≥0. In
particular, ifX admits a density, then this notion coincides with the usual definition of a Mellin
transform. When it exists, the value of the Mellin transformat an integers = k provides the
moment of orderk − 1. At other points, the Mellin transform provides moments of fractional
order. �

� III.6. A “symbolic” fragment of probability theory.Consider discrete random variables
supported byZ≥0. Let X,X1, . . . be random variables with PGFp(u) and letY have PGF
q(u). Then, certain natural operations admit a translation intoPGFs:

Operation PGF
Switch (Bern(λ)⇒ X | Y ) λp(u) + (1− λ)q(u)
Sum X + Y p(u) · q(u)

X1 + · · ·+Xn p(u)n

Random sum X + 1 + · · ·+XY q(p(u))

Size bias ∂X
up′(u)

p′(1)

(“Bern” means a Bernoulli{0, 1} variableB and the switch is interpreted asBX + (1−B)Y .
Size-biased distributions occur in Chapter VII.) �

The importance of these transforms derives from the existence ofcontinuity the-
oremby which convergence of distributions can be established via convergence of
transforms.

4. Special distributions. A compendium of special distribution is provided by Fig-
ure 1.

A Bernoulli trial of parameterq is an event that has probabilityq of having value 0
(interpreted as “failure”) and probabilityp of having value 1 (interpreted as “success”),
with p+q = 1. Formally, this is the setΩ = {0, 1} endowed with the probability mea-
sureP(0) = q, P(1) = p. The binomial distribution (also called Bernoulli distribu-
tion) of parametersn, q is the random variable that represents the number of successes
in n independent Bernoulli trials. This is the probability distribution associated with
the game of heads-and-tails. The geometric distribution isthe distribution of a ran-
dom variableX that records the number of failures till the first success is encountered
in a potentially arbitrarily long sequence of Bernoulli trials. By extension, one also
refers to independent experiments with finitely many possible outcomes as Bernoulli
trials. In that sense, the model of words of some fixed length over a finite alphabet and
nonuniform letter weights (or probabilities) belongs to the category of Bernoulli mod-
els; see Chapter III. The negative binomial distribution ofindexm (writtenNB[m])
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Distrib. Prob.(D), density(C) PGF(D), Char. function(C)

D Binomial (n, p)

 
n

k

!
pk(1− p)n−k (q + pz)n

D Geometric (q) (1− q)qk 1− q
1− qz

D Neg. binomial[m] (q)

 
m+ k − 1

k

!
qk(1− q)m

„
1− q
1− qz

«m

D Log. series (λ)
1

− log(1− λ)

λk

k!

log(1− λz)
log(1− λ)

D Poisson (λ) e−λλ
k

k!
eλ(1−z)

C Gaussian or Normal,N (0, 1)
e−x2/2

√
2π

e−t2/2

C Exponential e−x 1

1− it
C Uniform [− 1

2
,+ 1

2
] [[− 1

2
≤ x ≤ + 1

2
]]

sin(t/2)

(t/2)

FIGURE III.1. A list of commonly encountered discrete (D) and continuous
(C) probability distributions: type, name, probabilities or density, probability
generating function or characteristic function.

and parameterq corresponds to the number of failures beforem successes are en-
countered. We have found in Chapter VII that it is systematically associated with the
number ofr–components in an unlabelled multiset schemaF = M(G) whose com-
position of singularities is of the exp-log type. The geometric distribution appears
in several schemas related to sequences while the logarithmic series distribution is
closely tied to cycles (Chapter V).

The Poisson distribution counts amongst the most importantdistributions of prob-
ability theory. Its essential properties are recalled in Figure 1. It occurs for instance in
the distribution of singleton cycles and ofr-cycles in a random permutation and more
generally in labelled composition schemes (Chapter IX).

In this book all probability distributions arising directly from combinatorics area
priori discrete as they are defined on finite sets—typically a certain subclassCn of a
combinatorial classC. However, as the sizen of the objects considered grows, these
finite distributions may approach a continuous limit. In this context, by far the most
important law is theGaussian lawalso known asnormal law, which is defined by its
density and its distribution function:

(5) g(x) =
e−x2/2

√
2π

, Φ(x) =
1√
2π

∫ x

−∞
e−y2/2 dy.

