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PREFACE

ANALYTIC COMBINATORICS aims at predicting precisely the properties of large
structured combinatorial configurations, through an appinobased extensively on
analytic methods. Generating functions are the centraatbjof the theory.

Analytic combinatorics starts from an exact enumeratisedption of combina-
torial structures by means of generating functions, whielkertheir first appearance
as purely formal algebraic objects. Next, generating fionstare interpreted as an-
alytic objects, that is, as mappings of the complex plane itself. Singularities
determine a function’s coefficients in asymptotic form aedd to precise estimates
for counting sequences. This chain applies to a large nuoflgoblems of discrete
mathematics relative to words, trees, permutations, graotd so on. A suitable adap-
tation of the methods also opens the way to the quantitatigéyais of characteristic
parameters of large random structures, via a perturbatiqmaoach.

Analytic combinatorics can accordingly be organized basethree components:

Symbolic Methoddevelops systematic relations between some of the major
constructions of discrete mathematics and operations arrgéng func-
tions which exactly encode counting sequences.

Complex Asymptoticslaborates a collection of methods by which one can
extract asymptotic counting information from generatingdtions, once
these are viewed as analytic transformations of the contfienain. Singu-
larities then appear to be a key determinant of asymptotiaieur.

Random Structuresoncerns itself with probabilistic properties of largeran
dom structures. Which properties hold with high probay#itwhich laws
govern randomness in large objects? In the context of doalgimbina-
torics, these questions are treated by a deformation (gddiwiliary vari-
ables) and a perturbation (examining the effect of smalltians of such
auxiliary variables) of the standard enumerative theory.

THE APPROACHtO quantitative problems of discrete mathematics provioied
analytic combinatorics can be viewed asaperational calculufor combinatorics.
The present book exposes this view by means of a very largdauof examples
concerning classical combinatorial structures—mostlgtavords, trees, composi-
tions, partitions, permutations, mapings, allocatiorlangr maps, and graphs. The
eventual goal is an effective way of quantifying metric pedjes of large random
structures.

Given its capacity of quantifying properties of large deterstructuresinalytic
Combinatoricss susceptible to many applications, within combinatoitsslf, but,
perhaps more importantly, within other areas of sciencergvdescrete probabilistic
models recurrently surface, like statistical physics, patational biology, electrical



engineering, and information theory. Last but not least, dhalysis of algorithms
and data structures in computer science has served andestiks as an important
motivation in the development of the theory.

* K Kk Kk Kk

Part A: Symbolic Methods. This part specifically exposedymbolic Methods
which is a unified algebraic theory dedicated to setting upcfional relations be-
tween counting generating functions. As it turns out, aemibn of general (and
simple) theorems provide a systematic translation meshamietween combinato-
rial constructions and operations on generating functidings translation process is
a purely formal one. Precisely, as regards basic countig,parallel frameworks
coexist—one for unlabelled structures and ordinary gdimgydunctions, the other
for labelled structures and exponential generating fonsti Furthermore, within the
theory, parameters of combinatorial configurations cands#lyetaken into account
by adding supplementary variables. Three chapters thepaserthis part: Chapter |
deals with unlabelled objects; Chapter Il develops in alfEnaay labelled objects;
Chapter Il treats multivariate aspects of the theory &létéor the analysis of param-
eters of combinatorial structures.

* Kk ok kK

Part B: Complex asymptotics. This part specifically expos&domplex Asymp-
totics, which is a unified analytic theory dedicated to the procdssxtracting as-
ymptotic information from counting generating functioné. collection of general
(and simple) theorems provide a systematic translatiorhar@sm between gener-
ating functions and asymptotic forms of coefficients. Folbamters compose this
part. Chapter IV serves as arntroduction to complex-analytic methodsd proceeds
with the treatment oferomorphic functionghat is, functions whose singularities are
poles,rational functionsbeing the simplest case. Chapter V develapglications of
rational and meromorphic asymptotics of generating fumtsi with numerous appli-
cations related to words and languages, walks and grapheelaas permutations.
Chapter VI develops a general theorysafigularity analysighat applies to a wide
variety of singularity types, such as square-root or Idbaric, and has applications
to trees as well as to other recursively defined combindtolésses. Chapter VII
presentsapplications of singularity analysito 2-regular graphs and polynomials,
trees of various sorts, mappings, context-free languaggdks, and maps. It contains
in particular a discussion of the analysis of coefficientalgébraic functions. Chap-
ter VIl exploressaddle point methodsvhich are instrumental in analysing functions
with a violent growth at a singularity, as well as many fuans with only a singularity
at infinity (i.e., entire functions).

* K Kk k Kk

Part C: Random Structures. This part includes Chapter IX dedicated to the
analysis of multivariate generating functions viewed a®ration and perturbation
of simple (univariate) functions. As a consequence, margontant characteristics
of classical combinatorial structures can be preciselyntifi@d in distribution. Chap-
ter??is an epilogue, which offers a brief recapitulation of thg@nasymptotic prop-
erties of discrete structures developed in earlier chapter
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Part D: Appendices. Appendix A summarizes some key elementary concepts of
combinatorics and asymptotics, with entries relative tyngstotic expansions, lan-
guages, and trees, amongst others. Appendix B recapgullagenecessary back-
ground in complex analysis. It may be viewed as a self-capthiminicourse on
the subject, with entries relative to analytic functioriee Gamma function, the im-
plicit function theorem, and Mellin transforms. Appendixé&talls some of the basic
notions of probability theory that are useful in analytierdainatorics.

* K Kk Kk Kk

THIS BOOK is meant to be reader-friendly. Each major method is abuthdin
lustrated by means of concrete examptesated in detail—there are scores of them,
spanning from a fraction of a page to several pages—offexroanplete treatment of a
specific problem. These are borrowed not only from combiiegdtself but also from
neighbouring areas of science. With a view of addressingnlytmathematicians of
varied profiles but also scientists of other disciplin®salytic Combinatoricss self-
contained, including ample appendices that recapitutetenecessary background in
combinatorics and complex function theory. A rich set ofrsNiwtes—there are more
than 250 of them—are inserted in the fexhd can provide exercises meant for self-
study or for students’ practice, as well as introductionthivast body of literature
that is available. We have also made every effort to focusara ideasrather than
technical details, supposing a certain amount of mathealatiaturity but only basic
prerequisites on the part of our gentle readers. The bodkasmaeant to be strongly
problem-oriented, and indeed it can be regarded as a mameakn a huge algorithm,
guiding the reader to the solution of a very large variety miylems regarding dis-
crete mathematical models of varied origins. In this spiniainy of our developments
connect nicely with computer algebra and symbolic manijariesystems.

Coursescan be (and indeed have been) based on the book in various ways
Chapters I-Ill orSymbolic Methodserve as a systematic yet accessible introduction
to the formal side of combinatorial enumeration. As suchrgamizes transparently
some of the rich material found in treatiSdike those of Bergeron-Labelle-Leroux,
Comtet, Goulden-Jackson, and Stanley. Chapters IV—-MHtike toComplex Asymp-
toticsprovide a large set of concrete examples illustrating thvegpmf classical com-
plex analysis and of asymptotic analysis outside of thailitional range of applica-
tions. This material can thus be used in courses of either puapplied mathematics,
providing a wealth of nonclassical examples. In additidng quiet but ubiquitous
presence of symbolic manipulation systems provides a nuoftibustrations of the
power of these systems while making it possible to test amtretely experiment
with a great many combinatorial models. Symbolic systertevalor instance for
fast random generation, close examination of non-asyneptegimes, efficient ex-
perimentation with analytic expansions and singularjtes so on.

1Examples are marked by S&MPLE - - - [T".
2Notes are indicated b - - - <.
SReferences are to be found in the bibliography section atitideof the book.



Our initial motivation when starting this project was to loua coherent set of
methods useful in the analysis of algorithms, a domain offmater science now well-
developed and presented in books by Knuth, Hofri, Mahmonod,Zzpankowski, in
the survey by Vitter—Flajolet, as well as in our earlietroduction to the Analysis of
Algorithmspublished in 1996. This book can then be used as a systermatierga-
tion of methods that have proved immensely useful in thig;asee in particular the
Art of Computer Programminlgy Knuth for background. Studies in statistical physics
(van Rensburg, and others), statistics (e.g., David antbBpand probability theory
(e.g., Billingsley, Feller), mathematical logic (Burrisbok), analytic number theory
(e.g., Tenenbaum), computational biology (Watermanthieak), as well as informa-
tion theory (e.g., the books by Cover—-Thomas, MacKay, arghSizowski) point to
many startling connections with yet other areas of sciefidee book may thus be
useful as a supplementary reference on methods and applieat courses on statis-
tics, probability theory, statistical physics, finite mbdesory, analytic number theory,
information theory, computer algebra, complex analysigralysis of algorithms.

Acknowledgements. This book would be substantially different and much less in-
formative without Neil Sloane’€ncyclopedia of Integer Sequenc&ieve Finch’s
Mathematical ConstantEric Weisstein'sMathWorld and theMacTutor History of
Mathematicssite hosted at St Andrews. All are (or at least have been a¢ stage)
freely available on the Internet. Bruno Salvy and Paul Zimmann have devel-
oped algorithms and libraries for combinatorial structua@d generating functions
that are based on the A®LE system for symbolic computations and have proven
to be extremely useful. We are deeply grateful to the autbbitbe free software
Unix, Linux, Emacs, X11, gX and BTEX as well as to the designers of the symbolic
manipulation system MPLE for creating an environment that has proved invaluable
to us. We also thank students in courses at Barcelona, BgrkEISRI), Bordeaux,
Caen, Parisfcole Polytechniquéscole Normale, University), Princeton, Santiago de
Chile, Udine, and Vienna whose feedback has greatly helpgdapare a better book.
Thanks finally to numerous colleagues for their feedbackpdrticular, we wish to
acknowledge the support, help, and interaction providemhahcredibly high level
by members of thénalysis of Algorithms (AofAJommunity, with a special mention
for Hsien-Kuei Hwang, Svante Janson, Don Knuth, Guy Loudhandrew Odlyzko,
Daniel Panario, Helmut Prodinger, Bruno Salvy, Michelei&dNojtek Szpankowski,
Brigitte Vallée, Mark Ward, and Mark Wilson. Stan Burrisjéite Janson, Loic Tur-
ban, and Brigitte Vallée especially have provided indigilguggestions and generous
feedbacks that have led us to revise the presentation ofadesgxtions of this book
and correct many errors. Finally, support of our home instihs (INRIA and Prince-
ton University) as well as various grants (French goverrtimearopean Union and
the ALcoM Project, NSF) have contributed to making our collaboratiossible.
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An invitation to Analytic
Combinatorics
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ANALYTIC COMBINATORICS is primarily a book abou€Combinatoricsthat is,
the study of finite structures built according to a finite dautes. Analyticin the title
means that we concern ourselves with methods from matheshatialysis, in partic-
ular complex and asymptotic analysis. The two fields, comoiral enumeration and
complex asymptotics, are organized into a coherent set tiads for the first time
in this book. Our broad objective is to discover how the cqumius may help us to
understand the discrete andgoantifyits properties.

COMBINATORICS is as told by its name the science of combinations. Given ba-
sic rules for assembling simple components, what are theepties of the resulting
objects? Here, our goal is to develop methods dedicatgdaatitativeproperties of
combinatorial structures. In other words, we want to measbings. Say that we
haven different items like cards or balls of different colours. how many ways
can we lay them on a table, all in one row? You certainly recgthis counting
problem—finding the number glermutation®f n elements. The answer is of course
the factorial number, ! = 1-2---n. Thisis a good start, and, equipped with patience
or ae;:alculator, we soon determine thabif= 31, say, then the number is the rather
larg

31! = 8222838654177922817725562880000000 = 0.8222838654 - 10>*.

The factorials solve an enumerative problem, one that toafkimd some time to sort
out, because the sense of the * in the formula is not that easily grasped. In his book

1 S0 their combinations with themselves and with each other igge to endless complexities, which
anyone who is to give a likely account of reality must surveé®lato speaks of Platonic solids viewed as
idealized primary constituents of the physical universe.

2Weuse& = dto represent a numerical estimation of the redly the decimad, with the last digit
being at mostt1 from its actual value.
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The Art of Computer Programmir(gol Ill, p. 23), Donald Knuth traces the discovery
to the HebrewBook of Creatior(c. A.D. 400) and the Indian classfnuyogadara-
sutra(c. A.D. 500).

Here is another more subtle problem. Assume that you aneestel in permuta-
tions such that the first element is smaller than the secbheddcond is larger than the
third, itself smaller than the fourth, and so on. The periiong go up and down and
they are diversely known as up-and-down or zigzag pernautstithe more dignified
name beinglternatingpermutations. Say that= 2m + 1 is odd. An example is for
n=29:

/8\ /7\ /9\ /3\
4 6 5 1 2
The number of alternating permutations foe 1, 3,5, ... turns out to be
1,2,16,272,7936, 353792, 22368256, . . ..

What are these numbers and how do they relate to the total@uwmhpermutations of
corresponding size? A glance at the corresponding figurasig,1!, 3!, 5!, ... or

1,6, 120, 5040, 362880, 39916800, 6227020800, . . .

suggests that the factorials grow somewhat faster—juspeo@the lengths of the last
two displayed lines. But how and by how much? This is the gypical question we
are addressing in this book.

Let us now examine the counting of alternating permutatiém$881, the French
mathematician Désiré André made a startling discouesgk at the first terms of the
Taylor expansion of the trigonometric functiom(z):
23 Pl 57 29 L1
3 + 16 =] +272 o —+ 7936 ol + 35379211! + e
The counting sequence for alternating permutations cslyasurfaces. We say that
the function on the left is generating functiofior the numerical sequence (precisely,
a generating function of thexponentiatype due to the presence of factorials in the
denominators).

André’s derivation may nowadays be viewed very simply decéng the con-
struction of permutations by means of certain binary tré&igen a permutation a
tree can be obtained oneehas been decomposed as a trifgle , max, o), by tak-
ing the maximum element as the root, and appending, as ldftight subtrees, the
trees recursively constructed fram ando k. Part A of this book develops at length
symbolic methodsy which the construction of the clagsof all such trees,

z
tanz:1ﬁ+2

7 = 1 + (7T,max,7)
translates into an equation relating generating functions
T(z) = =z + /T(w)2dw.
0

In this equation]'(z) := >, T,2"/n! is the exponential generating function of the
sequencél,, ), whereT, is the number of alternating permutations of (odd) length
There is a compelling formal analogy between the combiretepecificatiorand the
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world of generating functions: Uniong)) give rise to sums{), max-placement gives
an integral (), forming a pair of trees means taking a squaie)(
At this stage, we know thaE(z) must solve the differential equation

dilzT(z) =14+T(2)? T(0) =0,

which, by classical manipulations, yiel@§z) = tan z. The generating function then
provides a simplalgorithmto compute recurrently the coefficients, since the formula,

3 5
¢ Sin 2 Z—%'f'g—!—"'
anz_cosz_l_ﬁ_f_ﬁ_...’
o T

implies (» odd)
(n n o (_1\(n=1)/2 a :ai!
Ty (2)Tn—2 + (4) Th—y (1) , Where (b) bl(a —b)!

is the conventional notation for binomial coefficients. Aiststage, the exact enumer-
ative problem may be regarded as solved since a very simplgresnt algorithm is
available for determining the counting sequence, whilegéireerating function admits
an explicit expression in terms of a well known function.

ANALYSIS, by which we mean mathematical analysis, is often descrilseithe
art and science adpproximation How fast do the factorial and the tangent number
sequences grow? What abaamparingtheir growths? These are typical problems
of analysis.

First, consider the number of permutation§, Quantifying the growth of these
numbers as gets large takes us to the realmadymptotic analysis The way to
express factorial numbers in terms of elementary functiskaown as Stirling’s for-
mula,

nl~n"e "

2mn,

where the~ sign means “approximately equal” (in fact, in the precisessethat the
ratio of both terms tends to 1 asgets large). This beautiful formula, associated with
the name of the eighteenth century Scottish mathematieiares Stirling, curiously
involves both the basis of natural logarithms and the perimetgr of the circle.

Certainly, you cannot get such a thing without analysis. Asst step, there is an

estimate for .
logn! = Zlogj ~ / log x dz ~ nlog (2) ,
=1 ! ¢

explaining at least the™e~" term, but already requiring some amount of elementary
calculus. (Stirling’s formula precisely came a few decaafesr the fundamental bases
of calculus had been laid by Newton and Leibniz.) Note thdulsess of Stirling’s
formula: it tells us almost instantly thado! has 158 digits, whild 000! borders the
astronomical 0258,

We are now left with estimating the growth of the sequencaonfént numbers,
T,.. The analysis leading to the derivation of the generatimgtiontan(z) has been
so far essentially algebraic or “formal”. Well, we can plbetgraph of the tangent
function, for real values of its argument and see that thetfan becomes infinite
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FIGURE .1. Two views of the function — tan z: (left) a plot for real values

of z € [—5..5]; (right) the modulus$ tan z| whenz is assigned complex values in
the square-2.25 + 2.25/—1.

at the pointst 73, £33, and so on (Figure 1). Such points where a function ceases
to be smooth are callesingularities By methods amply developed in this book, it

is the local nature of a generating function at its “domifi@mgularities (i.e., the
ones closest to the origin) that determines the asymptotwity of the sequence of
coefficients. In this perspective, the basic fact thatz has dominant singularities at

+7 enables us to reason as follows: first approximate the gem@rfanctiontan z
near its two dominant singularities, namely,

8z
~ TS a2
z—+mw/2 w2 — 422

then extract coefficients of this approximation; finallyt grethis way a valid approx-
imation of coefficients:

n+1
Ly (3) (n odd)

n! n—oo T

tan(z)

With present day technology, we also have availaglabolic manipulatiosys-
tems (also called “computer algebra” systems) and it is ifbcult to verify the ac-
curacy of our estimates. Here is a small pyramidict 3,5, ..., 21,

211

16 | 15

272 | 271

7936 | 7935

353792| 353791
22368256| 22368251
1903757312 1903757267
209865342974 20986534434
29088885112832 2908888514489
4951498053124096 495149802966307

(T) €9)
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]

FIGURE .2. The collection of all binary trees for sizes= 2, 3, 4, 5 with re-
spective cardinalitie®, 5, 14, 42.

comparing the exact values ®f, against the approximatiofis;, where ¢ odd)

T = Pn! (%)HJ ,

and discrepant digits of the approximation are displaydabid. Forn = 21, the error
is only of the order of one in a billion. Asymptotic analysssm this case wonderfully
accurate.

In the foregoing discussion, we have played down a fact, anidh@ortant one.
When investigating generating functions from an analytaadpoint, one should gen-
erally assigncomplexvalues to arguments not just real ones. It is singularities i
the complex plane that matter and complex analysis is negdddawing conclu-
sions regarding the asymptotic form of coefficients of a gatireg function. Thus,

a large portion of this book relies oncamplex analysitechnology, which starts to
be developed in Part B of the book titl&bmplex AsymptoticsThis approach to
combinatorial enumeration parallels what happened in theteenth century, when
Riemann first recognized the deep relation between conguekytic properties of the
zeta function,((s) := > 1/n°, and the distribution of primes, eventually leading to
the long-sought proof of the Prime Number Theorem by Haddraad de la Vallée-
Poussin in 1896. Fortunately, relatively elementary caxjnalysis suffices for our
purposes, and we can include in this book a complete treatoféme fragment of the
theory needed to develop the bases of analytic combinatoric

Here is yet another example illustrating the close intgrfdatween combina-
torics and analysis. When discussing alternating pernomstwe have enumerated
binary trees bearing distinct integer labels that satisfgrastraint—to increase along
branches. What about the simpler problem of determiningntimaber of possible
shapesof binary trees? LeC,, be the number of binary trees that havéinary
branching nodes, henee+ 1 “external nodes”. It is not hard to come up with an
exhaustive listing for small values ef see Figure 2, from which we determine that

Co=1,C1=1,Cy =2, C3=5, Cy =14, C5 = 42.
These numbers are probably the most famous ones of elementabinatorics. They
have come to be known as ti@atalan numberss a tribute to the Belgian French

mathematician Eugéne Charles Catalan (1814-1894), buttheady appear in works
of Euler and Segner in the second half of the eighteenth oenta his reference
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treatise orEnumerative Combinatori¢Stanley lists over twenty pages a collection of
some 66 different types of combinatorial structures thaesmumerated by the Catalan
numbers.

First, one can write a combinatorial equation, very mucth@dtyle of what has
been done earlier, but without labels:

C = 0 + (Coe,0).

With symbolic methods, it is easy to see that tindinary generating functioof the
Catalan numbers defined as

C(z) = Z C,z",
n>0
satisfies an equation that is a direct reflection of the coatbimal definition, namely,
Clz) = 1 + 2C(2)2
This is a quadratic equation whose solution is
1—-—+v1—-4z
2z '

Then, by means of Newton'’s theorem relative to the expargfigh+ =)<, one finds
easily ¢ = —4z,a = %) theclosed formexpression

C. - 1 <2n)
n+1\n

Regarding asymptotic approximation, Stirling’s formutanees to the rescue: it
implies

C(z) =

Cn, ~C; where Cj := 4—
mn3
This approximation is quite usable: it predi€i$ = 2.25 (whereas’; = 1), which
is off by a factor of 2, but the error drops to 10% already:foe 10, and it appears to
be less than 1% for any > 100.

A plot of the generating functiof'(z) in Figure 3 illustrates the fact that(z) has
asingularityatz = i as it ceases to be differentiable (its derivative beconTaste).
That singularity is quite different from a pole and for naureasons it is known as
a square-root singularity. As we shall see repeatedly, uadigable conditions in
the complex plane, a square root singularity for a functiba @ointp invariably
entails an asymptotic form—"n—3/2 for its coefficients. More generally, it suffices
to estimate a generating function near a singularity in otaeleduce an asymptotic
approximation of its coefficients. This correspondencensagor theme of the book,
one that motivates the four central chapters.

A consequence of the complex-analytic vision of combiriaesds the detection of
universality phenomenia large random structures. (The term is originally borrdwe
from statistical physics and is nowadays finding increasiag in areas of mathe-
matics like probability theory.) By universality is meardrk that many quantitative
properties of combinatorial structures only depend on ad®bal features of their
definitions, not on details. For instance a growth in the tiogrsequence of the form

C-A"n_3/2,
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FIGURE .3. Left: the real values of the Catalan generating functidrich has a
square-root singularity at= i. Right: the raticC™ /(4"n~3/2) plotted together
with its asymptote at //7 = 0.56418.

arising from a square-root singularity, will be shown to leversal acrossill vari-
eties of trees determined by a finite set of allowed node @sgre¢his includes unary-
binary trees, ternary trees, 0-11-13 trees, as well as manigtions like nonplane
trees and labelled trees. Even though generating functiemsbecome arbitrarily
complicated—Ilike an algebraic function of a very high degoe even the solution to
an infinite functional equation—it is still possible to eatt with relative easglobal
asymptotic lawgjoverningcounting sequences

RANDOMNESS is another ingredient in our story. How useful is it to detiren
exactly or approximately, counts that may be so large asduire hundreds if not
thousands of digits in order to be written down? Take agarettample of alternating
permutations. When estimating their number, we have indedtified the propor-
tion of these amongst all permutations. In other words, we lieeen predicting the
probabilitythat a random permutation of some sizis alternating. Results of this sort
are of interest in all branches of science. For instancdogists routinely deal with
genomic sequences of length®, and the interpretation of data requires developing
enumerative or probabilistic models where the number o$ipdgies is of the order
of 41°°. The language of probability theory then proves a great eoi@nce when
discussing characteristic parameters of discrete siregtas we can interpret exact
or asymptotic enumeration results as saying somethingretsmabout the likeliness
of values that such parameters assume. Equally importatwte are results from
several areas of probability theory: as demonstrated itatiee sections of this book,
such results merge extremely well with the analytic-coratonial framework.

Say we are now interested in runs in permutations. Theseharngest frag-
ments of a permutation that already appear in (increasioge¢d order. Here is a



8 AN INVITATION TO ANALYTIC COMBINATORICS

permutation where runs have been separated by vertical bars
258(39|147|6].

Runs naturally present in a permutation are for instancéoérd by a sorting algo-
rithm called “natural list mergesort”, which builds longand longer runs, starting
from the original ones and merging them until the permutaisoeventually sorted.
For our understanding of this algorithm, it is then of ob#dnterest to quantify how
many runs a permutation is likely to have.

Let A,, ;; be the number of permutations of sizéavingk runs. Then, the prob-
lem is once more best approached by generating functionsrantinds that the coef-
ficient of u* 2" inside thebivariategenerating function,

2 3

1—wu P 2,
T ooy — Ltaut grlut Dt (@’ dut 1)+

gives the sought numbers, /n!. (A simple way of establishing this formula bases
itself on the tree decomposition of permutations and on yngbslic method.) From
there, we can easily determine effectively the mean, vaeaand even the higher
moments of the number of runs that a random permutation hasffices to expand
blindly, or even better with the help of a computer, the hat@ generating function
above as: — 1:

1 12(2-2)

[ R Ta A R
Whenu = 1, we just enumerate all permutations: this is the constamt t¢(1 — z2)
equal to the exponential generating function of all permiomes. The coefficient of
u — 1 gives the generating function of ttleannumber of runs, the next one gives
access to the second moment, and so on. In this way, we didt@tehe expectation
and standard deviation of the number of runs in a permutafisizen evaluate to

_n+1 _/n+1

Then by easy analytic-probabilistic inequalities (Chétmysinequalities) that other-
wise form the basis of what is known as the second moment rdettelearn that the
distribution of the number of runs is concentrated arousdriean: in all likelihood,
if one takes a random permutation, the number of its runsiisggo be very close to
its mean. The effects of such quantitative laws are quitgitde. It suffices to draw a
sample of one elemefdr n = 30 to get something like

13,22, 29|12, 15, 23|8, 28|18]6, 26|4, 10, 16|1, 27|3, 14, 17, 20|2, 21, 30|25|11, 19|97, 24.
Forn = 30, the mean i§5%, and this sample comes rather close as it has 13 runs.
We shall furthermore see in Chapter IX that even for modér#dege permutations
of size 10,000 and beyond, the probability for the numbersieoved runs to deviate
by more than 10% from the mean is less than®. As witnessed by this example,
much regularity accompanies properties of large combitatstructures.

More refined methods combine the observation of singutaritiith analytic re-

sults from probability theory (e.g., continuity theorenas €Eharacteristic functions).
In the case of runs in permutations, the quanfityz, u) viewed as a function of

2 -4 2
12O
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FIGURE .4. Left: A partial plot of the real values of the inversgF'(z, u)

for u = 0.1..2, with F' the bivariate generating function of Eulerian numbers,
illustrates the presence of a movable pole ForRight: A diagram showing the
distribution of the number of runs in permutations fo& 6 . . 60.

whenw is fixed appears to have a pole: this fact is apparent on Figfileft] since
1/F has a zero at some = p(u) wherep(l) = 1. Then we are confronted with
a fairly regulardeformationof the generating function of all permutations. A pa-
rameterized version (with parametér of singularity analysis then gives access to a
description of the asymptotic behaviour of the Eulerian barsA,, ;.. This enables
us to describe very precisely what goes on: In a random patioatof large sizes,
once centred by its mean and scaled by its standard devi#ttiewlistribution of the
number of runs is asymptotically gaussiaee Figure 4 [right].

A somewhat similar type of situation prevails for binaryese despite the fact
that the counting sequences and the counting generatietjdas look rather differ-
ent from their permutation counterparts. Say we are intedeis leaves (also some-
times known as “cherries”) in trees: these are binary nodasare attached to two
external nodestf). Let C,, , be the number of trees of sizehavingk leaves. The
bivariate generating functiofi(z, u) := >_,, , C,.12"u” encodes all the information
relative to leaf statistics in random binary trees. A modiiicn of previously seen
symbolic arguments shows th@f z, «) still satisfies a quadratic equation resulting in
the explicit form,

1—+/1—4z4+422(1 —u
C(z,u) = v o0 ( )

This reduces taC(z) for v = 1, as it should, and the bivariate generating func-
tion C(z,u) is a deformation ofC(z) asw varies. In fact, the network of curves
of Figure 5 for several fixed values ofshows that there is a smoothly varying square-
root singularity. It is possible to analyse therturbationinduced by varying values
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z

FIGURE .5. Left: The bivariate generating functiéi( z, u) enumerating binary
trees by size and number of leaves exhibits consistentlyarseroot singularity
as a function ok for several values of. Right: a binary tree of size 300 drawn
uniformly at random has 69 leaves or “cherries”.

of u, to the effect tha€(z, u) is of the global analytic type
Au) -

for some analytic\(u) andp(u). The already evoked process of singularity analysis
then shows that the probability generating function of themher of leaves in a tree
of sizen satisfies an approximation of the form

(%) | (%) (1+0(1)).

This “quasi-powers” approximation thus resembles very mtiee probability
generating function of a sum ef independent random variables, a situation that re-
sorts to the classical Central Limit Theorem of probabititgory. Accordinglythe
limit distribution of the number of leaves in a large tree iauasian In abstract terms,
the deformation induced by the secondary parameter (Hereumber of leaves, pre-
viously, the number of runs) is susceptible toaturbation analysisto the effect that
a singularity gets smoothly displaced without changing@tire (here, a square root
singularity, earlier a pole) and a limit law systematicakgults. Again some of the
conclusions can be verified even by very small samples: tigdesiree of size 300
drawn at random and displayed in Figure 5 has 69 cherrieg\witd expected value
of this number is= 75.375 and the standard deviation is a little over 4. In a large
number of cases of which this one is typical, we finétric lawsof combinatorial
structures that govern large structures with high proltgiaind eventually make them
highly predictable.

Such randomness properties form the subject of Part C obtuk dedicated to
random structures As our earlier description implies, there is an extremerele®f
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Combinatorial Structure§

SYMBOLIC METHODS (Part A)
[—> Exact counting
Generating Functions, OGF, EGF Multivariate Generating Functions, MGF
Chapters |, Il Chapter Ill
COMPLEX ASYMPTOTICS (Part B) RANDOM STRUCTURES (Part C)
Singularity Analysis Multvariate Asymptotics and Limit Laws
Chapters IV, V, VI, VII Chapter IX
Saddle Point Classical Structures
Chapter VIII Chapter X
[Asymptotic counting, moments of paramete}s [Limit laws, large deviationsj

FIGURE .6. The logical structure dhnalytic Combinatorics

generality in this analytic approach to combinatorial paegers, and after reading this
book, the reader will be able to recognize by herself dozésaah cases at sight, and
effortlessly establish the corresponding theorems.

A RATHER ABSTRACT VIEWof combinatorics emerges from the previous discus-
sion; see Figure 6. A combinatorial class, as regards itmenative properties, can
be viewed as aurface in four-dimensional real spacthis is the graph of its gener-
ating function, considered as a function from the@et R? of complex numbers to
itself, and is otherwise known as a Riemann surface. Thissaihas “cracks”, that
is, singularities which determine the asymptotic behaviour of the counteguence.
A combinatorial construction (like forming freely sequescsets, and so on) can then
be examined based on the effect it has on singularities.isnithy, seemingly differ-
ent types of combinatorial structures appear to be sulgemirnmon lawgoverning
not only counting but also finer characteristics of comhonat structures. For the
already discussed case of universality in tree enumegtaditional universal laws
valid across many tree varieties constrain for instancghtéivhich, with high prob-
ability, is proportional to the square-root of size) and tloenber of leaves (which is
invariably normal in the asymptotic limit).

Next, the probabilistic behaviour of a parameter of a coratairial class is fully
determined by a bivariate generating function, which is #ogheation of the basic
counting generating function of the class. (In the senstdbating the secondary
variableu to 1 erases the information relative to the parameter andsléack to
the univariate counting generating function.) Then, dasgmptotic distributiorof a
parameter of interest is characterized by a collection dases, each having its own
singularities. The way the singularities’ locations movéh®ir nature changes under
deformation encodes all the necessary information reggrifiie distribution of the
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parameter under consideration. Limit laws for combinalqrarameters can then be
obtained and the corresponding phenomena can be organiredroad categories,
calledschemaslt would not be conceivable to attain such a far-reachiagsification
of metric properties of combinatorial structures by eletagnreal analysis alone.

OBJECTStO which we are going to inflict the treatments just descriimetlide
many of the most important ones of discrete mathematics,thés ones that surface
recurrently in several branches of the applied scienceshat thus encounter words
and sequences, trees and lattice paths, graphs of varidasrsappings, allocations,
permutations, integer partitions and compositions, aatgl maps, to name a few.
In most cases, their principal characteristics will be firgghantified by the methods
of analytic combinatorics; see our concluding Cha@®for a summary. This book
indeed develops a coherent theory of random combinataniedteres based on a pow-
erful analytic methodology. Literally dozens of quite dise combinatorial types can
then be treated by a logically transparent chain. You witlfimal ready-made answers
to all questions in this book, but, hopefulmethodghat can be successfully used to
address a greabanyof them.



Part A

SYMBOLIC METHODS






Combinatorial Structures and
Ordinary Generating Functions

Laplace discovered the remarkable correspondence between
set theoretic operations and operations on formal powérsser
and put it to great use to solve a variety of combinatoriabfgms.
— GIAN—CARLO ROTA [414]
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This chapter and the next are devoted to enumeration, whengrbblem is to deter-
mine the number of combinatorial configurations describgefirite rules, and do so
for all possible sizes. For instance, how many differentdgare there of length 177?
of lengthn, for generaln? These questions are easy, but what if some constraints
are imposed, e.g., no four identical elements in a row? Thatiog sequences are
exactly encoded bgenerating functionsand, as we shall segenerating functions
are the central mathematical objeof combinatorial analysis. We examine here a
framework that, contrary to traditional treatments basedezurrences, explains the
surprising efficiency of generating functions in the sauotof combinatorial enumer-
ation problems.

This chapter serves to introduce thanbolicapproach to combinatorial enumer-
ations. The principle is that many general set-theomitstructionsadmit a direct
translation as operations over generating functions. phigiple is made concrete
by means of a dictionary that includes a collection of conestauctions, namely the
operations of union, cartesian product, sequence, setjsetuland cycle. Supple-
mentary operations like pointing and substitution can ke &k similarly translated.
In this way, alanguagedescribing elementary combinatorial classes is define@ Th
problem of enumerating a class of combinatorial structtines simply reduces to
finding a propespecificationa sort of program for the class expressed in terms of the
basic constructions. The translation into generatingtions then becomes a purely
mechanical symbolic process.

We show here how to describe integer partitions and comiposiin such a con-
text, as well as several basic string and tree enumeratioiolgms. A parallel ap-
proach, developed in Chapter I, applies to labelled objant exponential generating

15
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functions—in contrast the plain structures consideredig ¢chapter are calledgnla-
belled The methodology is susceptible to multivariate extersiwith which many
characteristic parameters of combinatorial objects caa bk analysed in a unified
manner: this is to be examined in Chapter Ill. The symbolithoé also has the great
merit of connecting nicely with complex asymptotic methdttakst exploit analyticity
properties and singularities, to the effect that precigenggotic estimates are usually
available whenever the symbolic method applies—a systernmaatment of these as-
pects forms the basis of Part B of this bdd&mplex Asymptotiq€hapters IV=VIII).

I.1. Symbolic enumeration methods

First and foremost, combinatorics deals wdikcrete objectshat is, objects that
can be finitely described by construction rules. Exampleswards, trees, graphs,
permutations, allocations, functions from a finite set iitdelf, topological configu-
rations, and so on. A major question isapumeratesuch objects according to some
characteristic parameter(s).

Definition I.1. A combinatorial clagsor simply aclass is a finite or denumerable set
on which asizefunction is defined, satisfying the following conditions:

(7) the size of an element is a nonnegative integer;
(i¢) the number of elements of any given size is finite.

If Ais a class, the size of an elementc A is denoted byal, or |a| 4 in the
few cases where the underlying class needs to be made éxglidien a classA,
we consistently let4,, be the set of objects il that have size: and use the same
group of letters for the countd,, = card(.A4,,) (alternatively, alsai,, = card(A4,)).
An axiomatic presentation is then as follows: a combinataiass is a paifA, | - |)
where A is at most denumerable and the mapping € (A — N) is such that the
inverse image of any integer is finite.

Definition 1.2. Thecounting sequencef a combinatorial class is the sequence of
integers(A4,),>0 where A,, = card(A,) is the number of objects in clas$ that
have sizen.

ExamPLE I.1. Binary words.Consider first the séty of binary words, which are words over
the binary alphabett = {0,1},

w .= {e 0,1, 00, 01, 10, 11, 000, 001, 010,..., 1001101, ...},

with e the empty word. Define size to be the number of letters a wondpecises. There are
two possibilities for each letter and possibilities muitjso that the counting sequent#’,,)
satisfies

W, =2".

(This sequence has a well-known legend associated witmtieation of the game of chess: the
inventor was promised by his king one grain of rice for thet iguare of the chessboard, two
for the second, four for the third, and so on. The king nalyiauld not deliver the promised
203 grains!) ... i END OF EXAMPLE 1.1.
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EXAMPLE 1.2. PermutationsThe setP of permutations is
P ={...12,21,123, 132, 213, 231, 312, 321, 1234,, 532614, ... },

since a permutation df, := [1..n] is a bijective mapping that is representable by an array,

1 2 n
0'1 0'2 ... U’n, )

or equivalently by the sequenegos - - - o, Of distinct elements fronT,,. Let us define the
size of a permutation to be its length, For a permutation written as a sequence afistinct
numbers, there are places where one can accommodatehenn — 1 remaining places for
n — 1, and so on. Therefore, the numbRy of permutations of size satisfies

P,=nl=1-2---n.

As indicated in our Invitation chapter, this formula hastkeown for a long time: Knuth307,
p. 23] refers to the Hebre\Book of Creation(c. A.D.. 400), and to théAnuyogadv arasutra
(India, c.A.D. 500) for its discovery. .............c.ccovviiin.. NE& OF EXAMPLE 1.2. [

ExAMPLE 1.3. Triangulations. The class7 of triangulations comprises triangulations of
convex polygonal domains which are decompositions intecaarlapping triangles (taken up
to continuous deformations of the plane). Let us define the sf a triangulation to be the
number of triangles it is composed of. For the purpose of teegnt discussion, the reader may
content herself with what is suggested by Figure 1; the fbspeacification of triangulations
appears on p. 33. It is a nontrivial combinatorial result tu&uler and Segner around 1750
that the numbeT’, of triangulations is

1 n\  (2n)!
@ Tn_n+1<n>_(n+1)!n!'

Following Euler [L56], the counting of triangulationsT{,) is best approached by generat-
ing functions: the modified binomial coefficients so obtdirere known as Catalan num-
bers (see the discussion p. 33) and are central in combialatoralysis (Section I.5.3).
END OF EXAMPLE 1.3. 0

Although the previous three examples are simple enougb,generally a good
idea, when confronted with a combinatorial enumeratiorblenm, to determine the
initial values of counting sequences, either by hand oebetith the help of a com-
puter, somehow. Here, we find:

n 01 2 3 4 5 6 7 8 9 10
) Wh 1 2 4 8 16 32 64 128 256 512 1024
P, 1 1 2 6 24 120 720 5040 40320 362880 3628800
T, 1 1 2 5 14 42 132 429 1430 4862 16796

Such an experimental approach may greatly help identifyeseces. For instance, had
we not known the formula (1) for triangulations, observimgumusual factorization
like

Ty =2%-5-7"-11-23-43-47-53-59-61-67-71-73- 79,
which contains all prime numbers from 43 to 79, would quigbiyt us on the tracks
of the right formula. There even exists nowadays a hhgeyclopedia of Integer
Sequencedue to Sloane that is available in electronic fod8§ (see also an earlier
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book by Sloane and Plouffd4(d). Indeed, the three sequendég,,), (P,,), and(T},)
are respectively identifiédisEISA000079 EISA000142 andEISA000108

> I.1. NecklacesHow many different types of necklace designs can you fornh wibeads,
each having one of two colours,ande? Here are the possibilities far= 1, 2, 3,

2+ QOO OO0

and it is postulated that orientation matters. This is emaivt to enumerating circular arrange-
ments of two letters and an exhaustive listing program caraled on the smallest lexicograph-
ical representation of each word, as suggested by (17) bélbe counting sequence starts as
2,3,4,6,8,14, 20, 36, 60, 108, 188, 352 and constitute€lS AO00031 [An explicit formula
appears later in this chapter (p. 60).] What if two necklaesighs that are mirror images of
one another are identified? <

> 1.2. Unimodal permutationsSuch a permutation has exactly one local maximum. In other
words it is of the formy - - -0, With o1 < 02 < -+ < o =nandox =n > o1 > -+ >
on, for somek > 1. How many such permutations are there of si2eForn = 5, the number
is 16: the permutations are 12345, 12354, 12453, 12543,21348542, 14532 and 15432 and
their reversals. [Due to Jon Perry, 465 A000079] <

It is also of interest to note that words and permutationdccbe enumerated
using the most elementary counting principles, namelyfifitte sets3 andC

cardBUC) = card(B) + card(C) (providedB N C = 0)
card(BxC) = card(B)-card(C),

3)

We shall see soon that these principles, which lie at thestdgdur very concept of
number, admit a powerful generalization (Equation (16pte!

Next, for combinatorial enumeration purposes, it provasveaient to identify
combinatorial classes that are merely variant of one anothe

Definition 1.3. Two combinatorial classed and B are said to be (combinatorially)
isomorphic¢ which is writtenA = B, iff their counting sequences are identical. This
condition is equivalent to the existence of a bijection frdrto 5 that preserves size,
and one also says that and B are bijectively equivalent

We normally identify isomorphic classes and accordinglypkya plain equality
sign (4 = B). We then confine the notatio# = B to stress cases where combinato-
rial isomorphism results some nontrivial transformation.

Definition 1.4. Theordinary generating functiofOGF) of a sequencé4,,) is the
formal power series

4 A(z) = i A"
n=0

Theordinary generating functiofODGF) of a combinatorial clasgl is the generating
function of the numberd,, = card(.A,,). Equivalently, the OGF of clasd admits

1Throughout this book, a reference lildS Axxx points to Sloane'€ncyclopedia of Integer Se-
quenceg439. The data base contains more than 100,000 entries.
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FIGURE |.1. The classT of all triangulations of regular polygons (with size defiras
the number of triangles) is a combinatorial class. The dogrgequence starts as
To=1,T1=1 T =2, T3 =5, Ty = 14, Ts = 42.

1—+1—-4z
2z
(2:) These numbers are known as a&talan numbergp. 33).

Euler determined the OGF(z) = >, Tnz" asT(z) =

1
n+1

, from which there
results thafl;, =

thecombinatorial form

(5) A(z) =) 2l

acA

It is also said that the variable markssize in the generating function.

The combinatorial form of an OGF in (5) results straightfardly from observing
that the term:™ occurs as many times as there are objectd maving sizen.

Naming convention.We adhere to a systematiaming conventiarclasses, their
counting sequences, and their generating functions atersgsically denoted by the
same groups of letters: for instancé for a class{A4,} (or {a,}) for the counting
sequence, and(z) (or a(z)) for its OGF.

Coefficient extraction.We let generallyz"] f (z) denote the operation of extract-
ing the coefficient ot™ in the formal power serieg(z) = > f.z", so that

(6) [Zn] Z fnzn - fn-

n>0

(The coefficient extractde”] f(z) reads as “coefficient of* in f(z)".)
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FIGURE I.2. A molecule, methylpyrrolidinyl-pyridine (nicotine), is@mplex assem-
bly whose description can be reduced to a single formulaesponding here to a total of
26 atoms.

The OGFs corresponding to our three examplésP, 7 are then

= 1
W(z) nz:; ‘ 1- 22
(7) P(z) = Z nlz"
n=0
T() = Z 1 <2n)z” _ 1—\/1—42.
= +1\n 2z

The first expression relative & (z) is immediate as it is the sum of a geometric pro-
gression; The second generating functifx) is not related to simple functions of
analysis. (Note that the expression makes sense withirtribefsamewok of formal
power series; see ®PENDIX A: Formal power seriesp. 676.) The third expression
relative toT'(z) is equivalent to the explicit form df,, via Netwon’s expansion of
(14 z)'/2 (p. 33). The OGF$V () andT'(z) can then also be interpreted as stan-
dard analytic objects, upon assigning to the formal vagiablalues in the complex
domainC. In effect, the serie§V(z) andT'(z) converge in a neighbourhood 6f
and represent complex functions that are well defined neaotigin, namely when
|z| < § for W(z) and|z| < 1 for T'(z). The OGFP(z) is a purely formal power
series (its radius of convergence is 0) that can nonethblessibjected to the usual
algebraic operations of power series. As a matter of fadt) wery few exceptions,
permutation enumeration is most conveniently approaclexkponential generating
functions developed in Chapter II.

Combinatorial form of GFs. The combinatorial form (5) shows that generating
functions are nothing but a reduced representation of thebawatorial class, where
internal structures are destroyed and elements contnilptdisize (atoms) are replaced
by the variablez. In a sense, this is analogous to what chemists do by wriiegt
reduced formulae for complex molecules (Figure 2). Greatfishis observation was
made by Schitzenberger as early as the 1950’s and 196@plHins in many ways
why so many formal similarities are to be found between coratwirial structures and
generating functions.
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FIGURE |.3. A finite family of graphs and its eventual reduction to a getiag function.

Figure 3 provides a combinatorialillustration: start watfinite) family of graphs
‘H, with size taken as the number of vertices. Each vertex ih gaaph is replaced
by the variablez and the graph structure is “forgotten”; then the monomialses
sponding to each graph are formed and the generating funitiinally obtained
by gathering all the monomials. For instance, there are Bhyraf size4 in H,
in agreement with the fact thét*|H(2) = 3. If size had been instead defined by
number of edges, another generating function would havdtegs namely, withy
marking the new sizel + y + y? + 2y% + y* + ¢®. If both number of vertices
and number of edges are of interest, then a bivariate gémgfanction,H (z,y) =
2+ 22y + 22y% + 233 + 2% + 24yt + 245, such multivariate generating functions
are developed systematically in Chapter IlI.

A path often taken in the literature is to decompose the ttras to be enu-
merated into smaller structures either of the same type emgbler types, and then
extract from such a decompositicecurrence relationsatisfied by thg A, }. In this
context, the recurrence relations are either solved djreavhenever they are simple
enough—or by means afd hocgenerating functions, introduced as a mere technical
artifice.

By contrast, in the framework to be described, classes obawatorial structures
are builtdirectly in terms of simpler classes by means of a collection of el¢argn
combinatorialconstructions (This closely resembles the description of formal lan-
guages by means of grammars, as well as the constructiorucfigted data types in
programming languages.) The approach developed here bagdrenedsymbolic as
it relies on a formal specification language for combinaisiructures. Specifically,
it is based on so—calleddmissible constructionthat admit direct translations into
generating functions.

Definition I.5. Assume tha® is a construction that associates to a finite collection
of classes®3,C, - - - a new class

A:=9[B,C,.. ],

in a finitary way: eachA,, depends on finitely many of thé;}, {C;},.... Then
® is admissibleiff the counting sequencg4,, } of A only depends on the counting
sequence$B;}, {C;},...of B,C, ..., and for some operatdf on sequences:

{An} =E[B; 1 {C5} - ).
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In that case, since generating functions are determinedhdiy toefficient se-
guences, there exists a well defined operdéttnanslating= on the associated ordinary
generating functions

A(z) = U[B(z),C(z),...].

As an introductory example, take the construction of categroduct.

Definition 1.6. The cartesian product construction of two clasgeandC forms or-
dered pairs,

(8) A=BxC iff A={a=(B7)|seB, yel},
with the size of a paite = (8, v) being defined by
9) laa = 18] + [le-

By considering all possibilities, it is immediately seeattthe counting sequences
corresponding to4, B, C are related by the convolution relation

(10) Ap = BpCp_y.
k=0

We recognize here the formula for a product of two power sefi@erefore,
(11) A(z) = B(z) - C(2).
Thus, the cartesian product is admissilflecartesian product translates as a product

of OGFs
Similarly, let A4, B, C be combinatorial classes satisfying

(12) A=BUC, with BNC =0,
with size defined in a consistent manner: o€ A,
(13) jwla = { s el
lwle ifwelC.
One has
(14) A, = By, + Cy,
which, at generating function level, means
(15) A(z) = B(z) + C(z).
Thus,a union of sets translates as a sum of generating functiomgged the sets are
disjoint.

The correspondences provided by (8)—(11) and (12)—-(1=warenarized by the
dictionary

(16) A=BUC = A(z)=B(2)+C(z) (providedBNC = 0)
A=BxC = A(z)=DB(z)-C(z)

(Compare with the plain arithmetic case of (3).) Their misrithat they can be stated
as general-purpose translation rules that only need tothbleshed once and for all.
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As soon as the problem of counting elements of a union of idisgets or a cartesian
productis recognized, it becomes possible to dispensgathier with the intermediate
stages of writing explicitly coefficient relations or repemces like in (10) or (14). This
is the spirit of the symbolic method for combinatorial enuations. Its interest lies
in the fact that several powerful set-theoretic constondiare amenable to such a
treatment.

I.2. Admissible constructions and specifications

The main goal of this section is to introduce formally theibasnstructionghat
constitute the core of a specification language for combnietstructures. This core
is based on disjoint unions, also known as combinatoriaksamd on Cartesian prod-
ucts that we have just discussed. We shall augment it by th&tretions of sequence,
cycle, multiset, and powerset. A classcisnstructibleor specifiablef it can be de-
fined from primal elements by means of these constructions.generating function
of any such class satisfies functional equations that carahedribed systematically
from a specification; see Theorems I.1 and 1.2, as well asr€igjd at the end of this
chapter for a summary.

I.2.1. Basic constructions.First, we assume given a claS<alled theneutral
classthat consists of a single object of size 0; any such objectzef 8@ is called a
neutral objectand is usually denoted by symbols likeor 1. The reason for this
terminology becomes clear if one considers the combirateomorphism

AZEXAZAXE.

We also assume as givenatomic classZ comprising a single element of size 1;
any such element is called an atom; an atom may be used taleaageneric node
in a tree or graph, in which case it may be represented by ke ¢wor o), but also a
generic letter in a word, in which case it may be instantiaed, b, ¢, . . .. Distinct
copies of the neutral or atomic class may also be subscripteddices in various
ways. Thus, for instance we use the clas8gs= {a}, 2, = {b} (with a, b of size 1)
to build up binary words over the alphabjet, b}, or Z, = {e}, Z, = {o} (with e, 0
taken to be of size 1) to build trees with nodes of two coloSimilarly, we introduce
&q, &1, & to denote a class comprising the neutral objects,, €5 respectively.

Clearly, the generating functions of a neutral clésand an atomic clasg are

E(z) =1, Z(z) =z,

corresponding to the unit, and the variable, of generating functions.

Combinatorial sum (disjoint union). First considecombinatorial sunalso known
asdisjoint union The intent is to capture the union of disjoint sets, but withthe
constraint of any extraneous condition of disjointness. f@venalize the (combina-
torial) sum of two classeB andC as the union (in the standard set—theoretic sense)
of two disjoint copies, say3” andC?, of B andC. A picturesque way to view the
construction is as follows: first choose two distinct cokand repaint the elements of
B with theO-colour and the elements Gfwith the &-colour. This is made precise by
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introducing two distinct “markersts and<, each a neutral objecté., of size zero);
the disjoint union3 + C of B, C is then defined as the standard set-theoretic union,

B+C:=({0} x B)U({O} xC).

The size of an object in a disjoint unioh = B + C is by definition inherited from its
size in its class of origin, like in Equation (13). One goodsen behind the defini-
tion adopted here is that the combinatorial sum of two clssawayswell-defined.
Furthermore, disjoint union is equivalent to a standar@nmvhenever it is applied to
disjoint sets.

Because of disjointness, one has the implication

A=B+C = A,=B,+C, = A(z)=DB(2)+C(2),

so that disjoint union is admissible. Note that, in contratstndard set-theoretic union
is not an admissible construction since

card(B, UC,,) = card(B,,) + card(C,) — card(B,, NCy),

and information on the internal structure 8fandC (i.e., the nature of this intersec-
tion) is needed in order to be able to enumerate the elemétiteiounion.

Cartesian product.This constructiond = B x C forms all possible ordered pairs
in accordance with Definition 1.6. The size of a pair is ob¢giradditively from the
size of components in accordance with (9).

Next, we introduce a few fundamental constructions thdtlhypon set-theoretic
union and product, and form sequences, sets, and cyclese Twsverful construc-
tions suffice to define a broad variety of combinatorial strtes.