The corresponding Laplace transform is then evaluated by completing the square:

λ(s) =
1√
2π

∫ +∞

−∞
e−y2/2+sy dy. = es2/2,
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Characteristic function (φ(t)) Distribution function (F (x))
φ(0) = 1 F (−∞) = 0, F (+∞) = 1
|φ(t0)| = 1 for somet0 6= 0 Lattice distribution, span2π

t0
φ(t) =

t→0
1 + iµt+ o(t) E(X) = µ <∞

φ(t) =
t→0

1 + iµt− ν
t2

2
+ o(t2) E(X2) = ν <∞

logφ(t) = − t2

2 X
d
=N (0, 1)

φ(t) → 0 ast→ ∞ X is continuous
φ(t) integrable (is inL1) X is absolutely continuous

density isw(x) =
1

2π

∫ +∞

−∞
e−itxφ(t) dt.

λ(s) := φ(−is) exists inα < ℜ(s) < β Exponential tails

limT→∞
1

2T

∫ +T

−T
|φ(t)|2 dt equals

∑
i(pi)

2; thepi are the jumps

φn(t) → φ(t) (point conv.) Fn
D

=⇒F (weak conv.)

Xn
D

=⇒X (conv. in distribution)
φn “close” toφ Fn “close” toF (Berry-Esseen)

FIGURE III.2. The correspondence between properties of the distribution func-
tion (F ) of a random variable(X) and properties of the corresponding character-
istic functions(φ).

and, similarly, the characteristic function isφ(t) = e−t2/2. The distribution of (5) is
referred to as thestandardnormal distribution,N (0, 1); if X is N (0, 1), the variable
Y = µ + σX defines the normal distribution with meanµ and standard deviationσ,
denotedN (µ, σ).

Amongst other continuous distributions appearing in this book, we mention the
theta distributions associated to the height of trees and Dyck paths (Chapter V) and
the stable laws alluded to in Chapter VI.

5. Convergence in law. Let Fn be a family of distribution functionsFn. We say
generally that theFn converge weaklyto a distribution functionF if pointwise

(6) lim
n
Fn(x) = F (x),

for every continuity pointx of F . This is expressed by writingFn ⇒ F as well

asXn
D

=⇒X , if Xn, X are random variables corresponding toFn, F . We say that
Xn converges in distributionor converges in lawto X . For discrete distributions
supported byZ, and equivalent form of (6) islimn Fn(k) = F (k) for eachk ∈ Z;
for continuous distributions, Equation (6) just means thatlimn Fn(x) = F (x) for
all x ∈ R. Although in all generality anything can tend to anything else, due to the
finite nature of combinatorics, we shall only need in this book the convergences

Discrete⇒ Discrete, Discrete⇒ Continuous (after standardization).
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Properties of random variables are reflected by probabilities of characteristic
functions and Figure 2 offers an aperçu. Most important forus is theContinuity
Theoremof characteristic functions due to Lévy and stated in Chapter IX. The Berry–
Esseen inequalities also stated in Chapter IX lie at the origin of precise speed of con-
vergence estimates to asymptotic limits.
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408. Mireille Régnier,Analysis of grid file algorithms, BIT 25 (1985), 335–357.
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410. P. Révész,Strong theorems on coin tossing, Proceedings of the International Congress of Mathemati-

cians (Helsinki, 1978) (Helsinki), Acad. Sci. Fennica, 1980, pp. 749–754.
411. Christoph Richard,Scaling behaviour of two-dimensional polygon models, Journal of Statistical

Physics108(2002), no. 3/4, 459–493.
412. Igor Rivin,Growth in free groups (and other stories), ArXiv, 1999, arXv:math.CO/9911076v2, 31

pages.
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R (resultant notation), 685
[zn] (coefficient extractor), 19
.
= (numeric approximation), 1
E (expectation), 104, 672, 718
ℑ (imaginary part), 217
Ω (asymptotic notation), 668
P (probability), 104, 145
ℜ (real part), 217
Θ (asymptotic notation), 668
V (variance), 672
≈ (asymptotic notation), 670
⊲⊳ (exponential order), 230
O (asymptotic notation), 668
◦ (substitution), 79
∼= (combinatorial isomorphism), 18
m (analytic mean), 601
v (analytic variance), 601
〈·〉 (strip ofC), 708
⌈·⌋ (nearest integer function), 41
⌈ · ⌋ (rounding notation), 246H

(contour integral), 514
∂ (derivative), 80
σ (standard deviation), 673
∼ (asymptotic notation), 668
⋆ (labelled product), 92
lg (binary logarithm), 286
o (asymptotic notation), 668
Rconv (radius of convergence), 218
Res (residue operator), 221
+, seedisjoint union
[[·]] (Iverson’s notation), 54

CYC (cycle construction), 24, 95
MSET (multiset construction), 25
PSET (powerset construction), 25
SEQ (sequence construction), 24, 94
SET (set construction), 94
Θ (pointing), 79

Abel identity, 678
Abel–Plana summation, 226
adjacency matrix (of graph), 321
admissibility (of function), 528–540
admissible construction, 21, 91
Airy area distribution, 349
Airy function, 540, 563, 654, 661
alcohol, 270, 456

algebraic curve, 471
algebraic function, 492, 505

asymptotic, 492
branch, 471
coefficient, 477–492
elimination, 685–687
Newton polygon, 474–476
Puiseux expansion, 474–476
singularities, 471–492

algebraic topology, 189
algorithm

approximate counting, 291–292
balanced tree, 84, 267
binary adder, 285
binary search tree, 192, 410–412
digital tree (trie), 340
hashing, 103, 167, 558
irreducible polynomials, 432
polynomial factorization, 432
shake and paint, 398
TCP protocol, 292

alignment, 110–316
alkanes, 456–458
allocation,seeballs-in-bins model, 103–110
alphabet, 47
ambiguity

context-free grammar, 76
regular expression, 293, 679

analytic continuation, 226
analytic function, 218–226

equivalent definitions, 687–689
composition, 393–399
differentiation, 400–404
Hadamard product, 404–409
integration, 400–404
inversion, 236, 261–266, 385–390
iteration, 267–269
Lindelöf integrals, 225

aperiodic, 461
aperiodic (GF), 314
approximate counting, 291–292
area (of Dyck path), 307
argument principle, 256
arithmetical functions, 667
arithmetical semigroups, 83
arrangement, 104, 105
asymptotic
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algebraic, 492
expansion, 669
notations, 668–671
scale, 669–670

atom, 23, 90
autocorrelation (in words), 56, 257
automaton

finite, 52
average,seeexpectation

balanced tree,seetree
ballot numbers, 63
ballot problem, 72
balls-in-bins model, 104, 165–167

capacity, 556–558
Poisson law, 166

Bell numbers, 101
asymptotics, 525–527, 707

Bell polynomials, 177
Bernoulli numbers, 254
Bernoulli trial, 179, 285, 720
Beta function(B), 693
BGF,seebivariate generating function
bijective equivalence (∼=), 18
binary decision tree (BDT), 74
binary search tree, 410–412
binary search tree (BST), 192
binary tree, 682
binomial coefficient, 92

asymptotics, 364–368
central approximation, 706–707
sum of powers, 706–707

binomial convolution, 92
binomial distribution, 720
birth and death process, 296
birth process, 290
birthday paradox, 105–110, 180, 181, 397
bivariate generating function (BGF), 145
Boltzmann model, 266, 531
boolean function, 73
bootstrapping, 286
bordering condition (permutation), 191
Borges, Jorge Luis, 58
boxed product, 129–132
branch (of curve), 471
branch point (analytic function), 263
branch point (function), 218
branching processes, 185–186
bridge (lattice path), 73, 482–488
Brownian motion, 174, 344, 395, 443, 653
Bürmann inversion,seeLagrange inversion

canonicalization, 80
cartesian product construction (×), 22
Catalan numbers (Cn), 17, 33–34, 36, 63, 68–

74, 683
asymptotics, 367
generating function, 33

Catalan sum., 399
Catalan tree, 33, 162

Cauchy’s residue theorem, 222
Cauchy–Riemann equations, 688
Cayley tree, 117–119, 168
Cayley tree function,seeTree function (T )
central limit law, 573
centring (random variable), 719
Chebyshev inequalities, 150, 674
Chebyshev polynomial, 304
circuit (in graph), 321, 329
circular graph, 91
class (labelled), 87–138
class (of combinatorial structures), 16
cloud, 627
cluster, 198, 200
coalescence of saddle point

with other saddle point, 563
with roots, 552
with singularity, 552–553

code (words), 58
coding theory, 37, 50, 58, 233
coefficient extractor ([zn]), 19
coin fountain, 308, 615
combination, 48
combinatorial

class, 16, 88
isomorphism (∼=), 18
parameter, 139–208
sums, 396–399

combinatorial chemistry, 452–458
combinatorial identities, 693–698
combinatorial probability, 671–674
combinatorial schema,seeschema
complete generating function, 174–187
complex differentiability, 219
complex dynamics, 267
complexity theory, 73
composition (of integer), 37–46