Sequence constructionlf C is a class then theequencelass &Q(C) is defined
as the infinite sum

SEQIC) ={e} +C+(CxC)+(CxCXxC)+---
with € being a neutral structure (of size 0). (The neutral strgctarthis context
plays a rdle similar to that of the “empty” word in formal guage theory, while
the sequence construction is somewhat analogous to thadar operation {");
see APPENDIX A: Regular languagesp. 678.) It is then readily checked that the
constructiond = SEQ(C) defines a proper class satisfying the finiteness condition fo
sizes if and only iC contains no object of siz& From the definition of size for sums
and products, there results that the size of a sequence éstakbn as the sum of the
sizes of its components:

v=(ona) = = el 4+ ad.

Cycle construction.Sequences taken up to a circular shift of their components
define cycles, the notation being'€(5). Precisely, one has

Cyc(B) := SEQ(B)/S,
wheresS is the equivalence relation between sequences defined by
(ala"'aar)s(ﬁla"'aﬁr)

iff there exists someircular shift~ of [1.. 7] such that for allj, 3; = a(;); in other
words, for somel, one has3; = a4 (j+4) mod - Here is for instance a depiction of
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the cycles formed from the 8 and 16 sequences of lengths 3 amdr4wo types of
objects ¢, b): the number of cycles is 4 (for = 3) and 6 (forn = 4). Sequences are
grouped into equivalence classes according to the rel&tion

aaaa
aaa aaab aaba abaa baaa
17 aab aba baa aabb abba bbaa baab
a7 abb bba bab abab baba
bbb abbb bbbb% é)é)ab babb

According to the definition, this construction correspotoihe formation of directed
cycles. We make only a limited use of it for unlabelled olgetiowever, its counter-
part plays a rather important role in the context of laltbiructures and exponential
generating functions.

Multiset construction. Following common mathematical terminologyultisets
are like finite sets (that is the order between element doesawmt), but arbitrary
repetitions of elements are allowed. The notatioplis= MSET(B) when A is ob-
tained by forming alfinite multisets of elements froi. The precise way of defining
MSET(B) is as a quotient:

MSET(B) := SEQ(B)/R with R,

the equivalence relation of sequences being definetbby. .., o, )R (51,...,6:)

iff there exists somarbitrary permutatioro of [1..r] such that for allj, 3; = a,;).
Powerset constructionThe powersefclass (or set class) = PSET(B) is de-

fined as the class consisting of fillite subsets of clas8, or equivalently, as the class

PSET(B) ¢ MSET(B) formed of multisets that involve no repetitions.

We again need to make explicit the way the size function ismedfivhen such
constructions are performed: like for products and secegrtbe size of a composite
object—set, multiset, or cycle—is defined as the sum of thessdf its components.

> 1.3. The semi-ring of combinatorial classeklnder the convention of identifying isomor-
phic classes, sum and product acquire pleasant algebigenies: combinatorial sums and
cartesian products become commutative and associativatapes, e.g.,

(A+B)+C=A+(B+C), Ax(BxC)=(AxB)xC,

while distributivity holds,( A+ B) x C = (AxC)+(BxC). The proofs are simple verifications
from the definitions. <

> I.4. Natural numbers.Let Z := {e} with e an atom (of size 1). Thefi = SEQ(Z) \
{¢} is a way of describing natural integers in unary notatin= {e, ee, eee ...}. The
corresponding OGF i8(z) = z/(1 —2) =z + 2> + 2> + - - -. <
D> L.5. Interval coverings. Let Z := {e} be as before. Thedl = Z + (Z x 2) is a set of

two elementse and(e, e), which we choose to draw g9, e—e}. ThenC = SEQ(.A) contains
elements like

. 00 00 009 000 0009 000 0.

With the notion of size adopted, the objects of sizen C = SEQ(Z + (£ x Z)) are (isomor-
phic to) thecoveringsof the interval[0, n] by intervals (matches) of length either 1 or 2. The
generating function,

C2) =142422"+32° +52" +82° +132° + 212" +342° +552° + - |
is, as we shall see shortly (p. 40), the OGF of Fibonacci nusabe <
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I.2.2. The admissibility theorem for ordinary generating functions. This sec-
tion is a formal treatment of admissibility proofs for thenstructions we have consid-
ered. The final implication is that any specification of a ¢ardible class translates
directly into generating function equations. The cyclestarction involves the Eu-
ler totient functionp(k) defined as the number of integerg[ink] that are relatively
prime tok (APPENDIX A: Arithmetical functionsp. 667).

Theorem I.1 (Admissible unlabelled constructionslhe constructions of union, carte-
sian product, sequence, multiset, powerset, and cyclelbeglmissible. The associ-
ated operators are

Sum:; A=B+C = A(z) = B(2) + C(2)
Product: A=BxC = A(z) = B(z) - C(2)
Sequence: A = SEQ(B) = A(2) = T 2(2)
_ B (k) 1
Cycle: A=Cvc(B) = A( )_;; . B T B
[[a-=m="
Multiset: A =MSET(B) = A(z)={ ™' L )
ex - Zk
b (; LBE)
H(l + 27)Bn
Powerset: A=P&ET(B) = A(z)= =t k=1
exp (Z ( 1; B(zk))
k=1

The sequence, cycle, and set translations necessitat&ghat(.

The clas€ = {e} consisting of the neutral object only, and the cl&ssonsisting of
a single “atomic” object (node, letter) of sizehave OGFs

E(z)=1 and  Z(z) = =z.

PrROOF The proof proceeds by cases, building upon what we havegest regarding
unions and products.

Combinatorial sum (disjoint union).Let A = B-+C. Since the union idisjoint,
and the size of anl—element coincides with its size Bor C, one has4,, = B, +C,
andA(z) = B(z) + C(z), as discussed earlier. The rule also follows directly from
the combinatorial form of generating functions as expreé$&se(5):

A(z) = 2;42"04 = X:lea‘ + z;z‘al = B(z) + C(2).

Cartesian Product.The admissibility result ford = B x C was considered as
an example for Definition 1.6, the convolution equation (1€3ding to the relation
A(z) = B(z)-C(z). We can offer a direct derivation based on the combinatforat
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of generating functions (5),

Az)= Sl = ST el o (Z Zm) « (Z Zw) — B(2)-C(2),
)

acA (B.y)E(BxXC BeB vee

as follows from distributing products over sums. This datitmn readily extends to an
arbitrary number of factors.

Sequence constructionAdmissibility for A = SEQ(B) (with By = () follows
from the union and product relations. One has

A={e}+B+BxB)+(BxBxB)+---,

so that
1

1—-B(2)’
where the geometric sum converges in the sense of formalsasies sinc€:"|B(z) =
0, by assumption.
Powerset constructionLet A = PSET(B) and first takes to be finite. Then, the
classA of all the finite subsets df is isomorphic to a product,

PsET(B) = [ ({e} + {8})
BeB
with ¢ a neutral structure of sizé Indeed, distributing the products in all possible
ways forms all the possible combinations, i.e., sets, ohelgs of3 with no repetition
allowed, by reasoning similar to what leads to such an itkeat
I4+a)(1+4b)(1+c)=1+]a+b+c]+ [ab+ bc+ ac| + abe,

where all combinations of variables appear. Then, direftdyn the combinatorial
form of generating functions and the sum and product ruledijmd

A(z) = [T +21%) =+ ="
BeB n
Theexp-log transformatiom(z) = exp(log A(z)) then yields

A(z) =1+ B(2) + B(2)? + B(z)> + - - -

A(z) = exp (i B, log(1+ z”))
n=1
(18) = exp (i B, - i(—l)klzkﬁ)
_ eXp(ﬁ?) - ﬁ(?) . B(;3) - )
where the second line results from expanding the logarithm,
log(l—f—u):%—%z—i—%s—---,

and the third line results from exchanging the order of sutiona
The proof finally extends to the case Bfbeing infinite by noting that eacH,,
depends only on thosB; for which j < n, to which the relations given above for



28 I. UNLABELLED STRUCTURES AND ORDINARY GENERATING FUNCEON
the finite case apply. Precisely, Bt=™) = 37" | B; and A=™) = PET(B(E™),
Then, withO(z™*1) denoting any series that has no term of degtee, one has

A(z) = AS™ () +0(z")  and  B(z) = BE™(2) + 0(z").
On the other handd (=) (z) and B(=™)(z) are connected by the fundamental expo-
nential relation (18) , sincB(=™) s finite. Lettingm tend to infinity, there follows in

the limit 5 B2 Bl
A(z):exp< () BE) <z>__,_>.

1 2 3
(See APENDIX A: Formal power serigsp. 676 for the definition of formal conver-
gence.)
Multiset construction. First for finite B (with By = ), the multiset classA =
MSET(B) is definable by

MSET(B) = [] SEQ({8})-
geB
In words, any multiset can be sorted, in which case it can e&ed as formed of a
sequence of repeated elemefts followed by a sequence of repeated eleméhts
wheregy, (2, . .. is a canonical listing of the elements Bf The relation translates
into generating functions by the product and sequence,rules

[[Ta-2)"" = J[a-="="

BeB n=1

exp (Z B, log(1 — z”)l)
n=1

B(x)  B(z*)  B(")
= exp( 1 _|- 2 _|_ 3 + e ,
where the exponential form results from the exp-log tramsfdgion. The case of an
infinite classB follows by a continuity argument analogous the one useddasmgpsets.
Cycle construction.The translation of the cycle relatioh = Cyc(B) turns out
to be

A(z)

= ok 1
AR =D wgg oy 1— B(zF)’
k=1

wherep(k) is the Euler totient function. The first terms, wifty(z) := log(1l —
B(z*))~! are
Az) = %L1(z) + %Lz(z) + ng(z) + %L4(z) + %Ls(z) + %LG(Z) +---
We defer the proofto APENDIX A: Cycle constructionp. 674, since it relies in part
on multivariate generating functions to be officially irdueced in Chapter 111 O
The results for sets, multisets, and cycles are particases of the well known
Poélya theorythat deals more generally with the enumeration of objectietgroup
symmetry actions395, 397. This theory is exposed in many textbooks, see for in-
stance 98, 259. The approach adopted here consists in considering samediLisly
all possible values of the number of components by meansvafibte generating
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functions. Powerful generalizations within the theory pésies are presented in the
book by Bergeron, Labelle, and Lerousq.
> 1.6. Vallée’s identity. Let M = MSET(C), P = PSET(C). Separating elements of
according to the parity of the number of times they appeamubiiset gives rise to the identity
M(z) = P(z)M(zz)
(Hint: a multiset contains elements of either odd or eventiplidity.) Accordingly, one can
deduce the translation of powersets from the formula fortisetk. Iterating the relation above
yieldsM (z) = P(2)P(z*)P(z*)P(2®) - - - , thatis closely related to the binary representation
of numbers and to Euler’s identity (p. 46). It is used for am&te in Note 56 p. 83. <
Restricted constructionsin order to increase the descriptive power of the frame-
work of constructions, we also want to allow restrictiongltomnumber of components
in sequences, sets, multisets, and cycles.A ke a metasymbol representing any of
SEQ, Cyc, MSET, PSET and letQ2 be a predicate over the integers, th&n(.A) will
represent the class of objects constructedlipyit with a number of components con-
strained to satisf$). Then, the notations

SEQ_j, (orsimply S£Q;), SEQsk, SEQp . &

refer to sequences whose number of components are exaldhger thark, or in the
intervall .. k respectively and the same holds for other constructiongaiticular,

k times

k j k
SEQ,(B) =B x -~ x B=B" = SEQ.,(B) =) B’ =B x SEQ(B),
Jjzk

MSET,(B) := SEQ,(B)/R.
Similarly, SEQ,q4, SEQeven Will denote sequences with an odd or even number of
components, and so on.

Translations for such restricted constructions are avigjaas shown generally in
Subsection|. 6.1. Suffice it to note for the moment that threstraictionAd = SEQy, (B)
is really an abbreviation for&-fold product, hence it admits the translation into OGFs

(19) A=SEQ.(B) =  A(z) = B(2)".

I.2.3. Constructibility and combinatorial specifications. By composing basic
constructions, we can build compact descriptions (spetifins) of a broad variety of
combinatorial classes. Since we restrict attentioadmissibleconstructions, we can
immediately derive OGFs for these classes. Put differgtitéytask of enumerating a
combinatorial class is reducedpogramminga specification for it in the language of
admissible constructions. In this subsection, we firstudis¢the expressive power of
the language of constructions, then summarize the symbwitiod (for unlabelled
classes and OGFs) by Theorem I.2.

First, in the framework just introduced, the class of allasinwords is described
by

W = SEQ(A) where A= {a,b} = Z+ Z,
the ground alphabet, comprises two elements (letterskefisiThe size of a binary
word then coincides with its length (the number of letterittains). In other words,
we start from basic atomic elements and build up words by ifegnfreely all the
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objects determined by the sequence construction. Such hicatarial description of
a class that only involves a composition of basic constonstapplied to initial classes
&, Z is said to be aiterative (or nonrecursivgspecification Other examples already
encountered include binary necklaces (Note 1, p. 18) andaheal integers (Note 4,
p. 25) respectively defined by

N=Cvc(Z+2) and I=SEQs(2).
From there, one can construct ever more complicated objectsnstance,
P = MSET(Z) = MSET(SEQ>1(2))

means the class of multisets of natural integers, whichosggphic to the class of
integer partitions (see Section I. 3 below for a detailedwlision). As such examples
demonstrate, a specification that is iterative can be repted as a single term built on
&, Z and the constructions, x, SEQ, Cyc, MSET, PSET. An iterative specification
can be equivalently listed by naming some of the subtermrdr{ftance partitions in
terms of natural integers themselves defined as sequenatsod).

Semantics of recursionWe next turn our attention to recursive specifications,
starting with trees (cf also BPENDIX A: Tree concept. 681 for basic definitions).
In graph theory, a tree is classically defined as an unddegtaph that is connected
and acyclic. Additionally, a tree imotedif a particular vertex is distinguished to be
the root. Computer scientists commonly make use of treésigalbnethat are rooted
but also embedded in the plane, so that the ordering of sg&tached to any node
matters. Here, we will give the name géneral plane treet such rooted plane trees
and callg their class, where size is the number of vertices; see,[d3/]. (The term
“general” refers to the fact that all nodes degrees are altby-or instance, a general
tree of size 16, drawn with the root on top, is:

As a consequence of the definition, if one interchanges, teaysecond and third
root subtrees, then a different tree results—the origired ind its variant are not
equivalentunder a smooth dformation of the plane. (Geteras are thus comparable
to graphical renderings of genealogies where children atered by age.). Although
we have introduced plane trees as 2-dimensional diagramylvious that any tree
also admits a linear representation: a trewith root ¢ and root subtrees,, ..., 7.
(in that order) can be seen as the obj;, where the box encloses similar
representations of subtrees. Typographically, a[bpmay be reduced to a matching
pair of parentheses(-)’, and one gets in this way a linear description that illustsa
the correspondence between trees viewed as plane diagnahfisrectional terms of
mathematical logic and computer science.

Trees are best described recursively. A tree is a root tolwikiattached a (possi-
bly empty) sequence of trees. In other words, the alaggeneral trees is definable
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by the recursive equation
(20) G = Z x SEQ(G),

whereZ comprises a single atom writtem™and denoting a generic node.

Although such recursive definitions are familiar to compstientists, the speci-
fication (20) may look dangerously circular to some. One wlayaking good sense
of it is via an adaptation of the numerical technique of itera Start withG°! = §,
the empty set, and define successively the classes

gt — z x SEQ(gU]).

For instanceg!) = Z x SEQ()) = {(e,€)} = {o} describes the tree of size 1, and

Ge = o, 5], s, o[ u e, )
ghl = {.,.EI,.EL.EI,...,

oJeo[o]]. Jfe[ee]]. of[ee]e ,..@E,...}.

First, eactgl! is well-defined since it corresponds to a purely iterativecifcation.
Next, we have the inclusioil’] ¢ Glit1l, (Gl] admits of a simple interpretation as
the class of all trees of heigkt j). We can therefore regard the complete class
defined by the limit of the&”}, that is,G := J; GUL.

> I.7. Limes superior of classesLet {A[j]} be any increasing sequence of combinatorial
classes, in the sense thdt’) ¢ AU+! and the notions of size are compatible.AF°! =
U]. AUl is a combinatorial class (i.e., there are finitely many elemef sizen, for eachn),

then the corresponding OGFs satisf{?°!(z) = lim; ... AV!(z) in the formal topology (4-
PENDIX A: Formal power seriesp. 676). <

Definition 1.7. A specificationfor an r—tuple 4 = (AM ...  A™) of classes is a
collection ofr equations,

AL = = (A AM)
(1) AR = E(AD L AM)

A = 2 (AW AM)

where eaclt; denotes a term built from thd’s using the constructions of disjoint
union, cartesian product, sequence, set, multiset, antecys well as the initial
classe< (neutral) andZ (atomic).

We also say that the system is a specificatiod @f . A specification for a class of
combinatorial structures is thus a sort of formal gramméndeg that class. Formally,
the system (21) is aiterative specification if it is strictly upper-triangular, that is,
A is defined solely in terms of initial classés &; the definition of. A —1) only
involves.A("), and so on; in that case, by back substitutions, it is app#natfor an
iterative specificationA(") can be equivalently described by a single term involving
only the initial classes and the basic constructo@therwise, the system is said to
be recursive In the latter case, the semantics of recursion is ident@athe one
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introduced in the case of trees: start with the “empty” vectbclasses, A0 =
0,...,0), terate AV +1 = Z[A1], and finally take the limit.

Definition 1.8. A class of combinatorial structures is said todmnstructibleor speci-
fiableiff it admits a (possibly recursive) specification in ternfssam, product, se-
guence, set, multiset, and cycle constructions.

At this stage, we have therefore defined a specification aggdor combina-
torial structures which is some fragment of set theory wébursion added. Each
constructible class has by virtue of Theorem |.1 an ordimggnyerating function for
which defining equations can be produced systematicalljadt) it is even possible
to use computer algebra systems in order to compuatgtadmatically See the article
of Flajolet, Salvy, and Zimmermang(Q#§ for the description of such a system.

Theorem 1.2 (Symbolic method, unlabelled caséljhe generating function of a con-
structible class is a component of a system of generatingtium equations whose
terms are built from

]"Z’ +7XaQaEXp7EXp’LOg7

where
an - toslf] = 3 “ lor
k=1
Exp = exp <k2¥>, Exp[f] = exp <;(—1)k1¥>.
=1 =1

Polya operators.The operato€) translating sequencesg8) is classically known
as thegquasi-inverseThe operatoExp (multisets, M&T) is called thePblya exponen-
tial> andExp (powersets, PSr) is themodified Plya exponentialThe operatoF.og
is the Polya logarithm They are named after Pblya who first developed the general
enumerative theory of objects under permutation gro8ps395, 397.

The statement of Theorem 1.2 signifies that iterative cbs@e explicit generat-
ing functions involving compositions of the basic operatamly, while recursive struc-
tures have OGFs that are accessible indirectly via systéfusctional equations. As
we see at various places in this chapter, the following elaase constructible: binary
words, binary trees, general trees, integer partitiortegir compositions, nonplane
trees, polynomials over finite fields, necklaces, and whé&#ésconclude this section
with a few examples.

Binary words. The OGF of binary words, as seen already, can be obtained di-
rectly from the iterative specification,

W = SEQ(Z + 2) = W(z) =

whence the expected result,, = 2".

21t is a notable fact that, though the Polya operators logleladaically “difficult” to compute with,
their treatment by complex asymptotic methods, as regarefficient asymptotics, is comparatively “easy”.
We shall see many examples in Chapters IV-VII (e.g., pp. 239).
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General trees.The recursive specification of general trees leads to aniginpl
definition of their OGF,

z

-1 aw

From this point on, basic algebra does the rest. First thygraliequation is equivalent
(in the ring of formal power series) 1@ — G? — z = 0. Next, the quadratic equation
is solvable by radicals, and one finds

Gz) = $(1-V1—-14z)
= 242242234524 4+1425 44226113227 4+42928 + ...
1<2n—2) .
e
n\n-—1

n>1

G = Z x SEQ(G) = G(z)

(The conjugate root is to be discarded since it involvesma ter! as well as negative
coefficients.) The expansion then results from Newton'shiial expansion,

-1
(1_|_x)a =1+Ex+M.ﬁ2+--- ,
1 2!
applied witha = 1 andz = —4z.
The numbers

1 [2n (2n)! . 1-vV1—-4z
22 n=—-" =7 h F . e id
(22) Cn n—i—l(n) (n+1)n! with OGF  C(=) 2z

are known as the Catalan numbeesg A000108 in the honour of Eugene Catalan
(1814-1894), a French and Belgian mathematician who dpeelmany of their prop-
erties. These numbers are so common in combinatorics thatwe decided to use

a roman font for denoting them (likddg”, “sin”, and so on). In summargeneral
trees are enumerated by Catalan numbers:

Gn:Cn1£l<2n—2>.
n

n—1

For this reason the teri@atalan treeis often employed as synonymous to “general
(rooted unlabelled plane) tree”.

Triangulations. Fix n + 2 points arranged in anticlockwise order on a circle and
conventionally numbered from 0 t0+ 1 (for instance the: + 2nd roots of unity). A
triangulation is defined as a maximal decomposition of thevegn + 2-gon defined
by the points inton triangles. Triangulations are taken here as abstract agpzzl
configurations defined up to continuous deformations of fhegy The size of the
triangulation is the number of triangles, thatss, Given a triangulation, we define
its “root” as a triangle chosen in some conventional and uigoous manner (e.g., at
the start, the triangle that contains the two smallest &bdlhen, a triangulation de-
composes into its root triangle and two subtriangulatidinat(may well be “empty”)
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appearing on the left and right sides of the root triangle; decomposition is illus-
trated by the following diagram:

The class/ of all triangulations can be specified recursively as
T = {e} + (TxVxT),

provided that we consider a 2-gon (a diameter) as givingois@ empty triangulation.
Consequently, the OGF satisfies the equafioa 1 + T2 and

T(z) = 2_12 (1-v1-4z).

As a resulttriangulations are enumerated by Catalan numbers

T, =C, = L<2n>
n+1\n

This particular result goes back to Euler and Segner (185&)ntury before Catalan;
see Figure 1 for first values and p. 69 for related bijections.

> 1.8. A bijection. Since both general trees and triangulations are enumebstegiatalan
numbers, there must exist a size-preserving bijection éetvthe two classes. Find one such
bijection. [Hint: the construction of triangulations isomative of binary trees, and binary trees
are themselves in bijective correspondence with gener@siisee APENDIXA: Tree concepts

p. 681.] <

> 1.9. A variant specification of triangulation€onsider the cladg of “nonempty” triangula-
tions of then-gon, that is, we exclude the 2-gon and the correspondingt@htriangulation
of size 0. Thenl/ = T \ {e} admits the specification

U=V + (VXU +UXV)+ U xV xU)

which also leads to the Catalan numbers Via= z(1 + U)?> andU(z) = (1 — 2z —
V1 —42)/(2z),sothatU(z) = T'(z) — 1. <

I.2.4. Exploiting generating functions and counting sequeces. In this book
we are going to see altogether more than a hundred apphsatib the symbolic
method. Before engaging in technical developments, it iglwinserting a few com-
ments on the way generating functions and counting seqaeacebe put to good use
in order to solve combinatorial problems.
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Explicit enumeration formulae. In a number of situations, generating functions
are explicit and can be expanded in such a way that expligitditae result for their
coefficients. A prime example is the counting of generaldraed of triangulations
above, where the quadratic equation satisfied by an OGF isateto an explicit
solution—the resulting OGF could then be expanded by mefNswton’s binomial
theorem. Similarly, we derive later in this Chapter an exipform for the number of
integer compositions by means of the symbolic method and<O@t¥e answer turns
out to be simply2”—1) and derive many explicit specializations. In this book, we
assume as known the elementary techniques from basic esloylwhich the Taylor
expansion of an explicitly given function can be obtaingdogd references on such
elementary aspects are WilfGeneratingfunctionologj49§, Graham, Knuth, and
Patashnik’sConcrete Mathematid24§, and our book434.)

Implicit enumeration formulae. In a number of cases, the generating functions
obtained by the symbolic method are still in a sense exphbaittheir form is such that
their coefficients are not clearly reducible to a closed folnis then still possible to
obtain initial values of the corresponding counting segadny means of a symbolic
manipulation system. Also, from generating functionss ppossible to derive system-
atically recurrencésthat lead to a procedure for computing an arbitrary number of
terms of the counting sequence in a reasonably efficient araArtypical example of
this situation is the OGF of integer partitions,

1
P(z) = —_—
&=
for which recurrences obtained from the OGF and associatéaist algorithms are
given in Note 12 (p. 40) and Note 17 (p. 46).

Asymptotic formulae.Such forms are our eventual goal as they allow for an easy
interpretation and comparison of counting sequences. Fraguick glance at the
table of initial values ofiV,,, P, T}, given in Eq. (2), it is apparent thd¥,, grows
more slowly thanT;,, which itself grows more slowly tha®,,. The classification
of growth rates of counting sequences belongs properlyg@atiymptotic theory of
combinatorial structures which neatly relates to the syllmbuethod via complex
analysis. A thorough treatment of this part of the theoryréesspnted in Chapters IV—
VIII. Given the methods exposed there, it becomes posildstimate asymptotically
the coefficients of virtually any generating function, heeecomplicated that is
provided by the symbolic method.

Here, we content ourselves with a few remarks based on etanyeral analysis.
(The basic notations are described iPFENDIX A: Asymptotic Notationp. 668.)
The sequencl/,, = 2™ grows exponentially and, in such an extreme simple case, the
exact form coincides with the asymptotic form. The sequdngce- n! must grow at a
faster asymptotic regime. But how fast? The answer is pealiny Stirling’s formula,

3see RO06, 216, 37Bfor such systematic approaches.
4n a number of cases, asymptotic analysis even appliesuatisihs where the generating function
itself is not even explicit, but only accessible through ractional equation of sorts.
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FIGURE I1.4. The growth
regimes of three sequences
f(n) = 2™, T, n! (from bottom
to top) rendered by a plot of
log,, f(n) versusn.

an approximation to the factorial numbers due to the Séottiathematician James
Stirling (1692—-1770):

(23) n! = (g)”\/ﬁ(uoé)) (n — +00).

The ratios of the exact values to Stirling’s approximations

n: 1 2 5 10 100 1,000

|
#: 1.084437 1.042207 1.016783 1.008365 1.000833 1.000083
n"e~"v/2mn

show anexcellent qualityof the asymptotic estimate: the error is only 8% fioe 1,
less than 1% fon, = 10, and less than 1 per thousand for angreater than 100.

Stirling’s formula in turn gives access to the asymptotitrf@f the Catalan num-
bers, by means of a simple calculation:

1 (2n)!  1(2n)%"e ?"4rn

n+1(n!)? T nZne—2n2mm

n =

which simplifies to
(24) C, ~ 4—.

mn3
Thus, the growth of Catalan numbers is roughly comparabkntexponentiald™,
modulated by a subexponential factor, hefe’7n3. A surprising consequence of this
asymptotic estimate to the area of boolean function conitylappears in Example 16
below.

Altogether, the asymptotic number of general trees anddtitations is well sum-
marized by a simple formula. Approximations become morerance accurate as
becomes large. Figure 4 illustrates the different gromtfimes of our three reference
sequences while Figure 5 exemplifies the quality of the appration with subtler
phenomena also apparent on the figures and well explainedyoypdotic theory.
Such asymptotic formulae then make comparison between rthetly rates of se-
guences easy.
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n Cn cr Cr/Cn

1 2.25 2.25675 83341 91025 14779 23178
10 16796 18707.89 1.11383 05127 5288537 89064
100 0.89651 - 1057 0.90661 - 1057 1.01126 32841 24540 52257 13957

1000 0.20461 - 10598 0.20484 - 10598 1.00112 51328 1542 41647 01282

10000  0.22453 - 106015 0.22456 - 106015 1.00011 25013 28127 92913 51406
100000 0.17805 - 1089199 0.17805 - 1060199 1.00001 12500 13281 25292 96322
1000000 0.55303 - 10602051 (.55303 - 10692051 1,00000 11250 00132 81250 29296

FIGURE I.5. The Catalan numberS,,, their Stirling approximatiorC;, = 4™ /v mn3,
and the ratiaC}, / Cy,.

> 1.10. The complexity of codingA company specialized in computer aided design has sold
to you a scheme that (they claim) can encode any triangulafisizen. > 100 using at most
1.5n bits of storage. After reading these pages, what do you dafit:[Hue them!] See also
Note 22 for related coding arguments. <

> 1.11. Experimental asymptotic:rom the data of Figure 5, guess the valu€gf; / C,y7
and of C; ;46 / C5.106 t0 25D. (See, e.g.3[L3 for related asymptotic expansions arg][ for
similar properties.) <

The interplay between combinatorial structure and asytigodtructure is indeed
the principal theme of this book. We shall see that a vast ritajof the generating
functions provided by the symbolic method, however congiéid, eventually lead to
similarly simple asymptotic estimates.

I. 3. Integer compositions and partitions

This section and the next ones provide examples of countmgpecifications in
classical combinatorial domains. They illustrate the fieshef the symbolic method:
generating functions are obtained with hardly any compartaaind at the same time,
many counting refinements follow from a basic combinatartaistruction. The most
direct applications described here relate to the additeeothposition of integers
into summands with the classical combinatorial-arithmgtiuctures of partitions and
compositions. The specifications are iterative and simpiplzine two levels of con-
structions of type 8Q, MSET,Cyc, P&ET.

I.3.1. Compositions and partitions. Our first examples have to do with decom-
posing integers into sums.

Definition 1.9. A compositionof an integerm is a sequencér, xa, . . ., x)) of inte-
gers (for somé) such that

n=x;+r2+-+rE, x5 > 1
A partitionof an integem is a sequencéry, s, . . ., x% ) of integers (for somg) such
that

n=x1+To+- -+ K and T1 > Xy > > T
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[ ]

[ ]
.|...|.|....|. .|... [ ]
[ ]
FIGURE |.6. Graphical representations of compositions and partitigiest) the com-
position1 + 3 + 1 + 4 + 2 4+ 3 = 14 with its “ragged-landscape” and “balls-and-bars”

models; (right) the partitio8 + 8+ 6 +5+4+4+4+ 2+ 1+ 1 = 43 with its staircase
(Ferrers diagram) model.

In both cases, the;'s are called the summands or the parts and the quantitg
called the size of the composition or the partition.

By representing summands in unary using small dis€y (tve can render graph-
ically a composition by drawing bars between some of thesb#live arrange sum-
mands vertically, compositions appear as ragged-landscalm contrast, partitions
appear as staircases, also known as Ferrers diag@8ng.[100]; see Figure 6. We
let C andP denote the class of pacement all compositions and all joengit Since a
set can always be presented in sorted order, the differesteeebn compositions and
partitions lies in the fact that the order of summaddssor does nomatter. This is
reflected by the use of a sequence constructiondf@gainst a multiset construction
(for P). In this perspective, it proves convenient to regass obtained by the empty
sequence of summands £ 0), and we shall do so from now on.

First, letZ = {1,2,...} denote the combinatorial class of all integers at least 1
(the summands), and let the size of each integer be its va@luen, the OGF of is,
as we know,

(25) I(z) = Z P

1—2z’
n>1

sincel,, = 1 forn > 1, corresponding to the fact that there is exactly one objett i
for each sizer > 1. If integers are represented in unary, say by small balls has,

(26) IT={1,2,3, ...} ={e, 00 000 .. }=SEQ, {0},
which is another way to view the equalifyz) = z/(1 — 2).

Compositions.First, the specification of compositions as sequences adht
Theorem I.1, a direct translation into OGF:

1
27) c=seq) = CC)={Tyy
The collection of equations (25), (27) thus fully deternsingz):
1 1—=2
G = T =TT

= 1424222 +4234+824+162°+3220+---.
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0 1 1

10 512 42

20 524288 627

30 536870912 5604

40 549755813888 37338

50 56 2949953421312 204226

60 576460752303423488 966467

70 590295810358705651712 4087968

80 6044629 09807314587353088 15796476

90 6189700196426901374 56634173

100 633825300114114700748351602688 190569292

110 649037107316853453566312041152512 607163746

120 664613997892457936451903530140172288 1844349560

130 680564733841876926926749214863536422912 5371315400

140 696898287454081973172991196020261297061888 15065878135

150  713623846352979940529142984724747568191373312 40853235313

160  730750818665451459101842416358141509827966271488 107438159466
170  748288838313422294120286634350736 0 3 274768617130
180  766247770432944429179173513575154! 93695800088 684957390936

190 7846377169233350954794736779009583020127944005334112 1667727404093
200  8034690221294951377709810461705813012611014986917650688 3972999029388
210  8227522786606030210774845912786752524913679328381674304512 9275102575355
220  8424983333484574935833442214693634585511607832880034 21248279009367
230  862718293348820473429344482784628 563886298219395315527974912 47826239745920
240  8834235323891921647916487503714592579137419884879060803100646309888 2246722733

4630988 10588
250  904625697166532776746648320380374280103671735@006558262375061821325312  230793554364681

FIGUREI.7. Forn = 0,10, 20,. .., 250 (left), the number of compositiors,, (middle)
and the number of partitions (right). The figure illustratesdifference in growth between
Cn =2""'andP, = V™,

From there, the counting problem for compositions is sologda straightforward
expansion of the OGF: one has

C(z) = Z 2n" | — Z onzntl |
n>0 n>0
implying
C,=2""1"n>1; Cy=1.
This agrees with basic combinatorics since a composition cdn be viewed as the
placement of separation bars at a subset ofrthe 1 existing places inbetweemn

aligned balls (the “balls and bars” model of Figure 6), of e¥hihere are clearlg™—!
possibilities.

Partitions. For partitions specified as multisets, the general traoslahecha-
nism provides

(28) P =MSET(Z) = P(z)zexp(I(z)+%[(z2)+%j(z3)+...>,

with product form

o0

P = Il =

=1
— (1—|—Z—|—Z2—|—---)(1—|—22—|—Z4—|—---)(1—|—Z3—|—26+---)---
=142+2224+3284+524 + 725+ 1126+ 1527+ 2228 .. .

(29)

where the counting sequenceE$S A000041 Contrary to compositions that are
counted by the explicit formul&”~!, no simple form exists foP,. Asymptotic
analysis of the OGF (28) based on the saddle point methodpot€h¥lil) shows that
P, = e©V™)  Infact a very famous theorem of Hardy and Ramanujan latprored
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by Rademacher (see Andrew’s bodi] and Chapter VIII) provides a full expansion
of which the asymptotically dominant term is

P 1 . 2n
o xp | ™/ = |-
4dn/3 P 3

There are consequently appreciably fewer partitions tliampositions (Figure 7).
> 1.12. A recurrence for the partition numberd.ogarithmic differentiation gives

n

P'(z) <= nz" . . )
= | P, = Po_j,
Bl ; ——  implying n ;0’(]) j
whereo (n) is the sum of the divisors of (e.g.,6(6) = 1 + 2 + 3 + 6 = 12). Consequently,

Pi,..., Py can be computed i@(N?) integer-arithmetic operations. (The technique is gener-

ally applicable to powersets and multisets; see Note 40rfotheer application. Note 17 further
lowers the bound in the case of partitions20N v/ N).) <

By varying (27) and (28), we can use the symbolic method tivder number of
counting results in a straightforward manner. First, weesta
Proposition I.1. Let7 C 7 be a subset of the positive integers. The OGF of the
classe? := SEQ(SEQ;(Z)) andP7? := MSET(SEQ;(Z)) of compositions and
partitions having summands restrictedZois given by

1 1 1
CT(z)= = , PT(z) = .
B =1y = - 1-10 ) ng[ 1—2n
PrROOF The statement results directly from Theorem I.1. O

This proposition permits us to enumerate compositions artitipns with re-
stricted summands, as well as with a fixed number of parts.

EXAMPLE |.4. Compositions with restricted summanttsorder to enumerate the clags"?!
of compositions of: whose parts are only allowed to be taken from the{$e®}, simply write
¢t —seqzt™?)  with 71 = {1,2}.

Thus, in terms of generating functions, one has
ct?(z) = T 1{11’2}(2) with 113 (2) = 2 4 22
This formula implies

1
c?(z) = 2:1—&—z—|—2z2—&—3z3—&—5z4—&—8z5—&—13z6—&—~~~7

l—2z—2
and the number of compositions ofin this class is expressed by a Fibonacci number,

ci'® = F,41 whereF, = = KH_\/E) - <1_ \/5) } .

NG 2 2
. . . 1+V5.
In particular, the rate of growth is of the exponential tyge wherep := 5 is the golden
ratio.
Similarly, compositions such that all their summands litheset{1, 2, ..., r} have gen-
erating function
1 1 1—2

{1,..., r} _ _ _
¢ (Z)il—z—zﬂ—uuzr71—2117;71—22—1—2’““7
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and the corresponding counts are given by generalized &dmbnumbers. A double combina-
torial sum expresses these counts

(ot 1om 2(1—2")\ _ i\ (n—rk—-1

@ ot =S () =2 (k) < j-1 )
J g,k

This result is perhaps not too useful for grasping the ratg@fth of the sequence whergets
large, so that asymptotic analysis is called for. Asymp#ily, for any fixedr > 2, there is a
unique rootp, of the denominatot — 2z + 2" in (1, 1), this root dominates all the other
roots and is simple. Methods amply developed in Chapterhply that, for some constant
cr >0,

(31) cltmh e pr™  for fixedr asn — oo.
The quantityp,- plays a role similar to that of the golden ratio whes- 2. END OF EXAMPLE 1.4. ]

> 1.13. Compositions into primesThe additive decomposition of integers into primes is still
surrounded with mystery. For instance, it is not known whethvery even number is the sum
of two primes (Goldbach’s conjecture). However, the nundferompositions of: into prime
summandsgny number of summands is permitted)Bs, = [2"]B(z) where

—1
2 3 5 7 11 -1
1-— g 2P :(l—z —2°—2> =z -z —)
p prime

= 14224284+ 432°4+22462"4+62°+102° +162"+ ...

B(2)

(EIS A02336Q and complex asymptotic methods makeed@syfrom there to determine the
asymptotic formB,, ~ 0.30365 - 1.47622™; see Chapter IV. <

ExXAMPLE 1.5. Partitions with restricted summands (denumerantgfhenever summands are
restricted to a finite set, the special partitions that teasré called denumerants. A popular
denumerant problem consists in finding the number of waysvirigichange of 99 cents using
coins that are pennies ¢), nickels (5¢), dimes (10:) and quarters (26). (The order in which
the coins are taken does not matter and repetitions areedlpviror the case of a finitg, we
predict from Proposition 1.1 tha‘t’T(z) is always aational function with poles that are at roots
of unity; also theP? satisfy a linear recurrence related to the structur@ ofThe solution to

the original coin change problem is found to be
99 1
= 213.
 Ta a2

In the same vein, one proves that

2n +3 (n 4+ 3)?
=) T
There[z] = |z + 1] denotes the integer closest to the real numberSuch results are
typically obtained by the two step process: (i) decomposeadtional generating function into
simple fractions; (ii) compute the coefficients of each danfpaction and combine them to get
the final result 98, p. 108].

The general argument also gives the generating functioamitipns whose summands lie
inthe set{1,2,...,r} as

Pil,?} _ " Pil,?,ii} _ |'

(32) P{l ..... r}(z) _ H 1
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In other words, we are enumerating partitions accordingnéovilue of the largest summand.
One then finds by looking at the poles (Chapter IV):

1

{1,...,r} ~ r—1 : _
(33) P, crn with ¢, = 77‘!(7‘ e

A similar argument provides the asymptotic form/@f when7 is an arbitrary finite set:

T 1 nr71 1 -—_ P—
P, ~ py with 7 := nlg[Tn, r = card(7).
This result originally due to Schur is discussed in Chapter.l... END OF EXAMPLE |.5.

We next examine compositions and partitions with a fixed nemolb summands.

EXAMPLE 1.6. Compositions with a fixed number of partsLet C**) denote the class of
compositions made df summandsk a fixed integee> 1. One has

CM(2)=SEQ(T) =T x T x - xT,
where the number of terms in the cartesian produét iSrom there, the corresponding gener-
ating function is found to be
c® = (1(2))

Fooowith  I(z) =

The number of compositions efhavingk parts is thus

k 2k n—1
c;>:[z"](1_z)k - <k—1>’

a result which constitutes a combinatorial refinemenCpf= 2"~!. (Note that the formula
o = ("‘1) also results easily from the balls-and-bars model of coitipas (Figure 6)).

k—1
In such a case, the asymptotic estimald’ ~ n*~'/(k — 1)! results immediately from the
polynomial form of the binomial coefficier(i;;‘j). .............. D OF EXAMPLE 1.6. 0

EXAMPLE |.7. Partitions with a fixed number of parts.Let P(<*) be the class of integer
partitions with at mosk summands. With our notation for restricted constructign9), this
class is specified as
PR = MSET<(T).

It would be possible to appeal to the admissibility of sudtiieted compositions as developed
in Section |. 6.1, but the following direct argument suffices

Geometrically, partitions, are represented as collestioihpoints: this is the staircase
model of Figure 6). A symmetry around the main diagonal (&isown in the specialized
literature as conjugation) exchanges number of summartisane of largest summand: one
has (with previous notations)

so that, by (32),

k
(34) p(Sk)(Z) = pilok} _ H 1
m=1
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As a consequence, the OGF of partitions wéttactlyk summandsP® (z) = PSR (z) —
P(=F=1 (%), evaluates to

k
z

-1 22 (1-2F)
Given the equivalence between number of parts and largesirppartitions, the asymptotic
estimate (33) applies verbatimhere. ...............ccc...... END OFEXAMPLE I.7. [

P®(z) =

> 1.14. Compositions with summands bounded in number and $ize.number of composi-
tions of sizen with £ summands each at masts

) (= 11‘_’2;)k,

and is expressible as a simple binomial convolution. <

> 1.15. Partitions with summands bounded in number and siz@e number of partitions of
sizen with at mostk summands each at masis

" (1—2)(1 -2 (1- 2

(=20 =23 1) (-1 -2 1 -2))
(The verification by recurrence is easy.) The GF reducesddimomial coefficieni(k‘,:‘z) as
z — 1; itis known as a Gaussian binomial coefficient, denqt’?%iz)z, or a “g—analogue” of
the binomial coefficient]0, 99.

The last example of this section illustrates the close piégr between combi-
natorial decompositions and special function identitisich constitutes a recurrent
theme of classical combinatorial analysis.

ExampPLE 1.8. The Durfee square of partitions and stack polyomindBse diagram of any
partition contains a uniquely determined square (knowma®urfee square) that is maximal,
as exemplified by the following diagram:

This decomposition is expressed in terms of partition GFs as
2
P o~ U Zk Xp(gk) % 73{1,4.4,1&} 7
Ul )
It gives, via (32) and (34), the non-trivial identity

1 Kk

gl—z" =2y

k>0

(k is the size of the Durfee square), which is nothing but a fomaariting of the geometric
decomposition.

Here is a similar case illustrating the direct corresporddmetween geometric diagrams
and generating functions, as afforded by the symbolic ntetho
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Spec. OGF coeff. asympt.
Composition SEQ(SEQ-,(2)) 11_;22 on—1 %2”
1-— —n
- Sum.§ T SEQ(SEQl . T(Z)) T—FZZT"'Q Eq (30) Cr P
P n—1 nF1
—, ksum. FQu(SEQ-1(2)) T=2F E—1 &—1)
. ) 1 Zn
Partitions MSET(SEQ,(Z 1—2"7"1  — ™V 3
( QZl( ) ml_:Il( 2™) 4n\/§e
r r—1
my—1 n
k . k-t
— < ) = , — 2™ — -
, < ksum MSET(SEQ, . x(Z)) L[l(l 2™ AT
Cyclic comp. CYC(SEQ>(2)) Eq. (35) Eq. (36) Z
o S o 33/4 T
Part., distinct sumPSET(SEQ>(Z)) m:1(1 +2™) — Tona/a¢

FIGURE |.8. Partitions and compositions: specifications, generatingtfons, counting
sequences, and asymptotic approximation.

Stack polyominoesre diagrams of compositions such that for sgifeone had < z; <
2 << xy > w1 > - > xe > 1 (See B47, §2.5] for further properties). The diagram
representation of stack polyominoes,

translates immediately into the OGF

P 1
S(Z) = Z 1_ Zk ((1 _ Z)(l _ 22) - (1 — Zk—1))27

E>1

once use is made of the partition GP§" k}(z) of (32). This last relation providesmna fide
algorithm for computing the initial values of the number tfck polyominoesEISA001523:

S(z)=2+22" 4422 +82" +152°+272° +472" + 795+ ... .

The book of van Rensburgd82 describes many such constructions and their relationrtaice
models of statistical phySiCS. ...t END OF EXAMPLE 1.8. O

Figure 8 summarizes what has been learnt regarding cornpuwsiand parti-
tions. The way several combinatorial problems are solvitedssly by the symbolic
method is worth noting.
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|.3.2. Related constructions.lt is also natural to consider the two constructions
of cycle and powerset that we have not yet applied.to

Cyclic compositions (wheels)The classD = Cyc(I) comprises compositions
defined up to circular shift of the summands; so, for instahee3 + 1 + 2 + 5,
34+ 14245+ 2, etc, are identified. Alternatively, we may view elementdof
as “wheels” composed of circular arrangements of rows d§lfelken up to circular
symmetry).

A “wheel” (cyclic composition): ©® ® e e e © o o 0o

By the cycle construction, the OGF is

00 —1
(k) 2
D = 1 1-
@ = s (1- 25
= 2422243234522+ 725 +13254+1927+35284+---.
The coefficients are thu&({SA008965

(36) Dn:;Z@(k)(Q /k_l)E—l-i—;Z(p(k)Q /kN;,
k|n kln

(35)

Notice thatD,, is of the same asymptotic order a6, , which is suggested by circular
symmetry of wheels, bub,, ~ 2C,, /n.

Partitions into distinct summandsThe classQ = PSET(Z) is the subclass
of P = MSET(Z) corresponding to partitions determined like in Definitio®, lbut
with the strict inequalities, > --- > 1, so that the OGF is

Qz) = H(l—i—z"):1+z+22+223+2z4+325+426+5z7+628+---.
n>1

The coefficientsEEISA000009 are not amenable to closed from. However the saddle
point method (Chapter VIII) yields the approximation:

33/4 n
(37) Qn ~ Tt &P (W\/;) ’

which has a shape similar to that Bf.

> 1.16. Odd versus distinct summandEhe partitions of: into odd summand§O,,) and into
distinct summandsQ,,) are equinumerous. Indeed, one has

Q) =JJa+z"), ok =][a-=""
m=1 j=0
Equality results from substitutingl + a) = (1 — a®)/(1 — a) witha = 2™,
_1—221—z41—261—z81—z10 1 1 1

Q(z) =

T—21-221—-221-221—20  1-21-231—2
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and simplification of the numerators with half of the denoatans (in boldface). <
Partitions into powers.Let ZP°% = {1,2,4,8,...} be the set of powers of 2.
The correspondin® andQ partitions have OGFs

oo

1
) = =%
=0

= 14242224223 4+422 +4254+6254+62" 4108+ +---

() = [Ja+2*)
j=0
= l+z+22 423424425+,
The first sequence, 1,2,2, ... is the “binary partition sequenceE(S A018819;
the difficult asymptotic analysis was performed by de Br{ifjga( who obtained an
estimate that involves subtle fluctuations and is of the glébrm ¢©(°s* ") The

function QP°"(z) reduces to1 — z)~! since every number has a unique additive
decomposition into powers of 2. Accordingly, the identity

1 i j
= H(l +2%)
7=0

1—2z

first observed by Euler is sometimes nicknamed the “compagientist’s identity” as
it expresses the fact that every number admits a uniqueybiepresentation.

There exists a rich set of identities satisfied by partitienerating functions—
this fact owes to deep connections with elliptic functionmdular forms, and—
analogues of special functions on the one hand, basic catarios and nhumber the-
ory on the other hand. Se&(, 99 for an introduction to this fascinating subject.
> 1.17. Euler’s pentagonal number theoreffhis famous identity exprességP(z) as

H (1-2") = Z(_l)kzk(3k+1)/2.

n>1 keZ
It is proved formally and combinatorially ir@B, p. 105]. As a consequence, the numbers
{P;}}L, can be determined i@(N+/N) arithmetic operations. <

> 1.18. A digital surprise Define the constant
9 99 999 9999

¥~ 70100 1000 10000
Is it a surprise that it evaluates numerically to

¢ = 0.8900100999989990000001000099999999899999000000000010 - - - ,

that is, its decimal representation involves only the digitl, 8, 9?7 [This is suggested by a note
of S. Ramanujan, “Some definite integralsfessenger of MathXLIV, 1915, pp. 10-18.] <

> 1.19. Lattice points.The number of lattice points with integer coordinates tleddibg to the
closed ball of radius in d—dimensional Euclidean space is

2y 1
)

©(:)*  where e(z):1+2iznz.

Such OGFs are useful in cryptograpl32[l]. Estimates may be obtained from the saddle point
method; see Chapter VIII. <
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I.4. Words and regular languages

Fix a finite alphabet.A whose elements are calléetters Each letter is taken
to have size lj.e, it is an atom. Aword is then any finite sequence of letters,
usually written without separators. So, for us, with theichmf the latin alphabet
(A = {a,...z}), sequences written 3gololihp , philology , zgrmblglps
are words. We denote the set of all words (often writtepdasn formal linguistics)
by W. Following a well-established tradition in theoreticahgouter science and for-
mal linguistics, any subset ¥ is called alanguage(or formal language, when the
distinction with natural languages has to be made).

From the definition of the set of word4’, one has

1
(38) W = SEQ(A) = Wi(z) = T
wherem is the cardinality of the alphabéte., the number of letters. The generating
function gives us the counting result

W, =m".
This result is elementary, but, as is usual with symbolichods, many enumerative

consequences result from a given construction. It is pedcithe purpose of this
section to examine some of them.

We shall introduce separately two frameworks that each agat expressive
power to describe languages. The first one is iteratiee Gonrecursive) and it bases
itself on “regular specifications” that only involve sumspgucts, and sequences; the
other one that is recursive (but of a very simple form) is lbestceived of in terms
of finite automata and is equivalent to linear systems of egus Both frameworks
turn out to be logically equivalent in the sense that thedeine the same family
of languages, thesgular languagesthough the equivalengés nontrivial and each
particular problem usually admits a preferred represimtat he resulting OGFs are
invariably rational functions, a fact to be systematicabyploited from an asymptotic
standpoint in Chapters IV and V.

I.4.1. Regular specifications.Consider words (or strings) over the binary al-
phabetA = {a,b}. There is an alternative way to construct binary stringsis It
based on the observation that (with a minor adjustment abely@ning) a string de-
composes into a succession of “blocks” each formed with glsinfollowed by an
arbitrary (possibly empty) sequenced$. For instanceiaabaababaabbabbaaa de-
composes as

aaa || baa | ba | baa | b | ba | b | baaa.
Omitting redundarftsymbols, we have the alternative decomposition:
1 1

(39) W = SEQ(a) x SEQ(b SEQ(a)) = W(z)=

B

SAPPENDIXA: Regular languages. 678 provides a basis for this equivalence.
6As usual, when dealing with words, we freely omit redundamaces {, }' and cartesian products
‘x'. For instance, 8Q(a + b) anda b are shorthand notations foe®({a} + {b}) and{{a} x {b}}.
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This last expression reduces(tb— 2z)~! as it should.

Longest runs. The interest of the construction just seen is to take int@act
various meaningful properties, for example longest rurendde by: <% := SEQ.,(a)
the collection of all words formed with the letteronly and whose length is between
0 andk — 1; the corresponding OGF is+ z + --- 4 2F~1 = (1 — 2%)/(1 — 2).
The collection{¥) of words which do not havk consecutiver’s is described by an
amended form of (39), and

_ Sk _ Lk
Wk — o<k SEQ(ba<k) — W<k>(z) _ 1-2 1 1—2

1—z .1_311%2: 1 — 2z kAL

The OGF is in principle amenable to expansion, but the riesutioefficients expres-

sions are complicated and, in such a case, asymptotic eesiiegnd to be more usable.
From an analysis developed in Chapter V, it can indeed beadelilhat the longest

run of ’s in a random binary string of lengthis asymptotic tdog, 7.