Carlitz type, 190, 195, 249
complete GF, 176
cyclic (wheel), 45
largest summand, 158, 317, 320
local constraints, 187–189, 249
number of summands, 42, 156–157
prime summands, 41, 317–319
profile, 158, 316
r-parts, 157
restricted summands, 317–319

composition (singular), 393–399
computable numbers, 237
computer algebra,seesymbolic manipulation
concentration (of probability distribution), 150–

151
conformal map, 219
conjugacy principle (paths), 71
connection problem, 480, 481, 496, 499
constructible class, 237–242
construction

cartesian product (×), 22
cycle (CYC), 24, 154, 674–676
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labelled, 95, 163
disjoint union (+), 24
implicit, 81–84
labelled product (⋆), 92–94
multiset (MSET), 25, 154
pointing(Θ), 79–81, 187
powerset (PSET), 25, 154

labelled, 163
sequence (SEQ), 24, 154

labelled, 94, 163
set (SET)

labelled, 94
substitution (◦), 79–81, 187–190

context-free
asymptotics, 423, 460–462
language, 76–77, 460
specification, 74–77, 460–464

continuant polynomial, 298
continuation (analytic), 226
continued fraction, 184, 205, 270, 295–313
continuous random variable, 717
contour integral (

H
), 514

convergence in probability, 150
convexity (of GFs), 266
convexity inequalities, 516
correlation,seeatocorealtion1
coupon collector problem, 105–110, 180
cover time (walk), 347
covering (of interval), 25
cumulant generating function, 720
cumulated value (of parameter), 147
cumulative generating function, 147
cycle construction (CYC), 24, 154, 674–676

labelled, 95, 163
undirected, labelled, 123

cycle lemma (paths), 71
cyclic permutation, 91

Daffodil Lemma, 253
Darboux’s method, 417
data compression, 261
data mining, 399
de Bruijn graph, 337–339
Dedekindη function, 544
degree (of tree node), 682
density (random variable), 717
denumerant, 41, 244–245
dependency graph, 325
derangement, 113, 196, 248, 352, 430
derivative (∂), 80
devil’s staircase, 336–337
dice games, 549
Dickman function, 591
differential equations, 492–503, 693–698
differential field, 496
differentiation (singular), 400–404
digital tree (trie), 340
digraph,seegraph, 321
dilogarithm, 392
directed graph, 321

Dirichlet generating function (DGF), 667
disc of convergence (series), 218
discrete random variable, 717
discriminant (of a polynomial), 471
discriminant (of polynomial), 687
disjoint union construction (+), 24, 91
distribution,seeprobability distribution
distribution function (random variable), 717
divergent series, 82, 128, 676
dominant singularity, 230
double exponential distribution, 286
Drmota-Lalley-Woods Theorem, 464
drunkard problem, 82, 406–409
Dyck path, 73, 486

area, 307
height, 303–307

dynamical source, 295

EGF,seeexponential generating function
Ehrenfest urn model, 109, 313
eigenvalue,seematrix
EIS (Sloane’s Encyclopedia), 17
elimination (algebraic function), 685–687
elliptic function, 307
entire function, 230
entropy, 549
Euler numbers, 134
Euler’s constant (γ), 108, 691
Euler–Maclaurin summation, 226, 711
Eulerian numbers, 198, 612
Eulerian tour (in graph), 338
exceedances (in permutations), 352
excursion (lattice path), 73, 296, 482–488
exp-log transformation, 27, 79
expectation (or mean, average),E, 104, 146,

672, 718
exponential families (of functions), 186
exponential generating function

definition, 89
product, 92

exponential growth formula, 230–236
exponential order (⊲⊳), 230
exponential polynomial, 242, 276–278

Faà di Bruno’s formula, 177
factorial moment, 673
factorial moments, 147
factorial, falling, 494, 696
Ferrers diagram, 38
Fibonacci numbers, 40, 55
Fibonacci polynomial, 304
finite automaton, 52, 323–340
finite field, 83
finite language, 61
finite state model, 334, 342–351
forest (of trees), 62, 119, 681
formal language,seelanguage
formal power series,seepower series
formal topology (power series), 676
four-colour theorem, 489
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Fourier transform, 718
fractals, 269
fragmented permutation, 115

asymptotics, 234, 527–528
free group, 194–195
free tree,seetree, unrooted
function (of complex variable)

analytic, 218–226
differentiable, 219
entire, 219, 230
holomorphic, 219
meromorphic, 220

functional equation, 261–272
kernel method, 483
quadratic method, 490

functional graph, 119–122, 458–459
Fundamental Theorem of Algebra, 256, 512

Galton-Watson process, 185
gambler ruin sequence, 72
Gamma function (Γ), 362, 689–693
Gaussian binomial, 43
Gaussian distribution, 555–556, 721
Gaussian integral, 690
general tree, 683
generating function

algebraic, 492
complete, 174–187
exponential, 87–138
multivariate, 139–208
ordinary, 15–86

geometric distribution, 720
Gessel’s calculus, 697–698
GF,seegenerating function
golden ratio (ϕ), 40, 84
graph

acyclic, 122
adjacency matrix, 321
aperiodic, 325
bipartite, 128
circuit, 321, 329
circular, 91
colouring, 489
connected, 127–129
de Bruijn, 337–339
directed, 321
enumeration, 96–97
excess, 123
functional, 119–122, 458–459
labelled, 88–89, 96–97, 122–125
map, 488–492
non-crossing, 462–464, 478–479
path, 320–340
periodic, 1, 325
random, 124–125
regular, 124, 177, 363, 430, 698
spanning tree, 323
strongly connected, 325
unlabelled, 96–97

Green’s formula, 688

Groebner basis, 76, 685
group

free, 194–195
symmetric, 128–129

Hadamard product, 280, 404–409, 694
Hamlet, 51
Hankel contour, 365, 690
Hardy–Ramanujan–Rademacher expansion,

545
harmonic function, 688
harmonic number (Hn), 108, 149, 371, 669

asymptotics, 711
generating function, 149

harmonic sum, 708
Hartogs’ Theorem, 713
hashing algorithm, 103, 167, 558
Hayman admissibility, 528–540
Heaviside function, 708
height (of tree), 304–307
Hermite polynomial, 312
hidden pattern, 292–295
hierarchy, 119, 266, 451–452
Hipparchus, 64
histograms, 146
holomorphic function, 219
holonomic functions, 426, 471, 492, 693–698
homotopy (of paths), 221
horse kicks, 584
hypergeometric function

basic, 292
hypergeometric function (2F1), 404, 500, 696

implicit construction, 81–84, 127–129, 192–195
Implicit Function Theorem, 698–700
inclusion-exclusion, 195–202, 352
increasing tree, 132–136, 191–192, 500–502
Indoeuropean languages, 451
inheritance (of parameters), 151, 163
integer composition,seecomposition (of inte-

ger)
integer partition,seepartition (of integer)
integration (singular), 400–404
interconnection network, 310
inversion (analytic), 236, 385–390
inversion table (permutation), 135
involution, 310
involution (permutation), 113
involution (permutation), 524–525
irregular singularity (ODE), 493
isomorphism (combinatorial,∼=), 18
iteration, 267
iteration (of analytic function), 267–269
iterative specification, 30–32, 237–242
Iverson’s notation ([[·]]), 54

Jacobi trace formula, 323

kernel method (functional equation), 483
Knuth–Ramanujan function,see Ramanujan’s

Q-function
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labelled class, object, 87–138, 163–170
labelled construction, 92–98
labelled product (⋆), 92
Lagrange inversion, 62–66, 118, 677–678
LambertW–function, 118
language, 678

context-free, 76–77, 460
formal, 47
regular, 356, 678–680

Laplace transform, 696
Laplace’s method, 559, 700–707

for sums, 706–707
Laplacian, 688

of graph, 323
large deviations, 549
large powers, 547–556
largest components, 320
Latin rectangle, 698
lattice path, 72–73, 295–313, 482–488

decompositions, 297
lattice points, 46
Laurent series, 482
law of large numbers, 147, 673
law of small numbers, 584
leaf (of tree), 170, 682
Lebesgue integral, 716
Lebesgue measure, 716
letter (of alphabet), 47
light bulb, 609
limit law, 569–663
Lindelöf integrals, 225
linear fractional transformation, 300
Liouville’s theorem, 225
local limit law, 555, 573
localization (of zeros and poles), 256
logarithm, binary (lg), 286
logarithmic-series distribution, 316
logic (first-order), 445
logics, 445
longest run (in word), 285–289
loop (in complex region), 221
Łukasiewicz codes, 71, 486–487
Lyndon words, 675