> 1.20. Runs in arbitrary alphabetd-or an alphabet of cardinality., the quantity

1—2*
1—mz+ (m —1)zk+!
is the OGF of words without consecutive occurrences of a designated letter. <

The case of longest runs exemplifies the usefulness of nestestructions in-
volving sequences. We set:

Definition 1.10. An iterative specification that only involves atoms (egteks of a
finite alphabetd) together with combinatorial sums, cartesian products] sequence
constructions is said to beragular specification

A languagel is said to beS-regular(specification-regular) if there exists a class
M described by a regular specificatidR such thatL and M are combinatorially
isomorphic:£ = M.

An equivalent way of expressing the definition is as followastanguage is5-
regular if it can be describashambiguouslyy a regular expression ®ENDIX A:
Regular languagesp. 678). The definition of a regular specification and thedas
admissibility theorem imply immediately:

Proposition 1.2. AnyS-regular language has an OGF that igational function This
OGF is obtained from a regular specification of the languagé&anslating each letter
into the variablez, disjoint unions into sums, cartesian products into praduyand
sequences into quasi-inversés— ).

This result is technically shallow but its importance desifrom the fact that
regular languages have great expressive power devohangtheir rich closure prop-
erties (APPENDIX A: Regular languagesp. 678) as well as their relation to finite
automata discussed in the next subsection. Examples 9 amAKl® use of Proposi-
tion 1.2 and treat two problems closely related to longessru

ExaMPLE .9. Combinations and spacingsA regular specification describes the gebf
words that contain exactl occurrences of the lettér, from which the OGF automatically
derives:

(40) £ = SEQ(a) (bSEQ(a))” = L(z) = 2" /(1 — 2)F .
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Hence the number of words in the language satidfies= (Z) This is otherwise combinato-
rially evident, since each word of lengthis characterized by the positions of its lettéyshat
is, the choice ok positions amongst possible ones. Symbolic methods thus give us back the
well-known count of combinations by binomial coefficients.

Let (}) 4 De the number of combinations bfelements amongst, n] with constrained
spacings: no element can be at distasice more from its successor. The refinement of (40)

k d\k—1
G k—1 n w201 —2%)
£ = Seq(a) (bSEQ4(a))* " (bSEQ(a)) = <k) dz = R

<

n>0

leads to a binomial convolution expression,

()= () ()

(This problem is analogous to compositions with boundedrsamds.) What we have just
analysed in theargest spacing (constrained to be d) in subsets; a parallel analysis yields
information regarding themallestspacing. ..................... ND OF EXAMPLE 1.9.0

ExampPLE 1.10. Double run statisticsBy forming maximal groups of equal letters in words,
one finds easily that, for a binary alphabet,

W = SEQ(b) SEQ(a SEQ(a) b SEQ(b)) SEQ(a).

Let Wi be the class of all words that have at mestconsecutivea’s and at most3
consecutiveh’s. The specification o#/ produces a specification /¢, upon replacing
SEQ(a), SEQ(b) by SEQ.,(a), SEQ.4(b) internally, and by 8Q.,, (a), SEQ<5(b) externally.
In particular, the OGF of binary words that never have moamthconsecutive equal letters is
found to be (setv = 3 =)

oy =2 T4 2"
(1) W Tl -2z4 2l -z — =27
after simplification.

Révész in41q tells the following amusing story attributed to T. Varga# €lass of high
school children is divided into two sections. In one of thetigms, each child is given a coin
which he throws two hundred times, recording the resultiegchand tail sequence on a piece
of paper. In the other section, the children do not receives;dout are told instead that they
should try to write down a ‘random’ head and tail sequencen§th two hundred. Collecting
these slips of paper, [a statistician] then tries to sulldithem into their original groups. Most
of the time, he succeeds quite well.”

The statistician’s secret is to determine the probabilisgribution of the maximum length
of runs of consecutive letters in a random binary word of thng (heren = 200). The
probability of this parameter to equilis

1 (kok) _ prr(k—1,k—1)
r (Wi - )
and is fully determined by (41). The probabilities are thasily computed using any symbolic
package: Fon. = 200, the values found are

k 3 4 5 6 7 8 9 10 11 12
P: 6.541078 7.07107% 0.0339 0.1660 0.2574 0.2235 0.1459 0.0829 0.0440 0.0226
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Thus, in a randomly produced sequence of length 200, thereisrally runs of length 7 or
more: the probability of the event turns out to be close to §8#@ there is still a probability
of about 8% to have a run of length 11 or more). On the other hawst children (and adults)
are usually afraid of writing down runs longer than 4 or 5 s th felt as strongly “non-
random”. The statistician simply selects the slips thatt@ionruns of length 6 or more. Et
VoI L END OF EXAMPLE 1.10.0

> 1.21. Alice and BobAlice wants to communicate bits of information to Bob over a channel
(a wire, an optic fiber) that transmi@s1—bits but is such that any occurrenceldfterminates
the transmission. Thus, she can only send on the channelcaxdesh version of her message
(where the code is of some length> n) that does not contain the pattet.

Here is a first coding scheme: given the message mims - - - m,, wherem; € {0, 1},
apply the substitutiond — 00 and1 — 10; terminate the transmission by sendinf This
scheme haé = 2n + O(1), and we say its rate is 2. Can one design codes with rateaailyitr
close to 1, asymptotically?

Let C be the class of allowed code words. A code of length at mastachievable only

if there is a one-to-one mapping froff, 1}" into Uf:o Cj,ie 2" < Zf:o C;. Working out
the OGF ofC, one finds that necessarily

. 1++5
L>X\ 1 A= = 1.44042 = .
> An+ 0(1), oz, 7 0420, ¢ 3
Thus no code can achieve a rate better thdn; i.e., a loss of at least 44% is unavoidable. (For
this and the next note, see, e.g., MacKasg Ch. 17].) <

> 1.22. Coding without long runs.Because of hysteresis in magnetic heads, certain storage
devices cannot store binary sequences that have more thanséautiveO’'s or more than

4 consecutivel's. A coding scheme that transforms an arbitrary binaryngtinto a string
obeying this constraint is sought.

From the OGF, one findg!' W *4 (z) = 1546 > 2'° = 1024. Consequently, a
substitution can be built that translates an original 10bhitk into an 11 bit block without
five consecutive equal letters. When substituted blocksamneatenated, this may give rise to
unwanted sequences of consecutive letters that are |dmgeatceptable. It then suffices to use
“separators” and replace a substituted block of the farm- 3 by the longer blockta - - - 38,
where0 = 1 and1 = 0. The resulting code has raig.

Extensions of this method show that the rate 1.057 is achievgheoretically). On the
other hand, by the previous note, any acceptable code meistaysptotically at least 1.066
bits to encode strings of bits. (Hint: leto be the root nea¢ of 1 — 2a + o = 0, which is a

pole of W {*%_ One has / log, (1/a) = 1.05621.) <

Patterns. There are many situations in the sciences where it is oféstdo de-
termine whether the appearance of a centaitiernin long sequences of observations
is significant. In a genomic sequence of length 100,000 (ipleadet isA,G,C,T ),
is it or not meaningful to detect three occurrences of théepaTAGATAA where
the letters appear consecutively and in the prescribed®rdie computer network
security, certain attacks can be detected by some well deéiteeming sequences of
events, though these events may be separated by perfegitlynigte actions. On an-
other register, data mining aims at broadly categorizirgtebnic documents in an
automatic way, and in this context the observation of wedisgn patterns can provide
highly discriminating criteria. These various applicasaequire determining which
patterns are, with high probability, bound to occur (thesaatsignificant) and which
are very unlikely to arise, so that actually observing themries useful information.
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Quantifying the corresponding probabilistic phenomerduces to an enumerative
problem—the case of double runs in Example 10 is in this rddgpical.

The notion of pattern can be formalized in several ways. is ook, we shall
consider two of them:

(a) Subsequence pattersuch a pattern is defined by the fact that its letter must
appear in the right order, but not necessarily contiguo[&lyj. Subse-
guence patterns are also known as “hidden patterns”.

(b) Factor pattern such a pattern is defined by the fact that its letter mustappe
in the right ordeandcontiguously 54, 458. Factor patterns are also called
“block patterns” or simply “patterns” when the context isai.

For a given notion of pattern, there are then two relatecgoaies of problems. First,
one may aim at determining the probability that a random veanatains (or dually,
excludes) a pattern; this problem is equivalently formedats an existence problem—
enumerate all words in which the pattern exists (i.e., agcindependently of the
number of occurrences. Second, one may aim at determingngxbectation (or even
the distribution) of the number of occurrences of a pattemiandom text; this prob-
lem involves enumerating enriched words, each with one menuae of the pattern
distinguished.

Such questions are amenable to methods of analytic conaliceaand in partic-
ular to the theory of regular specifications and automawEs@mple 11 below for a
first analysis of hidden patterns (to be continued in Chaytemd Example 12 for an
analysis of factor patterns (to be further extended in Glrggtl, IV, and 1X).

ExAMPLE |.11. Subsequence (hidden) patterns in a teXt.sequence of letters that occurs
in the right order, but not necessarily contiguously in & texsaid to be a “hidden pattern”.
For instance the pattercémbinatoric$is to be found hidden in Shakespeare’s Hamlet (Act |,
Scene 1)

Dared to th4 comb at; which our @Iiarﬂ Hamlet—

sot BS side of our known world esteem’d him—
Did slay this Fortinbras; who by a seal'd compact,
Well ratified by law and heraldry,
Did forfeit, with his life, all those his lands
Whil ¢ ] he[ s]tood seized of, to the conqueror. ..

Take a fixed finite alphabetl comprisingm letters (n = 26 for English). First, let
us examine the language of all words, also called “texts”, that contain a given ward=
p1pz - - - pr. Of length k as a subsequence. These words can be described unambigeusly
starting with a sequence of letters not containingfollowed by the letterp, followed by a
sequence not containing, and so on:

L = SEQ(A\ p1)p1 SEQ(A \ p2)p2 - - - SEQ(A \ pr)pr SEQ(A).

This is in a sense equivalent to parsing words unambiguaggdgrding to the leftmost occur-
rence ofp as a subsequence. The OGF is accordingly

P 1

L(z) = (1=(m-12)k1-mz"
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An easy analysis of the dominant simple pole at 1/m shows that

1
L(z) ~ , sothat L, ~ m".
z—1/m 1—mz n— oo
Thus, a proportion tending to 1 of all the words of lengttlo containp as a subsequecne.

> 1.23. A refined analysisFurther consideration of the subdominant pole at 1/(m — 1)
yields, by the methods of Chapter 1V, the refined estimate:

1—ﬂzo<nk—l (1—3) )
m" m
Thus, the probability ohot containing a given subsequence pattern is exponentialif.smal

A census (Note 24) shows that there are in fa68 103° occurrences of¢ombinatoric
as a subsequence hidden somewhere in the text of Hamletevdragth is 120,057 (this is the
number of letters that constitute the text). Is this the sifja secret encouragement passed to
us by the author of Hamlet?

Here is an analysis of the expected number of hidden patberssd on enumerating en-
riched words, where an enriched word is a word together witisttnguished occurrence of the
pattern as a subsequence. Consider the regular specificatio

O = SEQ(A) p1 SEQ(A) p2 SEQ(A) - - SEQ(A) pr—1 SEQ(A) pr SEQ(A).
An element ofO is a(2k + 1)-tuple whose first component is an arbitrary word, whosersgco
component is the letter, and so on, with letters of the pattern and free blocks adtérg . In
other terms, any € O represents precisely one possible occurrence of the hiolakternp in

a text built over the alphabet. The associated OGF is simply

k
z

(1 —mz)k+1’

The ratio between the number of occurrences and the numbesrds of lengthn then equals

(42) q, = F1OG) _ <n>

O(z) =

mn k
and this quantity represents the expected number of ocmeseof the hidden pattern in a
random word of lengtl, assuming all such words to be equally likely. For the patarse
corresponding to the text of Hamlet & 120, 057) and the patterncombinatorics (k£ = 13),
the quantity(2,, evaluates t@.96 10°7. The number of hidden occurrences observed is thus 23
times higher than what the uniform model predicts! Howesinjlar methods make it possible
to take into account nonuniform letter probabilities (Cleapll): based on the frequencies of
letters in the English text itself, the expected number alioences is found to be71 10%°—
this is now only within 5% of what is observed. Thus, Shakaspelid not (probably) conceal
in his text any message relative to combinatorics. ... ......... END OF EXAMPLE 1.11.J

> 1.24. Dynamic programmingThe number of occurrences of a subsequence pattern in a text

can be determined efficiently by scanning the text from efight and maintaining a running
count of the number of occurrences of the pattern as well is akefixes. <

I.4.2. Finite automata. We begin with a simple device, tHeite automaton
that is widely used in models of computatid®f] and has wide descriptive power as
regards structural properties of wofds

A far reaching treatment of automata and paths in graphslvimg both algebraic and asymptotic
aspects, is given in Part B, Section V.5, p. 320.
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bga a, b
a b b
=050

12 )

FIGURE 1.9. Words that contain the pattenbb are recognized by &-state automaton
with initial stateqo and final stateys.

Definition 1.11. A finite automatons a directed multigraph whg31ose edges are la-
belled by letters of the alphabgt It is customary to refer to vertices atatesand to
denote byQ) the set of states. An initial statg € () and a set of final stateQ; C @
are designated.

The automaton is said to lieterministidf for each pair(q, «) with ¢ € @ and
a € A there exists at most one edge (one also says a transitioniygtdrom ¢ that is
labelled by the lettet.

A finite automaton is able to process words, as we now explaimord w =
wi ... wy IS accepteddy the automaton if there exists a path in the multigraph con-
necting the initial statg, to one of the final states @f ; and whose sequence of edge
labels is precisely, . .., w,. For a deterministic finite automaton, it suffices to start
from the initial stateyy, scan the letters of the word from left to right, and follow at
each stage the only transition permitted; the word is aeckiftthe state reached in
this way after scanning the last letterwofis a final state. Schematically:

La[o]al o] o]

A finite automaton thus keeps only a finite memory of the pasi¢e its name) and
is in a sense a combinatorial counterpart of the notion ofdghachain in probability
theory. In this book, we shall only consider deterministitcenata.

As an illustration, consider the clagsof all wordsw that contain the pattern
abb as a factor (the letters of the pattern should appear canigly). Such words
are recognized by a finite automaton witlstates o, ¢1, g2, ¢3. The construction is
classical: statg; is interpreted as meaningite firstj characters of the pattern have
just been scannégdand the corresponding automaton appears in Figure 9. ritial i
state isgg, and there is a unique final statg
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Definition.12. Alanguage is said to bé—-regularfautomaton regular) if it coincides
with the set of words accepted by a deterministic finite aatom A classM is A—
regular if for some regular languagé, one hasM = L.

> 1.25. Congruence languagesThe language of binary representations of numbers that are
congruent to 2 to modulo 7 id-regular. A similar property holds for any numeration base a
any boolean combination of basic congruence conditions. <

> 1.26. Binary representation of primesThe language of binary representations of prime
numbers is neithed-regular norS-regular. [Hint: this requires the Prime Number Theorem
and asymptotic methods of Chapter IV.] <

The following equivalence theorem is briefly discussed aAlppendix (see A-
PENDIX A: Regular languages. 678).

Equivalence theorem (Kleene—Rabin—Scott) A language isS—regular
(specification regular) if and only if it isi—regular (automaton regular).

These two equivalent notions also coincide with the notibmegularity in formal
language theory (defined there by means of regular expresaimd nondeterministic
finite automata3, 149). As already pointed out, the equivalence is non-trivial:
is given by an algorithm that transforms one formalism irite bther, but does not
transparently preserve combinatorial structure (e.gsome cases, an exponential
blow up in the size of descriptions is involved). For thissea, we have opted to
develop both notions of-regularity andA-regularity in an independent way.

We next examine the way generating functions can be obtdineda determin-
istic automaton. The process was first discovered in thel@s®’s by Chomsky and
SchitzenbergeBp].

Proposition |.3. LetG be a deterministic finite automaton with state@et {qo, ..., qs},
initial state g, and set of final state = {g;,,. . ., i, }- The generating function of
the languageC of all words accepted by the automaton is a rational functioat is
determined under matrix form as

L(z)=u(l — 2T) v.

There the transition matrif’ is defined by

T;; = card {a € A such that an edg@;, ¢;) is labelled bya} ;
the row vectom is the ve_ct0|(1, 0,0,...,0) and the column vector = (vo, . . .,vs)"
is such thatv; = [¢; € QJ.
In particular, by Cramer’s rule, the OGF of a regular languegthe quotient of two
sparse determinants whose structure directly reflectsutareaton transitions.
PrRoOOF Forj € {0,...,s}, introduce the class (languagé) of all wordsw such

that the automaton, when started in stgteterminates in one of the final states after
having readv. The following relation holds for any:

(43) Lj=A;+ (Z{a}ﬁ(qjow) ;

acA

8t proves convenient at this stage to introduce Iversonacket notation: for a predicat?, the
variable[P] has value 1 ifP is true and 0 otherwise.
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thereA; is the clasg{e} formed of the word of length 0 if; is final and the empty
set ()) otherwise; the notatiofy; o «) designates the state reached in one step from
stateg; upon reading letterr. The justification is simple: a languagg contains the
word of length 0 only if the corresponding stagis final; a word of length> 1 that
is accepted starting from staje has a first lettery followed by a word that must lead
to an accepting state when starting from stgte «.

The translation of (43) is then immediate:

(44) Li(z) =g, € Ql + 2 > Ligyoa)(2)-
acA
The collection of all the equations gsvaries forms a linear system: with(t) the
column vecto(Ly(2), ..., Ls(2)), one has
L(z) =v+2TL(z),
where vand are as described in the statement. The result follows byixiaversion
upon observing thal(z) = Lo(z). O

The patternabb. Consider the automaton recognizing the pattéinas given in
Figure 9. The languages; (whereL; is the set of accepted words when starting from
stateg;) are connected by the system of equations

LO = CL£1 + b£0
El = CL£1 + bLQ
LQ = CL£1 + b£3
L3 = als +bLs +e,

which directly reflects the graph structure of the automaldnis gives rise to a set of
equations for the associated OGFs

Lo = zLi +zLg
L1 = ZL1 + ZLQ
LQ = ZL1 + ZL3
L3 = ZL3 + ZL3 + 1.

Solving the system, we find the OGF of all words containingggatiernabb: it is
Lo(z) since the initial state of the automatoryis and

23

(1—2)(1-22)1—2z—22)
The partial fraction decomposition
1 2+ 2z 1

T1-922 1-—z2-22 " 1-2

(45) Lo(z) =

Lo(Z)

then yields

Loy =2" = Frys+1,
with F,, a Fibonacci number. In particular the number of words of tengthat do
not containabb is F,,;. 3 —1, a quantity that grows at an exponential rate,6f with
¢ = (1++/5)/2 the golden ratio. Thus, all but an exponentially vanishirgpprtion
of the strings of lengtm contain the given patterambd, a fact that was otherwise to
be expected on probabilistic grounds. (For instance, frasteN29, a random word
contains a large number, aboutn /8, of occurrences of the patteahb.)
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> 1.27. Regular specification for patterabb. The patterrubb is simple enough that one can
come up with an equivalent regular expression descrildlngwhose existence is otherwise
predicted by the Kleene-Rabin-Scott Theorem. An accepéth in the automaton of Figure 9
loops around state 0 with a sequencé,dahen reads an, loops around state 1 with a sequence
of a’s and moves to state 2 upon readinty ¢hen there should be letters making the automaton
passs through states 1-2-1-2—-1-2 and finally ab followed by an arbitrary sequence o%
andb’s at state 3. This corresponds to the specification

Lo = SEQ(b) a SEQ(a)b SEQ(a SEQ(a)b) b SEQ(a + b)

3
— Lo(z) = =2 ,
o(2) (1—2)2(1- ) (1—22)

which gives back a form equivalent to (45). <

ExampPLE 1.12. Words containing or excluding a patterrk-ix an arbitrary patterp =
p1p2 - - - pr. and let£ be the language of words containiagileastone occurrence gf as a
factor. Automata theory implies that the set of words caonitgj a pattern as a factor id—
regular, hence admits a rational generating function.dddthe construction given for= abb
generalizes in an easy manner: there exists a determifiistiE automaton withk + 1 states
that recognize<, the states memorizing at each stage the largest prefix gidtiernp just
seen. As a consequencihe OGF of the language of words containing a given factotgat
of lengthk is a rational function of degree at mokt+ 1. (The corresponding automaton is in
fact known as a Knuth—Morris—Pratt automat&1(].) The automaton construction however
provides the OGH.(z) in determinantal form, so that the relation between thinal form
and the structure of the pattern is not transparent.

Autocorrelations. An explicit construction due to Guibas and OdlyzIi&b§ nicely cir-
cumvents this problem. It is based on an “equational” spetifin that yields an alternative
linear system. The fundamental notion is that ofaamocorrelation vectar For a givenp, this
vector of bitsc = (co, ..., cx—1) is most conveniently defined in terms of Iverson’s bracket as

Ci = [[pi+1pi+2 Pk = Ppip2 - 'pk—i]]~

In other words, the bit; is determined by shifting right by 7 positions and putting a 1 if
the remaining letters match the original Graphically,c; = 1 if the two framed factors of

coincide in

P1 - Pk—i| Pk—i+1 " "Dk =P

=
Il

For instance, witlp = aabbaa, one has

aabbaa 1
aabbaa 0
aabbaa 0
aabbaa 0
aabbaa 1
aabbaa 1

The autocorrelation is then= (1, 0, 0,0, 1, 1). Theautocorrelation polynomiais defined as

k=1
c(z) = Z ¢
=0

For the example pattern, this giveg) = 1 + z* + 2°.
Let S be the language of words witio occurrence op and7 the language of words that
end withp but have no other occurrence jof First, by appending a letter to a word &f one
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finds a nonempty word either i or 7, so that
(46) S+T ={e}+Sx A

Next, appending a copy of the wopdo a word inS may only give words that containat or
“near” the end. Precisely, the decomposition based on ftradst occurrence of in Sp is

(47) Sx APy =T x > {pe—itipr-ira- i},
corresponding to the configurations o
| s [//11111%111111 |
| e
T

The translation of the system (46), (47) into OGFs then givegstem of two equations in the
two unknownS, T,
S+T=1+mzS, S 28 =Te(z),
which is then readily solved.
Proposition I.4. The OGF of wordsiot containing the patterp as a factor is

c(z)

4 =
(48) 5() 2k + (1 — m2)e(z)’
wherem is the alphabet cardinalityk = |p| the pattern length, and(z) the autocorrelation
polynomial ofp.

A bivariate generating function based on the autocoraapolynomial is derived in
Chapter llI, from which is deduced the existence of a lingit@aussian law for the number
of occurrences of any pattern in Chapter IX. ............... END OF EXAMPLE 1.12.0

> 1.28. At least once.The GFs of words containing at least once the pattern (amgylzd
containing it only once at the end are
k Zk
L = T(z) =
(2) (1 —mz)(z* 4+ (1 — mz)c(z))’ (2) 2k 4+ (1 — mz2)c(z)’
respectively. <

> 1.29. Expected number of occurrences of a patteFor themeannumber of occurrences
of a factor pattern, calculations similar to those emplof@dthe number of occurrences of
a subsequence (even simpler) can be based on regular spémific  All the occurrences
p = p1p2 - - - pr @s a factor are described by

z

k

~ -~ z
Consequently, the expected number of such contiguous recweas satisfies
~ _k n
(49) Qn=m (n—k—&—l)wm.
Thus, the mean number of occurrences is proportional to <

> 1.30. Waiting times in stringsLet £ C SEQ{a, b} be alanguage anfl = {a, b}°° be the set
of infinite strings with the product probability induced BYya) = P(b) = % The probability
that a random string € S starts with a word of_ is Z(1/2), wheref(z) is the OGF of the
“prefix language” ofZ, that is, the set of worde € £ that have no strict prefix belonging th



58 I. UNLABELLED STRUCTURES AND ORDINARY GENERATING FUNCHBION

The GFE(z) serves to express the expected time at which a worigtfirst encountered: this
is %L’(%). For a regular language, this quantity must be a rationalbaim <

> 1.31. A probabilistic paradox on stringsn a random infinite sequence, a pattgiof lengthk
first occurs on average at tin¥¢(1/2), wherec(z) is the autocorrelation polynomial. For
instance, the pattemn= abb tends to occur “sooner” (at average posit®)rthanp’ = aaa (at
average position4). See P53 for a thorough discussion. Here are for instance the epaths
whichp andp’ are first found in a sample of 20 runs

p: 3,4,5,5,6,6,7,8,8,8,8,9,9,10,11, 14, 15, 15, 16, 21
p': 3,4,8,8,9,10,11,11, 11, 12,17, 22,23, 27, 27, 27, 44, 47, 52, 52.

On the other hand, patterns of the same length have the sgraeted number of occurrences,
which is puzzling. The catch is that, due to overlapg’ofvith itself, occurrences gf’ tend to
occur in clusters, but, then, clusters tend to be separatedder gaps than fop; eventually,
there is no contradiction. <

> 1.32. Borges's TheoremTake any fixed sell of finite patterns. A random text of length
contains all the patterns of the dédt(as factors) with probability tending to 1 exponentially
fast asn — oo. (Reason: the rational functiorf&(z/2) with S(z) as in (48) have no pole
in |z| < 1; see also Chapters IV, V.)

Note: similar properties hold for many random combinatasteuctures. They are some-
times called “Borges’s Theorem” as a tribute to the famouwgeatinian writer Jorge Luis Borges
(1899-1986) who, in his essé&yhe Library of Babel”, describes a library so huge as to contain:
“Everything: the minutely detailed history of the futurégtarchangels’ autobiographies, the
faithful catalogues of the Library, thousands and thousarfdalse catalogues, the demonstra-
tion of the fallacy of those catalogues, the demonstratfdheofallacy of the true catalogue, the
Gnostic gospel of Basilides, the commentary on that gospelcommentary on the commen-
tary on that gospel, the true story of your death, the tréiosiaf every book in all languages,
the interpolations of every book in all books.” <

In general, automata are useful in establishangriori the rational character of
generating functions. They are also surrounded by infegesinalytic properties
(e.g., Perron-Frobenius theory, Chapter 1V, that charaete the dominant poles)
and by asymptotic probability distributions of associgtadameters that are normally
Gaussian. They are most conveniently used for provingexigt theorems, then sup-
plemented when possible by regular specifications, whieHikely to lead to more
tractable expressions.

> 1.33. Variable length codes.A finite setF7 C W, whereWW = SEQ(A) is called acodeif
any word of)V decomposes in at most one manner into factors that belofg(teith repeti-
tions allowed). For instanc& = {a, ab, bb} is a code andaabbb = ala|ab|bb has a unique
decompositionF’ = {a, aa, b} is not a code sinceaa = alaa = aala = alala. The OGF of
the setSr of all words that admit a decomposition into factors allAris a computable rational
function, irrespective of whethef is a code. (Hint: use an “Aho—Corasick” automatdh)[A
finite setF is a code iffS#(z) = (1 — F(z))~*. Consequently, the property of being a code
can be decided in polynomial time using linear algebra. Téwklby Berstel and Perrindf]
develops systematically the theory of such variable-lercgtes. <

I.4.3. Related constructions.Words can, at least in principle, encode any com-
binatorial structure. We detail here one example that destnates the usefulness of
such encodings: it is relative to set partitions and Stirlilumbers. The point to be
made is that some amount of “combinatorial preprocessimgbimetimes necessary
in order to bring combinatorial structures into the framewnaf symbolic methods.
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FIGURE I.10. The 15 ways of partitioning a four-element domain into bldorre-
spondtas{” =1, S =7, $¥ =6 S =1

Set partitions and Stirling partition numbersA set partitionis a partition of a
finite domain into a certain number of nonempty sets, alded#&locks. For instance,
if the domain isD = {«, 3,7, 4}, there are 15 ways to partition it (Figure 10). Let
S denote the collection of all partitions of the g&t . n] into » non—empty blocks
andS.” = card(S'") the corresponding cardinality. The basic object underidens
eration here is @&et partition(not to be confused with integer partitions considered
earlier).

Itis possible to find an encoding of partitionsSé{) of ann—set intor blocks by
words over a letter alphabet3 = {b1, b2, . .., b, } as follows. Consider a set partition
w that is formed ofr blocks. Identify each block by its smallest element callegl t
block leader, then sort the block leaders into increasing order. Defireitidex of
a block as the rank of its leader amongst all theaders, with ranks conventionally
starting atl. Scan the elementsto n in order and produce sequentiallyetters from
the alphabeB: for an element belonging to the block of indgxproduce the lettelr;.

For instance tm = 6, r = 3, the set partitionv = {{6,4}, {5,1,2},{3,7,8}},
is reorganized by putting leaders in first position of thecklband sorting them,

bl 1)2 1)3

N N —N—
== {{1,2,5).13.7.8), {4.6}),

so that the encoding is

( 12345678 )
b1 b1 b b3 by b3 b2 b2 ) -

In this way, a partition is encoded as a word of lengttver3 with the additional
properties that: (i) all- letters occur; (i) the first occurrence bf precedes the first
occurrence oby which itself precedes the first occurrencebef etc. ThusS,(f) is
mapped into words of length in the language

by SEQ(bl) - by SEQ(bl + bg) - b3 SEQ(b1 + by + bg) - b, SEQ(bl +bo4 -+ br)
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Graphically, this correspondence can be rendered by aeytitar staircase” represen-
tation, like
3 -
1 2 - 5 -
where the staircase has lengttand height-, each column contains exactly one ele-
ment, each row corresponds to a class in the partition.
The language specification immediately gives the OGF

T

4 — 6

| ~|

8

z

(=) = 1-2)1-22)1—32)--(1—rz)

The partial fraction expansion ch(”(z) is readily computed,

—J 1 — (r
(r (r) _ r— -n
S = E (]) 2 sothat S, = ] E (-1) J(,)] .

j=1

In particular, one has

1
3!

1
SV =1 8 = (2" —2); SV = 5(3" —3-2" +3).

These numbers are known as the Stirling numbers of the sddnddor better, as
the Stirling partition numbers, and th#") are nowadays usually denoted @y};
see APPENDIX A: Stirling numbersp. 680.

The counting of set partitions could eventually be done sssftilly thanks to an
encoding into words, and the corresponding language foromnatructible class of
combinatorial structures (actually a regular language)the next chapter, we shall
examine another approach to the counting of set partitioasis based on labelled
structures and exponential generating functions.

Circular words (necklaces)Let A be a binary alphabet, viewed as comprised
of beads of two distinct colours. The classoofttular wordsor necklacegp. 18 and
Equation (17)) is defined by a¥€ composition:

B = ap(k 1
N = Cvc(A) — ]; = log ——.

The series starts aESA00003))
N(z) =22+ 322 +42% + 62 +82° 4+ 1425 + 2027 + 362° + 602" + - - - |
and the OGF can be expanded:

(50) No= 3kt

k|ln

It turns out thatV,, = D,, + 1 whereD,, is the wheel count, p. 45. [The connection is
easily explained combinatorially: start from a wheel anghiat in white all the nodes
that are not on the basic circle; then fold them onto the €ifcThe same argument
proves that the number of necklaces ovenaary alphabet is obtained by replacig
by m in (50).
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> 1.34. Finite languages.Viewed as a combinatorial object,fmite languageX is a set of
distinct words, with size being the total number of lettefsath words in A. For a binary
alphabet, the class of all finite languages is thus

(—1)F=t 22F
FL = PET(SEQs(A)) —  FL@)=exp | k 1—2.¢ |

The series isEISA102860 1 + 2z + 522 + 162% + 422* + 1162° 4+ 3102° + - - - . <

I.5. Tree structures

This section is concerned with basic tree enumerationsesTege, as we saw
already, the prototypical recursive structure. The c@wesing specifications nor-
mally lead to nonlinear equations (and systems of such @mstover generating
functions. The Lagrange inversion theorem is useful inisglthe simplest category
of problems. The functional equations furnished by the sylimbmethod are then
conveniently exploited by the asymptotic theory of Chaptér and VII. A certain
type of analytic behaviour appears to be universal in treas)ely a\/—singularity;
accordingly, as we shall see, most trees families occuimnitige combinatorial world
have counting sequences obeying an asymptotic ot n 3/ that widely extends
what we know already for Catalan numbers (p. 36).

I.5.1. Plane trees.Trees are commonly defined as undirected acyclic connected
graphs. In additions, the trees considered in this bookuanless specified otherwise,
rooted. In this subsection, we focus attentionptaine treesalso sometimes called
ordered trees, where subtrees dangling from a node areegretween themselves.
Alternatively, these trees may be viewed as abstract grapttsres accompanied by
an embedding into the plane (see#ENDIXA: Tree concepty. 681 andB0o6 §2.3]).
They are precisely described in terms of a sequence cotistiuc

First, consider the clags of general plane trees where all node degrees are al-
lowed (this repeats p. 33): we have

z

and, accordinglyZ(z) = 1zviz4z 21_4Z so that the number of general trees of size

is a Catalan number:

1
Gn = Cn—l = _(
n

2n —2\ _ (2n—2)!
n—1

onl(n—1)

Many classes of trees defined by all sorts of constraints opepties of nodes
appear to be of interest in combinatorics and in relatedsdiea logic and computer
science. Lef) be a subset of the integers that contains 0. Define the @l&sef
Q-restricted trees as formed of trees such that the outdegfemdes are constrained
to lie in Q2. In what follows, an essential rdle is played by a charastiefunction that

encapsulateq,
od(u) = Z u®.

weN
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Thus,Q = {0,2} determines binary trees, where each node has either 0 or 2 de-
scendants, and(u) = 1 + u?; the choices2 = {0, 1,2} andQ = {0, 3} determine
respectively unary-binary treeg(@:) = 1+u+wu?) and ternary treesi(u) = 1+u?);

the case of general trees correspond3 te Z>o and¢(u) = (1 —u)~ L.

Proposition I.5. The ordinary generating functio}(z) of the classT% of Q-
restricted trees is determined implicitly by the equation

T(2) = z$(T%(2)),

whereg is the characteristic of2, namelyg(u) := - ,_ u“. The tree counts are
given by

(52) T = 2" T9(2) =
PrRoOOF Clearly, forQ2-restricted sequences, we have
A=S8EQ(B)  Alz) = ¢(B(2)),
S0
T = Z x SEQu(T?) — T9(2) = 26(T(2)).
This shows thal” = T is related toz by functional inversion:
T
oT)
The Lagrange Inversion Theorem precisely provides exjmes$or such a case (se®A
PENDIX A: Lagrange Inversionp. 677):

Lagrange Inversion Theorem. The coefficients of an inverse function and
of all its powers are determined by coefficients of powerbefdirect func-
tion: if z = T/¢(T), then

1

0 = o), T = S o)

The theorem immediately implies (52). d

The statement extends trivially to the case wheris a multiset of integers, that
is, a set of integers with repetitions allowed. For instarf¢e= {0,1, 1,3} corre-
sponds to unary-ternary trees with two types of unary noseg, having one of two
colours; in this case, the characteristies:) = u° + 2u! 4 u>. The theorem gives
back the enumeration of general trees, where) = (1 — «) !, by way of the bino-
mial theorem applied tol —u)~". In general, it implies that, whenev@rcomprises
elements() = {w;,...,w.}, the tree counts are expressed a¢ran 1)-fold summa-
tion of binomial coefficients (use the multinomial expamgioAn important special
case detailed below is whé&hhas only two elements.

> 1.35. Forests. Consider ordere#i-forests of trees defined b§ = SEQ, {7 }. The Birmann
form of Lagrange inversion implies

z =

K un=* gy

E"IF() = [T ()" = =
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In particular, one has for forests of general treg@u) = (1 — u)™'):

[z"](l_m)k— k<2n—k—1>

2 n n—1

)

the coefficients are also known as “ballot numbers”. <

EXAMPLE 1.13. “Regular” (t-ary) trees. A tree is said to be-regular ort-ary if Q2 consists
only of the elementg0, t}. In other words, all internal nodes have degtexactly, hence the
name (Figure 11). Le#d := 7{%%} . In an element of4, a node is either terminal or it has
exactlyt children. In this case, the characteristiasi@:) = 1 + ' and the binomial theorem
combined with the Lagrange inversion formula gives

— l n—1 t\n
Av o= Tt

1 (nn1> providedn = 1 mod t¢.
LA\

As the formula shows, only trees of total size of the form= ¢t + 1 exist (a well-known fact
otherwise easily checked by induction), and

. 1 tr+1 . 1 tv
(®3) Aw+1t1/+1< v )(t—l)v+1<u>.

A particular role is played by 2-regular trees knownbasary trees Then a form equivalent
to (53) reads:

The number of plane binary trees having a tota2oef+ 1 nodes (i.e.y binary nodes
andv + 1 external nodes) is the Catalan numtey = 4= (%).
In this book, we shall us® to denote the class of binary trees. Size will be freely mesku
depending on context and convenience, by recording integrternal, or all nodes.

There is a variant of the determination of (53) that avoidsgtoence restrictions. Led
be the class of-ary trees and define the clagsof “pruned” trees as trees oA deprived of
all their external nodes. The trees.finow have nodes that are of degree at mosh order
to make A bijectively equivalent ta4 , it suffices to regard trees of as having(?) possible
types of nodes of degregefor anyj € [0, t]: each node type il plainly encodes which of the
original ¢ — 5 subtrees have been pruned. The equations above immedietatyalize to the

case of arf2 with multiplicities. One findsp(u) = (14 u)* andA(z) = z$(A(z)), so that, by

Lagrange inversion,
~ 1 tv
A, == ,
v (1/ — 1)

yet another equivalent form of (53), since, by basic comtoines, A, = Aivy1. END OF EXxAMPLE 1.13.0

> 1.36. Motzkin numbersLet M(z) be the generating function for unary-binary tre@s=£
{0,1,2}):

1—2—+1—-2z—322
ME) = (14 ME) + ME) = (e = iV 5
One hasM(z) = z + 2% +22% +42* +92° 4 212° 4 5127 4 ... The coefficients

M, = [2"]M (=) are given in Lagrange form as

w5 () (0)
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e

FIGURE I.11. A general tree ot (left) and a binary tree of;\”? (right) drawn
uniformly at random amongst th€so and Cz5 possible trees respectively, with, =

— (%) thenth Catalan number.

and called Motzkin humber&(SA001008. <

> 1.37. Yet another variant of-ary trees.Let A be the class of-ary trees, but with size now
defined as the number of external nodes (leaves). Then, @ne ha

A= Z + SEQ,(A).
The binomial form of4,, follows from Lagrange inversion, sincé = z/(1 — A*~1). <

ExamMPLE 1.14. Hipparchus of Rhodes and Schrodem 1870, the German mathematician
Ernst Schroder (1841-1902) published a paper entifled combinatorische ProblemeThe
paper had to do with the number of terms that can be built out wdriables using nonasso-
ciative operations. In particular, the second of his fowhbems asks for the number of ways
a string ofn identical letters, say, can be “bracketted”. The rule is best stated recursively:
z itself is a bracketting and i1, o2, . .., o With & > 2 are bracketted expressions, then the
k-ary product(o1)(o2) - - - (o) is a bracketting.

Let S denote the class of all brackettings, where size is the nuofhariables. Then, the
recursive definition is readily translated into the fornadafication

(54) S =2+ SEQy(S), Z={x}.

To each bracketting of size is associated a tree whose external nodes contain the heagiab
(and determine size), with internal nodes correspondingrackettings and having degree at
least 2 (while not contributing to size). The functional atjon satisfied by the OGF is then

_ S(z)?
(55) S(z) =z+ =50
This is nota priori of the type corresponding to Proposition I.5 becaustall nodes contribute
to size in this particular application. However, the quéidraquation induced by (55) can be
solved, giving

1
S(z) = 1 (1—|—z— \/1—63+z2)
= 24224323 +112% +452° + 1972% 4+ 90327 + 42792 + 207932°
+ 103049219 + 5188592 4 - - - |

where the coefficients allSA001003 (These numbers also count series-parallel networks of
a specified type (e.g., serial in Figure 12, bottom), wheaegrhent in the plane matters.)

In an instructive paper, Stanle48 discusses a page of Plutarcivioralia where there
appears the following statement:
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FIGURE I.12. An and-or positive proposition of the conjunctive type ftdfs associ-
ated tree (middle), and an equivalent planar series-paradtwork of the serial type (bot-
tom).

“Chrysippus says that the number of compound propositibasdan be made from

only ten simple propositions exceeds a million. (Hippassha be sure, refuted this
by showing that on the affirmative side there are 103@8pound statements, and
on the negative side 310,952

It is notable that the tenth number of Hipparchus of Rhddes 190-120B.C.) is precisely
S10 = 103, 049. This is, for instance, the number of logical formulae that be formed from

ten boolean variables,, ..., z10 (used once each and in this order) using and—or connectives
in alternation (no “negation”), upon starting from the tepsome conventional fashion (e.g,
with an and-clause); see Figure42 Hipparchus was naturally not cognizant of generating
functions, but with the technology of the time (and a ratlemarkable mind!), he would still

be able to discover a recurrence equivalent to (55),

(56) S, =[n>2] > SuSnySuy | +In=1],

ni+--+ng=n

where the sum has only 42 essentially different termsifer 10 (see §48 for a discussion),
and finally determingSio. ....... ..ot ND OoF EXAMPLE 1.14.0

> 1.38. The Lagrangean form of Schroder’s GFe generating functiof(z) admits the form

S(2) = 20(S(2)) where o(y) = 7 —1-

9This was first observed by David Hough in 1994; sé4d. In [256], Habsiegeret al. further note
that%(Slo + S11) = 310,954, and suggest a related interpretation (based on negatedbes) for the
other count given by Hipparchus.

1%Any functional term admits a unique tree representationreHas soon as the root type has been
fixed (e.g., am\ connective), the others are determined by level parity. ddmstraint of node degreés 2
in the tree means that no superfluous connectives are useallyFany monotone boolean expression can
be represented by a series-parallel network:athare viewed as switches with thieue andfalse values
being associated with closed and open circuits, respéctive
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Tree variety 12345 6 7 8‘ n ‘ +00

Planegen. G =2 x SEQ(G) |1 1 2 5 14 42 132 421 (> 2) |~ 47! /V/mn3
Planebin. 7 =Z2Z+SEQ(7) |1 1 2 5 14 42 132 4201 (> 2) |~ 47! /V/mn3
Unord.gen. H = Z x MSET(H) |1 1 2 4 9 20 48 115 - ~ -3 n?/?
Unord. bin. &/ = Z+MSET2(4)|1 1 12 3 6 11 23 - A2 - 5 /n3/?

FIGURE |.13. The number of rooted trees of type plane/unordered and giénieary
for n = 1..8 and the corresponding asymptotic forms. Thexe= 0.43992, § =
2.95576 for unordered generaE(S A0O0008Y); \» = 0.31877, B2 = 2.48325 for un-
ordered binary. For binary treeBISA001190, size is, by convention here, the number of
external nodes.

is the OGF of compositions. Consequently, one has

S = %[un_l] (11—_21;)
B ()
1S (2m—k-2\(n-2
o Ek:() n—1 k)

Is there a direct combinatorial relation to compositions? <
> 1.39. Faster determination of Schroder numbegy. forming a differential equation satisfied
by S(z) and extracting coefficients, one obtains a recurrence

(n+2)Sny2 —32n+1)Sny1 + (n —1)S, =0, n>1,
that entails a fast determination (in linear time) of )¢ In contrast, Hipparchus’s recurrence
implies an algorithm of complexityowﬁ) in the number of arithmetic operations involved.

I.5.2. Nonplane trees.An unordered tregalso callednonplanetree, is a tree
in the general graph—theoretic sense, so that there is rey distinction between
subtrees emanating from a common node. The unordered toes&lered here are
furthermore rooted, meaning that one of the nodes is digtihgd as the root. Ac-
cordingly, in the language of constructible structuregaedunorderedree is a root
node linked to anultisetof trees. Thus, the clags of all unordered trees, admits the
recursive specification:

H(z)==z [ (1 —2m)
H=ZxMSET(H) = m=1 ) .
=zexp (H(2)+ =H(z*)+ zH(z*) + ).

2 3
The first form of the OGF was given by Cayley in 18%4[ p. 43]; it does not ad-
mit a closed form solution, though the equation permits engetermine all the,,
recursively EISA00008))

H(2) =2+ 22+ 223 + 42" + 925 +202° + 4827 + 11528 +2862° + - - .
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In addition, the local analysis of the singularitiesdfz) yields abona fideasymptotic
expansion forf,,, a fact first discovered by P6ly897 who proved that

i

n3/2’
for some positive constants= 0.43992 andg = 2.95576. The “universality in tree
enumerations of such estimates, of the fotfim —3/2 is a major theme of Chapter VII.

> 1.40. Fast determination of the Cayley—P6lya numberegarithmic differentiation of the
equation satisfied byf (z) provides for theH,, a recurrence that permits one to compiitg
in time polynomial inn. (Note: a similar technique applies to the partition nurski@r; see
p. 40.) <

The enumeration of the class of trees defined by an arbiteafy af node degrees
immediately results from the translation of sets of fixedioaatlity.

Proposition 1.6. Let$2 C N be a finite set of integers containing 0. The OGE) of
nonplane trees with degrees constrained to li€isatisfies a functional equation of
the form

(58) U(z) = 20(U(2),U(2%),U(2%),...),
for some computable polynomial
PrROOF The class of trees satisfies the combinatorial equation,

(57) H, ~\

U= Z x MSETo(U) <MSETQ(I/{) =) MSET, (U)> :
we
where the multiset construction reflects non-planaritycaisubtrees stemming from
a node can be freely rearranged between themselves and pegrappeated. Theo-
rem 1.3 (p. 78) provides the translation of M&.(/):

2
B(U(2),U(z%),U(*),..) = 3 [u”] exp (%U(z) + %U(%) 4o ) .
w€eN

The result follows. O

Once more, there are no explicit formulae but only functi@e@ations implicitly
determining the generating functions. However, as we salin Chapter VII, the
equations may be used to analyse the dominant singularity{ of. It is found that a
“universal” law governs the singularities of simple treengmting functions that are
of the typey/1 — z/p, corresponding to a general asymptotic scheme (see Figlre 1

(59) U2 ~ AQM.

V3
Many of these questions have their origin in combinatorfedroistry, starting with
Cayley in the 19th century5@, Ch. 4]. Pélya reexamined these questions, and in
his important paper published in 19339 he developed at the same time a general
theory of combinatorial enumerations under group actionlsod asymptotics methods
giving rise to estimates like (59). See the book by HararyRaldher 59 for more
on this topic or Read’s edition of Pblya’s pap88f].
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> 1.41. Binary nonplane treesUnordered binary trees with size measured by the number of
external nodes are described by the equatios Z + MSET2 (/). The functional equation
determiningU (z) is

(60) U(z):z—i—%U(z)Q—ﬁ—%U(zg); U)=24+2"4+2>+22" 43"+ .

The asymptotic analysis of the coefficienEd$ A00119Q was carried out by OtteBBZ who
established an estimate of type (59). (The values of thetantssare summarized in Figure 13.)
The quantityU,, is also the number of structurally distinct productsroklements under a
commutative nonassociative binary operation. <

> 1.42. Hierarchies.Define the clas&’ of hierarchies to be trees without nodes of outdegree 1
and size determined by the number of external nodes. Thesmmnding OGF satisfies (Cayley
1857, see4, p.43])

K(z) =52+ {eXp (K(z) + oK)+ ) - 1} ,

from which the first values are foun&iS A000669
K(2) =z + 27 +22° + 52" +122° +332° 4 902" + 2612° + 7662° 4 23122'% 4 - - .

These numbers also enumerate hierarchies in statistasslification theory475. They are the
non-planar analogues of the Hipparchus—Schroder’s nisydrep. 64.

> 1.43. Nonplane series-parallel network€onsider the clas§P of series-parallel networks
as previously considered in relation to Hipparchus of Rebégample, p. 65, but ignoring
planar embeddings. Thus, all parallel arrangements ofséméa() networks, . . . , si are con-
sidered equivalent, while the linear arrangement in eadhlseetwork matters. For instance,
forn =2,3:
-0--0- |-0-| -0--0--0- |-0-| |-0-0-| -0--|-0-|- -|-0-|--0 -

o] Fol |- o o

|-o-|
Thus,SP, = 2 andSPs; = 5. This is modelled by the grammar:
S = Z + SEQ-»(P), P = Z + MSET>2(S),

and, to avoid counting networks of one element twice,
SP(z) = S(2)+P(2)— 2 = 2+ 22+ 52° + 152" + 482" + 1672° + 60227 + 225625 + - - - .

This isEISA003430 The objects are usually described as networks of eleasistors. <]

I.5.3. Related constructions.Trees underlie recursive structures of all sorts. A
first illustration is provided by the fact that the Catalamoers,C,, = #1(277)
count general treegjj of sizen + 1, binary trees ) of sizen (if size is defined as
the number of internal nodes), as well as triangulati@isqomprised of triangles.
The combinatorialist John Riordan even coined the n&@atalan domairfor the area
within combinatorics that deals with objects enumeratedClayalan nhumbers, and
Stanley’s book contains an exercigel Ex. 6.19] whose statement alone spans ten
full pages, with a list of 66 types of objects(!) belonginghe Catalan domain. We
shall illustrate the importance of Catalan numbers by deisgy a few fundamental
correspondences that explain the occurrence of Catalamensnn several areas of
combinatorics.
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Rotation of trees.The combinatorial isomorphism relatitgand B (albeit with
a shift in size) coincides with a classical technique of catapscience306 §2.3.2].
To wit, a general tree can be represented in such a way that egde has two types
of links, one pointing to the leftmost child, the other to trext sibling in left-to-right
order. Under this representation, if the root of the genteeal is left aside, then every
node is linked to two other (possibly empty) subtrees. Ireothords, general trees
with n nodes are equinumerous with pruned binary trees withl nodes:

gn = Bn—l .

Graphically, this is illustrated as follows:

The rightmost tree is a binary tree drawn in a conventionaimag, following a 45
tilt. This justifies the name of “rotation correspondencign given to this transfor-
mation.

Tree decomposition of triangulationsThe relation betwen binary treds and
triangulations7 is equally simple: draw a triangulation; define the rootrigke as
the one that contains the edge connecting two designatéidese(for instance, the
vertices numbered 0 and 1); associate to the root triangledbt of a binary tree;
next, associate recursively to the subtriangulation ondfief the root triangle a left
subtree; do similarly for the right subtriangulation gigirise to a right subtree.

Under this correspondence, tree nodes correspond to lgifames, while edges con-
nect adjacent triangles. What this correspondence preths icombinatorial isomor-
phism

T, = By.
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We turn next to another type of objects that are in correspooe with trees.
These can be interpreted as words encoding tree traverghlgeometrically, as paths
in the discrete plang x Z.

Tree codes and tukasiewicz words. Any tree can be traversed starting from
the root, proceeding depth-first (and left-to-right), arakiracking upwards once a
subtree has been completely traversed. For instance, trethe

(61) T =

the first visits to nodes take place in the following order
a’7 b7 d7 h7 e’ f? C? g7 1’7 .7 *

(Note: the tags:, b, . .. added for convenience in order to distinguish nodes have no

special meaning; only the abstract tree shape matters) heé order is known as

preorderor prefix ordersince a node is preferentially visited before its children.
Given a tree, the listing of the outdegrees of nodes in prefieiowill be called

the preorder degree sequence. For the tree of (61), this is

o=(2,3,1,0,0,0,1,2,0,0).

Itis a fact that the degree sequence determines the treebigiaonsly. Indeed, given
the degree sequence, the tree is reconstructed step byadtipg nodes one after the
other at the leftmost available place. Farthe first steps are then

Next, if one represents degrgdy a “symbol” f;, then the degree sequence becomes
aword over the infinite alphabef = { fo, f1, ...}, for instance,

o~ fafsfifofofofifafofo

This can be interpreted in logical language as a denotatioa functional term built
out symbols fromF, where f; represents a function of degree (or “arity) The



1.5. TREE STRUCTURES 71

correspondence even becomes obvious if superfluous pasesthre added at appro-
priate place to delimitate scope:

o~ fa(f3(fi1(fo), fo, fo), f1(f2(fo, fo)))-

Such codes are known as tukasiewicz cdyes recognition of the work of the
Polish logician with that name. Jan tukasiewicz (1878-)968oduced them in
order to completely specify th&/ntaxof terms in various logical calculi; they prove
nowadays basic in the development of parsers and compile@nputer science.

Finally, a tree code can be rendered as a walk over the dislaiiceZ x Z.
Associate to any; (i.e., any node of outdegrggthe displacemeril, j—1) € Zx Z,
and plot the sequence of moves starting from the origin. @example one finds:

fo fs fi fo fo fo fr fo fo fo

12 0 -1 -1 -10 1 -1 -1
There, the last line represents the vertical displacemenite resulting paths are
known as tukasiewicz paths. Such a walk is then charactebygewo conditions:
the vertical displacements are in the §etl, 0,1, 2, .. .}; all its points, except for the
very last step, lie in the upper half-plane.