MacMahon’s Master Theorem, 323
magic duality, 225
majorant series, 236–237
map, 488–492, 659–661
mapping, 119–122, 431, 443–445, 658

idempotent, 535
regressive, 135

mapping pattern,seefunctional graph
mark (in combinatorial specification), 156
marking variable, 19, 152
Markov chain, 53, 323, 617
Markov-Chebyshev inequalities, 150, 674
Master Theorem (of MacMahon), 323
matrix

aperiodic, 325
irreducible, 325

nonnegative, 326
Perron Frobenius theory, 325–326, 329
positive, 326
spectrum, 276
stochastic, 323, 335
trace, 323
transfer, 342–351
tridiagonal, 351

matrix tree theorem, 323
Maximum Modulus Principle, 511
mean,seeexpectation
meander (lattice path), 73, 482–488, 594–595
meander (topology), 500
measure theory, 715–717
Meinardus’ method (integer partitions), 545–

546
Mellin transform, 288, 306, 707–712
ménage problem, 351
meromorphic function, 220
MGF, seemultivariate generating function
mobile (tree), 436
Möbius function (µ), 667
Möbius inversion, 81, 431, 668
modular form, 544
moment inequalities, 150–151, 674
moment method, 295
moments (of random variable), 146, 672, 718
monkey saddle, 510, 558–564
monodromy, 474
Motzkin numbers, 63, 73, 81

asymptotics, 379, 478
Motzkin path, 73, 303, 307, 486
multinomial coefficient, 92, 175
multiset construction (MSET), seeconstruction,

multiset, 154
multiset construction (mset), 25
Multiset construction., 25
multivariate generating function (MGF), 139–

208

naming convention, 19, 90
Narayana numbers, 171
natural boundary, 236
nearest integer function (⌈·⌋), 41
necklace, 18, 60
negative binomial distribution, 433, 721
network, 310
neutral object, 23, 90
Newton polygon, 474–476
Newton’s binomial expansion, 33
nicotine, 20
non-crossing configuration, 462–464, 478–479
nonplane tree, 66–68, 117
Nörlund-Rice integrals, 226
normal distribution,seeGaussian distribution
numeric approximation (

.
=), 1

numerology, 295

O (asymptotic notation), 668
o (asymptotic notation), 668
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ODE (ordinary differential equation),seediffer-
ential equations

OGF,seeordinary generating function
order constraints (in constructions), 129–136,

190–192
ordinary generating function (OGF), 18
ordinary point (analytic function), 509
orthogonal polynomials, 300, 309
oscillations (of coefficients), 251, 269, 368
outdegree,seedegree (of tree node)

pairing (permutation), 113
parameter (combinatorial), 139–208

cumulated value, 147
inherited, 151–154
recursive, 170–174

parenthesis system, 73
parse tree, 76
partially commutative monoid, 285
partition

of sets,seeset partition
partition (of integer), 37–46

asymptotics, 235
denumerant, 41, 244–245
distinct summands, 546
Durfee square, 43
Ferrers diagram, 38
Hardy–Ramanujan–Rademacher expansion,

545
largest summand, 42
Meinardus’ method, 545–546
number of parts, 547
number of summands, 42, 160
plane, 546
prime summands, 546–547
profile, 160
r-parts, 161

partition of set,seeset partition
path (in graph), 321
path (in complex region), 221
path length,seetree
patterns

in permutations, 200
in trees, 202
in words, 50–52, 55–58, 200, 257–261, 292–

295, 612–613, 617
pentagonal numbers, 46
period (of sequence, GF), 252
periodicity (of coefficients), 250
periodicity (ofGF), 314
permutation, 90, 110–114

alternating, 132–134, 255
ascending runs, 197–200, 611–612
bordering condition, 191
cycles, 110–114, 143, 164–165, 430, 600–

601
cycles of lengthm, 583
cyclic, 91
derangement, 113, 196, 248, 352, 430
exceedances, 352

fixed order, 533
increasing subsequences, 538–540
indecomposable, 82, 129
inversion table, 135
involution, 113, 235, 310, 524–525, 538
local order types, 191
longest cycle, 113, 533
longest increasing subsequence, 200, 538–

540, 698
ménage, 351
pairing, 113
pattern, 200
profile, 164
record, 130–131
records, 600–601
rises, 197–200
shortest cycle, 113, 248
singletons, 579–580
tree decomposition, 132–134

Perron Frobenius theory, 325–326, 329
perturbation theory, 553
PGF,seeprobability generating function
phase transition, 650
phase transition diagram, 650
phylogenetic trees, 119
Picard approximants, 699
Plana’s summation, 226
plane partition (of integer), 546
plane tree, 61–66
pointing construction (Θ), 79–81, 126–127, 187
Poisson distribution, 721
Poisson law, 165, 432
Poisson-Dirichlet process, 591
Pólya operators, 32
Pólya operators, 239, 429
Pólya–Carlson Theorem, 240
polydisc, 712
polylogarithm, 225, 390–393, 695
polynomial

primitive, 342
polynomial (finite field), 83, 431–432
polynomial system, 465, 470
polyomino, 43, 189, 190, 308, 348–351, 613–

615
power series, 15, 18, 89, 141, 152, 176, 676–677

convergence, 676
divergent, 82, 128, 676
formal topology, 676
product, 676
quasi-inverse, 676
sum, 676

powerset construction (PSET), 25, 154
labelled, 163

powerset construction (SET), seeconstruction,
powerset

preferential arrangement numbers, 100
prime number, 215–216
principal determination (function), 217
Pringsheim’s theorem, 227
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prisoners, 114, 165
probabilistic method, 674
probability (P), 104, 145
probability distribution

Airy area, 349
Bernoulli, 720
binomial, 720
double exponential, 109, 286–289
Gaussian, 555–556, 721
geometric, 720
geometric–birth, 291
logarithmic series, 316
negative binomial, 433, 721
Poisson, 432, 721
Rayleigh, 107, 655
stable laws, 395
theta function, 305, 344
Tracy–Widom, 540
Zipf laws, 657

probability generating function, 673
probability space, 715
profile (of objects), 158, 432–434
pruned binary tree, 683
psi function (ψ), 692
Puiseux expansion (algebraic function), 474–

476

q–calculus, 292, 308
q–calculus, 46
quadratic method (functional equation), 490
quadtree, 497–500
quasi-inverse, 32

R (resultant notation), 685
radioactive decay, 584
radius of convergence (series), 218, 231
Ramanujan’sQ-function, 106, 120, 397–399
random generation, 73, 320
random matrix, 539
random variable, 672, 715–723

continuous, 717
density, 717
discrete, 717

random variable (discrete), 145
random walk,seewalk
rational function, 224, 242–245, 256–257

positive, 340, 341
Rayleigh distribution, 655
record

in permutation, 130–131
in word, 178

recurrence
tree, 409–414

recursion (semantics of), 31
recursive parameter, 170–174
recursive specification, 30–32
region (of complex plane), 217
regular

expression, 356, 678–680
language, 278–285, 356, 678–680

specification, 278–285
regular point (analytic function), 227
regular singularity (ODE), 493–500
relabelling, 92
renewal process, 320, 609
Res (residue operator), 221
residue, 221–226

Cauchy’s theorem, 222
resultant (R), 76, 685–687
Rice integrals,seeNörlund-Rice integrals
Riemann surface, 227
Rogers-Ramanujan identities, 308
rotation correspondence (tree), 69
Rouché’s theorem, 256
round (children’s), 379
rounding notation (⌈ · ⌋), 246
RV, seerandom variable

SA-class (singularity analysis), 383
saddle point

analytic function, 510–512
bounds, 233, 512–516, 548
large powers, 547–556
method, 507–565
multiple, 558–564

scaling (random variable), 719
schema (combinatorial-analytic), 159–160, 167,

169–170
exp–log, 427–434
supercritical sequence, 313–320

Schröder’s problems, 64, 119, 453
self-avoiding configurations, 347–349
semantics of recursion, 31
sequence construction (SEQ), 24, 154

labelled, 94, 163
series

algebraic, 492
series-parallel network, 64, 65, 68
set construction (SET), seeconstruction, set

labelled, 94
set partition, 59–60, 98–110, 167

asymptotics, 235, 525–527
block, 100
largest block, 533
number of blocks, 167, 536–537

several complex variables, 712–713
shuffle product, 283
sieve formula,seeinclusion-exclusion
Simon Newcomb’s problem, 181–182
simple variety (of trees), 182, 307, 434
singular expansion (function), 376
singularity

regular (ODE), 493–500
singularity (of function), 226–230

dominant, 230
singularity analysis, 359–420

applications, 421–506
size (of combinatorial object), 16, 88
size-biased (probability), 442
Skolem-Mahler-Lerch Theorem, 252
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slow variation, 416
Smirnov word, 193, 249, 289, 333
society (combinatorial class), 535
spacings, 48
span (of sequence, GF), 252
spanning tree, 323
special functions, 693–698
species, 29, 86, 127, 137
specification, 31

iterative, 30–32
recursive, 30–32

spectrum,seematrix
stable laws,seeprobability distribution
standard deviation, (σ), 673
standardization (random variable), 572, 719
statistical physics, 44, 189, 346–347, 422, 500,