By this correspondence, the number of tukasiewicz pathk wikteps is the

shifted Catalan numbet, (*"~7).

n—1
> 1.44. Conjugacy principle and cycle lemmalet £ be the class of all Lukasiewicz paths.
Define a “relaxed” path as one that starts at level 0, endssek 4l but is otherwise allowed
arbitrary negative steps; le¥1 be the corresponding class. Then, each relaxed path can be
cut-and-pasted uniquely after its leftmost minimum as diesd here:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

This associates to every relaxed path of lengthunique standard path. A bit of combinatorial
reasoning shows that correspondence is &-{each element of hasexactlyr preimages.)
One thus has\f, = vL,. This correspondence preserves the number of steps of yaeh t
(fo, f1,...), so that the number of tukasiewicz paths withsteps of typef; is

1 _ vo v _ v 1 v
;[1’ Yugtult ] (27 o +un 4 zup + 2us +0) = ( ),

v \lo,Vi,...

1A less dignified name is “Polish prefix notation”. The “rev@iRolish notation” is a variant based
on postorder that has been used in some calculators sind97iés.
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under the necessary conditior 1)vp 4 Ovy + 1z + 2v3 + - - - = —1. This combinatorial way
of obtaining refined Catalan statistics is known asabejugacy principlg407] or the cycle
lemma[98, 121, 145 Raney has derived from it a purely combinatorial prooftaf tagrange
inversion formula 407] while Dvoretzky & Motzkin [145 have employed this technique to
solve a number of counting problems related to circulamayeaents. <

ExAMPLE |.15. Binary tree codes and Dyck pathg/alks associated with binary trees have
a very special form since the vertical displacements cag bal+1 or —1. The resulting
paths of Lukasiewicz type are then equivalently charazerias sequences of numbers=
(zo,x1,...,T2n, T2nt1) Satisfying the conditions

(62) zo = 0; z; >0 for1 < j < 2n; |3,’j+1 - .Z‘]'| =1 Tont+1 = —1.

These coincide with “gambler ruin sequences”, a familigecbfrom probability theory: a
player plays head and tails. He starts with no capital€ 0) at time 0; his total gain ig; at
time j; he is allowed no credit(; > 0) and loses at the very end of the gamg 1 = —1; his
gains aret1 depending on the outcome of the coin tosses,i — x;| = 1).

It is customary to drop the final step and consider “excussitivat take place in the upper
half-plane. The resulting objects defined as sequefices= 0, z1,. .., z2, = 0) satisfying
the first three conditions of (62) are known in combinatodsDyck path$?>. By construc-
tion, Dyck paths of lengti2n correspond bijectively to binary trees withinternal nodes and
are consequently enumerated by Catalan numbersDLis the combinatorial class of Dyck
paths, with size defined as length. This property can alschbeked directly: the quadratic

decon pOSitiOII
A“ = (8) + M
= 1

(63)
D = {4+ (/"D\)xD
= D(z2) = 1 4+ (2D(2)z) D(2).
From this OGF, the Catalan numbers are found (as expecigg):= %H(Qf) The decom-

position (63) is known as the “first passage” decomposit®it & based on the first time the
cumulated gains in the coin-tossing game pass through the zaro.

Dyck paths also arise in connection will well-parenthedizxpressions. These are rec-
ognized by keeping a counter that records at each stage tiessrf the number of opening
brackets (' over closing brackets). Finally, one of the origins of Dyck path is the famous
ballot problem which goes back to the nineteenth cent8¢q: there are two candidates
and B that stand for electior®n voters, and the election eventually results in a tie; wh#tés
probability thatA is always ahead of or tied witB when the ballots are counted? The answer
is

D2y 1

G n+l
since there are{if) possibilities in total, of which the number of favorable €ass D, a
Catalan number. The central rdle of Dyck paths and Catalawbers in problems coming from
such diverse areas is quite remarkable. Section V.3, p. B&&epts refined counting results
regarding lattice paths (e.g., the analysis of height) antak&ction VII. 8.1, p. 482 introduces

?Dyck paths are closely associated with free groups on onergem and are named after the German
mathematician Walther (von) Dyck (1856—1934) who intraztifree groups around 1880.
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exact and asymptotic results in the harder case of an aspftréte collection of step types (not
just£1).
.................................................... END OF EXxaAMPLE 1.15.00

> 1.45. Dyck paths, parenthesis systems, and general tréée class of Dyck paths admits an
alternative sequence decomposition

« a0 aM . aa8a lA

D = SEQ(Z xDx2Z),
which again leads to the Catalan GF. The decomposition &&hown as the “arch decom-
position” (see Subsection V. 3.1, p. 296, for more). It casvdle directly related to traversal
sequences of general trees, but with the directiorexigktraversals being recorded (instead of
traversals based on node degrees): fo a generatfréefine its encoding(7) over the binary
alphabet{ 7, \/} recursively by the rules:

K(T) =€, k(o(T1,...,7)) =/ k(1) - Kk(Tr) \, .
This is the classical representation of trees by a parestBgstem (interpret/” and "\ as
‘("and ')’, respectively), which associates to a treenafodes a path of lengtin, — 2. <

> 1.46. Random generation of Dyck patl3yck paths of lengtl2n can be generated uniformly
at random in time linear im. (Hint: By Note 44, it suffices to generate uniformly a seqieen
of n a’'s andn + 1 b’s, then reorganize it according to the conjugacy princ)ple <

> 1.47. Excursions, bridges, and meanderé.dapting a terminology from probability theory,
one sets the following definitiongi) a meander(M) is a word over{ —1, +1}, such that the
sum of the values of any of its prefixes is always a nonnegatteger;(ii) abridge (B) is a
word whose values of letters sum to 0. Thus a meander repsegevalk that wanders in the
first quadrant; a bridge, regarded as a walk, may wander adnodédelow the horizontal line,
but its final altitude is constrained to be 0; an excursioroiffa meander and a bridge. Simple
decompositions provide

__ Dbk _ 1
ME=1—"pe B@=1—22pp)
implying My = (|,,},,) [EISA00140§ and B>, = (°') [EISA000984. <

> 1.48. Motzkin paths and unary-binary trees.Motzkin paths are defined by changing the
third condition of (62) defining Dyck paths infe;+1 — z;| < 1. They appear as codes for
unary-binary trees and are enumerated by the Motzkin nusrdfédote 36. <

ExamPLE 1.16. The complexity of boolean functionsComplexity theory provides many
surprising applications of enumerative combinatorics asyinptotic estimates. In general, one
starts with a finite set of mathematical objeftsand a combinatorial clas® of descriptions
By assumption, to every object 6f€ D is associated an elemen{d) € ©, its “meaning”;
conversely any object ¢ admits at least one descriptionZh that is, the function is surjec-
tive. It is then of interest to quantify properties of the ghet description function defined for
w € Qas
o(w) := min {|5|D ! u(d) = w} ,

and called theomplexityof element of2 (with respect tdD).

We take here to be the class of all boolean functions envariables. Their number is
1] = 22™ . As descriptions, we adopt the class of logical expressioraving the logical
connectivesv, A and pure or negated variables. Equivalenflyjs the class of binary trees,
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where internal nodes are tagged by a logical disjunctigr) @r a conjunction (\’), and each
external node is tagged by either a boolean variablgref . . ., z.,,} or a negated variable of
{—z1,...,~zn}. Define the size of a tree description as the number of inteodes, that is,
the number of logical operators. Then, one has

1 2n n a1
(65) D”_<n+1<n>>'2 S (2m)"

as seen by counting tree shapes and possibilities for aitaswell as external node tags.
The crux of the matter is that if the inequality

(66) > D; <9,
j=0

holds, then there are not enough descriptions of size to exhaust?. In other terms, there
must exist at least one object fd whose complexity exceeds. If the left side of (66) is
much smaller than the right side, then, it must even be the tteg “most’2-objects have a
complexity that exceeds.

In the case of boolean functions and tree descriptions syraptotic form (24) is available.
There results from (65) that, fer, v getting large, one has

Dn — 0(16nmnn73/2)’ ZD] _ O(l6umulj73/2).
=0

Chooser such that the second expressiom(i§2|). This is ensured for instance by taking for
v the value
v(m) := 4+ log, m’

as verified by a simple asymptotic calculation. With thisicepone has the following sugges-
tive statement:

A fraction tending to 1 (asn — oo) of boolean functions im: variables have tree

complexity at leas2™ / log, m.

Regarding upper bounds on boolean function complexity, netian always has a tree

complexity that is at most™*! — 3. To see it, note that forn = 1, the 4 functions are

OE(Z’lAﬁﬂ,’l), 15(1’1\/ﬁ3}1), xr1, 1.

Next, a function ofm variables is representable by a technique known as theybiemision
tree BDT),

f(m17---,$m—lymm) = (ﬂxm/\f(an,...,xm,l,O))\/ (xm/\f(l'l,...,fmfl,].)),

which provides the basis of the induction as it reduces theesentation of am-ary func-
tion to the representation of twon. — 1)-ary functions, consuming on the way three logical
connectives.

Altogether, basic counting arguments have shown that “hosblean functions have
a tree-complexity that is “close” to the maximum possiblamely, O(2™). A similar re-
sult has been established by Shannon for the measure calteit complexity: circuits are
more powerful than trees, but Shannon’s result statesathast all boolean functions of.
variables have circuit complexit® (2™ /m). See B81], especially the chapter by Li and
Vitanyi, for a discussion of such counting techniques initihe framework of complexity the-
Oy, e END OF EXAMPLE 1.16.0



1.5. TREE STRUCTURES 75

I.5.4. Context-free specifications and languagesviany of the combinatorial
examples encountered so far in this section can be orgaimntted common frame-
work, which is fundamental in formal linguistics and the@ral computer science.

Definition 1.13. A classC is said to becontext-fredf it coincides with the first com-
ponent " = S;) of a system of equations

S = Y(Z2,85,...,S8)
(67)

S = ®.(Z2,81,....S,),

where each®; is a constructor that only involves the operations of coratwnial sum
(+) and cartesian productX), as well as the neutral clas§,= {¢}.

A languagec is said to be arunambiguous context-frdanguage if it is combi-
natorially isomorphic to a context-free variety of tregs=> 7.

The classes of general tre€g) @nd binary treesi) are context-free, since they
are specifiable as

G = ZxF
F = {e+(GxF)

B=2Z+ (B xB).

(F designates ordered forests of general trees.) Contextsfrecifications may be
used to describe all sorts of combinatorial objects. Faamse, the clasg of trian-
gulations of convex polygons is specified symbolically by

(68) T=V+(VxT)+(TxV)+(TxVxT),

whereV represents a generic triangle. The Lukasiewicz languag#enset of Dyck
paths are context-free classes since they are bijectigglivalent toG and7 .

The term “context-free” comes from linguistics: it stres¢be fact that objects
can be “freely” generated by the rules of (67), this withonoy aonstraints imposed
by an outside conteXt There, one clasically defines a context-free languageeas th
language formed with words that are obtained as sequendeafdégs (read in left-
to-right order) of a context-free variety of trees. In folrdilaguistics, the one-to-one
mapping between trees and words is not generally imposeen\this satisfied, the
context-free language is said to lmeambiguoughen, words and trees determine each
other uniquely, cf Note 50 below.

An immediate consequence of admissibility theorems isdaleviiing proposition
first encountered by Chomsky and Schiitzenbe@@riih the course of their research
relating formal languages and formal power series:

13cormal language theory also defines context-sensitive maswhere each rule (called a produc-
tion) is applied only if it is enabled by some external cohte€ontext-sensitive grammars have greater
expressive power than context-free ones, but they depgrifisantly from decomposability and are sur-
rounded by strong undecidability properties. Accordingiytext-sensitive grammars cannot be associated
to any global generating function formalism.
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Proposition 1.7. A combinatorial clas€ that is context-freeadmits an OGF that is
an algebraic functionln other words, there exists a (non-null) bivariate polynaim
P(z,y) € Clz,y] such that

P(z,C(z)) =0.
PROOF By the basic sum and product rules, the context-free syé@ntranslates
into a system of OGF equations,

S1(z) = Wi(z,51(2),...,5-(2))

Sr(z) = U.(z,5(2),...,5:(2)),

where thel/; are the polynomials translating the constructidéns

It is then well-known that algebraic elimination is possilih polynomials sys-
tems. Here, it is possible to eliminate the auxiliary vaesty,, . .., S,., one by one,
preserving the polynomial character of the system at eagest The end result is
then a single polynomial equation satisfied ®@yz) = S;(z). (Methods for effec-
tively performing polynomial elimination include a repedtuse of resultants as well
as Groebner basis algorithms; seerENDIX B: Algebraic eliminationp. 685 for a
brief discussion and references.) O

Proposition 1.7 is a counterpart of Proposition 1.3 (54)ading to which rational
generating functions arise from finite state devices, aedptains the importance of
algebraic functions in enumerative theory. We shall dgvalgeneral asymptotic the-
ory of coefficients of algebraic functions in Chapter VIisked on singularity theory.

> 1.49.“Tree-like” structures. A context-free specification can always be regarded as dgfani
class of trees. Indeed, if thih term in the constructiof; is “coloured” with the pair(i, 5), itis
seen that a context-free system yields a class of trees wiookes are tagged by paiis j) in a
way consistent with the system’s rules (1.13). Howeverpiteshis correspondence, it is often
convenient to preserve the possibility of operating diyeaiith objects when the tree aspect
is unnatural. (Some authors have developed a parallelmofidobject grammars”; see for
instance 144 itself inspired by techniques of polyomino surgery irifj.) By a terminology
borrowed from the theory of syntax analysis in computerrsme such trees are referred to as
“parse trees” or “syntax trees”. <

> 1.50. Context-free languages. Let A be a fixed finite alphabet whose elements are called
letters. AgrammarG is a collection of equations

L1 = 9(a,L1,...,Lm)
(69) G : :

L = Yn(d,L1,...,Lm),
where eachl ; involves only the operations of unioty) and catenation produ¢t ) with @ the
vector of letters ind. For instance,

W1(57£17E2,£3) =ao-Lo-L3UazULs-asz- L.

A solution to (69) is ann-tuple of languages over the alphabéthat satisfies the system. By
convention, one declares that the grami@atefines the first component,; .

To each grammar (69), one can associate a context-fredispgon (51) by transforming
unions into disjoint union,y’ — ‘4’, and catenation into cartesian products,— ‘x’. Let

G be the specification associated in this way to the gram@ailhe objects described t@
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appear in this perspective to be trees (see the discussave abgarding parse trees). Let

be the transformation from trees 6fto languages of7 that lists letters in infix (i.e., left-to-
right) order: we call such ah the erasing transformation since it “forgets” all the stuual
information contained in the parse tree and only presetvesticcession of letters. Clearly,

application ofh to the combinatorial specifications determined®yields languages that obey
the grammarG. For a grammars and a wordw € A*, the number of parse tregsc G
such thati(t) = w is called theambiguity coefficienof w with respect to the gramma#; this
guantity is denoted by (w).

A grammarG is unambiguous if all the corresponding ambiguity coeffitseare either 0
or 1. This means that there is a bijection between parse ofe@sand words of the language
described by=: each word generated is uniquely “parsable” accordingegtammar. In such
a case, the OGFs of languages satisfy a polynomial systehe dbtm (52). <

> 1.51. Extended context-free specificatioifs4, 3 are context-free specifications them) the
sequence class = SEQ(.A) is context-free{i) the substitution clas® = A[b — B] is also
context-free.

|.6. Additional constructions

This section is devoted to the constructions of sequeneés, and cycles in the
presence of restrictions on the number of components asaswéti mechanisms that
enrich the framework of core constructions, namely, pogtisubstitution, and the
use of implicit combinatorial definitions.

I.6.1. Restricted constructions. An immediate formula for OGFs is that of the
diagonalA of a cartesian produ@ x B defined as

A=ABxB):={(8,8)| 5 € B}
Then, clearlyAds,, = B,, so that
A(z) = B(2%).

The diagonal construction permits us to access the cladbwi@dered pairs of
(distinct) elements of, which is A = PSET1,(B). A direct argument then runs as
follows: the unordered paifa, 3} is associated to the two ordered pdits 3) and
(8, o) except wherw = 3, where an element of the diagonal is obtained. In other
words, one has the combinatorial isomorphism,

PSET(B) + PETL(B) + A(B x B) 2 B x B,

meaning that
2A(z) 4+ B(2?) = B(2)%.
The resulting translation into OGFs is thus

1 1
A =PETy(B) = A(z) = §B(z)2 — 53(22).
Similarly, for multisets, we find

A=MSET,(B) =  A(z) = %B(Z)Q +ZB(22),
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while for cycles one has &, = MSET,, and
1 1
A = Cvcy(B) = A(z) = §B(z)2 + §B(z2).

This type of direct reasoning could be extended to tredesimnd so on, but the
computations (if not the reasoning) tend to grow out of aantAn approach based
on multivariate generating functions generaiesultaneouslyll cardinality restricted
constructions.

Theorem 1.3 (Component-restricted constructiongjhe OGF of sequences with
componentsl = SEQ, (B) satisfies

A(z) = B(2)*.
The OGF of setsd = PSET,(B), is a polynomialin the quantitieB(z), . .., B(z*),

u u2 u3
Az) = [uk] exp <IB(Z) — ?B(zQ) + 33(23) .. >

The OGF of multisets4d = MSET,(B), is

1 2 3
The OGF of cyclesd = Cvycg(B), is

A(z) = [u*] Z 9028) log T~ w' B0
=1

u u? u?
A(2) = [u*] exp (—B(z) + = B(2*) + = B(2*) + - )

The explicit forms for small values df are summarized in Figure 14.
PrROOF The result for sequences is obvious sineSB3) meansB x --- x B (k
times). For the other constructions, the proof makes ushenfd@chniques of Theo-
rem |.1, but it is best based on bivariate generating funsttbat are otherwise devel-
oped fully in Chapter Il to which we refer for details. Thesmlconsists in describing
all composite objects and introducing a supplementary mgnkariable to keep track
of the number of components.

Take £ to be a construction amongst§, Cyc, MSET, PSET, setA = &(B),
and letx(«) for « € A be the parameter “number & components”. Define the
multivariate quantities

Ap i = card{a € A | |o| =n, x(a) =k}
A(Z,u) - ZAn,kuan = Z Zla‘ux(a).
n,k acA

For instance, a direct calculation shows that, for sequenbere holds

A(z,u) = ZukB(z)k
k>0
1

1—uB(z)
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For multisets and powersets, a simple adaptation of thadreeen argument gives
A(z,u) as

A(z,u) = H(l —uz") "B, A(z,u) = H(l + uz")Bn,

n n

respectively. The result follows from there by the exp-loansformation upon ex-
tracting[u*] A(z, ). The case of cycles results from the bivariate generatingtfon
for cycles derived in RPENDIX A: Cycle constructionp. 674. O

> 1.52. Sets with distinct component sizést A be the class of the finite sets of elements from
B, with the additional constraint that no two elements in ehsek the same size. One has

[e'e]

A(z) = [+ Ba2").

n=1
Similar identities serve in the analysis of polynomial tattation algorithms186|. <

> 1.53. Sequences without repeated compon€ehte generating function is formally:

/000 exp (Z(—l)j_lu—,]A(zj)> e " du.

j=1 J

(This form is based on the Eulerian integral:= f0°° e “u du.) <

I.6.2. Pointing and substitution. Two more constructions, namely pointing and
substitution, translate agreeably into generating fomsti Combinatorial structures
are viewed here as formed of “atoms” (words are composedtef$e graphs of nodes,
etc) which determine their sizes. In this context, pointimgans “pointing at a distin-
guished atom”; substitution, writteli o C or 5[C], means “substitute elements ©f
for atoms of55”.

Definition 1.14. Let {e1,¢€2,...} be a fixed collection of distinct neutral objects of
size 0. Thepointingof a classB, noted A = ©5, is formally defined by

@B::ZBHX {€1,...,€n}

n>0

Thesubstitutionof C into 15 (also known as composition 8fandC), notedB o C
or B[C], is formally defined as

BoC=B[C]:=)_ By x SEQ,(C).

k>0

If B, is the number of3 structures of sizew, thennB,, can be interpreted as
counting pointed structures wheo@e of the n atoms composing 8-structure has
been distinguished (here by a special “pointer” of diztached to it). Elements of
B o C may also be viewed as obtained by selecting in all possiblesvaa element
8 € B and replacing each of its atoms by an arbitrary elemegt of
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The interpretations above rely (silently) on the fact thaias in an object can
be eventually distinguished from each other. This can baionéd by “canonicaliz-
ing”1* the representations of objects: first define inductivelyléx@&ographic order-
ing for products and sequences; next represent powersgttsaltisets as increasing
sequences with the induced lexicographic ordering (monepticated rules can also
canonicalize cycles). In this way, any constructible obgmits a unique “rigid”
representation in which each particular atom is deterniygts place. Such a canon-
icalization thus reconciles the abstract definition, D&bni 1.14, and the intuitive
interpretation of pointing and substitution.

Theorem 1.4 (Pointing and substitution)The constructions of pointing and substitu-
tion are admissib¥:

A=0B8 = A(z) =20,B(z) 0,:=—
A=BoC = A(z)=DB(C(2))

PrROOF By the definition of pointing, one has

A, =n-B, and  A(z) = zdiB(z)
z

From the definition of substitutiotd = B|C] implies, by the sum and product rules,

A(z) =) Bi-(C(2)" = B(C(2)),
k>0

and the proof is completed. O

Permutations as pointed object#\s an example of pointing, consider the cl@ss
of all permutations written as words over integers starfingh 1. One can go from a
permutation of sizes — 1 to a permutation of size by selecting a “gap” and inserting
the valuen. When this is done in all possible ways, it gives rise to thelsmatorial
relation

P=E+0O(Z xP), & = {¢}, = P(z) = 1+z%(zP(z)).

This means that the OGF satisfies an ordinary differentiahign whose formal so-
lutionis P(z) = >,,~,nlz™.

Unary-binary trees as substituted objects an example of substitution, con-
sider the clas$ of (plane rooted) binary trees, where all nodes contributgze. If
at each node there is substituted a linear chain of noddé®dihy edges placed on top
of the node), one forms an element of the clagf unary-binary trees; in symbols:

M=BoSEQs(2) = M(z):B<1ZZ>.
14such canonicalization techniques also serve to develdpafgsrithms for the exhaustive listing
of objects of a given size as well as for the range of problentwk as “ranking” and “unranking”, with
implications in fast random generation. See, e3p2| 373, 49%for the general theory as well 405, 510
for particular cases like necklaces and trees.
191 this book, we borrow from differential algebra the coreerh notationd, := diz to represent
derivatives.
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Thus from the known OGH3(z) = (1 — v/1 — 422)/(2z), one derives

1— /1 —422(1—2)2 —2—1—2z— 322
M(z) = vV 22(1—2) _1-z 1—-22 Sz’
2z(1 —2)~1 2z
which matches the direct derivation on p. 63 (Motzkin nursher

> 1.54. Combinatorics of derivativesThe combinatorial operatio of “eraser—pointing”
points to an atom in an object and replaces it by a neutralcgbfgherwise preserving the
overall structure of the object. The translationidfon OGFs is then simplg = 0. Classical
identities of analysis then receive simple combinatoritdripretations, for instance,

(A% B)= (A x OB) + (0A) x B);
Leibniz’s identity,0™ (f-g) ( ) (™7 g), also follows from basic combinatorics.
Similarly, for the “chain rule”a( g) = ((8f) og) - dg. <

I.6.3. Implicit structures. There are many cases where a combinatorial ctass
is determined by a relatiod = B + X, whereA and5 are known. In terms of
generating functions, one hasz) = B(z) + X (z), so that

A=B+X = X(z)=A(z)— B(2).
For instance, the autocorrelation technique of SectiorRIrdakes it possible to de-
scribe the class of all words inWW that donot contain a given patterp, whereas
the language of words containing the pattern is determisadesolution int’ of the
equationV = S + X; see p. 56. Similarly, for products, basic algebra gives
A(z)
B(z)
Here are the corresponding solutions for two of the compagihstructions.

Theorem 1.5 (Implicit specifications) The generating functions associated to the im-
plicit equations int’

A=BxX = X(2)=

A =SEQ(X), A=MSET(X)

are respectively

X(Z)zl—Ai M logA )
(2) k>1

wherep(k) is the Mdbius function.

PrROOF. For sequences, the relatiof{z) = (1 — X(z))~! is readily inverted. For
multisets, start from the fundamental relation of Theorelrahd take logarithms:

log(A Z —-X(z
Let L =log AandL,, = [z"]L(z). One has
nLy, = (dXa),
d|n

to which it suffices to apply Mobius inversion; se@PeNDIX A: Arithmetical func-
tions p. 667. O
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ExXAMPLE 1.17. Indecomposable permutations.A permutationc = o1 - - - o, (Written
here as a word of distinct letters) is said todecomposablé, for somek < n, o1 - - oy IS

a permutation ofo1,...,0.}, i.e, a strict prefix of the permutation is itself a permutation.
Any permutation decomposes uniquely as a catenation otordposable permutations; for
instance, here is the decompositiorvof= 2541368 7109:

iy
o

P NWDOON®O©

[ ]
12345678910

o=[25413|[6][81079
Thus the clas® of all permutations and the clagsof indecomposable ones are related by
P = SEQ(Z).
This determined (z) implicitly, and Theorem 1.5 gives:

I(z)=1— where P(z) = nlz".

P(z) =
This example illustrates the implicit structure theorent,ddso the possibility obona fide
algebraic calculations with power series even in casesemhery are divergent (APENDIXA:

Formal power seriesp. 676). One finds
I(2) =2z+2"+32° + 132" +712° +4612° + 344727 + .. |
where the coefficients ai&lS A003319and

I, =n!-— E (nilna!) + E (nilnalng!) — - -
nit+ng=n ni+ngt+ng=n

ni,mg>1 ni,ng,ng>1

From there, simple majorizations of the terms imply that~ n!, so thatalmost all permuta-
tions are indecomposahleee P8, p. 262]. .................... %D oF EXaAmMPLE 1.17.00

> 1.55. 2-dimensional wandering®A drunkard starts from the origin in tH& x Z plane and,
at each second, he makes a step in either one of the fouridirecNW, NE, SW, SE. The steps
are thus\_, /', //, \.. Consider the class of “primitive loops” defined as walks that start and
end at the origin, but do not otherwise touch the origin. TieoBL is (EISA002899

L(z)=1- %
Z:.O:O (:) Zzn
(Hint: awalk is determined by its projections on the horiaband vertical axes; 1-dimensional
walks that return to the origin ian steps are enumerated (ﬁ[‘)) In particular[z"]L(z/4) is
the probability that the random walk first returns to the iorig n steps.

Such problems largely originate with Pblya and the implétiucture technique above
was most likely known to him396]. See B9 for similar multidimensional extensions. The
first return problem is analysed asymptotically in Chapterbésed on singularity theory and
Hadamard closure properties. <

=42° 4202 +1762° + 1876 25 + - - - .
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ExamPLE 1.18. Irreducible polynomials over finite fields. Objects not obviously of a
combinatorial nature can sometimes be enumerated by sionbethods. Here is an indirect
construction relative to polynomials over finite fields. Wediprime numbep and consider the
base fieldr, of integers taken modulp. The polynomial ringf,,[X] is the ring of polynomials
in X with coefficients taken if¥,. For all practical purposes, one may restrict attention to
polynomials that are monic, that is, whose leading coefiidte 1.

First, let’P be the class of all monic polynomials, with the size of a polymal being its
degree. Since a monic polynomial of degreés described by a choice of coefficients, one
has

P >~ SEQ(Fy) = P(z) and P, =p".

1o pz
A polynomial is said to bé&reducibleif it does not decompose as a product of two polynomials
of smaller degrees. By unique factorization, each monigmwhial decomposes uniquely into
a product (with repetitions being possible) of monic irreithle polynomials. For instance, over
I3, one has

XY X% 41 = (X +1)%(X+2)%(X°+2X2+1).
Let I be the set of monic irreducible polynomials. The combiratégsomorphism

P =~ MSET(Z)

expresses precisely the unique factorization propertyusTthe irreducibles are determined
implicitly from the class of all polynomials whose OGF is ko Theorem 1.5 implies the
identity

I(z)zZ@log !

1 — pzk’
k>1 p

and, upon extracting coefficients,

1 n
L= =5 ukp/*.
k|n

In particular,I,, is asymptotic t@™ /n. This estimate constitutes the density theorem for irre-
ducible polynomials:

The fraction of irreducible polynomials amongst all polymals of degreex over

the finite fieldF,, is asymptotic to:.
This property is analogous to the Prime Number Theorem ofbmurtheory (which is tech-
nically muchharder L07]), according to which the proportion of prime numbers in thier-
val [1, n] is asymptotic to@. (The result was known to due to Gau3. See Knopfmacher's
book [297] for an abstract discussion of statistical properties dharetical semigroups.)
END OF ExamMPLE 1.18.00

> 1.56. Square-free polynomials.Let @) be the class of monic square-free polynomials.,(
polynomials not divisible by the square of a polynomial).e0ras by “Vallée’s identity” (p. 29)
Q(z) = P(2)/P(2?), hence

1= pz2

Q(z) = T and  Q.=p"-p"" (n>2).

Berlekamp’s book41] discusses such facts together with relations to erroectirrg codes<]

> 1.57. Balanced trees.The clas< of balanced 2-3 trees contains all the (rooted planar) trees
whose internal nodes have degree 2 or 3 and such that alkleaget the same distance from
the root. Only leaves contribute to size. Such trees, whielparticular cases dB-trees, are a
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useful data structure for implementing dynamic dictioeaif807, 433. Balanced trees satisfy
an implicit equation based on combinatorial substitution:

E=Z+E(ZXx2)+(Zx Zx Z)) = E(z) =z + E(z* + 2%).
The expansion starts aBISA014535 E(z) = z4+ 22+ 22+ 24 +22° +225+ 327+ 425 +

52°+82'°+... . Odlyzko [379 has determined the growth @, to be roughlyy™ /n, where
¢ = (1++/5)/2is the golden ratio. Cf Section IV. 7.2, p. 267 for a partishlgsis. <

I.7. Perspective

This chapter and the next amount to a survey of elementarpe@torial enu-
merations, organized in a coherent manner and summarizédumne 14. We refer to
the process of specifying combinatorial classes usingethesstructions and then au-
tomatically having access to the corresponding generétinctions as theymbolic
method The symbolic method is the “combinatorics” in analytic donatorics: it
allows us to organize classical results in combinatoridb i unifying overall ap-
proach, to derive new results that generalize and exterssickl problems, and to
address new classes of problems that are arising in comgeitarce, computational
biology, statistical physics, and other scientific disicips.

More important, the symbolic method leaves us with genegdtinctions that we
can handle with the “analytic” part of analytic combinatsti A full treatment of this
feature of the approach is premature, but a brief discusaieynhelp place the rest of
the book in context.

For a given class of problems, the symbolic method typidaifds to a unified
treatment that reveals a natural class of functions in wheherating functions lie.
Even though the symbolic method is completely formal, we afien successfully
proceed by using classical techniques from complex and ptio analysis. For
example, denumerants with a finite set of coin denominatidways lead to ratio-
nal generating functions with poles on the unit circle. Santobservation is useful
since then a common strategy for coefficient extraction esayiplied (partial fraction
expansion, in the case of denumerants with fixed coin deratinims). In the same
vein, the run statistics constitute a particular case ofjgveeral theorem of Chomsky
and Schitzenberger to the effect that the generatingibmof a regular language
is necessarily a rational function. Theorems of this sarl@ish a bridge between
combinatorial analysis and special functions.

Not all applications of the symbolic method are automaltiogigh that is certainly
a goal underlying the approach). The example of countingasitions shows that
application of the symbolic method may require finding ancadge presentation of
the combinatorial structures to be counted. In this wagdbiye combinatorics enters
the game in a nontrivial fashion.

Our introductory examples of compositions and partitioosespond to classes
of combinatorial structures witkxplicit “iterative” definitions, a fact leading in turn to
explicit generating function expressions. The tree exasilen introducecursively
definedstructures. In that case, the recursive definition traeslaito afunctional
equationthat only determines the generating function implicitlysimpler situations
(like binary or general trees), the equation can be solvedeaplicit counting results
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1. The main constructions of disjoint union (combinatoriainduproduct, sequenc
set, multiset, and cycle and their translation into gefregdtinctions (Theorem 1.1)

Construction OGF
Union A=B+C A(z) = B(2) + C(z)
Product A=BxC A(z) = B(2) - C(2)
1
Sequence A = SEQ(B) | A(z) = =80

Powerset A = SET(B)
Multiset A = MSET(B)

Cycle A = Cvyc(B)

A(z) =exp | B(z) — %B(ZQ) 4.

A(z) =exp | B(z) + %B(zQ) +e

1 1
A(z) = log ——— + = log

1-B(z) 2 T

1— B(z?)

2. The translation for sets, multisets, and cycles constddilyehe number of compo

nents (Theorem 1.3, p. 78).

SEQ.(B) 1 B(z)*

PsET,(B) : 2&°
MSETy(B) : Z2&°
Cvey(B) @ B2

PSETy(B) : 2E°

3 2 3
MSETs(B) : B | B@BGY | G

3 3
Cvcs(B) : B 4 2B

B(2)* B(2)?2B(z2 B(z)B(z® B(z?%)? B(z*

PSET4(B) : (24) ( )4 (z7) ( )3( ) (8) (4 )
4 2 2 3 242 4

MSET4(B) . B(224) B(z) 43(2 ) B(z)f(z ) B(ZB) B(4z )

4 2,2 4
Cveu(B) : B&r  BEL | BE)

3. The additional constructions of pointing and substitutiBaction I. 6).

Construction OGF
Poainting A=0B | A(z)=2LB(z)
Substitution A= BoC | A(z) = B(C(2))

FIGUREI.14. Adictionary of constructions applicable tmlabelledstructures, together

with their translation into ordinary generating functid@GFs). (The labelled counterpart

of this table appears in Figure 16 of Chapter I, p. 137.)
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still follow. In other cases (like non-planar trees) one oanoally proceed with com-
plex asymptotic analysis directly from the functional elijpraand obtain very precise
asymptotic estimatesee Chapters IV-VII.

Analytic combinatorics is characterized by the focus onstarctions that leave
us with generating functions that yield to classical teghes in complex analysis and
asymptotic analysis. For some combinatorial classes, ashak see, we have the-
orems that carry us all the way from purely combinatorialstorctions through to
asymptotic estimates for counting sequences, under deassamptions. For others,
the general theorems are yet to be proved, but the symboticardays the ground-
work for analysis that leads to the results that we seek.

Modern presentations of combinatorial analysis appeahénbiooks of Comtet9g] (a
beautiful book largely example-driven), Stanléyy, 449 (a rich set with an algebraic orienta-
tion), Wilf [ 49€] (generating functions oriented), and Lan@2§ (a neat modern introduction).
An elementary but insightful presentation of the basic mégphes appears in Graham, Knuth,
and Patashnik’s classi48], a popular book with a highly original design. An encyclepe
dic reference is the book of Goulden & Jacks@44] whose descriptive approach very much
parallels ours.

The sources of the modern approaches to combinatorialsiaalse hard to trace since they
are usually based on earlier traditions and informallyestatechanisms that were well mastered
by practicing combinatorial analysts. (See for instanceMhon’s book 350 Combinatory
Analysisfirst published in 1917, the introduction of denumerant gatireg functions by Polya
as exposed in398, or the “domino theory” in 248 Sec. 7.1].) One source in recent times is
the Chomsky—Schutzenberger theory of formal languagdseaomerationsg9]. Rota 414
and Stanley445, 449 developed an approach which is largely based on partiatigred sets.
Bender and Goldman developed a theory of “prefal3d] {vhose purposes are similar to the
theory developed here. Joy&dg proposed an especially elegant framework, the “theory of
species”, that addresses foundational issues in combialatiteory and constitutes the starting
point of the superb exposition by Bergeron, Labelle, anauef39]. Parallel (but independent)
developments by the “Russian School” are nicely synthétimethe books by Sachkowvpo,
421].

One of the reasons for the revival of interest in combinata@numerations and proper-
ties of random structures is the analysis of algorithms fest founded in modern times by
Knuth [309), where the goal is to predict the performance charadtesi®f computer pro-
grams. The symbolic ideas exposed here have been applibeé Entlysis of algorithms in
surveys 175, 486 and are further exposed in our book3{]. Flajolet, Salvy, and Zimmer-
mann P06 have shown how to use them in order to automate the analfys@e well charac-
terized classes of combinatorial structures. Even morentég several researches in statistical
physics, computational biology, and other scientific giboes have been drawn towards the
study of the sorts of discrete models that can be specifiebebgdrts of combinatorial construc-
tions that we have described, and therefore are candidatstuly via analytic combinatorics.
Research in these fields are the driving force in the studyewfkinds of constructions on the
combinatorics side that lead to new methods on the analigc s
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Many objects of classical combinatorics present themselaturally as labelled struc-
tures where atoms of an object (typically nodes in a graph@ed are distinguishable
from one another by the fact that they bear distiabels Without loss of generality,
we may take the set from which labels are drawn to be the sebsifiye integers.
For instance, a permutation can be viewed as a linear amaagrgeof distinct labels;
its cycle decomposition represents it as an unorderedatinlfeof circular directed
graphs whose nodes are labelled by integers.

Operations on labelled structures are based on a specidiligirothelabelled
productthat distributes labels between components. This operaia natural ana-
logue of the cartesian product for plain unlabelled objedise labelled product in
turn leads to labelled analogues of the sequence, set, aledagnstructions.

Labelled constructions translate oegponential generating functionShe trans-
lation schemes turn out to be analytically even simpler timatihe unlabelled case
considered in the previous chapter. At the same time, lethebnstructions enable
us to take into account structures that are in many ways auatdrially richer than
their unlabelled counterparts, in particular as regardsigproperties. They constitute
another facet, with powerful descriptive powers, of the bgtit method for combi-
natorial enumeration.

In this chapter, we examine some of the most important ctasfdabelled objects,
including surjections, set partitions, permutationselid graphs and labelled trees,
as well as graphs and mappings from a finite set into itselftaGeaspects of words

LeThis approach eliminates virtually all calculations.”

87
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can also be treated by this theory, a fact which has numemmsequences not only
in combinatorics itself but also in probability and statist In particular, labelled
constructions of words can be put to use in order to elegaulye two classical
problems, the birthday problem and the coupon collectoblera, as well as several
of their variants that have numerous applications in otledddi including the analysis
of hashing algorithms in computer science.

I.1. Labelled classes

Throughout this chapter, we consider combinatorial caséhe sense of Chap-
ter I: we deal exclusively with finite objects; a combinasbdlassA is a set of objects,
with a notion of size attached, so that the number of objdaach size ind is finite.
To these basic concepts, we now add the idea that the objedaballed by which
we mean that each atom carries with it a distinctive coloueguivalently an integer
label, in such a way that all the labels occurring in an okgeetdistinct. Precisely:

Definition II.1. A weakly labelled objecdf sizen is a graph whose set of vertices
is a subset of the integers. Equivalently, we say that thecesrbear labels, with
the implied condition that labels are distinct integersnfr@. An object of size: is
said to bewell-labelled or simplylabelled if it is weakly labelled and, in addition,
its collection of labels is the complete integer interyal . n]. A labelled classs a
combinatorial class comprised of well-labelled objects.

The graphs considered may be directed or undirected. Invdatn the need
arises, we shall take “object” to mean any kind of discretecstire enriched by in-
teger labels. Virtually all labelled classes considerethia book can eventually be
encoded as graphs of sorts, so that this extended use of iba nba labelled class
is a harmless convenience. (See Section II. 7 for a brietid&on of alternative but
logically equivalent frameworks for the notion of a labeligass.)

ExampLE I1.1. Labelled graphs. A labelled graph is by definition an undirected graph
such that distinct integer labels forming an interval offitven {1, 2, ..., n} are supported by
vertices. A particular labelled graph of size 4 is then
1—3
9= | |
4—2
which represents a graph whose vertices bear the I4bels 3, 4} and whose set of edges is

{{1,3}, {2,3}, {2,4}, {1, 4} }.
Only the graph structure (as defined by its set of edges) spsotthat this is the same abstract
graph as in the alternative visual representations
1—4 3—2
g= | 1 |-
3—2 1—4
However, this graph is different from either of
4—1 3—1
h= e i= |
3—2 4—2



Il.1. LABELLED CLASSES 89
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There are altogethefs = 64 = 2° labelled graphs of size 4, i.e., comprising 4 nodes, in
agreement with the general formula (see p. 97 for detads): = 2"("=1/2 " The labelled
graphs can be grouped into equivalence classes up to aylpgemutation of the labels, which
determines th&, = 11 unlabelled graphs of size 4. Each unlabelled graph correlspto a
variable number of labelled graphs: for instance, the lyotiisconnected graph (bottom, left)
and the complete graph (top, right) correspond to 1 lateeltinly, while the line graph admits

1 4! = 12 possible labellings.

FIGURE I1.1. Labelled versus unlabelled graphs for size- 4.

since, for instance, 1 and 2 are adjacertt endy, but not ing. Altogether, there are 3 different
labelled graphs (namely, A, j), that have the same “shape”, corresponding to the unkbell
guadrangle graph
e—— e
Q=1 |-
e— o
Figure 1 lists all the 64 labelled graphs of size 4 as well & thl unlabelled counterparts
viewed as equivalence classes of labelled graphs wherslateeignored. ED oF EXAMPLE I1.1. [
In order to count labelled objects, we appeal to exponegéagérating functions.

Definition I1.2. Theexponential generating functiqeGF) of a sequencéA,,} is
the formal power series

(1) A(z) =" AnZ—T.
n>0 ’

Theexponential generating functigg GF) of a classA is the exponential generating
function of the numberd,, = card(A, ). Equivalently, the EGF of clasd is

n ||
A(z) = ZAH% - 2;4;7
aE

n>0
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It is also said that the variable markssize in the generating function.

With the standard notation for coefficients of series, theffi@ent A,, in an exponen-
tial generating function is then recoveredby

A, =n! - [2" A(2),

since[z"|A(z) = A, /n! by the definition of EGFs and in accordance with the coeffi-
cient extractor notation, Eq. (6) of Chapter I.

Note that, like in the previous chapter, we adhere to a sysiemaming con-
vention for generating functions of combinatorial struets A labelled class, its
counting sequence4,,) (or (a,)) and its exponential generating functier{z) (or
a(z)) are all denoted by the same group of letters.

Neutral and atomic classeslLike in the unlabelled universe, it proves useful to
introduce a neutral (empty, null) objecthat has sizé and bears no label at all, and
consider it as a special labelled objectiqutral clas<t is then by definitior€ = {e}.
The (labelledptomic classZ = {@} is formed of a unique object of size 1 that, being
well-labelled, bears the integer lalggl The EGFs of the neutral class and the atomic
class are respectively

E(z) =1, Z(z) = z.
ExamMPLE 11.2. Permutations. The classP of all permutations is prototypical of labelled
classes. Under the linear representation of permutatveimsre

1 2 n
o =
gL 02 -+ On

is represented as the sequefee, o2, . .., 0y ), the classP is schematically
@-@-3
0@ B-0-5
P21 90 a6 [
@O-3@-@
®-@-0@

sothatPy = 1, P = 1, P» = 2, P; = 6, etc. There, by definition, all the possible orderings
of the distinct labels are taken into account, so that thesdPacan be equivalently viewed as
the class of all labelled linear digraphs (with an implidiedtion, from left to right, say, in the
representation). Accordingly, the claBsof permutations has the counting sequefte= n!
(argument: there are positions where to place the eleménthen(n — 1) possible positions
for 2, and so on). Thus the EGF &fis

n N 1
P(z):Zn!%:Zz =1

n>0 : n>0

Permutations, as they contain information relative to ttikepof their elements are essential in
many applications related to order statistics. ............... BND OF ExampPLE II.2. O

2some authors prefer the notati@anT}A(z) to n![2™] A(z), which we avoid in this book. Indeed,
Knuth [305 argues convincingly that the variant notation is not cetsit with many desirable properties
of a “good” coefficient operator (e.g., bilinearity).
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ExamPLE 11.3. Urns. The clasg/ of totally disconnected graphs starts as

Do ||loe| |3
U= €, ’
@, |® @ s ® @ @@@

Order between the labelled atoms doescount, so that for each, there is onlyonepossible
arrangement and/,, = 1. The clasd/ can be regarded as the class of “urns”, where an
urn of sizen containsn distinguishable balls in an unspecified (and irrelevantjear The
corresponding EGF is

U(z) = Z 1 % =exp(z) = €”.
n>0
(The fact that the EGF of the constant sequefigeso is the exponential function explains the
term “exponential generating function”.) It also provesigenient, in several applications, to
represent elements of an urn in a sorted sequence, which teaah equivalent representation
of urns agncreasing linear graphsfor instance,

O-@0-0-@-G
may be equivalently used to represent the urn of size 5. Tihaugs look trivial at first glance,

they are of particular importance as building blocks of ctaxpabelled structures (e.g., alloca-
tions of various sorts), as we shall see shortly. .............. BEND OF EXAMPLE 11.3. O

ExampLE I1.4. Circular graphs.  Finally, the class of circular graphs, where cycles are
oriented in some conventional manner (say, positively)isre

o O Cd )

Cyclic graphs correspond bijectively tyclic permutations One ha<’,, = (n — 1)! (argu-
ment: a directed cycle is determined by the succession ofegits that “follow” 1, hence by a
permutation ofr — 1 elements). Thus, one has

z" 2" 1
C(z):Z(n—l)!E:ZF:bgl_z

n>1 n>1

As we shall see in the next section, the logarithm is chariatitzof circular arrangements of
labelled objects. ... END OF EXAMPLE I1.4.

> II.1. Labelled treesLet U,, be now the number of labelled graphs withvertices that are
connected and acyclic; equivalently,, is the number of labelled unrooted nonplane trees. Let
T, be the number of labelled rooted nonplane trees. The igehitit= nU, is elementary,
since all vertices in a labelled tree are distinguishabjetifeir labels) and a root can be chosen
in n possible ways. In Section II. 5, we shall prove that= n""2 andT,, = n""'. <

1. 2. Admissible labelled constructions

We now describe a toolkit of constructions that make it gaegio build complex
labelled classes from simpler ones. Combinatorial sum sipigit union is defined
exactly as in Chapter I: it is the union of disjoint copies. define a product that is
adapted to labelled structures, we cannot use the cartesadnict, since an ordered
pair of two labelled objects is not well-labelled (for inste the label 1 would invari-
ably appear repeated twice). Instead, we define a new operdielabelled product
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which translates naturally into exponential generatingcfions. From there, simple
translation rules follow for labelled sequences, sets,cyates.

Binomial convolutions. As a preparation to the translation of labelled construc-
tions, we first briefly review the effect of products over EGEsta(z), b(z), c(z) be
EGFs, witha(z) = _, a,2™/n!, and so on. Theinomial convolutiorformula is:

2 if a(z) = b(z2) - ¢(z), thena,, = Z (Z) brCr—rk.

k=0
This formula results from the usual product of formal poweries,

an, “bi Cnk n n!

dn _ Nk d S L

W TR -k <k:> W (n—h)!
In the same vein, if.(z) = o™V (2) a?(2) - --a( (2), then

n 2 r
(3) = Z <n17 ng,... 7n7’> aglll)a;; o aglr).

nitnz+-+n,=n

In Equation (3) there occurs the multinomial coefficient

( n ) n!
- )
N1, N2, ..., Ny nilng! -+ n,!

which counts the number of ways of splittimgelements into- distinguished classes
of cardinalitiesny, ..., n,. This property lies at the very heart of enumerative appli-
cations of binomial convolutions and EGFs.

II.2.1. Labelled constructions. A labelled object may be relabelledVe only
considerconsistentelabellings defined by the fact that they preserve the oreller
tions among labelsThen two dual modes of relabellings prove important:

— Reduction For a weakly labelled structure of size this operation reduces
its labels to the standard interal. . n] while preserving the relative order
of labels. For instance, the sequenes, 9, 2) reduces tq3,2,4,1). We
usep(«) to denote the canonical reduction of the structure

— Expansion This operation is defined relative to a relabelling funetioc
[1..n] — Zthatis assumed to be strictly increasing. For instat&e, 4, 1)
may expand ag33,22,44,11),(7,3,9,2), and so on. We us€«) to denote
the result of relabellingr by e.

These notions enable us to devise a product suited to labaiects.

Thelabelled product(or simplyproduc), of objects and classes was originally
formalized under the name of “partitional product” by Fo@7]. Given two labelled
structures8 € B andy € C, this product noted a8  « is a set comprised of the
collection of well-labelled ordered paifg’,+’) that reduce td;3, v):

@) Brv:={(8.9) | (8,7)iswel-abelled p(3') = 8, p(v') =~ }.
An equivalent form is via expansion of labels:

(5) Bxv ={(e(B), f(7) | Im(e)nIm(f) =0, Im(e)UIm(f) = [1..|5] + |7[]},
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1
~

5@ 1 =2

'.
IS P IS IS IS
50 06 50 0.6 50 0.0 50 0.6 50 0.0
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1 2 2 2 3
n 00 € n O O € 000 n00€ n 006

FIGUREIIl.2. Thel0 = (g) elements in the labelled product of a triangle and a segment.

wheree, f are relabelling functions with ranges (&), Im(f), respectively. Note that
elements of a labelled product are, by construction, veddelled. Figure 2 displays
the labelled product of a particular object of size 3 withtaeo object of size 2.

The labelled produgt x ~ of two elements3, ~ of respective sizes;, ns is a set
whose cardinality is, wit = n; + no, expressed as

ny + no _(n
ny,ng ) \nm)’
since this quantity is the number of legal relabellings byansion of the paifs, 7).
(The example of Figure 2 verifies that the number of relahgdiis indeec(g) =10.)

If B andC are two labelled classes of combinatorial structures,abelled prod-
uct A = B+ C is defined by the usual extension of operations to sets:

(6) BxC= |J (Bx)
peB, yeC

In summary:
Definition 11.3. Thelabelled productf 5 andC, denoted3*C, is obtained by forming
ordered pairs from5 x C and performing all possible order-consistent relabeling
ensuring that the resulting pairs are well labelled, as désd by (4) or (5), and (6).

Equipped with this notion, we can build sequences, sets,caolés, in a way
much similar to the unlabelled case. We proceed to do so dntheasame time,
establisradmissibility’ of the constructions.

Labelled product. When A = B x C, the corresponding counting sequences sat-
isfy the relation,

- 181+ 1 n
@) A= Y (WW') 3 (nhnz)Bmcm-

11+ 1=n nitna=n

The productB,,, C,,, keeps track of all the possibilities for tiandC components
and the binomial coefficient accounts for the number of fdsselabellings, in accor-
dance with our earlier discussion. The binomial convolupooperty (7) then implies

SWe recall that a construction is admissible (Chapter I) & dounting sequence of the result only
depends on the counting sequences of the operands. An #@dmissnstruction therefore induces a well-
defined transformation over exponential generating fonsti
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admissibility,
A=BxC = A(z) = B(z) - C(2),

with the labelled product simply translating into the protoperation on EGFs.
> 1.2. Multiple labelled products.The (binary) labelled product satisfies the associativity
property,

Bx(CxD) = (BxC)xD,
which may serve to definBxC +xD. The corresponding EGF is the produttz) - B(z) - C(z).
This product rule generalizes tofactors with coefficients given by a multinomial convolu-
tion (3). <

k-sequences and sequenceBhe kth (labelled)powerof B is defined agB
B---B), with k factors equal t#. Itis denoted 8Q, {8} as it correspondsto forming
k—sequences and performing all consistent relabellings.(lBbelledsequencelass
of B is denoted by 8Q{B} and is defined by

SEQ(B} :={e} + B+ (BxB)+ (BxBxB)+--- = | | SEQ.{B}.
E>0
The product relation for EGFs extends to arbitrary prod(Ntge 2), so that
A=SEQ,(B) = A(z) = B(2)"

A=SEQB) = A(2)= iB(Z)k =

k=0

1
1—-B(2)’

where the last equation requirBs = (.

k—sets and setsWe denote by 81, {5} the class of—sets formed fronfs. The
set class is defined formally, like in the case of the unladeathultiset: itis the quotient
SET,{B} := SEQ,{B}/R where the equivalence relati@identifies two sequences
when the components of one are a permutation of the comp®atthie other (p. 25).
A “set” is like a sequence, but the order between componeniisiinaterial. The
(labelled)setconstruction applied t#, denoted 8T{ B}, is then defined by

SET{B} “ {c} + B+ SET2{B} + --- = | J SETA{B}.
k>0

A labelledk—set is associated with exac#ty different sequences. (In the unlabelled
case, formulae are more complex.) Thus in terms of EGFs, angasaumings, = 0)

_ 1
TR

A=SeT(B) = A(z)=)Y %B(z)k — exp(B(2)).
k=0

A=SETL(B) = A(2) B(z)*

Note that the distinction between multisets and powerbatss meaningful for unla-
belled structures is here immaterial: by definition compugsef a labelled set all have
distinct labels so that, relative to the labelled univerge have the correspondence:
MSET, PSET ~ SET.
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k—cycles and cyclesWe also introduce the class kfcycles, &c,{B} and the
cycle class. The cycle class is defined formally, like in tidabelled case, as the
quotient &rc,{B} := SEQ{B}/S where the equivalence relatighidentifies two
sequences when the components of one are a cyclic permutdttbe components
of the other (p. 24). A cycle is like a sequence whose comptsream be circularly
shifted. In terms of EGFs, we have (assumiiig= ()

A=Cvcip(B) = A(z) = —-B(2)*

| =
—~

1

B(Z)k = log 1_73(2)7

NE
| =

A=Cvc(B) = A(z)=

>
Il
—

since each cycle admits exackiyepresentations as a sequence.
In summary:

Theorem 11.1. The constructions of combinatorial sum (disjoint uniorgbélled
product, sequence, cycle and set are all admissible. Thecaged operators on
EGFs are:

sum: A=B+cC —  A(2) = B(2) + C(2)
Product: A=B%*C = A(z) = B(z)-C(z)

) _ _ 1
Sequence: A = SEQ(B) = A(z) = B0
—kcomp.: A=SEQ(B)=(B)** = A(z)=B(2)"

Set: A = SET(B) = A(z) = exp(B(?))
—k comp.: A= SET;(B) = A(2) = %B(z)k

. _ _ . 1
Cycle: A = Cvc(B) = A(2) lfg =50
—kcomp.: A= Cycy(B) = A(z) = EB(z)k

Constructible classesAs in the previous chapter, we say that a class of labelled
objects is constructible if it admits a specification in teraf sums (disjoint unions),
the labelled constructions of product, sequence, setecadd the initial classes de-
fined by the neutral structure of sigeand the atomic clas§ = {@}. Regarding the
elementary classes discussed in Section Il. 1, it is imnielgieecognized that

P =SEQ{Z}, U=SET{Z}, C=Cvc{Z},

specify permutations, urns, and circular graphs respagtiihese constructions are
basic building blocks out of which more complex objects cardmnstructed. In partic-
ular, as we shall explain shortly (Section Il. 3 and Sectlo#)l set partitionsg), sur-
jections R), permutations under their cycle decompositi#?),(and alignment$O)
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are constructible classes corresponding to

Surjections: R ~ SEQ{SET>1{Z}} (sequences-of-sets)

Set partititions: S ~ SET{SET>1{Z}}

(sets-of-sets)
Alignments:

O ~ SEQ{CYyc{Z}}
P ~ SET{CYCc{Z}},

(sequences-of-cycles)
Permutations: (sets-of-cycles)

An immediate consequence of Theorem II.1 is the fact thaBEB& of a con-
structible labelled class can be computed automatically.

Theorem I.2. The exponential generating function of a constructiblesslaf la-

belled objects is a component of a system of generatingiumejuations whose
terms are built froml and z using the operators

1 1
1—f 1—f
If we further allow cardinality restrictions in compositercstructions, the operators
f* (for SEQy), f*/k! (for SET:), and f* /k (for Cycy) are to be added to the list.

+, %, Q(f) =

,E(f)=¢/, L(f) =log

II.2.2. Labelled versus unlabelled enumeration.Any labelled class4 has an
unlabelled counterpacﬁ: objects inA are obtained from objects of by ignoring
the labels. This idea is formalized by identifying two ldbdlobjects if there is an
arbitrary relabelling (not just an order-consistent one, as has bsed so far) that

transforms one into the other. For an object of sizeach equivalence class contains
a priori between 1 and! elements. Thus:

Proposition 11.1. The counts of a labelled clas$ and its unlabelled counterpaﬁ
are related by

(8) A, <A, <nlA, orequivalently 1 <=1 <nl.

n

Labelled and Unlabelled graphs. This phenomenon has been already
encountered in our discussion of graphs (Figure 1). Letigdlge=,, andG,, be the number of

graphs of sizex in the labelled and unlabelled case respectively. One fiods = 1. . 15

EXAMPLE 11.5.

G, (unlabelled) Gy, (labelled)

1 1

2 2

4 8

11 64

34 1024

156 32768

1044 2097152

12346 268435456

274668 68719476736

12005168 35184372088832
1018997864 36028797018963968
165091172592 73786976294838206464
5050203136795 302231454903657293676544
2905415565723548 2475880078570760549798248448
31426485969804308768 40564819207303340847894502572032
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The sequencé@n} constitutes£1S AO00088 which can be obtained by an extension of meth-
ods of Chapter I; se€p9, Ch. 4]. The sequenci, } is determined directly by the fact that a
graph ofn vertices can have each of tl@) possible edges either present or not, so that

G, = 2(5) = gn(n=1/2,

The sequence of labelled counts obviously grows much féséer its unlabelled counterpart.
We may then verify the inequality (8) in this particular cashe normalized ratios,

Pn = Gn/Gn7 On 1= Gn/(n'Gn)7
are observed to be
n | pn =Gn/Gn on = Gn/(n!Gr)
1 | 1.000000000 1.0000000000
2 | 1.000000000 0.5000000000
3 | 2.000000000 0.3333333333
4 | 5.818181818 0.2424242424
5 | 30.11764706 0.2509803922
6 | 210.0512821 0.2917378918
8 | 21742.70663 0.5392536367
10| 2930768.823 0.8076413203
12 | 446946830.2 0.9330800361
14 | 0.852160396010'! | 0.9774915111
16 | 0.207688578310'* | 0.9926428522

From these data, it is natural to conjecture thatends (fast) to 1 as tends to infinity. Thisis
indeed a nontrivial fact originally established by Polgad Chapter 9 of Harary and Palmer’s
book [259 dedicated to asymptotics of graph enumerations):

G, ~ lg(g) — &

n! n!

In other words, “almost all” graphs of sizeshould admit a number of labellings closertb
(Combinatorially, this corresponds to the fact that in adan unlabelled graph, with high
probability, all of the nodes can be distinguished basederatljacency structure of the graph;
in such a case, the graph has no nontrivial automorphismrendumber of distinct labellings
ISnleXactly.) ... e END OF EXAMPLE I1.5. O

The case of urns and totally disconnected graphs resortsetother extreme

situation where
U,=U, =1.

The examples of graphs and urns illustrate the fact thaprthe general bounds of
Proposition 1.1, there is no automatic way to translateeen labelled and unlabelled
enumerations. At least, if the claglsis constructible, its unlabelled counterpﬁrtan
be obtained by interpreting all the intervening constutsias unlabelled ones in the
sense of Chapter | (withe — MSET), both generating functions are computable,
and their coefficients can be compared.
> 11.3. Permutations and their unlabelled counterparfhe labelled class of permutations can
be specified by? = SEQ(Z); the unlabelled counterpart is the geof integers in unary nota-
tion, andP, = 1, so thatP, = n!-P, exactly. The specificatioR’ = SET(Cvc(Z)) describes
sets of cycles and, in the labelled universe, onefas P; however the unlabelled counter-
part of P’ is the clasP’ + P of integer partitions examined in Chapter 1. [In the unléd|
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universe, there are special combinatorial isomorphiskes IBEQ.;(Z) = MSET>:1(Z) =
Cyc(Z). Inthe labelled universe, the identitfSo Cyc = SEQ holds.] <

Il. 3. Surjections, set partitions, and words

This section and the next are devoted to what could be terevetttwo nonrecur-
sive structures defined by the fact that they combine twotcoctions. In this section,
we discuss surjections and set partitions (Section 11, 3vhjch constitute labelled
analogues of integer compositions and integer partitionthé unlabelled universe.
The symbolic method then extends naturally to words overitefalphabet, where
it opens access to an analysis of the frequencies of leterpasing words. This
in turn has useful consequences for the study of some cidssindom allocation
problems, of which the birthday paradox and the coupon ctafeproblem stand out
(Section 11. 3.2).

II.3.1. Surjections and set partitions. We examine classes
R = SEQ{SET>1{Z}} and S =SET{SET>1{Z}},

corresponding to sequences-of-s@$énd sets-of-setss)), or equivalently, sequences
of urns and sets of urns, respectively. Such abstract speoiins model very classical
objects of discrete mathematics, namely surjecti@®)sand set partitionsS)

Surjections withr images. In elementary mathematics, a surjection from a4et
to a setB is a function fromA to B that assumes each valatleast oncgan onto
mapping). Fix some integer> 1 and letR{") denote the class of all surjections from
the set[1..n] onto[1..r] whose elements are also calledsurjections. Here is a
particular objects € R$:

1 2 3 4 6 8 9
©) b : “&\W
1 2 3 4 5

(Note that, if¢(9) were 3, thens would not be a surjection.) We sgt™) = J_ R
and proceed to compute the corresponding ERBF(z). First, let us observe that an

r—surjectionp € R\ is determined by therderedr—tupleformed with the collection
of all preimage sets(¢~'(1),¢'(2),...,¢'(r)), themselves disjoint nonempty
sets of integers that cover the interVal . n]. In the case of the surjectiah of (9),
this alternative representation is

¢ ({21 {1,3}, {4,6,8}, {9}, {5,7}).
One has the combinatorial specification and EGF relation:
(10) R =SEQ.{V}, V=SET=1{Z} =  R"(2)=(e" -1)".

ThereV = U \ {¢} designates the class of urrig)(that are nonempty, with EGF
V(z) = e* — 1, in view of our earlier discussion of urns. In words: “a suatjen is a
sequence of nonempty sets”. See Figure Il. 3.1 for an iiistn.
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1 2 3 4 5 6 7 8 9
1 2 3 4 5

1 2 3 4 5 6 7 8 9
2 1 2 3 5 3 5 3 4
w w 3 4 |

@@ dd 06

[ {2 {1, 3}, {4, 6, 8}, {9}, 5.7 1

FIGURE 11.3. The decomposition of surjections as sequences-of-setsjexton given
by its graph (top), its table (second line), and its sequengeeimages (bottom lines).

Equation (10) does solve the counting problem for surjestid-or small-, one
finds

R?(2) =¥ —2¢* +1, R®(2) = ¥ — 3¢%* + 3¢ — 1,
whence, by expanding,
RP»=29m_—2  R® =3"_3.9" 13,

The general formula follows similarly from expanding thi power in (10) by the
binomial theorem, and then extracting coefficients:

T

(11)  RY =n![z" Z <T> (—1)er=D= =" <T> (1) (r — j)™.

i=0 M =0 M

> 11.4. A direct derivation of the surjection EGPne can verify the result provided by the
symbolic method by returning to first principles. The prejmaf valuej by a surjection is a
nonempty set of some cardinality, > 1, so that

r n
(12) R = Z (nl na,... n)’
nT) ) ) ) Hor

(n1,n2,...,

the sum being taken over; > 1, ni + n2 + --- + n, = n. Introduce the numberg,, :
[n > 1]. The formula (12) then assumes the simpler form

” n
(13) R = > <m - )vmvwmvnr,

where the summation now extendsatbtuples(n, ns, ..., n,). The EGF of thd/, isV (z) =
> Vnz"/n! = e* — 1. Thus the convolution relation (13) leads again to (10). <
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Set partitions intor blocks. Let S,(f) denote the number of ways of partitioning
the sef[1 .. n] into r disjoint and nonempty equivalence classes also knovinioaks
We setS(") = U, Sff); the corresponding objects are calkest partitiong(the latter
not to be confused with integer partitions examined in ®&cti3). The enumeration
problem for set partitions is closely related to that of eatipns. Symbolically, a
partition is determined as a labellsdtof classes (blocks), each of which is a non-
empty urn. Thus, one has

1
(14) 8™ =SeT.{V}, V=SET>1{Z} — y%@zﬁ@qu

The basic formula connecting the two counting sequencés éscordance with (10)
and (14),

s = Lpem
n r! n
This can be interpreted directly along the lines of the pmfofheorem I1.1: an—
partition is associated with a group of exacthdistinctr—surjections, two surjections
belonging to the same group iff one obtains from the other &aynuiting the range
values/[1..7].
The numbers” = n![z"]S")(z) are known as the Stirling numbers of the sec-

ond kind, or better, the Stirling “partition” numbers. Thesre briefly encountered
in the previous chapter and discussed in connection witbaings by words (Chap-

ter I, p. 59). Knuth, following Karamata, advocated for tﬁ,@ the notation{:f}.
From (11), an explicit form also exists:

(15) so={"}- i,; () vt i

The books by Graham, Knuth, and Patashi2zi&q and Comtet §8] contain a thor-
ough discussion of these numbers; see alBeENDIX A: Stirling numbersp. 680.

All surjections and set partitions.Define now the collection of all surjections
and all set partitions by
R=JR", s=Js".

ThusR,, is the class of all surjections ¢f . . n] ontoanyinitial segment of the inte-
gers, andS,, is the class of all partitions of the sft. . n] into any number of blocks
(Figure 4). Symbolically, one has

1
(16) R = SEQ(SET>1{Z}) = R(2)= o
S =SET(SET>1{Z}) = S(z)=¢" "L

The numbersk,, = n! [z"]R(z) andS,, = nl![z"]S(z) are calledsurjection num-
bers (also, “preferential arrangements” numbeEdS A00067Q and Bell numbers
(EIS A00011Q respectively. These numbers are well determined by expgrite
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O]
a

FIGURE Il.4. A complete listing of all set partitions for sizes = 1,2,3,4. The
corresponding sequendel, 2, 5,15, . . . is formed of Bell number£ISA000110

EGFs:
2 3 4 5 6 7
R(z) = 1+z+3%+13z—'+75z—'+541%+4683%+47293%+'-'
22 Zg) Zé 25 ’ 2:6 ' 2:7 '
S() = 442 45T 15T 52T £ 203 8T S

Explicit expressions as finite double sums result from sumgriitirling numbers,
n n
anzﬂ{r}, and snzz{r},
r>0 r>0

where each Stirling number is itself a sum given by (15). diédively, single (though
infinite) sums result from the expansions

1 1 2 1 .-
R(z) = 35 1 1.- S(z) = e t=—¢"
2 e
© and 1,1
_ 0z _ - _eﬁz
- Zwle e la
£=0 £=0

from which coefficient extraction yields

oo

1 o 1 o=
R, = 5;)7 and S, = Egﬁ'

The formula for Bell numbers was found by Dobinski in 1877.

The asymptotic analysis of the surjection numbekg)(will be performed in
Chapter IV as one of the very first illustrations of compleyraptotic methods (the
meromorphic case); that of Bell's partition numbers is limte by means of the
saddle point method exposed in Chapter IX. The asymptatragdound are

17 R~ 1 d S, ~nl i

7"(n)n+1 2r exp(r(n))7
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wherer(n) is the positive root of the equatior”™ = n. One has'(n) ~ logn —
log logn, so that

log S, = n(logn — loglogn — 1+ o(1)).

Elementary derivations (i.e., based solely on real anglydithese asymptotic forms
are also possible as discussed briefly PPANDIX B: Laplace’s methogdp. 700.
The line of reasoning adopted for the enumeration of sugestviewed as sequences-
of-sets and partitions viewed as sets-of-sets yields argbresult that is applicable to
a wide variety of constrained objects.

Proposition 11.2. Let R(4:5) be the class of surjections where the cardinalities of
the preimages lie ild C Z>; and the cardinality of the range belongs i The
corresponding EGF is

le
RAP)(2) = B(a(z))  where a(z) =) — Blz) = P
a€A beB
Let S(4-P) be the class of set partitions with part sizesAnC Z-, and with a

number of blocks that belongs & The corresponding EGF is

z¢ 2
S(AB)(Z) = B(a(2)) where  «a(z) = Z P B(z) = Z N
acA beB

PROOFE One has
RAB) — SEQp{SET4{Z}} and SWP) = SETE{SETA{Z}},

where, as usual, the subscriptspecifies a construction with a number of components
restricted to the integer séf. O

ExampPLE I1.6. Smallest and largest blocks in set partition®t e, (2) denote the truncated

exponential function,
2 b

z V4 z
eb(z)::1+ﬁ+§+"'+ﬁ'

The EGFsS{=? (2) = exp(es(2) — 1) andS>? (2) = exp(e® — ey(z)), correspond to parti-
tions with all blocks of size< b and all blocks of size- b, respectively. ED OF EXAMPLE 11.6.

> 11.5. No singletonsThe EGF of partitions without singleton partSe%Z”*Z. The EGF of
“double surjections” (each preimage contains at least tements) is(2 4+ z — ¢*) . <

ExamMPLE I1.7. Comtet's squareAn exercise in Comtet’s booldB, Ex. 13, p. 225] serves
beautifully to illustrate the power of the symbolic methoBhe question is to enumerate set
partitions such that a parity constraint is satisfied by tmlper of blocks and/or the number of
elements in each block. Then, the EGFs are tabulated as/follo

Set partitions Any # of blocks Odd # of blocks Even # of blocks

e”—1

Any block sizes | e sinh(e” — 1) cosh(e” — 1)

Odd block sizes| ¢*™"* sinh(sinh z) cosh(sinh z)

Even block sizeg " *~* sinh(coshz — 1) cosh(cosh z — 1)
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The proof is a direct application of Proposition I1.2, upasting that

e®, sinhz, coshz

are the characteristic EGFs @f.o, 2Z>0 + 1, and2Zx, respectively. The sought EGFs are
then obtained by forming the compositions

exp —1+ exp
sinh 3 o sinh ,
cosh —1 + cosh

in accordance with general principles. ..................... END OF ExAMPLE 11.7. 0

II.3.2. Applications to words and random allocations. Numerous enumera-
tive problems present themselves when analysing statistidetters in words. They
find applications in the study esdndom allocationsand the design dfiashing algo-
rithms of computer sciencel34. Fix an alphabet

X ={ai,aq9,...,a,}

of cardinalityr, and letW be the class of all words over the alphabét the size

of a word being its length. A word of length, w € W,, is an unconstrained
function from([1..n] to [1..r], the function associating to each position the value
of the corresponding letter in the word (canonically nuneldefrom1 to ). For
instance, let = {a,b,c,d,r} and take the letters ot canonically numbered as
a1 = a,...,a; = r; for the wordw = ‘abracadabrg the table giving the position-
to-letter mapping is

a b r a ¢c a d a b r a
12 3 4 5 6 7 8 9 10 11 |,
5 1 3 1 4 1
e of

which is itself determined by its sequence of preimages:

a=ai b=as c=as d=ay r=as
{1,4,6,8,11}, {2,9}, {5}, {7}, {3,10}.

(In this particular case, all preimages are nonempty, bisittbed not always the case.)
The decomposition based on preimages then gives Jitie class of all urns

(18) W ~U" = SEQ.{U} = W(z)=(e*)" =¢€"%,

which yields backlV,, = r™, as was to be expected. In summary: words over-ary
alphabet are equivalent to functions into a set of cardinaland are described by an
r-fold labelled product.

For the situation where restrictions are imposed on the mumboccurrences of
letters, the decomposition (18) generalizes as follows.

Proposition 11.3. Let W) denote the family of words such that the number of oc-
currences of each letter lies in a sét Then

(19) W) =alz)”  where  a(z)= =
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The proof is a one-lineMV) = SEQ, (SETA(Z)). Though this result is tech-
nically a shallow consequence of the symbolic method, itdeasral important appli-
cations in discrete probability; seé34, Ch. 8] for a discussion along the lines of the
symbolic method.

ExAMPLE 11.8. Restricted wordsThe EGF of words containingt mostb times each letter,
and that of words containingnorethanb times each letter are

(20) WED (2) = (eb(2)", WP (2) = (" —en(2))",
respectively. (Observe the analogy with Example 6.) Takirg1 in the first formula gives the

number ofn—arrangements ofelements (i.e., of ordered combinations:#lements amongst
possibilities),

(21) n! [zn](l—i—z)r—n!(;) =r(r—1)---(r—n+1),

as anticipated; taking = 0, but now in the second formula, gives back the number-of
surjections. For genera| the generating functions of (20) contain valuable infaioraon the
least frequent and most frequent letter in random words. .. .. END OF EXAMPLE 11.8. 0

ExamMPLE 11.9. Random allocations (balls-in-bins modenhrow at random: distinguishable
balls intom distinguishable bins. A particular realization is desedtby a word of lengtm
(balls are distinguishable, say, as numbers from d)tover an alphabet of cardinality. (rep-
resenting the bins chosen). Let Min and Max represent tleeddithe least filled and most filled
bins, respectively. Thén

P{Max < b} = n![z"]es Z\"
2 G
P{Max > b} = nl[z"] (ez ™ — e (E)) .
The justification of this formula relies on the easy identity
1 n — e 2
(23) o F1 ) = (),

and on the fact that a probability is determined as the rataéen the number of favourable
cases (given by (20)) and the total number of cas&$)( The formulae of (22) lend themselves
to evaluation using symbolic manipulations systems; fetance, withn = 100 andn = 200,
one finds folP(Max = k), wherek = 2, 4,5, .. ., the values:

2 4 5 6 7 8 9 12 15 20
107°° 1.4-107% 0.17 0.46 0.26 0.07 0.01 9.2-107° 2.3-10" 7 4.7-10" ™

The values: = 5, 6, 7, 8 concentrate about 99% of the probability mass.

An especially interesting case is whenandn are asymptotically proportional, that is,
n/m = « anda lies in a compact subinterval @f), +o0). In that case, with probability
tending to 1 as tends to infinity, one has

logn
loglogn’
In other words, there are almost surely empty urns (in factyma them, see Example 9 in
Chapter 1lI) and the most filled urn grows logarithmically size. Such probabilistic prop-
erties are best established by complex analytic methoge¢esly the saddle point method

Min = 0, Max ~

“We letP(E) represent the probability of an eveRtandE(X) the expectation of the random vari-
able X'; cf APPENDIXC: Random variablesp. 717.
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detailed in Chapter VIII) based on exact generating reptasiens like (20) and (22). They
form the core of the reference boo&1j6 by Kolchin, Sevastyanov, and Chistyakov. The re-
sulting estimates are in turn invaluable in the analysisashing algorithmsZ42, 307, 43}

to which the balls-in-bins model has been recognized toyapgith great accuracy347.
END OoF ExamMpPLE 11.9. O

> I1.6. Number of different letters in wordS'he probability that a random word of length
over an alphabet of cardinalitycontainsk different letters is

. L[rY)nl,,
pn’k . Tn <k> {k}k.

(Choosek letters amongst, then split then positions intok distinguished nonempty classes.)
The quantitypil’:i is also the probability that a random mapping friim.n] to [1..r] has an
image of cardinality. <

> 11.7. ArrangementsAn arrangemenbf sizen is an ordered combination of (some) elements
of [1..n]. Let A be the class of all arrangements. Grouping together all dlssiple elements
not present in the arrangement into an urn shows that a speicficand its companion EGF
are

ez

1—z
The counting sequencé, = >} _, Z—,‘ starts ad, 2, 5, 16, 65, 326, 1957 (EISA000522); see
also Comtet98, p. 75]. <

A~UxP, U =SET{Z}, P=SEQ{Z} = A(z) =

Birthday paradox and coupon collector problenThe next two examples illus-
trate applications of EGFs to two classical problems of phility theory, thebirthday
paradoxand thecoupon collector problemAssume that there is a very long line of
persons ready to enter a very large room one by one. Eachrpisréet in and de-
clares her birthday upon entering the room. How many peopist mnter in order
to find two that have the same birthday? The birthday paraslthe counterintuitive
fact that on average a birthday collision takes place ay earh = 24. Dually, the
coupon collector problem asks for the average number obperthat must enter in
order to exhaust all the possible days in the year as birisddh this case, the an-
swer is the rather large numbet = 2364. The term “coupon collection” alludes
to the situation where images or coupons of various sortinaegted in sales items
and some premium is given to those who succeed in gatheringhalete collection.
The birthday problem and the coupon collector problem alagive to a potentially
infinite sequence of events; however, the fact that the firtiday collision or the
first complete collection occurs at any fixed timeonly involves finite events. The
following diagram illustrates the events of interest:

n=20 B (1st collision) C (complete collection)

I *—%WW#&%W—* > 1 — +00

INJECTIVE SURJECTIVE

In other words, we seek the time at which injectivityaseso hold (the first birthday
collision, B) and the time at which surjectivitipeginsto be satisfied (a complete
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collection,C). In what follows, we consider a year withdays (readers from earth
may taker = 365) and letX represent an alphabet withetters (the days in the year).

ExAMPLE I1.10. Birthday paradoxLet B be the time of the first collision, which is a random
variable ranging between 2 andr 1 (where the upperbound derives from the pigeonhole prin-
ciple). A collision has not yet occurred at time if the sequence of birthdates, . . ., 8, has

no repetition. In other words, the functighfrom [1 .. n] to X must be injective; equivalently,
b1, - - ., Bn is @ann-arrangement of objects. Thus, we have the fundamental relation

pB>ny = [ZNolontl)

(24 = ZEnaey
= nl[2"] (1 + %)T,

where the second line repeats (21) and the third resultstierseries transformation (23).
The expectation of the random varialibeis elementarily

(25) E(B)=> P{B>n},

n=0
this by virtue of a general formula valid for all discrete dam variables (®PENDIXC: Ran-
dom variables p. 717). From (24), line 1, this gives us a sum expressingeipectation,

namely,

r(r—1)---(r—n+1)
E(B) =1+ ; — .

For instance, withr = 365, one finds that the expectation is the rational number,
12681 ---06674
"~ 51517 - - - 40625
where the denominator comprises as much as 864 digits.

An alternative form of the expectation derives from the gatieg function involved in (24),
line 3. Letf(z) = >, fn2" be an entire function with nonnegative coefficients. Thenfe-
mula

(26) S funt = / Tty a,
n=0 0

is valid provided either the sum or the integral on the rigimwerges. The reason is the usual
Eulerian representation of factorials,

n!:/ e " dt.
0

Applying this principle to (25) with the probabilities gindy (24) (third line), one finds
(27) E(B) = / e’ <1 + f) dt.
0 T

This last form is easily amenable to asymptotic analysisthad aplace methddsee AP PEN
DIX B: Laplace’s methodp. 700) provides the estimation

(28) B(B) = \/§+ 2 roe),

SKnuth [306, Sec. 1.2.11.3] uses this calculation as a pilot examplééat) asymptotic analysis; the
quantityE(B) is related to Ramanujan@-function (see also Eq. (45) below) B(B) = 1 + Q(r).

E(B) = 24.61658,
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201
L] L]
15
L]
(letter chosen) ;41 ° ° °
*—o L g & L
L]
5 ~—e
—
0 20 20 60 80 (time of arrival)

FIGURE II.5. A sample realization of the “birthday paradox” and “coupatiexction”
with an alphabet of = 20 letters. The first collision occurs at time = 6 while the
collection becomes complete at tirde= 87.

asr tends to infinity. For instance, the asymptotic approxioratjiven by the first two terms
of (28) is24.61119, which represents a relative error of oy 10~*.

The interest of such integral representations based orraerge function is that they are
robust they adjust naturally to many kinds of combinatorial cdiudis. For instance, the ex-
pected time necessary for the first occurrence of the evepersons have the same birthday”
is found to have expectation given by the integral

(29) I(r,b) = /000 e tes1 (;) dt.

(The basic birthday paradox correspondste= 2.) The formula (29) was first derived by
Klamkin and Newman in 1967; their pap&@93 shows in addition that

I(r,b) ~ VBT <1 + %) Pt
where the asymptotic form evaluates to 82.87 fo= 365 andb = 3, while the exact
value of the expectation is 88.73891. Thus three-way d¢ofiss also tend to occur much
sooner than one might think, with about 89 persons on averdgebally, such develop-
ments illustrate the versatility of the symbolic approaghmany basic probabilistic problems.
END OF EXAMPLE 11.10.0

> 11.8. The probability distribution of time till a birthday collisn. Elementary approximations
show that, for large:, and in the “central” regime = ¢/r, one has

_ 1, _
P(B>tVr)~e /% BB =tJr) ~ —=te /2
T

The continuous probability distribution with dens'my*’fg/2 is called aRayleigh distribution

Saddle point methods (Chapter VIII) may be used to show thrathfe first occurrence of a
b-fold birthday collision:P(B > tr'=1/) ~ e=t"/%". <
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ExAMPLE I1.11. Coupon collector problemThis problem is dual to the birthday paradox.
We ask for the first time&> when gy, ..., B¢ contains all the elements ¢, that is, all the
possible birthdates have been “collected”. In other wottls, event{C' < n} means the
equality between set§3:, ..., 8.} = X. Thus, the probabilities satisfy

P{C <n} = i: = @
7“' T
(30) = %[z"] (e —1)"

= nl[z"] (ez/r — l)r,
by our earlier enumeration of surjections. The complemgrgeobabilities are then
P{C>n}=1-P{C<n}=nl"] (ez - (ez/r - 1)) .

An application of the Eulerian integral trick of (27) theropides a representation of the expec-
tation of the time needed for a full collection as

(31) E(C) = /oo (1 —- e—i“)r) dt.

A simple calculation (expand by the binomial theorem andgrdte termwise) shows that

1

0= 5 (1)

which constitutes a first answer to the coupon collector lprakin the form of an alternating
sum. Alternatively, in (31), perform the change of variahle= 1 — e~*/", then expand and
integrate termwise; this process provides the more tréefabm

(32) E(C) =rH,,
whereH,. is the harmonic number:
1 1 1
H =144+ =44 =,
tstg ot

Formula (32) is by the way easy to interpret direttlgne needs on average= r/r trials to
get the first day, then/(r — 1) to get a different day, etc.

Regarding (32), one has available the well-known formuleddmparing sums with inte-
grals or by Euler-Maclaurin summation),

1
Hy =logr+7y+ o+ O(r™?), ~=0.57721 56649,
where~ is known as Euler’s constant. Thus, the expected time foll adllection satisfies

(33) E(C):rlogr—k*yr—&—%—&—O(r_l).

Here the “surprise” lies in the nonlinear growth of the expddime for a full collection. For
a year on earth; = 365, the exact expected valueds 2364.64602 while the approximation
provided by the first three terms of (33) yiel2{364.64625, representing a relative error of only
one in ten millions.

6Such elementary derivations are very much problem specifiatrary to the symbolic method, they
do not usually generalize to more complex situations.
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As usual, the symbolic treatment adapts to a variety of sttns, for instance, to multiple
collections. The expected time till each item (birthday oujon) is obtained times (the
standard case correspond9te 1) equals the quantity

J(r,b) = /OOQ (1 - (1 - eb_l(t/r)e*t/r)r) dt,

an expression that vastly generalizes (31). From therefiode [372]
J(r,b) =r (logr+ (b —1)loglogr + v —log(b — 1)! + o(1)),
so that only a few more trials are needed in order to obtaiitiaddl collections. BD OF EXAMPLE 11.11.0

> 11.9. The little sisterThe coupon collector has a little sister to whom he gives hdidates.
Foata, Lass, and Ha218 show that the little sister misses on averdfiecoupons when her
big brother first obtains a complete collection. <

> 11.10. The probability distribution of time till a complete coltéan. The saddle point method
(Chapter VIII) may be used to prove that, in the regime- r log r + tr:

tlim P(C <rlogr+tr) = e’
This continuous probability distribution is knowndauble exponential distributionFor the
time C™ till a collection of multiplicity b, one has

lim P(C" < rlogr + (b—1)rloglogr + tr) = exp(—e /(b —1)!),

t—oo

a property known as the Erdés-Rényi law, which finds apiibims in the study of random
graphs 154]. <

Words as both labelled and unlabelled objectd/hat distinguishes a labelled

structure from an unlabelled one? There is nothing inttitteére, and everything is in

the eye of the beholder—or rather in the type of construaopted when modelling
a specific problem. Take the class of woldsover an alphabet of cardinality The

two generating functions (an OGF and an EGF respectively),
W(z) = Zan” B

1—rz

and W(z) = ZW"% =€,

leading in both cases #,, = r", correspond to two different ways of constructing
words: the first one directly as an unlabelled sequence, tther @ne as a labelled
power of letter positions. A similar situation arises fefpartitions, for which we
found as OGF and EGF,

G () — 2" ((yy = ="

SR CO Rl e v sy s e LR M G
by viewing these either as unlabelled structures (an engoda words of a regular
language, see Section 1.4.3) or directly as labelled sirast
> 11.11. Balls switching chambers: the Ehrenfestodel. Consider a system of two chambers
A and B (also classically called “urns”). There aré distinguishable balls, and, initially,
chamberA contains them all. At any insta@t, %, ..., one ball is allowed to change from one
chamber to the other. LeE!! be the number of possible evolutions that lead to chamber
containing/ balls at instan and E¥)(z) the corresponding EGF. Then

)

r!

E¥(z) = <JZ ) (cosh 2)’(sinh 2)V ¢, EW(2) = (cosh 2)¥ =27V (e + %)V,
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[Hint: the EGFE! enumerates mappings where each preimage has an even lLigrfiiva
particular the probability that urd is again full at time2n is

1 (N o
Wz<k>(N—2k) .

k=0

This famous model was introduced by Paul and Tatiana Ehstfif#8 in 1907, as a simplified
model of heat transfer. It helped resolve the apparent adittion between irreversibility in
thermodynamics (the cagé — oo) and recurrence of systems undergoing ergodic transforma-
tions (the caseV < oo). See especially Mark Kac's discussid?Bp. The analysis can also

be carried out by combinatorial methods akin to those of tateig lattice paths: see Note V.22,

p. 313 and 245. <

1. 4. Alignments, permutations, and related structures

In this section, we start by considering specificationsthnyilpiling up two con-
structions, sequences-of-cycles and sets-of-cycleectigply. They define a new
class of objects, alignments, while serving to specify pgations in a novel way
as detailed below. (These specifications otherwise pamaligections and set parti-
tions.) Permutations are in this context examined under tyele decomposition,
the corresponding enumerative results being the most ir@poones combinatorially
(Subsection 1l. 4.1). In Subsection 11.4.2, we recapitiliie meaning of classes that
can be defined iteratively by a combination of any two nesteélled constructions.

II.4.1. Alignments and Permutations. The two specifications under consider-
ation here are

(34) O = SEQ{Cvyc{Z}}, and P =SeT{Cvc{Z}},
defining new objects called alignment8)(and an important decompaosition of per-
mutations P).

Alignments. An alignment is a well-labelled sequence of cycles. ©ebe the
class of all alignments. Schematically, one can visualizalgnment as a collection
of directed cycles arranged in a linear order, somewhaslikes of a sausage fastened
on a skewer:

The symbolic method provides,

1

= Z = —-—

O = SeQ{Cvc{Z}} = O(z) T Togl =T’
and the expansion starts as

2 3 4 5

z z z z
O(2) = 142+ 355 + Ly + 887 + 6947+,
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@e °: Q@

A permutation may be viewed asatof cycles that are labelled circular digraphs. The diagram
shows the decomposition of the permutation

U:<1 2 3 4 5 6 7891011121314151617)

11 12 13 17 10 15 14 93 4 6 2 7 8 1 5 16
(Cycles read here clockwise ané connected te; by an edge in the graph.)

FIGURE I1.6. The cycle decomposition of permutations.

but the coefficientsEIS A00784Q “ordered factorizations of permutations into cy-
cles”) appear to admit of no simple form.

Permutations and cyclesFrom elementary mathematics, it is known that a per-
mutation admits a unique decomposition into cycles. det o; ..., be a permu-
tation. Start with any element, sdy and draw a directed edge from 1401), then
continue connecting te?(1),o3(1), and so on; a cycle containing 1 is obtained after
at mostn steps. If one repeats the construction, taking at each atagkement not yet
connected to earlier ones, the cycle decomposition of theytions is obtained.
This argument shows that the class of sets-of-cycles (sporeding toP in (34)) is
isomorphic to the class of permutations as defined in Sedtitn

P = SET{Cyc{Z}} =~ SEQ{Z}.

This combinatorial isomorphism is reflected by the obvicerées identity

1 1
P(z) =exp <log1_z> =1

The property that exp and log are inverse of one another isialytic reflex of the
combinatorial fact that permutations uniquely decompotedgycles!

As regards combinatorial applications, what is especfaligful is the variety of
specializations of the construction of permutations frommies. We state:

Proposition 11.4. Let P(4-5) be the class of permutations with cycle lengthslic

Z- and with a number of cycles that belongsBoC Zx(. The corresponding EGF
is

z® 2
PAPIG) = fla()  where  a(z) = 30 2 5(e) = 3 4

acA beB

ExAMPLE 11.12. Stirling cycle numbers. The number of permutations of sizecomprised
of r cycles is determined by the explicit generating functiorthe effect that

(35) P = M <10g ) L Z)
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These numbers are fundamental quantities of combinatanilysis. They are known as the
Stirling numbers of the first kind, or better, according taegmsal of Knuth, thétirling cycle
numbers Together with the Stirling partition numbers, the projesof the Stirling cycle num-
bers are explored in the book by Graham, Knuth, and Pata§d4g where they are denoted
by [ﬂ See APPENDIX A: Stirling numbers p. 680. (Note that the number of alignments
formed withr cycles isr! m .) As we shall see shortly (p. 130) Stirling numbers alsoasgfin
the enumeration of permutations by their number of records.

Itis also of interest to determine what happens regardiotgsyn a random permutation of
sizen. Clearly, when the uniform distribution is placed over d&reents ofP,,, each particular
permutation has probability exactly'n!. Since the probability of an event is the quotient of
the number of favourable cases over the total number of ctiseguantity

_1n
pn,k~*m k

is the probability that a random element/@f hask cycles. This probabilities can be effectively
determined for moderate values+ofrom (35) by means of a computer algebra system. Here
are for instance selected values for= 100:
k: 1 2 3 4 5 6 7 8 9 10
pnk: 0.01 0.05 012 0.19 021 0.17 0.11 0.06 0.03 0.01

For this valuen = 100, we expect in a vast majority of cases the number of cycleg to khe
interval[1, 10]. (The residual probability is only aboQt005.) Under this probabilistic model,
the mean is found to be aboutl8. Thus: A random permutation of size 100 has on average a
little more than 5 cycles; it rarely has more than 10 cycles

Such procedures demonstrate a direct exploitation of slimbtethods. They do not
however tell us how the number of cycles could depend @asn varies. Such questions are to
be examined systematically in Chapter Ill. Here, we shaiteot ourselves with a brief sketch.
First, form the bivariate generating function,

P(z,u) := ZP(T)(Z)UT,

r=0

and observe that

o u” IR 1
P(z,u) = Zﬁ<log:) :exp(ulogl_z)

r=0

= (1—-2""

Newton’s binomial theorem then provides

)= =) = ()" (‘n“)

In other words, a simple formula

(36) Z|:Z:|uk_u(u+1)(u+2)...(u+n_1)

k=0
encodes precisely all the Stirling cycle numbers corredpagto a fixed value of. From there,
the expected number of cyclgs, := 3, kpn,x is easily found (use logarithmic differentiation
of (36)),

1 1
n=Ho=1+4z+ -+ —.
1 ot
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In particular, one hagioo = Hi0o = 5.18738. In general:The mean number of cycles in aran-
dom permutation of size grows logarithmically witm, p,, ~ logn. END OF EXAMPLE [1.12.0

ExAMPLE I1.13. Involutions and permutations without long cycles.permutations is an
involution if 2 = Id with Id the identity permutation. Clearly, an involution can havéyo
cycles of sized and2. The clas< of all involutions thus satisfies

2
37) T—SET{CYC12{Z}} —  I(2)=exp (z n %) .
The explicit form of the EGF lends itself to expansion,
[n/2] nl
In= kzzo (n — 2k)12F k1

which solves the counting problem explicitly. g&iring is an involution without fixed point.
In other words, only cycles of length 2 are allowed, so that

J =SET(CYCa(2)) =  J(2)=¢ "% Jan=1-3-5--(2n—1).
(The formula forJ,,, hence that of,,, can be checked by a direct reasoning.)

Generally, the EGF of permutations, all of whose cycles @rtipular the largest one) have
length at most equal to satisfies

T

B (2) = exp (Z ?—J> .

j=1
The numbers!” = [z"]B(")(z) satisfy the recurrence
(n+ )by = (n+ Dby = b

[ad

by which they can be computed fast. This gives access todltistts of the longest cycle in a
permutation. .......... . BEND OF EXAMPLE 11.13.0

ExamMPLE I1.14. Derangements and permutations without short cycle€lassically, a de-
rangement is defined as a permutation without fixed poirgs,d; # i for all <. Given an
integerr, anr—derangement is a permutation all of whose cycles (in pdatiche shortest one)
have length larger than Let D" be the class of alt—derangements. A specification is

(38) D) = SeT{CvC,{Z}},
the corresponding EGF being then
. r o
(r) _ Z] _ exp(— Z]’:l 7)
Jj>r
For instance, when = 1, a direct expansion yields
(1) n
Dy’ 11 (-1)
n! 71_ﬁ+5_”'+ n! '

a truncation of the series expansioresf(—1) that converges fast o '. Phrased differently,
the enumeration of derangements is a famous combinataohlgm with a pleasantly quaint
nineteenth century formulatio®§]: “A number n of people go to opera, leave their hats on
hooks in the cloakroom and grab them at random when leaviegrobability that nobody gets
back his own hat is asymptotic tge, which is nearly 37%”. (The usual proof uses an inclusion-
exclusion argument. Also, itis a sign of changing times Matwani and Raghavar8f0, p. 11]
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Allperms  Derangements Involutions ~ Pairings
1 e ” z+22/2 22/2
e e
1—2 1—2

Shortest cycle> r Longest cycle< r

2 2 ™
exp(_T 2 r) exp(%+§+...+%)

FIGUREII.7. A summary of major EGFs related to permutations.

describe the problem as one of sailors that return in a sfateebriation and choose random
cabins to sleep in.) For the generalized derangement pmlbiesre holds, for any fixer,

DY —H,

~ e s

(40)

n!
as is proved easily by complex asymptotic methods (ChayjerEND oF EXAMPLE |1.14.

Like several other structures that we have been consideriegjously, permu-
tation allow for transparent connections between strateonstraints and the forms
of generating functions. The major counting results enteneal in this section are
summarized in Figure 7.

D> 11.12. Permutations such that/ = Id. Such permutations are “roots of unity” in the
symmetric group. Their EGF is
Zd
exp Z E s
alf
where the sum extends to all divisat®f f. <

> 11.13. Parity constraints in permutationslhe EGFs of permutations having only even size
cycles E(z)) or odd size cycles®(z)) are

1 1 1 1 1+z 142
E(z)zexp(ilogl_ﬂ) = Nigert O(z):exp<§log1_z) :,/1_2.

From the EGFs, one findB2, = (1-3-5---(2n —1))?, O2n = Fayn, O2ng1 = (2n +
1)Eay.

The EGFs of permutations having an even number of cydE$4)) and an odd number
of cycles O (z)) are

1 111z 1 1 1 1.z

=2 ~31=.t3 3 O () =sinhllog =) = 59=——5+5,
so that parity of the number of cycles is evenly distributetbagst permutations of size
as soon as > 2. The generating functions obtained in this way are analsgouhe ones
appearing in the discussion of “Comtet’s square” in the joev section. <

E*(2) = cosh(log

> I1.14. A hundred prisoners IThis puzzle originates with a paper of Gal and Milters2®4,
499. A hundred prisoners, each uniquely identified by a numhswben 1 and 100, have
been sentenced to death. The director of the prison gives #ilast chance. He has a cabinet
with 100 drawers (numbered 1 to 100). In each, he'll placeatiom a card with a prisoner’s
number (all numbers different). Prisoners will be allowedhter the room one after the other
and open, then close again, 50 drawers of their own chodsingyill not in any way be allowed
to communicate with one another. The goal of each prisortedixate the drawer that contains
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his own number. I&ll prisoners succeed, then they will all be spared,; if at leastfails, they
will all be executed.

There are two mathematicans amongst the prisoners. Thetfiesta pessimist, declares
that their overall chances of success are only of the ordéy®1°° = 8- 1073!. The second
one, a combinatorialist, claims he has a strategy for trepers, which has more than 30%
chances of success. Who is right? [Note I11.9, p. 165 pravisolution, but our gentle reader
is advised to reflect on the problem for a few moments, befloegumps there.] <

II.4.2. Second level structures.Consider the three basic constructors of la-
belled sequence E&®), set (%), and cycle (&c). We can play the formal game
of examining what the various combinations produce as coatbrial objects. Re-
stricting attention to superpositions of two construct{ars external one applied to an
internal one) gives nine possibilities summarized by thiefdng table:

ext.\int. SEQ>, SET>; Cyc
Labelled compositions) Surjections R) Alignments ()
SEQ SEQo SEQ SEQo SET SEQo CyC
1—=z2 1 1
1-2z 2—e? 1—1log(l—2)"1
Fragmented permutations)  Set partitions §) Permutations®)
SET SETo SEQ SETo SET SETo CYC
z 1
z/(1—=z) e®—1
€ ¢ 1—=z
SupernecklacesS() SupernecklacesS¢’)  SupernecklacesS('")
Cyc CyCo SEQ CYCo SET CycoCycC
) 1—=z I o 1
%122 log(2 —€) 1 log(l_2)!

The classes of surjections, alignments, set partitiond, permutations appear
naturally as £Qo SET, SEQo CyC, SETo SET, and %To CycC (top right corner).
The other ones represent essentially nonclassical objEutscase of corresponding
to SEQo SEQ describes objects that are (ordered) sequences of lingghgjrthis can
be interpreted as permutations with separators inserigdh 32641, or alternatively
as integer compositions with a labelling superimposedhabh,, = n!2"~'. The
classF = SET{SEQ-;{Z}} corresponds to unordered collections of permutations;
in other words, “fragments” are obtained by breaking a peatian into pieces (pieces
must be nonempty for definiteness). The interesting EGF is

J(1—2) 22 23 24
F(z)=e =1+z+3§+13§+73z+---,
(EISA000262 “sets of lists”). The corresponding asymptotic analysivss to illus-
trate an important aspect of the saddle point method in @naftl. What we termed
“supernecklaces” in the last row represents cyclic arrareggs of composite objects
existing in three brands.
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All sorts of refinements, of which Figure 7 may give an idea,dearly possible.
We leave to the reader’s imagination the task of determininigh amongst the level 3
structures may be of combinatorial interest

> 11.15. A meta-exercise: Counting specifications of lexel The algebra of constructions
satisfies the combinatorial isomorphisre®§Cyc{X'}} = SEQ{X} for all X. How many
different terms involving: constructions can be built from three symbolecC SET, SEQ sat-
isfying a semi-group law ¢’) together with the relation Sro Cyc = SEQ? This determines
the number of specifications of level [Hint: the OGF is rational as normal forms correspond
to words with an excluded pattern.] <

II.5. Labelled trees, mappings, and graphs

In this section, we consider labelled trees as well as othportant structures that
are naturally associated with them, namely mappings andifural graphs on one
side, graphs of small excess on the other side. Like in thetetied case considered
in Section 1. 6, the corresponding combinatorial classesrdrerently recursive, the
case of trees being typical since a tree is obtained by afppgadoot to a collection
(set, sequence) of subtrees. From there, it is possibleild the graphs associated
to mappings from a finite set to itself, as these decomposeta®Econnected com-
ponents that are cycles of trees. Variations of these asrt&in finally open access
to the enumeration of graphs having a fixed excess of the nuafleziges over the
number of vertices.

I1.5.1. Trees. The trees to be studied here are invariably labelled, sonthdés
bear distinct integer labels. Unless otherwise specifiegly ire rooted, meaning as
usual that one node is distinguished as the root. Labelésbtdike their unlabelled
counterparts, exist in two varietie§i) plane trees where an embedding in the plane
is understood (or, equivalently, subtrees dangling fronoderare ordered, say, from
left to right); (i4) nonplane trees where no such embedding is imposed (suctairee
then nothing but connected undirected acyclic graphs wdlistenguished root). Trees
may be further restricted by the additional constraint thatnode outdegrees should
belong to a fixed se® C Z>, whereQ > 0.

—_— & (3,2,5/1,7,4,6)

FIGURE I1.8. A labelled plane tree is determined by an unlabelled tree ‘G@hape”)
and a permutation of the labels. . . | n.
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12 112 233 1 2 3
|| 11 1 11 7\ / N\ / N\
2313212 31 3 1 2
21 N T I I B
323112

FIGURE II.9. There arely = 1,T» = 2,73 = 9, and in general,, = n"~! Cayley
trees of sizen.

Plane labelled treesWe first dispose of the plane variety of labelled trees. Let
A be the set of (rooted labelled) plane trees constraindd. byhis family is specified
by

A= Z * SEQa{A},

where Z represents the atomic class consisting of a single labebele: Z = {1}.
The sequence construction appearing here reflects ther@art@edding of trees, as
subtrees stemming from a common root are ordered betweerséhees. Accord-
ingly, the EGFA(z) satisfies

A(z) = 26(A(z))  where ¢(u) =) u®.
w€eN
This is exactly the same equation as the one satisfied byittieary GF of Q-
restrictedunlabelledplane trees (see Proposition 1.5). Thl;}?jAn is the number
of unlabelled trees. In other words the plane rooted case, the number of labelled
trees equals! times the corresponding number of unlabelled tre&sillustrated by
Figure 8, this is easily understood combinatorially: eadfelled tree can be defined
by its “shape” that is an unlabelled tree and by the sequehoede labels where
nodes are traversed in some fixed order (preorder, say)l\sioae has, by Lagrange
inversion,
An = nl[2"A(z) = (n — D)[u" "] p(u)".
This simple analytic—combinatorial relation enables usdospose all of the enumer-
ative results of Section 1.5.1 to plane labelled trees (upaitiplying the evaluations
by n!, of course). In particular, the total number of “generalime labelled trees (with
no degree restriction imposed, i.8. = Zx>) is

1/2n—2 (2n — 2)! 4
nxn(n—l) (n—1)! (1-3---(2n = 3)
The corresponding sequence start$ & 12, 120, 1680 and isEISA001813
Nonplane labelled treesWe next turn to labelled nonplane trees (Figure 9) to
which the rest of this section will be devoted. The classf all such trees is definable
by a symbolic equation, which provides an implicit equasatisfies by the EGF:
(41) T=Z+«SET{T} —  T(2)=2z"®.

There the set construction translates the fact that susteenming from the root are
not ordered between themselves. From the specificationtllEGFI(z) is defined
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implicitly by the “functional equation”
(42) T(z) = zeT®,

The first few values are easily found, for instance by the oethf indeterminate
coefficients,

22 23 24 25
§+9§+64I+6255+“' .

As suggested by the first few coefficierits¢ 32,64 = 43,625 = 5%), the general
formulais

T(z) =242

(43) T, =n"""!

which is established (like in the case of plane unlabelleddy Chapter I) by the La-
grange Inversion Theorem (se@BENDIX A: Lagrange Inversionp. 677).

The enumerative resulf, = n"~! is a famous one, attributed to the prolific
British mathematician Arthur Cayley (1821-1895) who haerkimterest in combina-
torial mathematics and published altogether over 900 sagre notes. Consequently,
formula (43) given by Cayley in 1889 is often referred to asyley’s formula” and
unrestricted nonplane labelled trees are often called f&yayees”. Seed4, p. 51] for
a historical discussion. The functidi(z) is also known as the (Cayley) “tree func-
tion”; it is a close relative of thé/—function [L0Q defined implicitly byWe" = z,
which was introduced by the Swiss mathematician Johann ear(tb728-1777) oth-
erwise famous for first proving the irrationality of the nuenk.

A similar process gives the number of (honplane rooted$tndeere all (out)degrees
of nodes are restricted to lie in a $&t This corresponds to the specification:

T = ZxSET{TW} = T (2) = 2¢(T(2)) whereg(u) = > %

weQ
What the last formula involves is the “exponential charastie” of the degree se-
guence (as opposed to the ordinary characteristic, in tirgapicase). It is once more
amenable to Lagrange inversion. In summary:

Proposition 11.5. The number of rooted nonplane trees, where all nodes hawe the
outdegree irfl, is

T = (0 V@) where 3wy = 3
weQ

In particular, when all node degrees are allowed & Z>(), the number of trees is
T, = n™ ! and its EGF is the Cayley tree function satisfyifigz) = ze”(*).