650
steepest descent, 509, 513
Stieltjes integral, 716–717
Stirling numbers, 680–681

cycle (1st kind), 111, 144, 600
partition (2nd kind), 59–60, 100, 168

Stirling’s approximation, 36, 389, 393, 520–
522, 692–693, 705–706, 711

strip (〈·〉), 708
subcrititical composition schema, 585–590
subexponential factor, 231
subsequence statistics,see hidden patterns,

words
substitution construction (◦), 79–81, 187–190
supercritical cycle, 399
supercritical sequence, 313–320, 394
supernecklaces, 115
supertree, 394–396, 479, 661
support (of probability measure), 715
support (of sequence, GF), 252
surjection, 98–110, 316

asymptotics, 246
complete GF, 176

surjection numbers, 101, 254
symbolic manipulation, 240
symbolic methods, 15
symmetric functions, 177, 697–698

Tauberian theory, 416
Taylor expansion, 190, 688
theory of species, 127
theta function, 305–307, 344
threshold phenomenon, 199
tiling, 344–347, 617
total variation distance (probability), 579
totient function (ϕ), 26, 667
trace monoid,seepartially commutative monoid
trains, 240–242, 380
transfer matrix, 342–351
transfer theorem, 372–375
tree, 30, 61–68, 116–125, 681

additive functional, 438–443
balanced, 83, 267–269
binary, 63, 682

branching processes, 185–186
Catalan, 33
Cayley, 117–119
degree profile, 182–183, 441–442
exponential bounds, 264–266
forests, 62
general, 30, 683
height, 205, 304–307, 440
increasing, 132–136, 191, 500–502
leaf, 170, 619, 682
level profile, 183–184, 439–440
Łukasiewicz codes, 71
mobile, 436
non-crossing, 462–464, 478–479
nonplane, 66–68, 443, 453
nonplane, labelled, 117
parse tree, 76
path length, 172–174, 184, 442–443
pattern, 202
plane, 61–66, 682
plane, labelled, 117
quadtree, 497–500
regular, 63
root subtrees, 589
root-degree, 162, 168, 437–438, 587–588
rooted, 681
search, 192
simple variety, 182, 307, 387–390, 434–445,

552
supertree, 394–396, 479
t-ary, 63
unary-binary, 63, 81
unrooted, 459–460
width, 342–344, 659

tree concepts, 681–683
Tree function (T ), 386–389
tree recurrence, 409–414
triangulation (of polygon), 19, 33–34, 75
tridiagonal matrix, 351
trinomial numbers, 551
truncated exponential, 102

unambiguous,seeambiguity
uniform expansions

singularity analysis, 618–619
uniform probability measure, 672
uniformity (asymptotic expansions), 671
uniformization (algebraic function), 473
universality, 563
unlabelled structures, 151–163
urn, 91
urn model, 109, 313, 503

Vallée’s identity, 29
valley (saddle point), 510
variance (V), 672
Vitali’s theorem (analytic functions), 580

w.h.p. (with high probability), 125, 150
walk, 351
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birth type, 289–292
cover time, 347
devil’s staircase, 336–337
first return, 82
in graphs, 320–340
integer line, 296–301
interval, 296–307
lattice path, 72–73, 295–313, 482–488
self-avoiding, 347–349

Wallis integral, 693, 703
Weierstrass Preparation Theorem (WPT), 699–

700
wheel, 45
width (of tree), 342–344
winding number, 256
word, 47–61, 103–110

aperiodic, 675
code, 58
excluded patterns, 339
language, 47, 678
local constraints, 333
longest run, 285–289
pattern, 50–52, 55–58, 200, 257–261, 292–

295, 612–613, 617
record, 178
runs, 48–50, 193
Smirnov, 193, 249, 289, 333

Young tableau, 698

zeta function of graphs, 330
zeta function, Riemann (ζ), 215, 255, 390, 692,

697