> 11.16. Prifer’s bijective proofs of Cayley’s formul@he simplicity of Cayley’s formula calls
for a combinatorial explanation. The most famous one is diRriifer (in 1918). It establishes
as follows a bijective correspondence between unrooteteg€anges whose numberig =2 for
sizen and sequence@u, . .., an—2) With 1 < a; < n for eachj. Given an unrooted tree,
remove the endnode (and its incident edge) with the smd#lbst; leta; denote the label of
the node that was joined to the removed node. Continue witiptaned tree’ to getas in a
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similar way. Repeat the construction of the sequence umittee obtained only consists of a
single edge. For instance:

3 2
4 8
1 5 . (4,8,4,8,8,4).
6
It can be checked that the correspondence is bijective;58e@[53] or B64, p. 5]. <

> 11.17. Forests.The number of unorderef-forests (i.e.k—sets of trees) is

e e L

as follows from Burmann’s form of Lagrange inversion. <

> 11.18. Labelled hierarchies. The classC of labelled hierarchies is formed of trees whose
internal nodes are unlabelled and are constrained to hadegree larger than 1, while leaves
have labels attached to them. Like for other labelled stinest, size is the number of labels (so
that internal nodes do not contribute). Hierarchies satlsf specification

L=Z+SET>2{L}, =— L=z+e"-1-1L

This happens to be solvable in terms of the Cayley functiofz) = T'(3e*/271/2) + 2 — 1.

The first few values ar@, 1, 4, 26, 236 (EISA000311): these numbers count phylogenetlc trees

(used to describe the evolutlon of a genetically relatedigmaf organisms) and correspond to

Schroder’s “fourth problem”; se®8, p. 224] and Note 1.42, p. 68, for unlabelled analogues.
The class of binary (labelled) hierarchies defined by thétmeal fact that internal nodes

can have degree 2 only is expressed by

M = Z + SET:{ M} = M(z)=1-+/1-2z and M,=1-3---(2n—3),
where the counting numbers are now the odd factorials. <

I1.5.2. Mappings and functional graphs. Let F be the class of mappings (or
“functions”) from [1..n] to itself. A mappingf € [1..n] — [1..n] can be repre-
sented by a directed graph over the set of vertjtesn] with an edge connecting
to f(z), forallz € [1..n]. The graphs so obtained are calfedctional graphsand
they have the characteristic property that the outdegreadt vertex is exactly equal
to 1.

Mappings and associated graph$iven a mapping (or functionjj, upon start-
ing from any pointzg, the succession of (directed) edges in the graph travenses t
vertices corresponding to iterated values of the mapping,

Zo, f(xo)a f(f(xO))a .

Since the domain is finite, each such sequence must evenimafl on itself. When
the operation is repeated starting each time from an elermanpreviously hit, the
vertices group themselves into components. This leads dthan characterization
of functional graphs (Figure 10A functional graph is a set of connected functional
graphs. A connected functional graph is a collection of eabtrees arranged in a
cycle.
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Thus, with7 being as before the class of all Cayley trees, and Withe class of
all connected functional graphs, we have the specification:

F = SET{K} F(z) = €f®
1
(44) K = cCyc{7T} = K(z) = log =70
T = ZxSeET{T} T(z) = zeT(),

What is especially interesting here is a specification lmigdhree types of related
structures. From Equation (44), the EGFz) is found to satisfyF’ = (1 — 7))~ L. It
can be checked from there, by Lagrange inversion once athaitywe have

F, = nn,
as was to be expected (!) from the origin of the problem. Moterestingly, Lagrange
inversion also provides for the number of connected funetigraphs (expandg(1—
T)~! and recover coefficients by Birmann’s form):

(45) K,=n""'Q(n) where Q(n):=1+ ”; 1 (- 1T)Lgn —2)

The quantityl (n) that appears in (45) is a famous one that surfaces in many prob
lems of discrete mathematics (including the birthday paxa&quation (27)). Knuth
has proposed to call it “Ramanujaris-function” as it already appears in the first let-
ter of Ramanujan to Hardy in 1913. The asymptotic analysidbeadone elementarily
by developing a continuous approximation of the generat tnd approximating the
resulting Riemann sum by an integral: this is an instancéefiaplace method for
sums briefly explained in APENDIX B: Laplace’s methodp. 700. (See als®pP6
Sec. 1.2.11.3] andiB4, Sec. 4.7].) In fact, very precise estimates come out niffura
from an analysis of the singularities of the EGRz), as we shall see in Chapters VI
and VII. The netresult is

FIGURE I1.10. A functional graph of size:x = 26 associated to the mappingsuch
thatp(1) = 16, ¢(2) = ¢(3) =11, p(4) = 23, and so on.
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so that a fraction about/\/n of all the graphs consist of a single component.

Constrained mappingsAs is customary with the symbolic method, the construc-
tions (44) also lead to a large number of related countinglt®sFirst, the mappings
without fixed points, (Vz) f(z) # z) and those without, 2—cycles, (additionally,
(Vx) f(f(x)) # z), have EGFs

e~ T(z) e~ T(2)=T%(2)/2
1-T(z) 1-T(z)
The first equation is consistent with what a direct countdgehamely(n — 1)™,
which is asymptotic te'n", so that the fraction of mappings without fixed point is

asymptotic tae—!. The second one lends itself easily to complex-asymptagithods
that give

o e—T—T2/2
n![z"] T e

and the proportion is asymptotic to3/2. These two particular estimates are of the
same form as what has been found for permutations (the daegrderangements,
Eqg. (40)). Such facts that are not quite obvious by elemgmianbabilistic arguments
are in fact neatly explained by the singular theory of coratoinal schemas developed
in Part B of this book.

Next, idempotent mappings satisfyirfdf(z)) = f(x) for all = correspond to
T = SET{Z +» SET{Z}}, so that

—3/2

n
3

n

I(z)=¢* and I, = ") k.

8 > (;

(The specification translates the fact that idempotent mnggpcan have only cycles
of length 1 on which are grafted sets of direct antecedenthi¢ latter sequence
is EIS A000248 which starts as 1,1,3,10,41,196,1057. An asymptoticnedé can
be derived either from the Laplace method or, better, froensdddle point method
exposed in Chapter VIII.

Several analyses of this type are of relevance to cryptégrapd the study of
random number generators. For instance, the fact that @nanthpping ovefl . . n)
tends to reach a cycle i@(y/n) steps led Pollard to design a Monte Carlo integer
factorization algorithm, see3p7, p. 371] and 434, Sec 8.8]. The algorithm once
suitably optimized first led to the factorization of the FatmumberFy = 22° 4 1
obtained by Brent in 1980.
> 11.19. Binary mappings.The classBF' of binary mappings, where each point has either 0
or 2 preimages, is specified by

BF = SET{K}, K=Cvyc{P}, P=Z* B, B=ZxSETo2{B}
(planted tree$ and binary treef are needed), so that

_ 1 _ ((emY?
BEG) = = PP = gt
The clas€B3F is an approximate model of the behaviour of (modular) quézifanctions under
iteration. Seel4, 19§ for a general enumerative theory of random mappings inctudegree-
restricted ones.
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All mappings Partial Injective partial Surjection Bijection
1 eT 1 o2/ (1=2) 1 1
1-T 1-7T 1—=z 2 — e? 1—=z
ConnectedK) No fixed point Involution Idempotent Binary
1 eiT 2 z 1
1 z+2z%/2 ze
1-T 1T c ‘ V1 - 227

FIGUREIl.11. A summary of various counting EGFs relative to mappings.

> 11.20. Partial mappings.A partial mapping may be undefined at some points, where it can
be considered as taking a special value, The iterated preimages df form a forest, while

the remaining values organize themselves into a standapgpinga The clas$®F of partial
mappings is thus specified BF = SET{7 } = F, so that

S
T 1-T(2)
This construction lends itself to all sorts of variationsr lhstance, the clasBF'I of injective

partial maps is described as sets of chains of linear andlairgraphs PF I = SET{CYCc{Z}+
SEQ>1{Z}}, so that

n 2
PFI(z) = %ez/“*”, PFIL, = ji!(@)
—Z 7
=0

(This is a symbolic rewriting of part of the pap&?].) <

The symbolic method thus gives access to a wide variety aftiogiresults rela-
tive to maps satisfying diverse constraints. A summaryfierefl in Figure 11.

PF(z) and PF,=(n+1)"

I1.5.3. Labelled graphs. Random graphs form a major chapter of the theory of
random discrete structure®(], 283. We examine here enumerative results concerning
graphs of low “complexity”, that is, graphs which are venarig trees. (Such graphs
for instance play an essential role in the analysis of estdges of the evolution of a
random graph, when edges are successively added, as shfi@3jr282.)

Unrooted trees and acyclic graphslhe simplest of all connected graphs are
certainly the ones that are acyclic. These are trees, biitacgrio the case of Cayley
trees, no root is specified. Latbe the class of alinrootedtrees. Since a rooted tree
(rooted trees are, as we know, countedlhy= n"~!) is an unrooted tree combined
with a choice of a distinguished node (there arpossible such choices for trees of
sizen), one has

T, = nU, implying U, =n""2
At generating function level, this combinatorial equatitgnslates into

dw

= T
v = [ T
which integrates to give (takg as the independent variable)

U(z) = T(z) — %T(z)Q.
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SincelU (z) is the EGF of acyclic connected graphs, the quantity
A(z) = V) = eT(z)fT(z)2/2,

is the EGF of all acyclic graphs. (Equivalently, these arerdered forests of un-
rooted trees.) Methods developed in Chapters VI and VIl ynpé estimated,, ~
el/2n"=2, Surprisingly, perhaps, there are barely more acycliclgapan unrooted
trees—such phenomena are easily explained by singulawétlysis.

Unicyclic graphs. Theexces®f a graph is defined as the difference between the
number of edges and the number of vertices. For a connecsgh gthis quantity
must be at least 1, the minimal value-1 being precisely attained by unrooted trees.
The classW is the class of connected graphs of excess equél tim particular
U = W_1. The successive classig 1, Wy, Wi, . .., may be viewed as describing
connected graphs of increasing complexity.

The classiW, comprises all connected graphs with the number of edged equa
to the number of vertices. Equivalently, a graphWy is a connected graph with
exactly one cycle (a sort of “eye”), and for that reason, &ets oflV, are sometimes
referred to as “unicyclic components” or “unicycles”. In ayy such a graph looks
very much like an undirected version of a connected funeligmaph. Precisely, a
graph ofWW, consists of a cycle of length at least 3 (by definition, grapdnge neither
loops nor multiple edges) that is undirected (the orieatagiresent in the usual cycle
construction is killed by identifying cycles isomorphic tgoreflection) and on which
are grafted trees (these are implicitly rooted by the pdintlzich they are attached
to the cycle). With UGQc representing the (new) undirected cycle construction, one
thus has

Wy 2 UCYC>3{T}.
We claim that this construction is reflected by the EGF eguati

1
1-T(z)
Indeed one has the isomorphism

Wo + Wy & CYCZg{T},

since we may regard the two disjoint copies on the left asiri&ting two possible
orientations of the undirected cycle. The result of (46ntfalows from the usual
translation of the cycle construction. It is originally dizethe Hungarian probabilist
Rényiin 1959. Asymptotically, one finds (by methods of Cleal):

(46) Wo(z) = %log = %T(z) = lT(z)z.

4

(47) nl[z" Wy ~ l\/ 2mn 2 §n”*1 + i\/27m’“3/2 + e
4 3 48

Finally, the number of graphs made only of trees and unicyadmponents is
eT/2—3T2/4

VI=T '’
and asymptoticallyn![z"]eW-1+tWo ~ T'(3/4)2= /4= 1/2p=1/27=1/4 Such graphs
stand just next to acyclic graphs in order of structural clexify. They are the undi-
rected counterparts of functional graphs encountereckiptavious section.

eW—l(z)""WO(Z) —
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Unrootedtrees U =W_1 =T —T?/2 Up =n""2
Acyclic gr. (forests) A = ¢7=7°/2 Ay ~ el 22
Unicycles Wo = L log 1ng — LI W, ~ i2mnn 2
T/2—3T2 /4 —1/4
. e 3.2 n—1/4
Trees + unicycles B = ——— B, ~T'(= n
y = (D=
P,(T) P (V2T ysk-1)/2
Conn. excesg Wi = —— Win ~ —————
k (1—T)3k k, 23k/21"(%k)n

FIGURE I1.12. A summary of major enumeration results relative to labefjembhs of
small excess.

> 11.21. 2-Regular graphsThis is based on Comtet's accoui8] Sec. 7.3]. A 2—regular graph
is an undirected graph in which each vertex has degree gxac@onnected 2-regular graphs
are thus undirected cycles of length> 3, so that the EGF of all 2—regular graphs is

6—2/2—22/4

VvV1—2z
Givenn straight lines in general position, a cloud is defined to betafn intersection points
no three being collinear. Clouds and 2—regular graphs armeaerous. [Hint: Use duality.]
The asymptotic analysis will serve as a leading example efthgularity analysis process in
Chapter VI (Examples VI.1, p. 363 and V1.2, p. 378).

The general enumeration efregular graphs becomes somewhat more difficult as soon

asr > 2. Algebraic aspects are discussed284, 244 while Bender and Canfield3[l] have
determined the asymptotic formula (for even),

R(z) =

r/2
RO o \/Qe('r‘z—l)/él rr/ 2

er/2y! ’

for the number of—regular graphs of size. <

Graphs of fixed excessThe previous discussion suggests considering more gen-
erally the enumeration of connected graphs according tessxcE. M. Wright made
important contributions in this are&(7, 508, 50Pthat are revisited in the famous
“giant paper on the giant component” by Janson, Knuth, tkicaad Pittel p82.
Wright's result are summarized by the following propositio

Proposition 11.6. The EGFW}(z) of connected graphs with excess (of edges over
vertices) equal ta& is, for k > 1, of the form

_ B(T) _
(48) Wi(z) = A=) T=T(z),
whereP;, is a polynomial of degregk + 2. For any fixedk, asn — oo, one has
n Pk(l)\/ﬁ n+(3k—1)/2 -1/2
49) Wi = nl[="|Wi(z) = T " (1 +0(n )) :

The combinatorial part of the proof (see Note 22 below) isd@resting exercise
in graph surgeryand symbolic methods. The analytic part of the statemetuvisl
straightforwardly from singularity analysis. The polyniafs P(T") and the constants
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P;(1) are determined by an explicit nonlinear recurrence; onefiadinstance:
1746 —1T) Wo — 1 TH2+4 28T — 23T% + 973 — T*)
24 (1-T)3" ST (1—=T)5 '

> 11.22. Wright's surgery. The full proof of Proposition 1.6 by symbolic methods reps
the notion of pointing in conjunction with multivariate genating function techniques of Chap-
ter lll. It is convenient to definev,(z,y) = y*Wi(zy), which is a bivariate generating
function withy marking the number of edges. Pick up an edge in a connectet gfexcess
k + 1, then remove it. This results either in a connected graphoéssk with two pointed
vertices (and no edge in between) or in two connected conmperé respective excegsand

k — h, each with a pointed vertex. Graphically:

This translates into the differential recurrence ondhe(0,, :
k+1
20y Wr41 = (2283wk — 2ydywe) + Z (202 wn) - (20-wk—n) ,
h=-1
and similarly forWy(z) = wi(z, 1). From there, it can be verified by induction that edth
is a rational function o = W_;. (See Wright's original paper&Q7, 508, 50Por [282] for
details.) <
As explained in the giant pape2§2), such results combined with complex ana-
lytic techniques provide with great detail information e taspect of a random graph
I'(n,m) with n nodes andn edges. In the sparse case wherés of the order ofn,
one finds the following properties to holavith high probability (w.h.p.)’, that is,
with probability tendingto 1 ag — oo .
e Form = pn, with 1 < 3, the random grapR(m, n) has w.h.p. only tree
and unicycle components; the largest component is w.h.gizef)(logn).
e Form = %n + O(n*?), w.h.p. there appear one or several semi-giant
components that have sizgn?/3).
e Form = un, with o > L, there is w.h.p. a unique giant component of size
proportional ton.
In each case, refined estimates follow from a detailed aisabfsorresponding gen-
erating functions, which is a main theme 4B and especially287. Raw forms
of these results were first obtained by Erdés and Rényi whodhed the subjectin a
famous series of papers dating from 1959-60; see the b606k&83 for a probabilis-
tic context and the papeBP] for the finest counting estimates available. In contrast,
the enumeration ddll connected graphs (irrespective of the number of edgesisthat
without excess being taken into account) is a relatively gasblem treated in the
next section. Many other classical aspects of the enurmertiteory of graphs are
covered in the booksraphical Enumeratioty Harary and Palmefp9.

Wy =

:L‘

7Synonymous expressions are “asymptotically almost sufalgn.s) and “in probability”. The term
“almost surely” is sometimes used, though it lends itselfcemfusion with properties of continuous
measures.
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Il. 6. Additional constructions

Like in the unlabelled case, pointing and substitution aaglable in the world
of labelled structures (Section 11.6.1), and implicit défons enlarge the scope of
the symbolic method (Section 11.6.2). The inversion praceseded to enumerate
implicit structures is even simpler, since in the labellei/arse sets and cycles have
more concise translations as operators over EGF. Finallittzis departs significantly
from Chapter I, the fact that integer labels are naturaljeoed makes it possible to
take into account certain order properties of combinaltetiactures (Sectio??).

II.6.1. Pointing and substitution. The pointing operation is entirely similar to
its unlabelled counterpart since it consists in distinlging one atom amongst all the
ones that compose an object of size The definition of composition for labelled
structures is however a bit more subtle as it requires sigghut “leaders” in sub-
stituends.

Pointing. Thepointingof a classs is defined by
A=0B iff A, =1[1..n] x B,.

In other words, in order to generate an elementofelect one of the labels and
point at it. Clearly
d
A, =n-B, = A(z) = zd—B(z)
z
Substitution (composition).The compositionor substitutioncan be defined so
that it corresponds priori to composition of generating functions. It is formally
defined as

BoC=> By x SET;{C},
k=0
so that its EGF is

k!

A combinatorial way of realizing this definition and form ambirary object of53 o C,

is as follows. First select an element@fc B called the “base” and lgt = |3| be
its size; then pick up @—set ofC*; the elements of thé—set are naturally ordered
by value of their “leader” (the leader of an object being bynention the value of
its smallest label); the element with leader of ranis then substituted to the node
labelled by value- of j.

Theorem I1.3. The combinatorial constructions of pointing and subsititatare ad-
missible.

o0 Py k)
> By (e ')) = B(C(2)).
k=0

A=0B = A(z)=20.B(2), 0, = diz
A=BoC = A(z)=B(C(2)).
For instance, the EGF of (relabelled) pairings of elemerds/d fromC is
eC(z)+C(z)2/2’

since the EGF of involutions is"+>"/2.
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> 11.23. Standard constructions based on substitutiofbe sequence class gf may be de-
fined by composition a® o A whereP is the set of all permutations. The set classlahay be
defined ag/ o A wherel/ is the class of all urns. Similarly, cycles are obtained Hyssitution
into circular graphs. Thus,

SEQ(A) = Po A, SET(A) =2 U o A, Cyc(A) 2Co A.

In this way, permutation, urns and circle graphs appeard®typal classes in a development
of combinatorial analysis based on composition. (Joyatedry of species”’486 and the
book by Bergeron, Labelle, and Leroud9 make a great use of such ideas and show that an
extensive theory of combinatorial enumeration can be basdle concept of substitutions]

> 11.24. Distinct component size§he EGFs of permutations with cycles of distinct lengths
and of set partitions with parts of distinct sizes are

[e'e]

TTo+20 [Ta+2p.

n=1

The probability that a permutation @d®, has distinct cycle sizes tends ¢07; see P49,
Sec. 4.1.6] for a Tauberian argument ad@(Q for precise asymptotics. The corresponding
analysis for set partitions is treated in the seven authpep@99. <

II.6.2. Implicit structures. Let X’ be a labelled class implicitly defined by ei-
ther of the equations

A=B+ X, A=BxX.

Then, solving the corresponding EGF equations leads to

respectively. For the composite labelled constructiorg, ST, Cyc, the algebra is
equally easy.
Theorem 1.4 (Implicit specifications) The generating functions associated to the
implicit equations int’

A = SEQ(X), A = SET(X), A =Cvc(X),

are respectively
1
A(z)’

ExAMPLE I1.15. Connected graphsln the context of graphical enumerations, the labelled
set construction takes the form of an enumerative formuéding a class of graph§ and the
subclass of its connected graptisc G:

X(z) = X(z) =logA(z), X(z2)=1—e 40,

G =SET(K) = G(z) =X,

This basic formula is known in graph theo359 as theexponential formula
Consider the clas§ of all (undirected) labelled graphs, the size of a graph dp¢e
number of its nodes. Since a graph is determined by the cibiteset of edges, there a(&)
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potential edges each of which may be taken in or out, soGhat= 2(5), LetC C G be the
subclass of all connected graphs. The exponential formetlerchines< (z) implicitly,

log <1 +3 2(3)%)

n>1
2 3 4 5

z z z z

where the sequence EHS A001187 The series is divergent, that is, it has radius of conver-
gence 0. It can nonetheless be manipulated as a formal $ameENDIX A: Formal power
series p. 676). Expanding by means big(1 + u) = v — u?/2 + - - -, yields a complicated
convolution expression fak,,:

n 1 n n1)y (n2 1 n n1)y (n2) ("3
Ko=) Ly <n17n2>2<2>+<2)+§z <m7n27n3>2(2)+<2)+<2> o

(Thekth termis a sum oveti; + - - - +ny, = n, With 0 < n; < n.) Given the very fast increase
of GG, with n, for instance

K(z)

2("3") — gno(3),
a detailed analysis of the various terms of the expressidti,ofhows predominance of the first
sum, and, in that sum itself, predominance of the extrenmegeorresponding te; = n — 1
orns =n — 1, so that

(50) Ko, =20G) (1-2027" 4 027™)).

Thus, almost all labelled graphs of sizeare connected. In addition, the error term decreases
very fast: for instance, fon = 18, an exact computation based on the generating function for-
mula reveals that a proportion orhy0001373291074 of all the graphs are not connected—this
is extremelyclose to the valu€.0001373291016 predicted by the main terms in the asymptotic
formula (50). Notice that here good use could be made of dypdreergent generating function
for asymptotic enumeration purposes. ..............cuu... END OF EXAMPLE 11.15.0

> 11.25. Bipartite graphs.A plane bipartite graph is a pait+, w) whereG is a labelled graph,

w = (ww,wE) is a bipartition of the nodes (intd/estand Eastcategories), and the edges are
such that they only connect nodes fram to nodes ofuvg. A direct count shows that the EGF
of plane bipartite graphs is

I(z) = Z%% with 7, = 3 <Z> k(n—k)

k

The EGF of plane bipartite graphs that are connectéggif'(z).
A bipartite graph is a labelled graph whose nodes can betipagd into two groups so
that edges only connect nodes of different groups. The EGilpaftite graphs is

exp (%logf(z)) — /T2

[Hint. The EGF of a connected bipartite graph%iﬂ;og I'(z) as a factor o% kills the East—
West orientation present in a connected plane bipartitehgr&ee Wilf's book 496, p. 78] for
details.] <

> 11.26. Do two permutations generate the symmetric groip2wo permutations, 7 of the
same size, associate a graph . whose set vertices i = [1..n], if n = |o| = |7|, and
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set of edges is formed of all the pairs, o(z)), (z, 7(z)), for z € V. The probability that a
randomI’,, - is connected is

n>0

T = %[z"] log (Z n!z") .

This represents the probability that two permutations geeea transitive group (that is for all
x,y € [0..n], there exists a composition of o, 7, 7! that mapsc to ). One has
1 1 4 23 171 1542

(51 o~ 1 n n2 n3 nt nd nb ’
Surprisingly, the coefficients, 1,4, 23, ... [EIS A084357 in (51) enumerate a “third-level”
structure (cf Subsection II. 4.2):.E3(SET>1(SEQ-1 (2£))). Also, one has!?* 7, = (n—1)!I,,,
wherel,,; 1 is the number of indecomposable permutations (Example p.192).

Let 7}, be the probability that two random permutations generagewthole symmetric
group. Then, by a result of Babai based on the classificafignonps, the quantityt,, — =, is
exponentially small, so that (51) also appliestfp [Based on Dixon130.] <

> 11.27. Graphs are not specifiabl@he class of all graphs does not admit a specification start-
ing from single atoms and involving only sums, productss setd cycles. Indeed, the growth
of G, is such that the EGE/(z) has radius of convergence 0, whereas EGFs of constructible
classes must have a nonzero radius of convergence, as pnod@édpter V. <

11.6.3. Order constraints. A construction well suited to taking into account
many order properties of combinatorial structures is thdifrexl labelled product,
A= (B"%C).

This denotes the subset of the prodHetC formed with elements such that the small-
est label is constrained to lie in tiecomponent. (To make this definition consistent,
it must be assumed th&}, = 0.) We call this binary operation on structures buxed
product.

Theorem I1.5. The boxed product is admissible.
(52) A= (B"%xC) = A(z)= / (0:B(t)) - C(t) dt, 0y = —.
0

PrROOF The definition of boxed products implies the coefficienatiein

n '[’L—]_
An - Z (k _ 1>BkCn_k.

k=1
The binomial coefficient that appears in the standard latgdtoduct is now modified
since onlyn — 1 labels need to be distributed between the two componénts]|
going to the3 component (that is constrained to contain the laksteady) andh — k&
to theC component. From the equivalent form

An = %z": (Z) (kBk) Cri—k,

k=0
the result follows by taking EGFs. O
A useful special case is the min—rooting operation,

A={1}"xC,
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FIGUREII.13. A numerical sequence of size 100 with records marked byesir¢here
are 7 records that occur at timgs3, 5, 11, 60, 86, 88.

for which a variant definition goes as follows. Take in all gibte ways elements
~ € C, prepend an atom with a label smaller than the labels, é6r instanced, and
relabel in the canonical way ovfr. . (n+1)] by shifting all label values by 1. Clearly

Aps1 = C, which yields
2) = / O(t) dt,
0

a result also consistent with the general formula of boxedpcts.
For some applications, it is easier to impose constraintthemqmaximallabel
rather than the minimum. The max-boxed product written

A= (B"x0),

is then defined by the fact the maximum is constrained to liga@3-component of
the labelled product. Naturally, the translation by angn&in (52) remains valid for
this trivially modified boxed product.

> 11.28. Combinatorics of integrationin the perspective of this book, integration by parts has
an immediate interpretation. Indeed, the equality,

/OZ A'(t) - B(t) dt:A(z)~B(z)—/OZA(t) B'(t)dt

reads off as!'The smallest label in an ordered pair, if it appears on thé,Jeannot appear on
the right” <

ExaMPLE 11.16. Records in permutations.Given a sequence of numerical data,=
(z1,...,zn) assumed all distinct, eecord in that sequence is defined to be an element
such thate, < x; for all & < j. (Arecord is an element “better” than its predecessorgd) Fi
ure 13 displays a numerical sequence of length 100 that has 7 records. Confronted to such
data, a statistician will typically want to determine whestthe data obey purely random fluctu-
ations or there could be some indications of a “trend” or dbias” [108 Ch. 10]. (Think of the
data as reflecting share prices or athletic records, saparicular, if thex; are independently
drawn from a continuous distribution, then the number obrds obeys the same laws as in a
random permutation dfl . . n]. This statistical preamble then invites the questidiow many
permutations of havek records?
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First, we start with a special brand of permutations, thesdhat have theimaximumat
the beginning. Such permutations are defined BSi(idicates the boxed product based on the
maximum label)

Q= (Z"+P),
whereP is the class of all permutations. Observe that this give&EBE

=(d 1 1

implying the obvious resulf,, = (n — 1)! for all n > 1. These are exactly the permutations
with onerecord. Next, consider the class

P = SETL(Q).

The elements oP®) are unordered sets of cardinalitywith elements of typeD. Define
the (max) leader of any component Bf*) as the value of its maximal element. Then, if we
place the components in sequence, ordered by increasingsvaf their leaders, then read off
the whole sequence, we obtain a permutation Witlecords exactly. The correspondéhie
clearly revertible. Here is an illustration, with leaderglerlined:

{(7,2,6,1), (4,3), (9,8,5)} = [(4,3), (7,2,6,1), (9,8,5))]
47 3717 27 67 1727 87 5'

1%

Thus, the number of permutations wittrecords is determined by

X 1 1 \* . n
PO = (los ) P,s)—[k],

where we recognize Stirling cycle numbers from Example fizxther words:
The number of permutations of sizéhavingk records is counted by the
Stirling “cycle” number [}].

Returning to our statistical problem, the treatment of Eplei2 p. 112 (to be revisited
in Chapter IIl) shows that the expected number of recordsremdom permutation of size
equalsH,,, the harmonic number. One hilkoy = 5.18, so that for 100 data items, a little
more than 5 records are expected on average. The probaifilityserving 7 records or more
is still about 23%, an altogether not especially rare eventontrast, observing twice as many
records, that is, 14, would be a fairly strong indication dfias since, on random data, the
event has probability very close 10~*. Altogether, the present discussion is consistent with
the hypothesis for the data of Figure 13 to have been gewkirsdependently at random (and
indeed theywere). ... END OF EXAMPLE 11.16. 0

Itis possible to base a fair part of the theory of labelledstarctions on sums and
products in conjunction with the boxed product. In effechsider the three relations

1
F =SEQ{G} = f(z):m7 f=1+gf
F=SeT{G} = [f(z)=¢"", f:H/g/f

F =Cvrc{g} = f(z)zlogl%g(z), f:/g'lTlg

8This correspondence can also be viewed as a transformatiperonutations that maps the number
of records to the number of cycles—it is known as Foata’s émnehtal correspondenceédy, Sec. 10.2].
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The last column is easily checked to provide an alternatvenfof the standard op-
erator corresponding to sequences, sets, and cycles. Bsehscthen itself deduced
directly from Theorem I1.5 and the labelled product rule:

Sequenceghey obey the recursive definition

F = SEQ{G} = F={e} +(GF).
Sets we have

F=SET{G} =  F={}+(G"xF),

which means that, in a set, one can always single out the coampavith

the largest label, the rest of the components forming a sedtHer words,
when this construction is repeated, the elements of a sdteaanonically
arranged according to increasing values of their largesti$athe “leaders”.
(We recognize here a generalization of the constructiod {merecords in
permutations.)

Cycles The element of a cycle that contains the largest label caakmn

canonically as the cycle “starter”, which is then followeygl &n arbitrary
sequence of elements upon traversing the cycle in circatbaroThus

F=Cvc{G} =  F=(G"«SeQ{G)).

Greene 251] has developed a complete framework of labelled grammagsda
on standard and boxed labelled products. In its basic fasrexpressive power is
essentially equivalent to ours, because of the abovesaktMore complicated order
constraints, dealing simultaneously with a collectionasfer and smaller elements,
can be furthermore taken into account within this framework
> 11.29. Higher order constraints, after Greenket the symbol<], (1, B represent smallest,
second smallest, and largest labels respectively. Onénkatrespondences (with = diz

A= (B7 ™) 02A(2) = (0-B(2)) - (8:C(2))
A= (Bo® *c) 02A(2) = (82B(2)) - C(2)
A= (B"*C" *D') D2A(2) = (0:B(2)) - (0:C(2)) - (8-D(2)),

and so on. These can be transformed into (iterated) integpaésentations. [Se@%1] for
more.]

The next two examples demonstrate the usefulness of mimgoosed in con-
junction with recursion. In this way, trees satisfying soarder conditions can be
constructed and enumerated easily. This is in turn givesssto new characteristics
of permutations.

ExXAMPLE I1.17. Increasing binary trees and alternating permutation3o each permutation,
one can associate bijectively a binary tree of a special ¢gied anincreasing binary treeand
sometimes a heap—ordered tree or a tournament tree. Thiddearooted binary tree in which
internal nodes bear labels in the usual way, but with thetifdil constraint that node labels
increase along any branch stemming from the root. Such #&eeslosely related to classical
data structures of computer science, like heaps and bihopraies.

The correspondence (Figure 14) is as follows: Given a petiout of a set written as a
word,o = o102 ... 0y, factor itin the formo = o1 - min(o) - or, With min(o) the smallest
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RO

FIGURE I1.14. A permutation of size 7 and its increasing binary tree Igtin

label value in the permutation, and,, o r the factors left and right ahin(o). Then the binary
tree3(o) is defined recursively in the formétoot, left,right by

B(o) = (min(e), B(or), B(or)),  Ble) =e.

The empty tree (consisting of a unique external node of@ip®es with the empty permutation
e. Conversely, reading the labels of the tree in symmetriixfiorder gives back the original
permutation. (The correspondence is described for ingtanStanley’s book447, p. 23-25]
who says that “it has been primarily developed by the Frengbihting at P19].)

Thus, the familyZ of binary increasing trees satisfies the recursive defmitio

T={e}+(2°xI*1),

which implies the nonlinear integral equation for the EGF
I(z)=1 +/ I(t)* dt.
0

This equation reduces #(z) = I(z)? and, under the initial conditiofi(0) = 1, it admits the
solutionI(z) = (1 — 2)~*. ThusI, = n!, which is consistent with the fact that there are as
many increasing binary trees as there are permutations.

The construction of increasing trees associated with petions is instrumental in deriv-
ing EGFs relative to various local order patterns in pertionia. We illustrate its use here by
counting the number afp-and-down(or zig-zag permutations, also known asternatingper-
mutations. The result, already mentioned in thwitation chapter, was first derived by Désiré
André in 1881 by means of a direct recurrence argument.

A permutations = o103 ... 0, IS an alternating permutation if

(53) o1>02<03>04< ",
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so that pairs of consecutive elements form a successionsadingh downs; for instance,

6 7\ P
A

[6231745}

Consider first the case of an alternating permutatioodsf size. It can be checked that the
corresponding increasing trees have no one—way brancbuhgsnso that they consist solely of
binary nodes and leaves. Thus, the corresponding speicifidat

T=Z+(2°%xT*J),
so that .
J(z):z+/ J(t)?dt  and %J(z):l—kJ(z)?.
0

The equation admits separation of variables, which imgiiéth J(0) = 0)

Z3

Z5 Z7
J(z) = tan(z) = z+2§ + 165 —&—272? +
The coefficients/z, 41 are known as théangent numbersr the Euler numbersf odd index
(EISA000182). -

Alternating permutations avensize defined by the constraint (53) and denoted/byan
be determined from

T =A{e}+ (Z2°xT*T),
since now all internal nodes of the tree representation iawyy except for the rightmost one
that only branches on the left. ThUE,(z) = tan(z)J(z), and the EGF is
- 1 22 24 25 28

where the coefficientds,, are thesecant numberalso known as Euler numbers of even index
(BEISADO00369. ..ottt NB OF EXAMPLE 11.17.

Use will be made later in this book (Chapter Ill, p. 22) of thigportant tree
representation of permutations as it opens access to psmantike the number of
descents, runs, and (once more!) records in permutatiamalyfes of increasing trees
also inform us of crucial performance issues regardingrigisaarch trees, quicksort,
and heap-like priority queue structur@s], 434, 486, 488
> 11.30. Combinatorics of trigonometricdnterprettan £, tantan z, tan(e® — 1) as EGFs
of combinatorial classes. <

ExamMPLE I1.18. Increasing Cayley trees and regressive mappidgsincreasing Cayley tree
is a Cayley tree (i.e., it is nonplane and rooted) whose $adleing any branch stemming from
the root form an increasing sequence. In particular, thérmmim must occur at the root, and
no plane embedding is implied. L&t be the class of such trees. The recursive specification is
now

K= (2" SeT{K}).
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FIGURE II.15. Anincreasing Cayley tree (left) and its associated regressapping
(right).

The generating function thus satisfies the functional iaiat
K(z) = / "™ dt, K'(z) = 5™,
0

with K'(0) = 0. Integration ofK’e~* = 1 shows that

1
1—=2
Thus the number of increasing Cayley tree@is-1)!, which is also the number of permutations
of sizen — 1. These trees have been studied by Meir and M&56|[under the name of
“recursive trees”, a terminology that we do not howeverireitere.

The simplicity of the formulas,, = (n— 1)! certainly calls for a combinatorial interpreta-
tion. In fact, an increasing Cayley tree is fully determirgdts child parent relationship (Fig-
ure 15). Otherwise said, to each increasing Cayleyttege associate a partial map= ¢
such thate(i) = j iff the label of the parent of is j. Since the root of tree is an orphan,
the value of¢(1) is undefinedg(1) =.1; since the tree is increasing, one hgg) < i for
all 7 > 2. A function satisfying these last two conditions is calletbgressive mappingThe
correspondence between trees and regressive mappings isdhily seen to be a bijective one.

Thus regressive mappings on the domiin. n] and increasing Cayley trees are equinu-
merous, so that we may as well usdo denote the class of regressive mappings. Now, a regres-
sive mapping of size is evidently determined by a single choice af2) (since¢(2) = 1),
two possible choices faf(3) (either of1, 2), and so on. Hence the formula

Kn=1-2-3---(n—1)

K(z) =log and K,=(mn-1).

receives a natural interpretation. .................0000.. END OF EXAMPLE 11.18.0

> 11.31. Regressive mappings and permutatioRgegressive mappings can be related directly
to permutations. The construction that associates a rggeemapping to a permutation is
called the “inversion table” construction; s&9f, 434. Given a permutatiosr = o1, ...,0n,
associate to it a functiogh = ¢, from [1..n]to[0..n — 1] by the rule

¥(j) = card {k < j | or>05}.
The functiomy is a trivial variant of a regressive mapping. <
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> 11.32. Rotations and increasing treeén increasing Cayley tree can be canonically drawn
by ordering descendants of each node from left to right altogrto their label values. The
rotation correspondence (p. 69) then gives rise to a bimameasing tree. Hence, increasing
Cayley trees and increasing binary trees are also diregidyed. Summarizing this note and
the previous one, we have a quadruple combinatorial coiumgct

Increasing Cayley tree2 Regressive mappings Permutations Increasing binary trees,
that opens the way to yet more permutation enumerations. <

II.7. Perspective

Together with the previous chapter and Figure 1.14, thigptdraand Figure 16
provide the basis for the symbolic method that is at the cbamalytic combinatorics.
The translations of the basic constructions for labellegsts to EFGs could hardly
be simpler, but, as we have seen, they are sufficiently poverembrace numerous
classical results in combinatorics, ranging from the gty and coupon collector
problems to graph enumeration.

The examples that we have considered for second-leveltstas; trees, map-
pings, and graphs lead to EGFs that are simple to expressauahhto generalize.
(Often, the simple form is misleading—direct derivatiofisn@any of these EGFs that
do not appeal to the symbolic method can be rather intricételeed, the symbolic
method provides a framework that allows us to understandahee of many of these
combinatorial classes. From there, numerous seemingtiesed counting problems
can be organized into broad structural categories anddatvan almost mechanical
manner.

Again, the symbolic method is only half of the story (the “daimatorics” in
analytic combinatorics), leading to EGFs for the countieguences of numerous
interesting combinatorial classes. While some of thesedH&&d immediately to ex-
plicit counting results, others require the classical téghes in complex analysis and
asymptotic analysis that are covered in Part B (the “arclytart of analytic combi-
natorics) to deliver asymptotic estimates. Together wise techniques, the basic
constructions, translations, and applications that we loiscussed in this chapter re-
inforce the overall message that the symbolic method is tesyic approach that
is successful for addressing classical and new problemsmbmatorics, generaliza-
tions, and applications.

We have been focussing @mumeration problemscounting the number of ob-
jects of a given size in a combinatorial class. In the nexptdrawe consider how to
extend the symbolic method to help analyse other propestiesmbinatorial classes.

The labelled set construction and the exponential formwaewecognized early by re-
searchers working in the area of graphical enumerati®bg [ Foata R17] proposed a detailed
formalization in 1974 of labelled constructions, espédgiséquences and sets, under the names
of partitional complex; a brief account is also given by $giin his survey 445. This is par-
allel to the concept of “prefab” due to Bender and Goldm2dj.[ The books by Comtet9g],
Wilf [ 496, Stanley B47], or Goulden and Jacksor244] have many examples of the use of
labelled constructions in combinatorial analysis.

Greene 251 has introduced a general framework of “labelled gramméagjely based
on the boxed product with implications for the random getienaof combinatorial structures
in his 1983 dissertation. Joyal's theory of species datingif1981 (seeZ86 for the original
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1. The main constructions of union, and product, sequenceaseétcycle for labelled
structures together with their translation into exporediggenerating functions.

Construction EGF
Union A=B+C A(z) = B(2) + C(z)
Product A=BxC A(z) = B(2) - C(2)

1
Sequence A =SEQ{B} | A(z) = e
Set A =SET{B} | A(z) = exp(B(z))

1

Cycle A =Cvyc{B} | A(z) =log B0

2. The translation for sets, multisets, and cycles of fixed icatiy.

Construction EGF

Sequence A= SEQ,{B} | A(z) = B(2)"
Set A=SET{B} | A(z) = —
Cycle A=Cvcp{B} | A(z) = —B(2)*

3. The additional constructions of pointing and substitution

Construction EGF

Pointing A=0B | A(z)=2LB(z)

z

Substitution A =BoC | A(z) = B(C(2))

4. The “boxed” product.

A= (B7%C) = A(2) :/OZ (%B(t)) - C(t) dt.

FIGUREI1.16. A “dictionary” of labelledconstructions together with their translation
into exponentialgenerating functions (EGFs). The first constructions atetyparts of
the unlabelled constructions of the previous chapter (thiiget construction is not mean-
ingful here). The translation for composite constructiohbounded cardinality appears
to be simple. Finally, the boxed product is specific to lagkBtructures. (Compare with
the unlabelled counterpart, Figure 14 of Chapter I, p. 14.)

article and the book by Bergeron, Labelle, and Lerdd®] for a rich exposition), is based on
category theory; it presents the advantage of uniting imanson theory the unlabelled and the
labelled worlds.
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Flajolet, Salvy, and Zimmermann have developed a spedditénguage closely related
to the system exposed here. They show2@d how to compile automatically specifications
into generating functions; this is complemented by a cakttat produces fast random gener-
ation algorithms216.



Combinatorial Parameters and
Multivariate Generating Functions

Generating functions find averages, etc.
— HERBERTWILF [496]

Je n’ai jamais été assez loin pour bien sentir I'appliratie I'algébre a la géomeétrie. Je
n’aimais point cette maniére d’opérer sans voir ce quét) €t il me sembloit que résoudre un
probléme de géométrie par les équations, c'étoitfjoumeair en tournant une manivéile
— JEAN-JACQUESROUSSEAU, Les Confessiond.ivre VI
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Many scientific endeavours demand precise quantitativanmtion on probabilis-
tic properties oparametersof combinatorial objects. For instance, when designing,
analysing, and optimizing a sorting algorithm, it is of irgst to determine what the
typical disorder of data obeying a given model of randomingsand do so in the
mean, or even in distribution, either exactly or asympailyc Similar situations arise
in a broad variety of fields, including probability theorydastatistics, computer sci-
ence, information theory, statistical physics, and comgeomnal biology. The exact
problem is then a refined counting problem with two paranseteamely, size and
additional characteristic: this is the subject addressetis chapter and treated by a
natural extension of the generating function frameworke@symptotic problem can
be viewed as one of characterizing in the limit a family of lpability laws indexed
by the values of the possible sizes: this is a topic to be diauli in Chapter 1X.)
As demonstrated here, the symbolic methods initially dgwedi for counting com-
binatorial objects adapt gracefully to the analysis of masi sorts of parameters of
constructible classes, unlabelled and labelled alike.

1 never went far enough to get a good feel for the applicatimnalgebra to geometry. | was not
pleased with this method of operating according to the rulgout seeing what one does; solving geomet-
rical problems by means of equations seemed like playinge by turning a crank.”

139



140 Ill. PARAMETERS AND MULTIVARIATE GFS

Multivariate generating function@MGFs)—ordinary or exponential—can keep
track of a collection of parameters defined over combinatabjects. From the
knowledge of such generating functions, there result eigxplicit probability dis-
tributions or, at least, mean and variance evaluations.irffarited parameters, all
the combinatorial classes discussed so far are amenahleliadreatment and tech-
nically, the translation schemes that relate combindtooiastructions and multivari-
ate generating functions present no major difficulty—thpgear to be natural (no-
tational, even) refinements of the paradigm developed inp@ns | and Il for the
univariate case. Typical applications from classical covatorics are the number of
summands in a composition, the number of blocks in a settipartithe number of
cycles in a permutation, the root degree or path length aée, the number of fixed
points in a permutation, the number of singleton blocks ietgartition, the number
of leaves in trees of various sorts, and so on.

Beyond its technical aspects anchored in symbolic methitils,chapter also
serves as a first encounter with the general area of randorhinatarial structures.
The general question id8¥hat does a random object of large size look likeuilti-
variate generating functions first provide an easy acces®toent®f combinatorial
parameters—typically the mean and variance. In additidrerwcombined with basic
probabilistic inequalities, moment estimates often leagrecise characterizations of
properties of large random structures that hold with highbpbility. For instance, a
large integer partition conforms with high probability td@terministic profile, a large
random permutation almost surely has at least one long apcle few short ones, and
so on. Such a highly constrained behaviour of large objeatsimturn serve to design
dedicated algorithms and optimize data structures; or it seave to build statistical
tests—when does one depart from randomness and detectnal”sig large sets of
observed data? Randomness aspects form a recurrent théneebmiok: they will be
developed much further in Chapter IX, where complex-aswtipmethods of Part B
are grafted on the exact modelling by multivariate genegatiinctions presented in
this chapter.

This chapter is organized as follows. First a few pragmagicetbpments re-
lated to bivariate generating functions, the multivaripéeadigm specialized to two
variables, are presented in Section IIl.1. Section Ill.@ntlpresents the notion of
bivariate enumeration and its relation to discrete prdistisi models, including the
determination of moments, as the language of elementabapitity theory does pro-
vide an intuitively appealing way to conceive of bivariataunting data. The sym-
bolic methodper sedeclined in its general multivariate version is centrakyeloped
in Sections 1ll. 3 and 111.4: with suitable multi-index nai@ns, the extension of the
symbolic method to the multivariate case is almost immedi&Recursive parame-
ters that often arise in particular from tree statisticsrfdne subject of Section Ill. 5,
while complete generating functions and associated coadiial models are dis-
cussed in Section 1ll. 6. Additional constructions like g, substitution, and or-
der constraints lead to interesting developments, in @ddi, an original treatment
of the inclusion-exclusion principle in Section Ill. 7. Thieapter concludes with Sec-
tion I11. 8, which presents a brief abstract discussion dfeaxal parameters like height
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in trees or smallest and largest components in compositetstes— such parameters
are best treated via families of univariate generatingtions.

lll. 1. An introduction to bivariate generating functions ( BGFs)

We have seen in Chapters | and Il that a number sequgfigecan be encoded
by means of a generating function in one variable, eitheinargt or exponential:

> faz"  ordinary GF

fn ~> f = " n
() ) an% exponential GF.

This encoding is powerful, since many combinatorial cangions admit of a trans-
lation as operations over such generating functions. By, one gains access to
many useful counting formulee.

Similarly, consider a sequence of numbggf,s ;) depending on two integer valued
indices,n and k. Usually, in this book/ f,, x) will be an array of number (often
a triangular array), wherg, 5 is the number of objectg in some classF, such
that|p| = n and some parametgf(y) is equal tok. We can encode this sequence
by means of divariate generating function (BGFWwhich involves two variables;
attached to: andu attached td.

Definition 11.1. The bivariate generating functions (BGE®ither of the ordinary
or exponential type, of an arrayf, ) are the formal power serieg(z,u) in two
variables defined by

mekz"uk ordinary BGF
n,k

(frk) ~ f(zu) = e _
Z Sk i exponential BGF.
n,k !

(The case of a “double exponential” GF corresponding"%_iq% is not used in the
book.)

As we shall see shortly, many parameters of constructiblesels become acces-
sible through such BGFs. According to the point of view agédphomentarily here,
one starts with an array of numbers and forms a BGF by a doulnfersition pro-
cess. We present here two examples related to binomial cieef$ and Stirling cycle
numbers illustrating how such BGFs can be determined, themipulated. In what
follows it is convenient to refer to theorizontalandvertical generating functions that
are each a one-parameter family of GFs in a single varialfieattby

horizontal GF: f,,(u) := Y _ fusu";
k,

vertical GF:  f*)(z) := > fnx2" (ordinary case)

F®(2) = Z fn,k% (exponential case).
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foo —  fo(u)
f1o fu —  fi(u)
f20 fo1 fo2 —  fa(u)

l l !
FOR) k) ()

FIGURE IIl.1. An array of numbers and its associated horizontal and e B€s.

The terminology is transparently explained if the eleméifits;, ) are arranged as an
infinite matrix, with f,, ,, placed in rown and columrk, since the horizontal and verti-
cal GFs appear as the GFs of the rows and columns respedtiiglye 1). Naturally,
one has

> fa(u)z"  ordinary BGF

f(zvu) Ek:u f (Z) Z f’n(u)% exponential BGF.

EXAMPLE IIl.1. The BGF of binomial coefficientdhe binomial coefficien(}), counts the
binary words of lengtm havingk occurrences of a designated letter; see Figure 2. In order to
compose the bivariate GF, start from the simplest case otdesvbinomial theorem and form
directly the horizontal GFs corresponding to a fixed

@) W (u) =Y <Z> u* = (1+u)",

k=0

Then a summation over all valueswfives the ordinary BGF

@ etk <Z>ukzn - L0 = ey

k,n>0 n>0

Such calculations are typical of BGF manipulations. Whathaee done amounts to starting
from a sequence of numbers, determining the horizontal ®F&u) in (1), then the bivariate
GF W (z,u) in (2), according to the scheme:

Wiok ~ Wau) ~ W(z,u).

Observe that (2) reduces to the OGF— 2z)~" of binary words, as it should, upon setting
u = 1.

In addition, one can deduce from (2) the vertical GFs of tmiiial coefficients corre-
sponding to a fixed value df,

k
W) = 3 @ < = Ty
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FIGUREIII.2. The setV; of the32 binary words over the alphabgi], B} enumerated
according to the number of occurrences of the lelBmives rise to the bivariate counting
sequenc€Ws ;} = 1,5, 10, 10, 5, 1.

from an expansion of the BGF with respectio

ko

= = U ——,
1—2z1-uZ = (1 —z)k+1

(©) W(z,u)

o

and the result naturally matches what a direct calculationldvgive. BEND OF EXAMPLE 111.1. (J

> IIl.1. The exponential BGF of binomial coefficienitsis

fopere _ n 2" _ n2" _z2(1+4w)
@ W) = 3 ()2 = a5y =t
The vertical GFs are®z* /k!. The horizontal GFs ar@l + )", like in the ordinary case. <]

ExAMPLE 1l1.2. The BGF of Stirling cycle numbersAs seen in Chapter || Example 12,

the number of permutations of sizehavingk cycles is the Stirling cycle numb(ﬁj with a
vertical EGF being

PR () = Z [n] 2" _ Lz)k L(z) :=log

E|ln! kO 1— 2

n

From there, the exponential BGF is formed as follows (thissits some of the calculations on
p. 112):

k
P(Z,’u,) = ZP(k)(z)uk — Z%L(z)k _ 6uL<Z)
k Pt

= (1-z7"

®)

The simplification is quite remarkable but altogether gtyifgcal, as we shall see shortly, in the
context of a labelled set construction. The starting pairthus a collection of vertical EGFs
and the scheme is now

PR~ P¥(z) ~  P(zu).

Observe that (5) reduces to the EGF of permutations-atl1.
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Numbers Horizontal GFs Numbers Horizontal GFs
(Z) (1+u)" m wu+1)- (u+n—1)
Vertical OGFs| Ordinary BGF Vertical EGFs Exponential BGF
2* 1 L (1op L k (12
(1 — z)k+1 1—z(1+w) B\%1T 2 i

FIGURE IIl.3. The various GFs associated to binomial coefficients (left) Stirling
cycle numbers (right).

In addition, an expansion of the BGF according to the vagiahprovides a useful infor-
mation, namely, the horizontal GFs by virtue of Newton’sdnimal theorem:

P(z,u) = Z<n+2_1)zn = ZPn(u)%y:

(6) n>0 n>0
where P,(u) = wu(u+1)---(u+n-—1).
This last polynomial is called th8tirling cycle polynomiabf indexn and it describes com-

pletely the distribution of the number of cycles in all petations of sizen. In addition, note
that the relation

Pp(u) = Pooi(u)(u + (n - 1)),
is equivalent to a recurrence
n—1
k-1’

n n—1
HR

by which Stirling numbers are often defined and easily etatllaumerically; see also A
PENDIX A: Stirling numbersp. 680. (The recurrence is susceptible to a direct comimiizét
interpretation—ada either to an existing cycle or as a “new” singleton.NEOF ExampLE 111.2. O

+

Concise expressions for BGFs like (2), (3), (5), or (17) swarieed in Figure 3
are precious for deriving moments, variance, and even finaracteristics of distri-
butions, as we see next. The determination of such BGFs caaveeed by a simple
extension of the symbolic method along the lines of what wasedn Chapters |
and Il, as detailed in Sections Ill. 3 and 111. 4.

lll. 2. Bivariate generating functions and probability dis tributions

Our purpose in this book is to analyse characteristics oftioatorial structures
of very diverse types. We shall be principally interesteémumeration according to
sizeand an auxiliary parameter, the corresponding problems beatgrally treated
by means of BGFs. In order to avoid redundant definitionsrav@s convenient to
introduce the sequence falndamental factoréw,, ),, >0, defined by

@) wnp, = 1 forordinary GFs wn, =n! for exponential GFs
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Then, the OGF and EGF of a sequeri¢g) are jointly represented as

Q=S h and =)

Definition Ill.2. Given a combinatorial clasgl, a (scalar) parametéas a function
from A to Z>, that associates to any objeat € A an integer valuey(«). The
sequence

App=card({a € A | |al =n, x(a) =k}),

is called thecounting sequencef the pair 4, x. Thebivariate generating function
(BGF)of A, x is defined as

A(z,u) = Z An,kf}_uka

n,k>0

and is of ordinary typeif w,, = 1 and of exponential typéf w,, = n!. One says that
the variablez marks sizeand the variabla; marks the parameter.

Naturally A(z, 1) reduces to the usual counting generating functign) associ-
ated toA, and the cardinality of4,, is expressible as

Ap = wp[z"A(2,1).

Ill. 2.1. Distributions and moments. As indicated in the introduction to this
chapter, the eventual goal of multivariate enumeratiomésduantification of prop-
erties present with high regularity in large random streesu Within this section,
we discuss the relationship between probabilistic modeéiad to interpret bivari-
ate counting sequences and bivariate generating functibhe elementary notions
needed are recalled infRENDIX A: Combinatorial probabilityp. 671.

Consider a combinatorial clagé Theuniform probability distributiorover A,
assigns to anye € A,, a probability equal ta /A,,. We shall use the symbd to
denote probability and occasionally subscript it with agi¢gation of the probabilistic
model used, whenever this model needs to be stressed: wehsralvriteP 4, (or
simply P, if A is understood) to indicate probability relative to the onifi distribu-
tion overA,,.

Probability generating functions.Consider a parameter. It determines over
eachA,, a discreteandom variabladefined over the discrete probability spatg:

An,k o An,k

An Ek An,k .
Given a discrete random variable, we recall that itgrobability generating function
(PGF)is the quantity

©9) pu) =Y P(X = k)u*,
k

(8) Pa, {x =k} =

a generating function whose coefficients are probabilitteem (8) and (9), one has
immediately:
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FIGURE Il1.4. Histograms of two combinatorial distributions. Left: thamber of
occurrences of a designated letter in a random binary wotengfth 50 (binomial distri-
bution). Right: the number of cycles in a random permutatibsize 50 (Stirling cycle
distribution).

Proposition I1l.1 (PGFs from BGFs) Let A(z, ) be the bivariate generating func-
tion of a parametely defined over a combinatorial clasé. The probability generat-
ing function ofy over.A,, is given by
"A(z,u)
]P) — k — [Z ] )

and is thus a normalized version of a horizontal generatimgfion.

The translation into the language of probability enabletusake use of which-
ever intuition might be available in any particular case,laallowing for a nat-
ural interpretation of data (Figure 4). Indeed, instead atinyg that the quantity
381922055502195 represents the number of permutations of size 20 that have 10
cycles, it is perhaps more informative to state the proligof the event, which is
0.00015, i.e., about 1.5 per ten thousand. Discrete distributiosasanveniently rep-
resented byistogramsor “bar charts”, where the height of the bar at abscissali-
catesthe value &{X = k}. Figure 4 displays in this way two classical combinatorial
distributions. Given the uniform probabilistic model thiag have been adopting, such
histograms are eventually nothing but a condensed formedftiacks” corresponding
to exhaustive listings, like the one displayed in Figure 2.

Moments. Important information is conveyed blgomentsGiven a discrete ran-
dom variableX, theexpectatiorof f(X) is by definition the linear functional

E(f(X)) =) P{X =k} f(k).
k

The (powermomentsre
E(X") =) P{X =k}-k".
k

Then the expectation (or average, meanXoits variance, and its standard deviation
are expressed as

E(X), V(X) =E(X?) - E(X)?, o(X) = /V(X).
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The expectation corresponds to what is typically seen wbemihg the arithmetic
mean value of a large number of observations: this propstiyaweak law of large
numbergd161, Ch X]. The standard deviation then measures the dispeasiealues
observed from the expectation and it does so in a mean-dgi@skease.

Thefactorial momentefined for order as

E(X(X—1) (X —r+1))

is also of interest for computational purposes, since ibtsimed plainly by differen-
tiation of PGFs (APENDIX A: Combinatorial probability p. 671). Power moments
are then easily recovered as linear combinations of fadtoroments, see Note 7 of
Appendix A. In summary:

Proposition 111.2 (Moments from BGFs) The factorial moment of order of a pa-
rametery is determined from the BGHR(z, «) by r-fold differentiation followed by
specialization at 1:
[2"]04A(z, u)] =y

[e"]A(z,1)

Ea, (X(x—=1)--(x—r+1)) =

In particular, the first two moments satisfy

20, A(z, )|, [2"07 Az, u)| _y  [2"]0uA(2, u)|,_
Ba (0 = EWACWy g o) EIAG W] | I0AG Wl

[2"]A(z,1) [2"A(z,1) [2"]A(z,1)
the variance and standard deviation being the determined by
V(x) = o(x)* = E(x*) — E(x)*.

PrROOF The PGP, (u) of x over.A,, is given by Proposition Ill.1. On the other hand,
factorial moments are on general grounds obtained from alBGlifferentiation and
specialization at, = 1 (APPENDIXA: Combinatorial probabilityp. 671). The result

follows. O
In other words, the quantities

give, after a simple normalization (by, - [2"] A(z, 1)), the factorial moments:

E(x(x— 1)~k +1) = o

Most notably,QSll) is thecumulated valuef y over all objects of4,,:

ngl) =wy - [2"] 0uA(z, 0,y = Z x(a) = Ay -Eg, ()
acA,

Q)

Accordingly, the GF (ordinary or exponential) of ") is sometimes named thoe:-
mulativegenerating function. It can be viewed as an unnormalizedigetimg function
of the sequence of expected values. These consideratipteareXVilf's suggestive
motto quoted on p. 139:

“Generating functions find averages, etc.”

The “etc’ is to be interpreted as a token for higher moments.
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> IIl.2. A combinatorial form of cumulative GF&ne has
n ||
Q0 (2) = Y B, (04— = D x(@)—,
wherew,, = 1 (ordinary case) ow,, = n! (exponential case). <
ExamMPLE I11.3. Moments of the binomial distributiori.he binomial distribution of index

can be defined as the distribution of the numbea’sfin a random word of length over the
binary alphabefa, b}. The determination of moments results easily from the engiBGF,

1

Wi(z,u) = [pp——

By differentiation, one finds

a" rlz"
o Vu)| =g

u=1
Coefficient extraction then gives the form of the factorimments of order$, 2,3, ...,r as

n  nn-1) nn-1)(n-2) r_'(n)

5 1 , 3 RTINS

In particular, the mean and the variance greand $n. The standard deviation is thus,/n
which is of an order much smaller than the mean: this indictitat the distribution is some-
how concentrated around its mean value, as suggested bgeHigaee the next subsection for
guantitative estimates. .......... .. i END OF EXAMPLE 111.3. O

> 111.3. De Moivre’s approximation of the Gaussian coefficientse fact that the mean and
the standard deviation of the binomial distribution arepemtivelyén and %\/ﬁ suggests an
examination of what goes on at a distance standard deviations from the mean. Consider for
simplicity the case ofi = 2v even. From the ratio

2v _

_ G _a-Ha-2).-.a-E
r(v, ) = 5 = 1 2 k
) A0+ 0+

v v

an estimate of the logarithm shows that for any fixed R,

: () o
lim V;;Z _ x°/2
n—oo, {=v+z+\/v/2 (u)

(Alternatively, Stirling’s formula can be employed.) Thiaussian approximation for the bi-
nomial distribution was first discovered in 1733 by AbrahaenMbivre (1667—-1754), a close
friend of Newton. Much more general methods for establiglsach approximations form the
subject of Chapter IX. <

ExAMPLE I11.4. Moments of the Stirling cycle distributiof.et us return to the example of
cycles in permutations which is of interest in connectiothvgertain sorting algorithms like
bubble sort or insertion sort, maximum finding, @nditu rearrangement3p1].

We are dealing with labelled objects, hence exponentiabiggimg functions. As seen
earlier on p. 143, the BGF of permutations counted accortiroycles is

P(z,u)=(1-2)"".

We haveP,, = n!, while w,, = n! since the BGF is exponential. (The number of permutations
of sizen beingn!, the combinatorial normalization happens to coincide withfactor ofl /n!
present in all exponential generating functions.)
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By differentiation of the BGF with respect to, then settingu = 1, we next get the
expected number of cycles in a random permutation ofisias a Taylor coefficient

(10) En(x) = [2"] 1 log 1= :

1 1
=14+ =-4+...+=
z 2
which is the harmonic numbéf,, . Thus, on average, a random permutation of sibas about
log n + v cycles, a well known fact of discrete probability theoryrided on p. 112 by means
of horizontal generating functions.
For the variance, a further differentiation of the bivagi&GF gives

2
(11) > En(x(x—1)2" = 1 i . (log - i Z) :
n>0

From this expression and Note 4 (or directly from the Stiyfomlynomials), a calculation shows
that

“.1 2.1 w2 1
(12) JZ—< —>—< —2>—logn—|—’y——+0(—>.
;k ;k 6 n

Thus, asymptotically,

log

on ~ y/logn.
The standard deviation is of an order smaller than the meahtherefore deviations from the
mean have an asymptotically negligible probability of acence (see below the discussion of
moment inequalities). Furthermore, the distribution weas/ed to be asymptotically Gaussian
by V. Gon€arov, around 1942, se&[) and Chapter IX. ....... ED OF EXAMPLE I11.4. O

> Ill.4. Stirling cycle numbers and harmonic numbeBy the “exp-log trick” of Chapter I,
the PGF of the Stirling cycle distribution satisfies

2 3
—u(u4+1)--(u+n—1) =exp (an—%Hg)—&—%HS’)-&-“') , u=1+v
whereH{" is the generalized harmonic numbE _,J~". Consequently, any moment of

the distribution is a polynomial in generalized harmonlmhlers, cf (10) and (12). Also, the
kth moment satisfieEp, (x*) ~ (logn)*. (The same technique expresses the Stirling cycle
number[Z] as a polynomial in generalized harmonic numﬂéﬁ’éﬂl.)

Alternatively, start from the expansion ¢f — z)™ and differentiate repeatedly with
respect tay; for instance, one has

B (reaa—— (R
- a+1 n—1+a n ’

which provides (10) upon settlng = 1, while the next differentiation gives access to (12).

The situation encountered with cycles in permutationspgl of iterative (non—
recursive) structures. In many other cases, especiallynvdealing with recursive
structures, the bivariate GF may satisfy complicated fionet equations in two vari-
ables (see the example of path length in trees, Section bil&w) that do not make
them available under an explicit form. Thus, exact expogssior the distributions
are not always available, but asymptotic laws can be detaurin a large number of
cases (Chapter IX). In all cases, the BGFs are the centraint@btaining mean and
variance estimates, since their derivatives instantiated= 1 become univariate GFs
that usually satisfy much simpler relations than the BGEstbelves.

(1-2)" C“log
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Ill. 2.2. Momentinequalities and concentration of distributions. Qualitative-
ly speaking, families of distributions can be classifieditwo categories(i) distri-
butions that are spread, i.e., the standard deviation isdHrat least as large as the
mean (e.g.the uniform distributions oviér. . n], which have totally flat histograms,
are spread)(i:) distributions such that the standard deviation is of an osdealler
than the mean. Figure 4 illustrates the phenomena at stakswggests that both
the Stirling cycle distributions and the binomial distrilmns belong to the second
category and are somehow concentrated around their meaa \@lich informal ob-
servations are indeed supported by the Markov-Chebystegualities, which take
advantage of information provided by the first two moments.pfoof is found in
APPENDIXA: Combinatorial probabilityp. 671.)

Markov-Chebyshev inequalitiesLet X be a nonnegative random variable
andY an arbitrary real variable. One has for anty> 0:

P{X > tE(X)} < (Markov inequality)

1
t
P{Y -E(Y)|>to(Y)} < lz

(Chebyshev inequality)

This result informs us that the probability of being muchgkarthan the mean must
decay (Markov) and that an upperbound on the decay is mahsurenits given by
the standard deviation (Chebyshev).

The next proposition formalizes a concentration propeftgistributions. It ap-
plies to afamily of distributions indexed by the integers.

Proposition 111.3 (Concentration of distribution)Consider a family of random vari-
ablesX,, typically, a scalar parametey on the subclasgl,,. Assume that the means
un, = E(X,,) and the standard deviations, = o(X,,) satisfy the condition

Then the distribution ofX,, is concentratedn the sense that, for any > 0, there
holds

Xn
(13) lim ]P’{l—eﬁ—ﬁl—ke}:l.
n—-+oo fn
PROOF It is a direct consequence of Chebyshev’s inequality. d

The concentration property (13) expresses the fact thaegadf X, tend to be-
come closer and closer (in relative terms) to the meaasn increases. Another figu-
rative way to describe concentration, much used in randenbawatorics, is by saying
that “X,, /i, tends to 1 in probability When this property is satisfied, the expected
value is in a strong sense a typical value. This fact is ameide of theweak law of
large numberof probability theory. In that field, the concentration peoty (13) is
also known agonvergence in probabilitgnd is then written more concisely:

Xn P

— — 1.

P



Ill. 3. INHERITED PARAMETERS AND ORDINARY MGFS 151
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FIGURE IIl.5. Plots of the binomial distributions fon = 5,...,50. The horizon-
tal axis is normalized (by a factor df/n) and rescaled td, so that the curves display
{P(X2 =)}, forz =0,1, 2

e e

Concentration properties of the binomial and Stirling cyeldistributions. The
binomial distributionis concentrated, since the mean of the distribution 8 and
the standard deviation ig/n/4, a much smaller quantity. Figure 5 illustrates con-
centration by displaying the graphs (as polygonal linespeisted to the binomial
distributions forn = 5,...,50. Concentration is also quite perceptible on simula-
tions asn gets large: the table below describes Jhe results of batuhies (sorted)
simulations from the binomial distributiofs- () },_:

n = 100 39,42, 43,49, 50, 52, 54, 55, 55, 57
n = 1000 487,492, 494, 494, 506, 508, 512, 516, 527, 545

n = 10,000 | 4972,4988, 5000, 5004, 5012, 5017, 5023, 5025, 5034, 5065
n = 100,000 | 49798, 49873, 49968, 49980, 49999, 50017, 50029, 50080, 50101, 50284;

the maximal deviations from the mean observed on such sampe22%% = 10?),
9% (n = 10%), 1.3% ¢ = 10%), and 0.6% % = 10°).

Similarly, the mean and variance computations of (10) ar®] {ibply that the
number of cycles in a random permutation of large size is entrated.

Finer estimates on distributions form the subject of our@éalX dedicated
to limit laws. The reader may get a feeling of some of the phesta at stake
when re-examining Figure 5: the visible emergence of a naotis curve (the bell
shaped curve) corresponds to a common asymptotic shapkearttole family of
distributions—the Gaussian law.

lll. 3. Inherited parameters and ordinary MGFs

We have seen so far basic manipulations of BGFs (Sectioh) ltis well as their
use in order to determine moments of combinatorial distidims (Section 111.2). In
this section and its labelled counterpart, Section Ill. é,address the question of de-
termining directly BGFs from combinatorial specificationghe answer is provided
by a simple extension of the symbolic method, which is foreted in terms omulti-
variate generating function®1GFs). Such generating functions have the capability of
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taking into account a finite collection (equivalently, ate¥of combinatorial parame-
ters. On the one hand, the theory specializes immediat&yates, which correspond
to the particular case of a single (scalar) parameter. Omtier hand, it provides
“complete” (multivariate) generating functions discusge Section I11. 6.

Ill. 3.1. Multivariate generating functions (MGFs). The theory is best devel-
oped in full generality for the joint analysis of a fixed fin@tellection of parameters.

Definition Ill.3. Consider a combinatorial clasd. A (multidimensional) parameter
x = (x1,- - -, xa) On the class is a function frovd to the sefZ< , of d-tuples of natural
numbers. Theounting sequenaaf .4 with respect to size and the parameteis then
defined by

Apkyky = card{a ‘ laf =n, x1(a) = k1,...,xa(a) = kd} .

We sometimes refer to such a parameter as a “multiparameteiid > 1, and
a “simple” or “scalar” parameter otherwise. For instanage may take the clasg
of all permutationsr, and fory; (j = 1,2, 3) the number of cycles of lengthin o.
Alternatively, we may consider the clagg of all wordsw over an alphabet with four
letters,{a, ..., a4} and take fory; (j = 1,...,4) the number of occurrences of the
lettero; in w, and so on.

Themulti-index conventioemployed in various branches of mathematics greatly

simplifies notations: lett = (u, ..., uq) be a vector ofl formal variables anit =
(k1,...,kq) be a vector of integers of the same dimension; then, the 1poitieruk
is defined as the monomial

(14) uk = ulfl ulzm e uf]d

With this notation, we have:

Definition 11l.4. Let A, x be a multi-index sequence of numbers, wHere N¢.
The multivariate generating function (MGF)f the sequence of either ordinary or
exponential type is defined as the formal power series

A(z,u) = ) Aniu*e"  (ordinary MGF)
n,k

(15) kZ" .
A(z,u) = ) Anxu — (exponential MGF)

n,k
Given a class4 and a parametey, the multivariate generating function (MGF)

of the pair{A, x) is the MGF of the corresponding counting sequence. In paleic
one has theombinatorial forms

A(z,u) = > uX@zlel (ordinary MGF; unlabelled case)
acA
(16) © Slal
A(z,u) = > u><("“)W (exponential MGF; labelled case)
acA ’

One also says thatl(z, u) is the MGF of the combinatorial class with the formal
variablew; markingthe parametel; andz markingsize.



Ill. 3. INHERITED PARAMETERS AND ORDINARY MGFS 153

From the very definitionA(z, 1) (with 1 a vector of all 1's) coincides with the
counting generating function of, either ordinary or exponential as the case may be.
One can then view an MGF as a deformation of a univariate GFdyyaf a (vector)
parametem, with the property for the multivariate GF to reduce to thévariate
counting GF atu = 1. If all but one of theu; are set to 1, then a BGF results.
Thus, the symbolic calculus that we are going to develop sfi@haccess to BGFs
and hence moments. In fact, it has the capacity of detergithiajoint probability
distributionof a finite collection of parameters.

> 111.5. Specializations of MGFsThe exponential MGF of permutations withi, u2 marking
the number of 1-cycles and 2-cycles respectively turnsmbet

exp ((u1 — Dz + (u2 — 1)%)

1—2 '
(This is to be proved later in this chapter, p. 175.) The fdemsichecked to be consistent with
three already known specializations derived in Chaptefi)lsettingu: = u2 = 1 gives back
the counting ofall permutationsP(z,1,1) = (1 — z)™*, as it should{ii) settingu; = 0 and
uz = 1 gives back the EGF of derangements, namely/(1 — z); (i) settingu; = uz =0
gives back the EGF of permutations with cycles all of lengteager than 2,P(z,0,0) =
e*Z*Z2/2/(1 — z), ageneralized derangement GF. In addition, the specibBz&F

a7) P(z,u1,u2) =

e(ufl)z

P(z,u,1) =

1—2z2"
enumerates permutations according to singleton cycles.ld$t BGF interpolates between the
EGF of derangements (= 0) and the EGF of all permutatiorfs = 1). <

lll. 3.2. Inheritance and MGFs. Parameters that aigherited from substruc-
tures can be taken into account by a direct extension of thidelic method. With
a suitable use of the multi-index conventions, it is evendhge that the translation
rules previously established in Chapters | and Il can beembperbatim. This ap-
proach opens the way to a large quantity of multivariate ezmation results that then
follow automatically by the symbolic method.

Let us consider a pait4, x), whereA is a combinatorial class endowed with its
usual size function - | andx = (x1,--.-,xq) IS ad-dimensional (multi)parameter.
Write x, for size andz, for the variable marking size (previously denoted )y
The key point for theoretical developments is to define aerektd multiparameter
X = (xo0,x1,---,Xd), thatis, we treat size and parameters on an equal basis. Then
the ordinary MGF in (15) assumes an extremely simple and sstmical form:

A(z) = ZAkzk
k

18
(18) — Z gx(@)
aEA
There, the indeterminates are the vedos (2o, 21, .. ., 24), the indices ar&k =
(ko, k1, ..., kq) (Wherekg indexes size, previously denoted#b) and the usual multi-

index convention introduced in (14) is in force,

(19) PARES z(’fozfl coezghe,
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but it is now applied tdd + 1)-dimensional vectors.
Next, we define inherited parameters.

Definition 111.5. Let (A, x), (B,¢), (C,¢) be three combinatorial classes endowed
with parameters of the same dimensibnThe parametey is said to banheritedin
the following cases:

e Disjoint union: whend = 5 + C, the parametey is inherited from¢,  iff
its value is determined by cases frgng:

((w) fweB
x(w) = { _
((w) fwelC.

e Cartesian product: whepl = B x C, the parametey is inherited from¢, ¢
iff its value is obtained additively from the values(of:

x((8,7) = &(8) +<(7)-

e Composite constructions: wheA = £{B}, wheref is a metasymbol
representing any 08eQ, MSET, PSET, Cyc, the parametely is inherited
from¢ iff its value is obtained additively from the valueg@n components;
for instance, for sequences:

X([B1s -+, Be]) = &E(B1) + - +&(Br)-

With a natural extension of the notation used for constarej one shall write

(A;x) = (B,&) +(C.Q),  (Ax) =(B,§) x(C.C), (Ax)=R{(B,{)}.

This definition of inheritance is seen to be a natural extanef the axioms that
size itself has to satisfy (Chapter I): size of a disjointaimis defined by cases, while
size of a pair, and similarly of a composite constructiombftained by addition.

Theorem 1.1 (Inherited parameters and ordinary MGFkgt.A be a combinatorial
class constructed fron%,C, and letx be a parameter inherited frorf defined on
B and (as the case may be) frognon C. Then the translation rules of admissible
constructions stated in Theorem 1.1 apply provided the inmudtex conventior18)is
used. The associated operators on ordinary MGFs are then:

Union: A=B+C = A(z) = B(z) + C(z)
Product: A=BxC

==
Sequence: A = SEQ(B) — A(z) =
==

1— B(z)
Cycle: A= Cvc(B) A) =) 3024) log 3= Jlg(zf)
=1

Multiset: A= MSET(B) = A(z) =exp

(
Powerset: A=PXET(B) — A(z)=exp (i 41 B(ZZ)>
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PrRoOOF The verification for sums and products is immediate, gitencombinatorial
forms of OGFs. For disjoint unions, one has

A(z) = Z ZX(@) _ Z 2£08) 4 Z 7£0,
acA BEB yeC

as results from the fact that inheritance is defined by casasm@ns. For cartesian
products, one has

A(z) = Z gx(e) _ Z Z5B) ZZZ(V)’
acA BeB YyeC
as results from the fact that inheritance is defined addjtive products.

The translation of composite constructions in the case gdieseces, powersets,
and multisets are then built up from the union and producésts, in exactly the
same manner as in the proof of Theorem I.1. Cycles are dehltyithe methods of
APPENDIXA: Cycle constructionp. 674. O

This theorem is a straightforward extension of the symbmkthod, but it is im-
portant because it can be applied in a wide range of combiah#pplications. The
reader is especially encouraged to study carefully thenreat of integer composi-
tions below, as it illustrates in its bare bones version thegy of the symbolic method
for taking into account combinatorial parameters.

The multi-index notation is a crucial ingredient for devgtty the general theory
of multivariate enumerations. However, in most cases, wekwgth only a small
number of parameters, typically one or two. In such casesyftem use vectors of
variables like(z, u) or (z,u, v), the corresponding monomials being then written as
2"uP or z"uFvt. This has the advantage of avoiding unnecessary subscripts

Integer compositions and marksThe clasg of all integer compositions (Chap-
ter ) is specified by
C= SEQ(I)v 7= SEQZl(Z)a
whereZ is the set of all positive numbers. The corresponding OGES ar
1 z
= — I = —
&) =10y () =1—
so thatC,, = 2"~ ! (n > 1). Say we want to enumerate compositions according
to the numbery of summands. One way to proceed, in accordance with the forma
definition of inheritance, is as follows. Létbe the parameter that takes the constant
value 1 on all elements &f. The parametey on compositions is inherited from the
(almost trivial) parametef = 1 defined on summands. The ordinary MGF®f &)
is obviously
I(z,u) = zu+ 22u + 23u + - - = 1z_uz.
Let C(z,u) be the BGF of(C, x). By Theorem lIl.1, the schemes translating admis-
sible constructions in the univariate case carry over tarthkivariate case, so that
1 B 1 o 1-z
1—I(z,u) 1—u2 1—2@u+1)

1—=

(20) C(z,u) =

Et voila!
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Here is an alternative way of arriving at (20), which is imgaoit and is of much
use in the sequel. One may regard the enumeration of congssivith respect to
the number of summands as the enumeration of compositiahsrespect to both
size (i.e., number of atoms) and numbermeérks where each summand carries a
mark, say [, which is an object of size 0. The number of marks is clearherited
from summands to compositions. Then, one has an enrichaifispgon, and its
translation into MGFs,

1
21 = SE E Z —
as granted by Theorem 1ll.1 and based on the correspondéhce: z, u — wu.
This notion of mark when used in conjunction with Theoremillpprovides access to
many joint parameters, as shown in Example 5 below.

ExAMPLE I11.5. Summands in integer compositionsConsider the double parameter=
(x1, x2) wherex is the number of parts equal to 1 agd the number of parts equal to 2. One
can write down an extended specification, witha combinatorial mark for summands equal
to 1 andus for summands equal to 2,

C = SEQ (ulz + 22’ + SEQZS(Z))
(22) 1

— C(Z,U1,u2): 1—(U12+U222+2’3(1—2’)71)’

whereu; (j = 1, 2) records the number of marks of typg.
Similarly, lety, mark each summand and mark summands equal to 1. Then, one has,

1
T 1= (uurz +uz2(l — 2)" L)’

(23) C = SEQ (uu12+u SEQEQ(Z)) = C(z,u1,u)

whereu keeps track of the total number of summands andecords the number of summands
equalto 1.

MGFs obtained in this way via the multivariate extensiorhaf $ymbolic method can then
provide explicit counts, after suitable series expansiéiws instance, the number of composi-
tions ofn with & parts is, by (20),

[z"uk] 11—z _ <n> _ <n—1> _ <n—1>
1-(14u)z k k k—1)’

a result otherwise obtained in Chapter | by direct combiraltoeasoning (the balls-and-bars
model). The number of compositions nfcontainingk parts equal to 1 is obtained from the
special cases = 1in (22),
1 _
1—uz— m

(1 _ Z)k+1
(1 — 2 — 22)kt1’

where the last OGF closely resembles a power of the OGF oh&itm numbers.

Following the discussion of Section Ill. 2, such MGFs alsogaomplete information on
moments. In particular, the cumulated value of the numbgads in all compositions of has
OGF

0.C(z,u)|,_, = %
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FIGURE IIl.6. A random composition ofi = 100 represented as a ragged landscape
(top); its associated profil?°2'23%41 517110, defined as the partition obtained by sort-
ing the summands (bottom).

as seen from Section Ill. 2.1, since cumulated values aggrat via differentiation of a BGF.
Therefore, the expected number of parts in a random coniposit » is exactly ( > 1)
1 ny 2(1—2) 1
== 1).

ey s I A
A further differentiation will give access to the variancéhe standard deviation is found to
be %\/n — 1, which is of an order (much) smaller than the mean. Thus, igtelalition of the
number of summands in a random composition satisfies theeotnation property as8 — oo.

In the same vein, the number of parts equal to a fixed numlx@compositions is deter-
mined by

-1
C = SEQ (uz’" + SEQ¢T(Z)) =  C(zu) = <1 - (14_2 +(u— 1)/)) .
It is then easy to pull out the expected number-efummands in a random composition of
sizen. The differentiated form
_2"(1—2)?
0.C(z,u)|,_, = 1-2.2
gives by partial fraction expansion
B 27'r72 N 27'r71 _ T27'r72
u=1"" (1 - 22)2 1—2z
for a polynomialg(z) that we do not need to make explicit. Extracting thk coefficient of the

cumulative GFC,, (2, 1) and dividing by2™~" yields the mean number efparts in a random
composition. Another differentiation gives access to #gmosad moment. One finds:

Proposition 111.4 (Summands in integer compositionsyhe total number of summands in a

random composition of sizehas meart (n+ 1) and a distribution that is concentrated around
the mean. The number psummands in a composition of sizéas mean

n
T + O(1);

9.C(z,u)

+q(2),

and a standard deviation of ordeyn, which also ensures concentration of distribution.
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Clearly, suitable MGFs can keep track of any finite collettddsummand types in compo-
sitions, and the method is extremely general. Much use sfihly of envisioning multivariate
enumeration will be made throughout this book. ........... END oF EXAMPLE 11.5. [J

From the point of view of random structures, the example ofirmands shows
that random compositions of large size tend to conform tocha)l “profile”. With
high probability, a composition of sizeshould have about/4 parts equal to 1 /8
parts equal to 2, and so on. Naturally, there are statiticabvoidable fluctuations,
and for any finiten, the regularity of this law cannot be perfect: it tends toefad
away especially as regards to largest summands thdbgyé:) + O(1) with high
probability. (In this region mean and standard deviatiothlb@come of the same order
and areO(1), so that concentration no longer holds.) However, suchreghensdo
tell us a great deal about what a typical random compositiastr{probably) look
like—it should conform to a “logarithmic profile”,

1n/4 2n/8 3n/16 4n/32 .

Here are for instance the profiles of two compositions of size 1024 drawn uni-
formly at random:

1250 2138 370 429 515 610 74 80 91 1253 2136 368 431 513 68 73 81 91 102
to be compared to the “ideal” profile
1256 2128 364 432 516 68 74 82 91.

Itis a striking fact that samples of a very few elements ongustoneelement (this
would be ridiculous by the usual standards of statistice)ddiren sufficient to illus-
trate asymptotic properties of large random structureg. fEason is once more to be
attributed to concentration of distributions whose effeghanifest here. Profiles of a
similar nature present themselves amongst objects defindtelsequence construc-
tion, as we shall see throughout this book. (Establishiralp gjeneral laws is often
not difficult but it requires the full power of complex-anttymethods developed in
Chapters IV=-VIII.)

> II.6. Largest summands in compositiorfsor anye > 0, with probability tending to 1 as
n — oo, the largest summand in a random integer composition ofsig@f size in the interval
[(1 —€)logy n, (1 + €) log, n]. (Hint: use the first and second moment methods. More precise
estimates are given in Chapter V.) <

In the sequel, it proves convenient to adopt a simplifyingation, much in the
spirit of our basic convention, where the atainis systematically reflected by the
namez of the variable in GFs.

Simplified notation for marks. The same symbol (usually v, w1, us . ..)
is freely employed to designate a combinatorial mark (o€ sjzand the
corresponding marking variable in MGFs.

For instance, we allow ourselves to write directly, for casitions,

C = SEQ(u SEQ> 2)), C = SEQ(uu1 Z + u SEQss Z)),
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whereu marks all summands and marks summands equal to 1, giving rise to (21)
and (23). Note that the symbolic scheme of Theorem III. Lriiady applies to enu-
meration according to the number of zero-size marks indémnte specifications.

Ill. 3.3. Number of components in abstract unlabelled scheras. Consider a
constructiond = K(B), where the metasymb@l designates any standardlabelled
constructor amongste®), MSET, PSET, Cyc. What is sought is the BGH(z, u) of
classA, with » marking each component. The specification is then of the form

A = R(uB), R = SEQ,MSET,P&T,CyC.

Theorem 111.1 applies and yields immediately the BAFz, «). In addition, differ-
entiating with respect ta then settingu = 1 provides the GF of cumulated values
(hence, in a non-normalized form, the OGF of the sequenceeainnvalues of the
number of components):

Qz) = —uA(z, u)

In summary:

Proposition IIl.5 (Components in unlabelled schema§iven a constructiond =
R(B), the BGFA(z, u) and the cumulated GR(z) associated to the number of com-
ponents are given by the following table:

R BGF( (z,u)) Cumulative OGH(2))
. 2 _ B(z)
SEQ: g uB(z) AR B = e
exp <Z k 1U—B( )> o
PSET: b A@) - Y (DB
1 4+ uz" k=1
exp Z %B(z%) -
MSET : o k=1 A(z)- > B(z")
H (1 —uz" —Bn k=1
&, = = B(Y
cve: Z K BT wFB() ; v )T g
Mean values are then recovered with the usual formula,
E 4, (# components= %

A similar process applies to the number of components of d 8keer in an.A-object.

> 1l.7. »-Components in abstract unlabelled schem@sansider unlabelled structures. The
BGF of the number of-components ind = R{B} is given by

A(z,u) = (1= B(z) = (u=1)B;2") ", A(z,u) = A(2) - ( 1-2 ) N

1—uz"

in the case of sequence8 & SEQ) and multisets§ = MSET), respectively. Similar formulae
hold for the other basic constructions and the cumulative.GF <
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FIGURE Ill.7. A random partition of sizes = 100 has an aspect rather different from
the profile of a random composition of the same size (Figure 6)

> 111.8. Number of distinct components in a multisete specification and the BGF are

n

[1a+usee(® = ] (1 + ffzn)Bn,

peB n>1

as follows from first principles. <
As an illustration, we discuss the profile of random pantigigFigure 7).

ExampLE I11.6. The profile of partitions.Let P = MSET(Z) be the class of all integer
partitions, wherél = SEQ, (Z) represents integers in unary notation. The BGFPa#ith v
marking the numbeyx of parts (or summands) is obtained from the specification

> k k
u z
P =MSET(uZ) = P(z,u)=-exp (; = 1o z’“) .
Equivalently, from first principles,
oo (e o) 1
= SEQ(uZy, .
P L[l QuZ,) = }1 T

The OGF of cumulated values then results from the second &drthe BGF by logarithmic
differentiation:

> k

(24) Q(z) =P(2)- )

k=1

Now, the factor on the right in (24) can be expanded as

1—zk°

oo

k oo
> = > dm)"
n=1

k=1

with d(n) the number of divisors of. Thus, the mean value gfis

(25) Ea() = 5 S ()P
et
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100
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20

of 100 200 300 400 500
FIGUREIII.8. The number of parts in random partitions of size. ., 500: exact values
of the mean and simulations (circles, one for each value) of

The same technique applies to the number of parts equalfbe form of the BGF is

1-—2"
P
T P

P = SEQuZ,) x [[ SEQ(Z.) = P(zu) =
n#r
which implies that the mean value of the numReof r-parts satisfies

B0(%) = pol2") <P<z>~ 2 ) Pt Pas ).

1—2" P
From these formulae and a decent symbolic manipulation gackkhe means are calculated
easily till values ofn well in the range of several thousand. ....NOEOF EXAMPLE 111.6. O

The comparison between Figures 6 and 7 together with theostipg analysis
shows that different combinatorial models may well leadather different types of
probabilistic behaviours. Figure 8 displays the exactealithe mean number of parts
in random partitions of size = 1,...,500, (as calculated from (25)) accompanied

60
504

40

30

30

20

20

10 10

FIGUREIII.9. Two partitions ofP1000 drawn at random, compared to the limiting shape
U (z) defined by (26).
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with the observed values of one random sample for each véluérothe range. The
mean number of parts is known to be asymptotic to

Vnlogn
m+/2/3

and the distribution, though it admits a comparativelydsstandard deviatior{(/n)),
is still concentrated in the technical sense. We shall psovee of these assertions in
Chapter IX, p. 547 (see als@33).

In recent years, Vershik and his collaboratdr§, 484 have shown that most in-
teger partitions tend to conform to a definite profile giveitefanormalization by,/n)
by the continuous plane curge= ¥ (x) defined implicitly by

)

_ . H —Qax -y __ _
(26) y=Y(x) iff e +e 1, @ 7
This is illustrated in Figure 9 by two randomly drawn elenseoitP;oqo represented
together with the “most likely” limit shape. The theoreticasult explains the huge
differences that are manifest on simulations between @ntegmpositions and integer
partitions.

The last example demonstrates the application of BGFs tmat®ts regarding
the root degree of a tree drawn uniformly at random amongstlédss;,, of general
Catalan trees of size. Tree parameters such as number of leaves and path length
that are more global in nature and need a recursive defintiirbe discussed in
Section 111.5 below.

ExampPLE I11.7. Root degree in general Catalan treesConsider the parametegrequal to
the degree of the root in a tree, and take the ofas$ all plane unlabelled trees, i.e., general
Catalan trees. The specification is obtained by first defitvews (), then defining trees with a
mark for subtree¢[®) dangling from the root:

z

{ G = Z x SEQ(0) . &) =160

go =Zx SEQ(Ug) G(Z,’U,) = #G(Z)

This set of equations reveals that the probability that tiwe degree equalsis

. 7L ne1 r_ T 2n—3—r r
Pafx=r} = 5" 1G(2)" = n_1< o ) S
this by Lagrange inversion and elementary asymptoticso,Ale cumulative GF is found to be
2G(z)
(1-G(2)*
The relation satisfied bg entails a further simplification,

Q) = %G(z)‘?’ - <1 - 1) az) -1,

Qz) =

z

so that the mean root degree admits a closed form,

En(x) =

a quantity clearly asymptotic t

(Gni1 — Gn) = 3”__1

1
Gn n+1’
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A random plane tree is thus usually composed of a small nuoifldeot subtrees, at least
one of which should accordingly be fairly large. ............ END OF EXAMPLE II11.7. O

lll. 4. Inherited parameters and exponential MGFs

The theory of inheritance developed in the last sectioniapplmosterbatimto
labelled objects. The only difference is that the variabéeking size must carry a fac-
torial coefficient dictated by the needs of relabellingsc®more, with a suitable use
of multi-index conventions, the translation mechanismgtiged in the univariate
case (Chapter II) remain in vigour, this in a way that patallee unlabelled case.

Let us consider a paitA, x), whereA is a labelled combinatorial class endowed
with its size function - | andx = (x1,- .-, xa) iS ad-dimensional parameter. Like
before, the parametaris extended intg; by inserting size as zeroth coordinate and
avectorz = (zo, ..., zq) of d + 1 indeterminates is introduced, witlh marking size
andz; markingy;. Once the multi-index convention of (19) definialj has been
brought into the game, the exponential MGF(gf, x) (see Definition 111.4) can be
rephrased as

A(z)

[

=1
N
2

gi N

(27)

In a sense, this MGF is exponentialir{aliaszg) but ordinary in the other variables;
only the factorialky! is needed to take into account relabelling induced by latdell
products.

We a priori restrict attention to parameters that do not depend on thelzie
values of labels (but may well depend on the relative ordéalméls): a parameter is
said to becompatibléf, for any «, it assumes the same value on any labelled olject
and all the order-consistent relabellingsofA parameter is said to bieheritedif it is
compatible and it is defined by cases on disjoint unions aterakéned additively on
labelled products—this is Definition I11.5 with labelledqutucts replacing cartesian
products. In particular, for a compatible parameitdngritance signifies additivity on
components of labelled sequences, sets, and cylesan then cut-and-paste (with
minor adjustments) the statement of Theorem Ill.1:

Theorem 111.2 (Inherited parameters and exponential MGHsgt A be a labelled
combinatorial class constructed frof, C, and lety be a parameter inherited from
¢ defined onB and (as the case may be) frofnon C. Then the translation rules
of admissible constructions stated in Theorem 11.1 apptyused. The associated
operators on exponential MGFs are:
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Union: A=B+C = A(z)=B(z)+(C(z)
Product: A =BxC = A(z) = B(z) - C(2)

Sequence: A =SEQ(B) = A(z) = T ;(Z)
Cycle:  A=Cve(B) — A(z) =log 1%3@).
Set: A=SET(B) = A(z)=-exp(B(z)).

PROOF Disjoint unions are treated like in the unlabelled multiate case. Labelled
products result from

_(a) E(ﬁ) Z('Y)
PR R S (| EEa)
@=> Tr= 2 Us.n JTaTmD

|
acA | | BEB,yEC

and the usual translation of binomial convolutions thaeetflabellings by means of
products of exponential generating functions (like in timévariate case detailed in
Chapter Il). The translation for composite constructiaihen immediate. O

This theorem can be exploited to determine moments, in a hatyentirely par-
allels its unlabelled counterpart.

ExamMPLE I11.8. The profile of permutationsLet P be the class of all permutations agd
the number of components. Using the concept of marking,fgbeification and the exponential
BGF are

P =SET(uCyC(Z)) = P(z,u) = exp (ulog 7 i z) =(1-2""

as was already obtained by ad hoccalculation in (5). We also know (page 149) that the mean
number of cycles is the harmonic numi&y, and that the distribution is concentrated since the
standard deviation is much smaller than the mean.

Regarding the numbey of cycles of lengthr, the specification and the exponential BGF
are now

P = SET(CYC.(Z) + uCyC=r(Z))
(28)

1 P e(u—l)zT/r

— r
The EGF of cumulated values is then

Z1 1
(29) Q(z)77 T
The result is a remarkably simple onket a random permutation of size, the mean number
of r-cycles is equal td; foranyr < n.

Thus, the profile of a random permutation, where profile iswefias the ordered sequence
of cycle lengths, departs significantly from what has beeentered for integer compositions
and partitions. Formula (29) also sheds a new light on thenbaic number formula for the
mean number of cycles—each tefnin the harmonic number expresses the mean number of
cycles.

Since formulae are so simple, one can get more information.(2By one has, as seen
above,

E_ZT/T

— 1 n—=kr
PR =} = e )
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FIGURE I11.10. The profile of permutations: a rendering of the cycle stmectf six
random permutations of size 500, where circle areas arerdmvproportion to cycle
lengths. Permutations tend to have a few small cycles (ef@id)), a few large ones (of
size®(n)), and altogether hawé,, ~ logn cycles on average.

where the last factor counts permutations without cycldsrgjthr. From this (and the asymp-

totics of generalized derangement numbers in Chapter Ré pooves easily that the asymptotic
law of the number of-cycles is Poissdrof rate}; in particular it is not concentrated. (This in-
teresting property to be established in later chapterdtitotes the starting point of an important
study by Shepp and Lloyc!B6].)

Also, the mean number of cycles whose size is betweghandn is H, —H|, /) a
guantity that equals the probability eikistenceof such a long cycle and is approximately
log2 = 0.69314. In other words, we expect a random permutation of siz® have one
or a few large cycles. (See the papéB€] for the original discussion of largest and smallest
CYCIES.) END OF EXAMPLE 111.8. [J

> 111.9. A hundred prisoners IIThis is the solution to the prisoners’ problem of Note 11.14,
p. 114 The better strategy goes as follows. Each prisonérfiveit open the drawer which
corresponds to his number. If his number is not there, he#l the number he just found to
access another drawer, then find a number there that pomtsoha third drawer, and so on,
hoping to return to his original drawer in at most 50 trial§h€ last opened drawer will then
contain his number.) This strategy succeeds provided itialipermutations defined byo;
being the number contained in drawérasall its cycles of length at most 50. The probability
of the event is

100 z 2 2% X 1 .
p=[ ]GXP<I+3+---+%):1—2—.20.3118278206.
j=51

Do the prisoners stand a chance against a malicious diretimmvould not place the numbers
in drawers at random? For instance, the director might gzgathe numbers in a cyclic per-
mutation. [Hint: randomize the problem by renumbering theeagtrs according to a randomly
chosen permutation.] <

ExAmMPLE I11.9. Allocations, balls-in-bins models, and the Poisson I&&andom allocations
and the balls-in-bins model have been introduced in Chdpiteiconnection with the birthday
paradox and the coupon collector problem. Under this madtiete aren balls thrown into

2 The Poisson distribution of rate > 0 is supported by the nonnegative integers and determined by

k

A
_ A
P{k} =e R
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FIGURE I11.11. Two random allocations withn = 12, n = 48. The rightmost dia-
grams display the bins sorted by decreasing order of occypan

m bins in all possible ways, the total number of allocationsi¢pehusm™. By the labelled
construction of words, the bivariate EGF withmarking the number of balls andmarking the
numbery(®) of bins that contair balls (s a fixed parameter) is given by

A = SEQ,, (SET+s(Z) + uSET=s(2)) = A(s)(z,u) = <ez + (u— l)z—j) .

In particular, the distribution of the number of empty bing%) is expressible in terms of
Stirling partition numbers:

© _ v — ka0 _(m=K)!fm n
P n (X —k)—mn“Z]A (z,u) = mn E)\m—k(

By differentiation of the BGF, there results an exact exgi@sfor the mean (any > 0):

(30) %Em»n(X(S)):l(l_i)n_s n(n—1)~~-(n—s+1).

s! m ms

Letm andn tend to infinity in such away thgt = X\ is a fixed constant. This regime is ex-
tremely important in many applications, some of which astelil below. The average proportion
of bins containings elements is%IEm,n(x“)), and from (30), one obtains by straightforward
calculations the asymptotic limit estimate,

1 AN
31 li —Epn(x) =2
( ) n/m:{\mnﬂoo m ’ (X ) € s!
In other words, a Poisson formula describes the averagegiop of bins of a given size in a
large random allocation. (Equivalently, the occupancy cdradom bin in a random allocation
satisfies a Poisson law in the limit.)

The variance of eack(® (with fixed s) is estimated similarly via a second derivative and
one finds:

s s—1 s s+1
Vi (X') ~ me S B(N),  E(\) = (ek— 2 i )

— (1 —=2s5)=
(s—1)! ( s) s! s!

As a consequence, one has the convergence in probability,

1 (s) P —X A°

—Xx e " —,

m s!

valid for anyfixeds > 0. ... NB OF EXAMPLE 111.9. [
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> 111.10. Hashing and random allocationsRandom allocations of balls into bins are cen-
tral in the understanding of a class of important algorittohg€omputer science known as
hashing[208, 307, 433, 434, 486given a universé{ of data, set up a function (called a hash-
ing function)h : &Y — [1..m] and arrange for an array ef bins; an element € U/ is
placed in bin numbeh(z). If the hash function scrambles the data in a way that is Islyita
(pseudo)uniform, then the process of hashing a file oécords (keys, data items) inte bins

is adequately modelled by a random allocation scheme = -, representing the “load”, is
kept reasonably bounded (say,< 10), the previous analysis implies that hashing allows for
an almost direct access to data. <

Number of components in abstract labelled schemaske in the unlabelled uni-
verse, a general formula gives the distribution of the nundb&omponents for the
basic constructions.

Proposition I11.6. Consider labelled structures and the parameteequal to the
number of componentsin a constructidn= £{B}, wheref is one ofSEQ, SET CyC.
The exponential BGH(z, u) and the exponential GR(z) of cumulated values are
given by the following table:

R exp. MGF(A(z,u)) Cumul. EGF(Q(2))
. 1 2)2. 2) = B(z)
@ O T-uB( AR PO = Ty
SET: exp (uB(z)) A(z) - B(z) = B(2)e?®
. 1 B(z)
Cyc: IOg TB(Z) 1_73(2’)
Mean values are then easily recovered, and one finds
_ 9 [2"]Q(2)
E.(x) = A, AR

by the same formula as in the unlabelled case.

> [1.11. r-Components in abstract labelled schemasie BGFA(z,u) and the cumulative
EGFQ(z) are given by the following table,

s 1 1 B2
"1 (B(2) + (u—1)E) (1-B(z)* !
SET: exp (B(z) +(u—1) BT;Z ) B3 B’"f
T T
1 Brz"
cvc: o _ — . ,
1T BG) + (u—1)E=) 1-B()
in the labelled case. <

ExamPLE I11.10. Set partitions. Set partitionsS are sets of blocks, themselves nonempty sets
of elements. The enumeration of set partitions accordirtgegaumber of blocks is then given
by

S =SET(uSET>1(Z)) = S(zu) =" Y.
Since set partitions are otherwise known to be enumeratdtid$gtirling partition numbers,
one has the BGF and the vertical EGFs as a corollary,

n kii u(e®*—1) n i—l z _ 1\k
Z{k}“ ST ’ zn:{k}n!_k!(e DI

n,k
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which is consistent with earlier calculations of Chapter Il
The EGF of cumulated valueg(z) is then

Q(z2) = (e* — 1)e* 71,
which is almost a derivative df(z):
Q(z) = diiS(z) —S(2).
Thus, the mean number of blocks in a random partition of size
& _ Sn+l -1
Sn  Sh ’
a quantity directly expressible in terms of Bell numbers. dichte computation based on
the asymptotic expansion of the Bell numbers reveals tleaexipected value and the standard
deviation are asymptotic to (Chapter VIII)

n Vn
logn’ logn’
respectively. Similarly the exponential BGF of the numbiglocks of sizek is

S = SET(USET_1(Z) + SETx0x(2)) =  S(z,u) =~ ~HE=D/k

out of which mean and variance can be derived. .......... END OF EXAMPLE |11.10. O

ExampPLE I11.11. Rootdegree in Cayley tree€Consider the clasg of Cayley trees (nonplane
labelled trees) and the parameter “root-degree”. The lsp&cifications are

T = Z*SeT(7) T(z) = ze'®
S
T7° = Z*SET(uT) T(z,u) = ze"T,

The set construction reflects the non-planar characteryieg &ees and the specificati@rf is
enriched by a mark associated to subtrees dangling fronotite kagrange inversion provides
the fraction of trees with root degrée
1 n! (n—1)n=27F et
(k=1D!'(n—1-k)! nn—1 (k-1
Similarly, the cumulative GF is found to I§%z) = T'(z)?, so that the mean root degree satisfies

k> 1.

Ez, (root degreg¢ = 2 <1 _ l) ~ 9
n

Thus the law of root degree is asymptotically a Poisson laratefl (shifted by 1). Probabilistic
phenomena qualitatively similar to those encountered ameltrees are observed here as the
mean root degree is asymptotic to a constant. However adPoliaw eventually reflecting the
nonplanarity condition replaces the modified geometric(lewown as a negative binomial law)
presentinplanetrees. ............c i BND oF EXxamMPLE I11.11. O
> 111.12. Numbers of components in alignment&lignments (0) are sequences of cycles
(Chapter I1). The expected number of components in a randigmnaent ofO,, is

[2"]log(1 — 2)1(1 — log(1 — 2)7})~2

[z"](1 —log(1 —z)=")~! '

Methods of Chapter V imply that the number of components iraom alignment has expec-
tation~ n/(e — 1) and standard deviatioB (\/n). <
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Unlabelled structures

2 2 1
z u® oz 2
exp(ul_z-l-?l_ZQ-i-"') (l—u )
Vnlogn 1-=
~Y o oWn ~
e (Vn) 5 O(Vn)
Labelled structures
Set partitions, 8To SET Surjections, Qo SET
exp (u(e® —1)) (1—u(e” —1))_1
n n n
~ ~ ~—— O
logn logn 2log 2 (V)
Permutations, 8to CycC Alignments, $Qo Cyc
exp (ulog(l — 2) ) (1-ulog(1—2)7")""
~logn, ~ /logn ~ £7 O(v/n)

FIGURE IIl.12. Major properties of the number of components in six leved-struc-
tures. For each class, from top to bottofi): specification type(i:) BGF; (i7¢) mean and
variance of the number of components.

> 111.13. Image cardinality of a random surjectioithe expected cardinality of the image of a
random surjection iR, (see Chapter Il) is
["]e* (2 — e*)~*
[zr](2 =)=t
The number of values whose preimages have cardinalisyobtained by replacing the single

exponential factoe® by z* /k!. Methods of Chapters IV and V imply that the image cardigalit
of a random surjection has expectatiof(2 log 2) and standard deviatiof (1/n). <

> 111.14. Distinct component sizes in set partitionBake the number oflistinct block sizes
and cycle sizes in set partitions and permutations. TheibteaEGFs are

ﬁ (1—u—|—uezn/n!) , ﬁ (1—u—|—uezn/n)7

n=1 n=

as follows from first principles. <

Postscript: Towards a theory of schemas.Let us look back and recapitulate
some of the information gathered in pages 156—169 regatdegumber of compo-
nents in composite structures. The classes considered talte below are composi-
tions of two constructions, either in the unlabelled or #igdllled universe. Each entry
contains the BGF for the number of components (e.g., cyolgeimutations, parts
in integer partitions, and so on), and the asymptotic ordétse mean and standard
deviation of the number of components for objects of size

Some obvious facts stand out from the data and call for espilam First the
outer construction appears to play the essential roleer@giquenceonstructs (cf
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integer compositions, surjections and alignments) tertidiate a number of compo-
nents that i9(n) on average, while outeetconstructs (cf integer partitions, set par-
titions, and permutations) are associated with a greatertyaf asymptotic regimes.
Eventually, such facts can be organized into broad anadgtiemas, as will be seen
in Chapters IV—IX.

> 111.15. Singularity and probability. The differences in behaviour are to be assigned to the
rather different types of singularity involved: on the oramt sets corresponding algebraically
to anexp(-) operator induce an exponential blow up of singularities;ttw other hand se-
guences expressed algebraically by quasi-invefses -)~! are likely to induce polar singu-
larities. Recursive structures like trees lead to yet otyyees of phenomena with a number of
components, i.e., the root degree, that is bounded in pilitgab <

lll.5. Recursive parameters

In this section, we adapt the general methodology of pressagations in order to
treat parameters that are defined by recursive rules owetstes that are themselves
recursively specified. Typical applications concern tiaes tree-like structures.

Regarding the number of leaves, or more generally, the nuoflmodes of some
fixed degree, in a tree, the method of placing marks appkesiti the non-recursive
case. It suffices to distinguish elements of interest andkrtreem by an auxiliary
variable. For instance, in order to mark composite objeaslenofr components,
wherer is an integer andk designates any ofe®, SET (or MSET, PSET), Cyc, one
should split a constructioR(C) according to the identity

R(C) = R=r(C) + Rz (C),

then introduce a mark. in front of the first term of the sum. This technique gives
rise to specifications decorated by marks to which Theordmisand 111.2 apply. For
arecursively defined structure, the outcome is a functiegahtion defining the BGF
recursively. This technique is illustrated by Examples a@ &3 below in the case of
Catalan trees and the parameter number of leaves.

ExAMPLE I11.12. Leaves in general Catalan trees. How many leaves does a random
tree of some variety have? Can different varieties of treesdmehow distinguished by the
proportion of their leaves? Beyond the botany of combiriesprsuch considerations are for
instance relevant to the analysis of algorithms since gaeds, having no descendants, can be
stored more economically; se&d6, Sec. 2.3] for an algorithmic motivation for such questions
Consider once more the clagf plane unlabelled tree§, = Z x SEQ(G), enumerated

by the Catalan numbers:,, = 1 (*"~?). The clasg;° where each leaf is marked is
o o B 2G(z,u)
G° = Zu+ Z x SEQ>1(G") = G(z,u)—zu+71_G(z7u).

The induced quadratic equation can be solved explicitly

G(z,u):%(1+(u—1)z—\/1—2(u+1)z+(u—1)2z2).
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It is however simpler to expand using the Lagrange inversieorem which provides

Gup = [0 (2"]G(z,0) = [u"] <%[y”_1] (“* ﬁ))

Y AT ynk _1fn\[(n-2
= o)V o T a e e )

These numbers are known as Narayana number& 188001263 and they surface repeatedly
in connexion with ballot problems. The mean number of lealexdves from the cumulative
GF, which is
Q) = 0.G(zu)|,_ = o b2
P lu=1" 2 V1—4z’
so that the mean is/2 exactly forn > 2. The distribution is concentrated since the standard
deviation is easily calculated to l6&(v/n). .................. KD OoF ExampPLE I11.12. 0

ExampPLE I11.13. Leaves and node types in binary tredhe class53 of binary plane trees,

also enumerated by Catalan numbes (= (*™)) can be specified as

(33) B=Z+(BxZ)+(ZxB)+ (Bx ZxB),

which stresses the distinction between four types of ndéeses, left branching, right branch-
ing, and binary. Letio, u1, u2 be variables that mark nodes of degree 0,1,2, respectivbin
the root decomposition (33) provides for the M&F= B(z, uo, u1, u2) the functional equa-
tion

B = zug + 2zu1 B + quBQ,
which, by Lagrange inversion, gives

2k n
B kg k1 by = n (ko k1 /€2>7

subject to the natural conditiongy + k1 + k2 = n andko = k2 + 1. Specializations and
moments can be easily calculated from such an appreth. [In particular, the mean number
of nodes of each type is asymptotically:

n n n
leaves: ~ 7 1-nodes:~ 5 2-nodes :~ 1

There is an equal asymptotic proportion of leaves, doublesoleft branching, and right
branching nodes. Also, the standard deviation is in each ©ds/n), so that each of the
corresponding distributions is concentrated. .............. END OF EXAMPLE I11.13. O

> 11.16. Leaves and node-degree profile in Cayley trdes. Cayley trees, the bivariate EGF
with » marking the number of leaves is the solution to

T(z,u) = uz + 2(e7*™ — 1),

The distribution is expressed in terms of Stirling partitttumbers. The mean number of leaves
in a random Cayley tree is asymptoticiie !,
More generally, the mean number of nodes of outdegré® a random Cayley tree of
sizen is asymptotic to
11
E.
Degrees of nodes are thus approximately given by a Poissoofleate 1. <

n-e
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> I1.17. Node-degree profile in simple varieties of treeSor a family of trees generated
by T'(z) = 2¢(T'(2)) with ¢ a power series, the BGF of the number of nodes of degree
satisfies

T(z,u) = 2 (6(T(z,0) + u(u = DT (z,0)*)
whereg, = [u*]4(u). The cumulative GF is
_ T (2)* k1t
B e
from which expectations can be determined. <

> 111.18. Marking in functional graphsConsider the clas$ of finite mappings discussed in
Chapter II:
F = SET(K), K = Cvc(T), T =Z*SET(T).
The translation into EGFs is
_ K() _ 1
F(z) =" K() =gy,

Here are bivariate EGFs f@i) the number of component§;i) the number of maximal trees,
(#i7) the number of leaves:

T(z) = ze™ ™.

(i) e,

() 1-T(z,u)

The trivariate EGFF'(u1,u2, z) of functional graphs withu; marking components and.
marking trees is

@) Ty

with T'(z,u) = (u—1)z+ ST (1)

1
A —wl(x)"
An explicit expression for the coefficients involves thelBtg cycle numbers. <

We shall stop here these examples that could be multipliglibitum since such
calculations greatly simplify when interpreted in the ligfiasymptotic analysis. The
phenomena observed asymptotically are, for good reasspscially close to what
the classical theory of branching processes provides li@sledok by Harris262).

F(z,u1,us) = exp(uz log(1 — uaT(2)) ") =

Linear transformations on parameters and path length in &s. We have so far
been dealing with a parameter defined directly by recurdilaxt, we turn to other pa-
rameters such as path length. As a preamble, one needs & $imeplr transformation
on combinatorial parameters. Ldtbe a class equipped with two scalar parameters,
x andg, related by

x(a) = [af + &(a).
Then, the combinatorial form of BGFs yields

T slelyx(@) = 7 plalylale@) = $7 (ylelyé@),

acA acA acA
that is,

(34) Ay (z,u) = Ae(zu, u).

This is clearly a general mechanism:
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Linear transformations and MGFs: A linear transformation on param-
eters induces a monomial substitution on the corresponndiatking vari-
ables in MGFs.

We now put this mechanism to use in the recursive analysiatbflength in trees.

ExAMPLE 1l1.14. Path length in trees.The path length of a tree is defined as the sum of
distances of all nodes to the root of the tree, where distaace measured by the number
of edges on the minimal connecting path of a node to the roath Rngth is an important
characteristic of trees. For instance, when atree is usadats structure with nodes containing
additional information, path length represents the totst ©of accessing all data items when a
search is started from the root. For this reason, path lesigfiaces, under various models, in
the analysis of algorithms like algorithms and data stmestdor searching and sorting (e.g.,
tree-sort, quicksort, radix-sort); se20p, 434.

The definition of path length as

A(r) = _dist(v, root(r)),

veT

transforms into an inductive definition:

(35) A= Y A+

v root subtree of T
To establish this identity, distribute nodes in their cepending subtrees; correct distances to
the subtree roots by 1, and regroup terms.

From this point on, we specialize the discussion to geneashl@n trees (see Note 19 for
other cases)g = Z x SEQ(G). Introduce momentarily the parametefr) = || + A(7).
Then, one has from the inductive definition (35) and the gdrnieansformation rule (34):

z

(36) Ga(z,u) = =G0 and  Gu(z,u) = Gr(zu,u).

In other wordsG(z, u) = G (z,u) satisfies a nonlinear functional equation of the difference

type:
z

1—G(uz,u)’

(This functional equation will be encountered again in awtion with area under Dyck paths:
see Chapter V, p. 307.) The generating functitzfz) of cumulated values of then obtains
by differentiation with respect ta upon settingu = 1. We find in this way thaf(z) :=
0uG(z,u)|,_, satisfies

G(z,u) =

z

Qz) = (SO (2G'(2) + Q(2)) ,
which is a linear equation that solves to
Q(z) = 2 G'(2) _ z z

1-G@)2 -2z 2(1—-42) 214z
Consequently, one has ¢ 1)
__o92n—3 __ 1 2n —2
=2 2 <n -1 ) ’

where the sequence starting 1, 5, 22, 93, 386nfar 2 constitutesElS A000346 By an
elementary asymptotic analysis, we get:
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FIGUREIII.13. Arandom pruned binary tree of size 256 and its associated peufile:
the histogram on the left displays the number of nodes at leaehin the tree.

The mean path length of a random Catalan tree of silasymptotic to
1V/7n3; in short: a branch from the root to a random node in a random
Catalan tree of size has expected length of the ordergh.

Random Catalan trees thus tend to be somewhat imbalancedenfyyarison, a fully balanced
binary tree has all paths of length at mass, n + O(1). ..... END OF EXAMPLE 111.14. 0

The imbalance in random Catalan trees is a general phenameihbolds for
binary Catalan and more generally for all simple varietigse®s. Note 19 below and
Example VII.9 (p. 442) imply that path length is invariabliyardern./n on average
in such cases. Height is of typical ordgn as shown by Rényi and Szekerd69, de
Bruijn, Knuth and Rice 113, Kolchin [314], as well as Flajolet and Odlyzkd 97].
Figure 13 borrowed from434 illustrates this on a simulation. (The contour of the
histogram of nodes by levels, once normalized, has beeredrtw/converge to the
process known as Brownian excursion.)
> 111.19. Path length in simple varieties of treeBhe BGF of path length in a variety of trees
generated b{'(z) = z¢(T'(z)) satisfies

T(z,u) = 2¢(T (zu,u)).

In particular, the cumulative GF is

O(2) = 0 (T(z)),_, = %@T'(z»%

from which coefficients can be extracted. <

Ill.6. Complete generating functions and discrete models

By acompletegenerating function, we mean, loosely speaking, a gemgratnc-
tion in a (possibly large, and even infinite in the limit) nueniof variables that mark a
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homogeneous collection of characteristics of a combirgdtoiass. For instance one
may be interested in the joint distribution aif the different letters composing words,
the number of cycles ddll lengths in permutations, and so on. A complete MGF
naturally entails very detailed knowledge on the enumegairoperties of structures
to which it is relative. Complete generating functions,egivtheir expressive power,
also make weighted models accessible to calculation, atgituthat covers in partic-
ular Bernoulli trials (p. 179) and branching processes fetamsical probability theory
(p. 185).

Complete GFs for wordsAs a basic example, consider the class of all words
W = SEQ{.A} over some finite alphabet = {a1,...,a,}. Letx = (x1,---, x+)s
wherey; (w) is the number of occurrences of the lettgrin word w. The MGF of A
with respect toy is

A =uia; +ugag + - - ura, = A(z,u) = zuy + zug + -+ - + 2Up,
andy onW is clearly inherited fromy on . A. Thus, by the sequence rule, one has
1
1—2(ur +ug+ - +u)’
which describes all words according to their compositiaris letters. In particular,

the number of words with; occurrences of lettat; andn = > n; is in this frame-
work obtained as

n n n!
g ] (g ) =( = il
Ny, N2, ..., Ny n1mal-- Ny

(37) W = SEQ(A) = W(z,u) =

We are back to the usual multinomial coefficients.

> 111.20. After Bhaskara Acharyécirca 1150D). Consider all the numbers formed in decimal
with digit 1 used once, with digit 2 used twice,. .., with difiused nine times. Such numbers
all have 45 digits. Compute their sughand discover, much to your amazement thiaquals

4587555960000615321908476928639999999999998EM1440399993846780915230713600000.
This number has a long run of nines (and further nines arechijidis there a simple explana-

tion? This exercise is inspired by the Indian mathemati@haskara Acharya who discovered
multinomial coefficients near 118®; see BO6, p. 23-24] for a brief historical note. <

Complete GFs for permutations and set partition€onsider permutations and
the various lengths of their cycles. The MGF whegemarks cycles of length for
k=1,2,...can be written as an MGF infinitely manyvariables:

z 22 23
(38) P(z,u)=expu1~ +us— +ug— +--- | .

1 2 3
This MGF expression has the neat feature that, upon spao@kll but a finite num-
ber ofu; to 1, we derive all the particular cases of interest with egspo any finite
collection of cycles lengths. Observe also that one canutak in the usual way any
coefficient[z"] P as it only involves the variablesi, . . . , w,.

3Complete GFs armot new objects. They are simply an avatar of multivariate GFaisTthe term is
only meant to be suggestive of a particular usage of MGFseasentially no new theory is needed in order
to cope with them.
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> 111.21. The theory of formal power series in infinitely many variabl€This note is for
formalists.) Mathematically, an object likE in (38) is perfectly well defined. LelV =
{u1,u2,...} be an infinite collection of indeterminates. First, the risfgoolynomialsR =
C[U] is well defined and a given element & involves only finitely many indeterminates.
Then, fromR, one can define the ring of formal power seriexzjmamelyR[z]. (Note that,
if f € R[z], then eacHz"]f involves only finitely many of the variables;.) The basic op-
erations and the notion of convergence, as describedPiPEADIX A: Formal power series
p. 676, apply in a standard way.

For instance, in the case of (38), the complete/&E, u) is obtainable as the formal limit

) 2 Zk k+1

in R[z] equipped with the formal topology. (In contrast, the qugrgizocative of a generating
function of words over an infinite alphabet

. -1
WL (1 — zZm)
j=1

cannot receive a sound definition as a element of the fornmabaoR[z].) <

Henceforth, we shall keep in mind that verifications of folo@rectness regard-
ing power series in infinitely many indeterminates are abyagssible by returning to
basic definitions.

Complete generating functions are often surprisingly $ntp expand. For in-
stance, the equivalent form of (38)

P(z,u) = em2/1 . gu2"/2 qusz®/3 .
implies immediately that the number of permutations withcycles of sizel, ko of
size2, and so on, is
n!
kl! k2| e kn' ]_k1 2k2 .. .nkn ’

provided) " jk; = n. This is a result originally due to Cauchy. Similarly, the EGF
set partitions withu; marking the number of blocks of sizés

(39)

z 22 23
S(z,u) = exp wiy b uagy FusgrE o )

A formula analogous to (39) follows: the number of partisamith £, blocks of size
1, ko of size2, and so on, is
n!
kylko! - k! 101 21Kz o oplhn
Several examples of such complete generating functionprasented in Comtet’s
book; see 98], pages 225 and 233.

> 11.22. Complete GFs for compositions and surjectionsThe complete GFs of integer
compositions and surjections withy marking the number of components of sjzare

1 1
1= wa’ 1= u g
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The associated counts with= Zj jk; are given by

ki +Fka+--- n! ki +ko+---
ki,ka,... ’ 11k121k2 ... ki, ka,... ’
These factored forms derive directly from the multinomigb@&nsion. The symbolic form of
the multinomial expansion of powers of a generating fumcitosometimes expressed in terms
of Bell polynomials, themselves nothing but a rephrasinghef multinomial expansion; see
Comtet’s book 98, Sec. 3.3] for a fair treatment of such polynomials. <

> 111.23. Faa di Bruno’s formula.The formulae for the successive derivatives of a functional
compositionh(z) = f(g(z))

9:h(2) = f'(9(2))g'(2), 92h(z) = ["(9(2))g'(2)* + [ (2)g" (), - -,
are clearly equivalent to the expansion of a formal poweesaromposition. Indeed, assume
without loss of generality that = 0 andg(O) = 0; setf, := 97 f(0), and similarly forg, h

Then: i
=X mi =g (et G )

Thus in one direct appllcatlon of the multlnomlal expansiome finds

Z Z(a,&,...,e)(%) (%)b "(%)h

where the summatlon conditighis: 14y + 20y + -+ kb, =n, by + o+ - + L, = k.
This shallow identity is known as Faa di Bruno’s formu®8[p. 137]. (Faa di Bruno (1825
1888) was canonized by the Catholic Church in 1988, preslynfiabreasons not related to his
formula.) <

> 1Il.24. Relations between symmetric functiof®/mmetric functions may be manipulated
by mechanisms that are often reminiscent of the set and satitbnstruction. They appear
in many areas of combinatorial enumeration. Dét= {z;};_, be a collection of formal
variables. Define the symmetric functions

1 n
H +xi2) Zan ’ Hl—xizzzbnz’ Zl—xz_zcn

7

Theay, b,, c,, called resp. elementary, monomial, and power symmetnictfans are express-
ible as

T
— b, = — r
an = LigLig = Tipy n — LigLig = Tipy Cn = Z;.
i=1

i1 <ig<--<ip i1 <ig< - <ip
The following relations hold for the OGE4(z), B(z), C(z) of an, bn, cn':
1 1
B(z) = m, Alz) = =——

Cz) = zilogB(z), B(z) = exp/ C(t)ﬁ.
dz 0 t
Consequently, each af,, b,,, ¢, is polynomially expressible in terms of any of the other guan
tities. (The connection coefficients, like in Note 23, ink@multinomials.) <
> I11.25. Regular graphs.A graph isr—regular iff each node has degree exactly equal. to
The number of-—regular graphs of size is
1<i<j<n

[Gessel 234 has shown how to extract explicit expressions from suctetsygnmetric func-
tions.] <
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I1l.6.1. Word models. The enumeration of words constitutes a rich chapter of
combinatorial analysis, and complete GFs serve to gemenalany results to the case
of nonuniform letter probabilities, like the coupon cotiecproblem and the birthday
paradox considered in Chapter Il. Applications are to badhin classical probability
theory and statisticaPg (the so-called Bernoulli trial models), as well as in cortgyu
science 458 and mathematical models of biologg91].

ExampPLE I11.15. Words and records.Fix an alphabetd = {ai,...,a,} and letW =
SEQ{.A} be the class of all words ovet, whereA is naturally ordered by: < a2 < --- < ar.
Given awordw = ws - - - wy, a (strict) record is an element; that is larger than all preceding
elementsw; > w; for all i < j. (Refer to Figure 13 of Chapter Il for a graphical renderifig o
records in the case of permutations.)

Consider first the subset & comprising all words that have the letters, . .., a;, as
successive records, where< --- < i;. The symbolic description of this set is in the form of
a product oft terms

(40) (ai1 SEQ(a1 + -+ + ail)) s (aik SEQ(ar + -+ + aik))~

Consider now MGFs of words wheremarks lengthy marks the number of records, and each
u; marks the number of occurrences of letier The MGF associated to the subset described
in (40) is then

(zuuil(l—z(ul+---+ui1))‘1) (zuuik(l—z(ul+---+uik))‘1).

Summing over all values df and ofi; < - -- < iy, gives
(41) W(z,v,u) = H (1 + zvus (1 —z(ul—l—---—i—us))_l),
s=1

the rationale being that, for arbitrary quantitigs one has by distributivity:

D> vavn v =[O +w)

k=01<i1 < <ip <7 s=1

We shall encounter more applications of (41) below. For thee tbeing let us simply

examine the mean number of records in a word of lemgtiver the alphabetl, when all such
words are taken equally likely. One should get— 1 (the composition into specific letters is
forgotten), so thatl’ assumes the simpler form

W(z,v) = H <1+ lﬁzjz) .

j=1

Logarithmic differentiation then gives access to the gatieg function of cumulated values,

T

z 1
_1—rzzl—(j—1)z'

v=1 j=1

Thus, by partial fraction expansion, the mean number ofrdscan W,, (whose cardinality
isr™) has the exact value
r—1

(42) Ew,, (# record$ = H, — > (7]"/—74); .
=1
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There appears the harmonic numbgr, like in the permutation case, but now with a negative
correction term which, for fixed, vanishes exponentially fast with(this betrays the fact that
some letters from the alphabet might be missing). .......... END OF EXAMPLE [11.15. O

ExamPLE 111.16. Weighted word models and Bernoulli trialset A = {as,...,a,} be an
alphabet of cardinality:, and letA = {\1,..., .} be a system of numbers calleeights
where weight); is viewed as attached to lettey. Weights may be extended from letters to
words multiplicatively by defining the weight(w) of word w as

7T(’LU) = )\11>\12)\1 if W = Qi Qigp * - - Q4

n n

T

[

j=1

whereyx; (w) is the number of occurrences of letierin w. Finally, the weight of a set is by
definition thesumof the weights of its elements.

Combinatorially, weights of sets are immediately obtainade the corresponding gener-
ating function is known. Indeed, & C W = SEQ{.A} have complete GF

w| x1(w w
S(z,u1,...,ur) = E 21wl (W) xr ()
weS

wherey; (w) is the number of occurrences of lettgrin w. Then one has

Sz A1, ) =Y 2r(w),

weS

so that extracting the coefficient of gives the total weight of,, = S N W,, under the weight
systemA. In other wordsthe GF of a weighted set is obtained by substitution of theamical
values of the weights inside the associated complete MGF.

In probability theory, Bernoulli trials refer to sequenadsndependent draws from a fixed
distribution with finitely many possible values. One maythof the succession of flippings of
a coin or castings of a die. If any trial hagossible outcomes, then the various possibilities
can be described by letters of theary alphabetA. If the probability of thejth outcome is
taken to be)\;, then theA-weighted models on words becomes the usual probabilistidetn
of independent trials. (In this situation, the¢'s are often written ag;’s.) Observe that, in the
probabilistic situation, one must hawe + - - - + A, = 1 with each)\; satisfying0 < A; < 1.
The equiprobable case, where each outcome has probahjilitgan be obtained by setting
A; = 1/r and it then becomes equivalent to the usual enumerative Imbdéerms of GFs,
the coefficien{z"]S(z, A1, ..., Ar) then represents the probability that a random wort\of
belongs taS. Multivariate generating functions and cumulative getiegafunctions then obey
properties similar to their usual (ordinary, exponenténterparts.

As an illustration, assume one has a biased coin with prbtyapifor heads {f) andg =
1 — pfor tails (T"). Consider the eventiri n tosses of the coin, there never appéaontiguous
head$. The alphabet isA = {H,T'}. The construction describing the events of interest is, as
seen in Chapter I,

S = SEQ {H} SEQ{T SEQ_,{H}}.
Its GF withu marking heads and marking tails is then

1 — oyt 1 — oyt -1
W(z,u,v) = Y (1—zv#) .
1—2zu
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Thus, the probability of the absence &funs amongst a sequencerofandom coin tosses is

obtained after the substitutian— p, v — ¢ in the MGF,

Pl
1— z+ gptztt?’

leading to an expression which is amenable to numerical ymptotic analysis. Feller's

book [162, p. 322—-326] offers for instance a classical discussioh@ptoblem. ED oF EXamPLE I11.16.

ExampPLE I11.17. Records in Bernoulli trials.To conclude the discussion of probabilistic
models on words, we come back to the analysis of records. Mesww that the alphabet
A = {a1,...,a-} has in all generality the probability; associated with the letter;. The
mean number of records is analysed by a process entirelifgdaoethe derivation of (42): one
finds by logarithmic differentiation of (41)

T

(43) Ew, (#records = [z"]Q(z) where Q(z) = 1 i z Z 1—z(p1 +p] “+pj-1)

j=1

The cumulative GF(z) in (43) has simple poles at the pointsl/P._1,1/P._2, and so on,
wherePs = p1 + - - - + ps. FoOr asymptotic purposes, only the dominant polesat1 counts
(see Chapter IV for a systematic discussion), near which

T

1 Dj
Q(Z)Z:I 1—22 1 —ijll

j=1

Consequently, one has an elegant asymptotic formula deziegahe case of permutations that
has a harmonic mean (10):

The mean number of records in a random word of lengthith nonuni-
form letter probabilitieg; satisfies asymptoticallfrr — +o0)

Ew,, (# recordg ~ Py

S pitpit e

This relation and similar ones were obtained by Buigy§;[analogous ideas may serve to ana-

lyse the sorting algorithr@uicksortunder equal keysi32 as well as the hybrid data structures
of Bentley and Sedgewick; se8d,93. ................o.ut. ED OF EXAMPLE I11.17. O

Coupon collector problem and birthday paradoxsimilar considerations apply
to weighted EGFs of words, as considered in Chapter Il. Riairce, the probability
of having attained a complete coupon collection at timi@ case a company issues
coupory with probabilityp;, for1 < j < r, is (coupon collector problem, Chapter II)

P(C <n) =nl[z"] H (ePi® —1).
j=1
The probability that all coupons are different at timés (birthday paradox, Chap-
ter I1)

T

P(B > n) = nl[z"] H (1+pjz),

j=1
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which corresponds to the birthday problem in the case of niboim mating periods.
Integral representations comparable to the ones of ChHater also available:

r

IE(C):/OOO 1= =er) | a, ]E(B):/OOOH(1+pjt) et dt.

j=1

See the study by Flajolet, Gardy, and Thimoni&8]] for several variations on this
theme.

> 111.26. Birthday paradox with leap yeargsssume that the 29th of February exists precisely
once every fourth year. Estimate the effect on the expectati the first birthday collision<]

ExAMPLE I11.18. Rises in Bernoulli trials: Simon Newcomb’s proble®imon Newcomb
(1835-1909), otherwise famous for his astronomical works veportedly fond of playing the
following patience game: one draws from a deck of 52 play@gls, stacking them in piles in
such a way that one new pile is started each time a card appbase number is smaller than
its predecessor. What is the probability of obtainirgles? A solution to this famous problem
is found in MacMahon’s book3b0] and a concise account by Andrews appeardy §4.4].

Simon Newcomb’s problem can be rephrased in terms of risesenG wordw =
wy - - - wy, OVer the alphabe# ordered bya; < a2 < ---, aweak riseis a positionj < n
such thatw; < w;4+1. (The numbers of piles in Newcomb’s problem is the numberanfis
minus 1 minus the number of rises.) L&f(z, v, u) be the MGF of all words where marks
length,v marks the number of weak rises, amgmarks the number of occurrences of letter
Setz; = zu; and letW;(z, v, u) be the MGF relative to those nonempty words that start with
lettera;, so that

W=1+Wi1+---+W,).
TheW; satisfy the set of equationg & 1,...,7),
(44) Wi=zj+z; (Wit + W) +vz; (Wi +---+ W),

as seen by considering the first letter of each word. Thelisstem (44) is easily solved upon
settinglV; = z; X;. Indeed, by differencing, one finds that

(45) Xjp1 — Xj =2 X;(1 —v), X1 = X;(1+ 2;(1 —v)),

In this way, eachX; can be determined in terms &f;. Then transporting the resulting expres-
sions into the relation (44) instantiatedjat= 1, and solving forX; leads to an expression for
X1, hence for all theX; and finally for itself:

v—1 -
(46) W=—py Pi= jl:[l(1+(1—v)zj).
Goulden and Jackson provide a similar looking expressiofi4i4 (pp. 72 and 236).

The result of (46) gives access to moments (e.g., mean amghga) of the number of
rises in a Bernoulli sequence as well as to counting resuittse coefficients of the MGF are
extracted. (See als@34, 244 for some of the possible tools from the theory of symmetric
functions.) The OGF (46) can alternatively be derived by rasiuision-exclusion argument:
refer to the particular case of rises in permutations an@rfaui numbers which is discussed

DEIOW. e END OF ExAMPLE 111.18. 0
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> 111.27. The final solution to Simon Newcomb’s proble@onsider a deck of cards with
suits andr distinct card values. S&V = ra. (The original problem hags = 13, a = 4,

N = 52.) One has from (46)/W = (v — 1)P/(1 — vP). The expansion ofl —y)~*! and the
collection of coefficients yields

[2f 2l W = (1=0) > 0P e 2 P = (1= )V T Y (’;) Tl

k>1 k>1
t+1 T
wf N+1\(k
a . _a,t _ _1\t+1 k
so that[z{ - - - 220" W kZ:O( 1) <t+1_k) <a> <

Ill.6.2. Tree models. We examine here two important GFs associated with tree
models; these provide valuable information concerningigrgree profiland thdevel
profile of trees, while being tightly coupled with an important &g stochastic pro-
cesses, namely theanching processes

The major classes of trees that we have encountered so féhearelabelled
plane trees and the labelled nonplane trees, prototypeg be general Catalan trees
(Chapter 1) and the Cayley trees (Chapter II). In both cabescounting generating
functions satisfy a relation of the form

(47) Y(z) = 29(Y(2)),

where the GF is either ordinary (plane unlabelled treeskpoeential (nonplane la-
belled trees). Corresponding respectively to the two ¢abesfunctione is deter-
mined by

(48) o(w) =Y w,  dw) =Y —
weN weN

where) C N is the set of allowed node degrees. Meir and Moon in an impbpa-

per [35€ have described some common properties of tree famili¢satieadetermined

by the Axiom (47). (For instance mean path length is invdyialb ordern./n, see

Chapter VII, and height i©(,/n).) Following these authors, we calimple variety of

treesany class whose counting GF is defined by an equation of type (#or each

of the two cases of (48), we write
(49) $w) = gju.
j=0

Degree profile of treesFirst we examine thelegree profileof trees. Such a
profile is determined by the collection of parametefswherey () is the number
of nodes of outdegregin 7. The variable:; will be used to marlg;, that is, nodes of
outdegreg. The discussion already conducted regarding recursisnpeters shows
that the GFY (z, u) satisfies the equation

Y(z,u) = 2®(Y(z,u)) where ®(w) = uodo + urp1w + uaow? + -+ - .

Formal Lagrange inversion can then be applietf {e, u), to the effect that its coeffi-
cients are given by the coefficients of the power&of
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Proposition IIl.7 (Degree profile of trees)The number of trees of sizeand degree
profile (ng, n1,ne, .. .) in asimple variety of trees defined by the “generat{49)is

1 n T n 7
(50) Yonino,na,na,... = Wn - _< >¢00¢11 LR

n \nop,N1,Nn2,...

There,w,, = 1 in the unlabelled case, whereas, = n! in the labelled case. The
values of then; are assumed to satisfy the two consistency conditi@;nj =n
and}_; jn; =n— 1.

PROOF The consistency conditions translate the fact that thed tatmber of nodes
should ben while the total number of edges should equal 1 (each node of degree
is the originator ofj edges). The result follows from Lagrange inversion

1
Yoinonuma,... = wn - [ug"uy ug® -] <_[w"1]<1>(w)n) ,

to which a standard multinomial expansion applies, yiedB0).
For instance, for general Catalan tregs £ 1) and for Cayley treesy; = 1/3!)
these formulae become

1 n (n—1)! n
— and _ .
n \ng,Nn1,n2, ... Olmo1lm2Inz ... \ ng, ny, no, ...
O

The proof above also reveals the logical equivalence betwee general tree
counting result of Proposition 111.7 and the most generakcaf Lagrange inversion.
(This results from the fact thab can be specialized to any particular series.) Put
otherwise, any direct proof of (50) provides a combinatgsraof of the Lagrange
inversion theorem. Such direct derivations have been @egpby Raney407 and
are based on simple but cunning surgery performed on |gititle representations of
trees (the “conjugation principle” of which a particularseas the “cycle lemma” of
Dvoretzky—Motzkin L45]).

Level profile of trees.The next example demonstrates the utility of complete
generating functions for investigating the level profildrees.

ExampLE 111.19. Trees and level profileGiven a rooted tree, its level profileis defined as
the vector(no, n1,n2, .. .) wheren; is the number of nodes present at leyéle., at distance
from the root) in treer. Continuing within the framework of a simple variety of tseave now
define the quantityy.;»,.n,,n, t0 be the number of trees with sizeand level profile given by
then;. The corresponding complete GH z, u) with z marking size and.; marking nodes at
level j is expressible in terms of the fundamental “generator”

(51) Y(z,u) = zuo¢ (zu1¢ (zu2é (zusd(- - -)))) -
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We may call this a “continued-form”. For instance general Catalan trees have generator
¢(w) = (1 —w) ™!, so that in this case the complete GF is the continued fraictio

(52) Y(z,u) = oz

usz
j——

(See Section V.3 for complementary aspects.) In contraayleg§ trees are generated by
¢(w) = e, so that
Z’LL3€-.
zZuze
Y (z,u) = zupe®¥1€ )
which is a “continued exponential”, that is, a tower of exgotials. Expanding such generating
functions with respect tag, u1, . . ., in order gives straightforwardly:

Proposition 111.8 (Level profile of trees) The number of trees of sizgand level profilgno, ni,n2, . ..
in a simple variety of trees defined by the “generatai(w) of (49)is

Yn;no,nl,nQVH = Wn-1" gﬁo)gﬁngl) ’57:’;2) e where (ZSE/#) = [wu]¢(w)#

There, the consistency conditions are = 1 and Zj n; = n. In particular, the counts for
general Catalan trees and for Cayley trees are respectively

no+mni—1\ ni+n2—1\(n2+mnsz—1 (n=1! 0 ny g
c, T pmagtepns
n n2 ns3 nolnilna!---

(Note that one must always haxg = 1 for a single tree; the general formula with # 1 and
wn—1 replaced by, —n, gives the level profile of forests.) The first of these enurtidzaesults
is due to Flajolet 168 and it places itself within a general combinatorial theofycontinued
fractions (Chapter V); the second one is due to Rényi anée3ee 09 who developed such
a formula in the course of a deep study relative to the digtioh of height in random Cayley
IS, e ——— END OF EXAMPLE [11.19. O

> 111.28. Continued forms for path lengtfihe BGF of path length are obtained from the level

profile MGF by means of the substitutian — ¢?. For general Catalan trees and Cayley trees,
this gives

2 .
zq°e
(53) Ozq) = ———F—  T(zg) =2
1—
L

whereq marks path length. The MGFs are ordinary and exponentigkerively. (Combined
with differentiation, such MGFs represent an attractivéapfor mean value analysis.) <
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Trees and processed he next example is an especially important application of
complete GFs, as these GFs provide a bridge between combalahodels and a
major class of stochastic processes,lifenching processesf probability theory.

ExAMPLE I11.20. Weighted tree models and branching process&mnsider the familyg of

all general plane trees. L&t = (Ao, A1, ...) be a system of numeric weights. The weight of
a node of outdegregis taken to be\; and the weight of a tree is the product of the individual
weights of its nodes:

(54) (r) = [\,
=0

with x; (7) the number of nodes of degrgén 7. One can view the weighted model of trees as
a model in which a tree receives a probability proportiooat fw). Precisely, the probability
of selecting a particular treeunder this model is, for a fixed size

(1)
(55) Pg,,.A(7) Sy 7T
This defines a probability measure over the @gtand one can consider events and random
variables under this weighted model.

The weighted model defined by (54) and (55) covers any simaliety of trees: just
replace each\; by the quantityp; given by the “generator’ (49) of the model. For instance,
plane unlabelled unary-binary trees are obtainedby (1,1,1,0,0,...), while Cayley trees
correspond to\; = 1/j!. Two equivalence-preserving transformatioage then especially
important in this context:

(7) Let A™ be defined byA; = c)\; for some nonzero constaat Then the weight cor-
responding to\* satisfiest* () = ¢/"!7(w). Consequently, the models associated
to A andA™ are equivalent as regards (55).

(i4) Let A° be defined by\; = ¢’ \; for some nonzero constafit Then the weight
corresponding to\° satisfiest®(7) = ¢/l 'x(w), since}" jx; () = 7| — 1 for
any treer. Thus the modeld.° andA are again equivalent.

Each transformation has a simple effect on the genergtoamely:

(56) p(w) = ¢"(w) = cp(w) and  G(w) — ¢°(w) = ¢(Ow).

Once equipped with such equivalence transformations, dbfpes possible to describe
probabilistically the process that generates trees agwptd a weighted model. Assume that
A; > 0 and that the\; are summable. Then the normalized quantities

Aj
Yz Zj )\j
form a probability distribution oveN. By the first equivalence-preserving transformation the
model induced by the weights; is the same as the original model induced by Me (By
the second equivalence transformation, one can furtherassume that the generatois the
probability generating function of the;.)

Such a model defined by nonnegative weights} summing to 1 is nothing but the classi-
cal model otbranching processgglso known as Galton-Watson processes) ; &g [n effect,

a realizationl” of the branching process is classically defined by the twestuli) produce a
root node of degreg with probability p;; (i¢) if 7 > 1, attach to the root node a collection
T1,...,T; of independent realizations of the process. This may beadexs the development
of a “family” stemming from a common ancestor where any iidiial has probabilityp,; of
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giving birth to 5 children. Clearly, the probability of obtaining a partiauffinite treer has
probability(7), wherer is given by (54) and the weights ake = p,. The generator

is then nothing but the probability generating function afi€-generation) offspring, with the
quantityy = ¢'(1) being its mean size.
For the record, we recall that branching processes can bsifotal into three categories
depending on the values pf
Subcriticality whenp < 1, the random tree produced is finite with probability 1
and its expected size is also finite.
Criticality: wheny = 1, the random tree produced is finite with probability 1 but its
expected size is infinite.
Supercriticality wheny > 1, the random tree produced is finite with probability
strictly less than 1.
From the discussion of equivalence transformations (b@yetfurthermore results that, regard-
ing trees of dixed sizen, there is complete equivalence between all branching psesewith
generators of the form

p(6w)
Such families of related functions are known as “exponéfamilies” in probability theory. In
this way, one may always regard at will the random tree prediny a weighted model of some
fixed sizen as originating from a branching process of subcriticatjcal, or supercritical type
conditioned upon the size of the total progeny.
Finally, take a sef C G for which the complete generating function®fwith respect to
the degree profile is available,

S(z,u0,u1,...) = sz (ugow)u?m) . ) .

TES

Then, for a system of weights, one has

S(z, Ao, A1,...) = Z ()2
res
Thus, the probability that a weighted tree of sizbelongs taS becomes accessible by extract-
ing the coefficient o&™. This appliesa fortiori to branching processes as well. In summary,
the analysis of parameters of trees of sizender either weighted models or branching pro-
cess models derives from substituting weights or proligbitalues inside the corresponding
combinatorial generating functions.. . ...................... KD oF ExamMPLE I11.20. O

The reduction of combinatorial tree models to branchingesses has been pur-
sued early, most notably by the “Russian School”: see ealhetlie books by Kolchin
[314, 315 and references therein. (For asymptotic purposes, thigadgnce between
combinatorial models and critical branching processesndfirns out to be most fruit-
ful.) Conversely, symbolic-combinatorial methods may leswed as a systematic way
of obtaining equations relative to characteristics of bramg processes. We do not
elaborate further along these lines as this would take usidmibf the scope of the
present book.
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> 111.29. Catalan trees, Cayley trees, and branching processestalan trees of size are

defined by the weighted model in whicty = 1, but also equivalently b)xj = ct’, for
anyc > 0 andd < 1. In particular they coincide with the random tree producedhe critical
branching process whose offspring probabilities are gégme; = 1/27 11,

Cayley trees ara priori defined byA; = 1/5!. They can be generated by the critical
branching process with Poisson probabilitigs,= e~*/;!, and more generally with an arbi-
trary Poisson distributiop; = e**)\j/j!. <

I1l. 7. Additional constructions

We discuss here additional constructions already exanimearlier chapters,
namely pointing and substitution (Section 11l. 7.1) as vasdlorder constraints (Sec-
tion 1ll. 7.2) on the one hand, implicit structures (Sectldn7.3) on the other hand.
Given that basic translation mechanisms can be directiptadao the multivariate
realm, such extensions involve basically no new concept,th@ methods of Chap-
ters | and Il can be recycled. In Section Ill. 7.4, we reviki tlassical principle of
inclusion-exclusion under a generating function pergpectn this light, the principle
appears as a typically multivariate device well-suitedrtaraeerating objects accord-
ing the number of occurrences of sub-configurations.

Ill.7.1. Pointing and substitution. Let(F, x) be a class—parameter pair, where
X is multivariate of dimensiom > 1 and letF'(z) be the MGF associated to it in
the notations of (18) and (27). In particulay = =z marks size, and; marks the
componenk of the multiparametey. If z marks size, then, like in the univariate case,
6. translates the fact of distinguishing one atom. Genergitk up a variabler = z;
for somej with 0 < j < r. Then since

w@m(s“tbxf) =f. (s“tbxf),

the interpretation of the operatéy = x0, is immediate; it means “pick up in all
possible ways in objects of a configuration marked by and point to it". For
instance, ifF(z,u) is the BGF of trees where marks size and: marks leaves,
thend, F'(z,u) = w0, F'(z,u) enumerates trees with one distinguished leaf.

Similarly, the substitution: — S(z) in a GF F, whereS(z) is the MGF of a
classS, means attaching an object of ty§¢o configurations marked by the variabie
in F. We refrain from giving detailed definitions (that would bevgeewhat clumsy
and uninformative) as the process is better understooddntipe than by long formal
developments. Justification in each particular case idyealstained by returning to
the combinatorial representation of generating functesmgnages of combinatorial
classes.

ExAMPLE I11.21. Constrained integer compositions and “slicing"This example illustrates
variations around the substitution scheme. Consider csitipos of integers where successive
summands have sizes that are constrained to belong to a 8&I € N°. For instance, the
relations

Ri={(z,y)[1<z <y}, Ra={(z,y)|1<y< 2}
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correspond to weakly increasing summands in the ca& @nd to summands that can at most
double at each stage in the casgdf. In the “ragged landscape” representation of composi-
tions, this means considering diagrams of unit cells afigimecolumns along the horizontal
axis, with successive columns obeying the constraint iegpayR.

Let F'(z,u) be the BGF of suciR—restricted compositions, whetenarks total sum and
marks the value of the last summand, that is, the height dégieolumn. The functio’(z, u)
satisfies a functional equation of the form

(67) F(z,u) = f(zu) + (L[F(z,u)])

wheref(z) is the generating function of the one-column objects Anisla linear operator over
formal series inu given by

(58) )= S b
(

Jk)ER

ur—zu ?

In effect, Equation (57) describes inductively objects@®grising either one columry(zu))

or else being formed by adding a new column to an existing dndhe latter case, the last
column added has a sizethat must be such thdj, k) € R, if it was added after a column of
sizej, and it will contributeu” 2* to the BGFF(z, v); this is precisely what (58) expresses. In
particular,F'(z, 1) gives back the enumeration #¥objects irrespective of the size of the last
column.

For a ruleR that is “simple enough”, the basic equation (57) will oftemdlve a substi-
tution. Let us first rederive in this way the enumeration aftifgans. We takeR = R; and
assume that the first column can have any positive size. Csitigots into increasing summands
are clearly the same as partitions. Since

W
T l—uw

the functionF'(z, u) satisfies a functional equation involving a substitution,

L] = + 7T /T4

U

(59) F(z,u) = +

l—2zu 1-—2zu
This relation iteratesany linear functional equation of the substitution type

d(u) = au) + B(u)p(o(w))

F(z, zu).

is solved formally by
(60) ¢(u) = a(u) + Bu)a(o(u)) + Bu)Bo(u)a(c® () + -,

wheres 7 () designates thgth iterate ofu.

FIGURE I11.14. The technique of “adding a slice” for enumerating consdinompositions.
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Returning to compositions into increasing summands, #)gbartitions, the turnkey so-
lution (60) gives, upon iterating on the second argumenh wie first argument treated as a
parameter:

U ZQ’LL Z3U

1—zu + (1 —2zu)(1 — 22u) + (1 —2zu)(1 — 22u)(1 — 23u) +
Equivalence with the alternative form

ZU z2u2 z3u3

T 0202 " T-a0-201-2

is then easily verified from (59) upon expandify z, ) as a series inc and applying the
method of indeterminate coefficients to the fofin— zu) F(z,u) = zu + F(z, zu). The pre-
sentation (62) is furthermore consistent with the treatroépartitions given in Chapter | since
the quantity[u*]F(z, ) clearly represents the OGF of (nonempty) partitions whasgekst
summand ig. (In passing, the equality between (61) and (62) is a shdbawcurious identity
that is quite typical of the area gfanalogues.)

This same method has been applied 20]] to compositions satisfying conditio®

above. In this case, successive summands are allowed tdedauimost at each stage. The
associated linear operator is

(61) F(z,u) =

(62)  F(zu)=

1—u¥

1—u -’

For simplicity, it is assumed that the first column has sizeThus, F' satisfies a functional
equation of the substitution type:

E[uj]:u+~~-+u2j:u

zZU
1—
This can be solved by means of the general iteration meahaf@®), treating momentarily
F(z,1) as a known quantity: with(u) := zu + F(2,1)/(1 — zu), one has

F(z,u) =zu+

" (F(z,1) — F(z, z2u2)) .

2,2
zZU zZu 6 4

= a(z"u”) — .

F _ _ 2 2 _ru
(z,u) = a(u) 1-— zua(z w)+ 1—zul— 22u?
Then, the substitution = 1 in the solution becomes permissible. Upon solving ik, 1),

one eventually gets the somewhat curious GF for composisatisfyingR.:

3 on (C1)7 72T 72, (2)

ngo(_l)ijH*j*?/Qj(z) ‘
where Q;(z) = (1—2)(1—2)(1—2")---(1=2¥"1).
The sequence of coefficients startsias, 2, 3, 5, 9, 16, 28, 50 and iSEIS A002572 it repre-
sents for instance the number of possible level profilesrtyitrees, or equivalently the num-
ber of partitions of 1 into summands of the foims, 1, 1, ... (this is related to the number

of solutions to Kraft's inequality). Se@(1] for details including very precise asymptotic esti-
mates and Tangora’s papd6y] for relations to algebraic topology. Nb OoF EXAMPLE 11.21. O

F(z,1) =

The reason for presenting the slicing method in some det#ildt it is very gen-
eral. It has been in particular employed to derive a numberigfnal enumerations of
polyominoes by area, a topic of interest in some brancheasti$tical mechanics: for
instance, the book by Janse van RenshdBf][discusses many applications of such
lattice models to polymers and vesicles. See Bousqueteteview paperg6)] for
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a methodological perspective. Some of the origins of thénotepoint to Polya in the
1930’s, see39q, and independently to Temperle$d6 pp. 65—-67].

> 111.30. Pointing-erasing and the combinatorics of Taylor's foreullhe derivative opera-
tor 9., corresponds combinatorially to a “pointing-erasing” apiEm: select in all possible ways
an atom marked by: and make it transparent tomarking (e.g., by replacing it by a neutral
object). The operatoﬁaﬁf(x), then corresponds to picking up in all possible wagubset
(order does not count) &f configurations marked hy. The identity (Taylor’s formula)

f@+y):§j<%%fu0yk

k>0

can then receive a simple combinatorial interpretationze@ia population of individualsA
enumerated by’), form the bicoloured population of individuals enumedatsy f(z + y),
where each atom of each object can be repainted eitheicolour ory-colour; the process is
equivalent to deciding a priori for each individual to regak of its atoms fromz to y, this
for all possible values of > 0. Senn from combinatorics, Taylor's formula thus expresses
equivalence between two ways of counting. <

> 111.31. Carlitz compositions I.Let X be the class of compositions such that all pairs of
adjacent summands are formed of distinct values. These eageherated by the operator
Llw] = £ —u!2?, so thatL[f(u)] = 2 f(1) — f(uz). The BGFK(z,u), with u

marking the value of the last summand, then satisfies a fumadtequation,

K(z,u) _ uz uz

K(z,1) - K
S K () - Kz 2u),

giving eventuallyK (z) = K(z, 1) under the form

_ o)
6 K& = <1+§1—zj>

= 142422 +32°+42" +72° +142° + 2327 +3928 + ... .

The sequence of coefficients constituE#S A003242 Such compositions have been introduced
by Carlitz in 1976; the derivation above is from a paper by ginwacher and Prodinge296|
who provide early references and asymptotic propertiese (@ ume this thread in Note 34
below and in Chapter IV, p. 249.) <

Ill. 7.2. Order constraints. We refer in this subsection to the discussion of or-
der constraints in labelled products that has been giverhap@r Il. We recall that
the modified labelled product

A= (B"%C)

only includes the elements ¢B « C) such that the minimal label lies in th& com-
ponent. Once more the univariate rules generalize vertfatimparameters that are
inherited and the corresponding exponential MGFs areaelay

A@mzéﬂwmm»cwmw

To illustrate this multivariate extension, we shall comsid quadrivariate statistic on
permutations.
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valley: oi—1 > 0; < oi41 | leaf node ()
doublerise: o0;_1 < 0; < gi41 | unary right-branchingu)
double fall: ;-1 > 0y > 041 | unary left-branching(})

peak: oi—1 < 0; > 0i41 | binary node 2)

FIGURE I11.15. Local order patters in a permutation and the four types oeaad the
corresponding increasing binary tree.

ExAMPLE I11.22. Local order patterns in permutations.An elemento; of a permutation
writteno = o1, ...,0, When compared to its immediate neighbours can be catedarire
one of four typeSsummarized in the first two columns of Figure 15. The corragpace with
binary increasing trees described in Example 17 of Chapteeh shows the following: peaks
and valleys correspond to binary nodes and leaves, reggigctivhile double rises and double
falls are associated with right-branching and left-bramghlunary nodes. Letg, u1, v}, uz be
markers for the number of nodes of each type, as summarizédune 15. Then the exponential
MGF of increasing trees under this statistic satisfies

%I(z, u) = uo + (u1 + u))I(z,u) + uzI(z,u)’.

This is solved by separation of variables as

§ vi+dtan(z6) w1

64) I(zu) = uz 0 — vy tan(z0)  ug’

where the following abbreviations are used:

1
Ul:i(ul +uy), § = \/uous — v3.

2
I =woz+ uo(u1 + UQ)% +uo((ur +uy)? + 2UO”2)%7
which agrees with the small cases. This calculation is sb@isi with what has been found in
Chapter Il regarding the EGF of all nonempty permutatiorss @ralternating permutations,
z
1-2’
that derive from the substitution@iy = w1 = u} = us = 1} and{up = u2 = l,u1 =
uy = 0}, respectively. The substitutiofug = w1 = u,u} = uz = 1} gives a simple variant
(without the empty permutation) of the BGF of Eulerian nunsb@3) derived below by other
means (p. 197).
By specialization of the quadrivariate GF, there resuld,tin a tree of sizex the mean
number of nodes of nullary, unary, or binary type is asymetiat . /3, with a variance that is
O(n), thereby ensuring concentration of distribution. .....END OF EXAMPLE I11.22. O

One has
3

tan(z),

A similar analysis yields path length. It is found that a ramdincreasing binary
tree of sizen has mean path length

2nlogn + O(n).

“Here, for|o| = n, we regards ashorderedby (—oc, —0), i.e., we sebg = 0,1 = —oo and let
the index: in Figure 15 vary in1 .. n]. Alternative bordering conventions prove occasionallgfus
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] ! *2*"

FIGURE I11.16. The level profile of a random increasing binary tree of sizé. Z&Eom-
pare with Figure 13 for binary trees under the uniform Catalatistic.)

Contrary to what the uniform combinatorial model gives,tstrees tend to be rather
well balanced, and a typical branch is only about 38.6% lotigen in a perfect binary
tree (since2/log2 = 1.386). This fact applies to binary search trees (Note 32) and
it justifies that the performance of such trees is quite gobhdmthey are applied to
random data307, 351, 43Jor subjected to randomizatiod 16, 37Q.
> 111.32. Binary search trees (BSTs). Given a permutatiorr, one defines inductively a tree
BST(7) by

BST(e) = 0; BST(7) = (71, BST(T|<7, ), BST(T|>r,))-
(There,r|p represents the subword efconsisting of those elements that satisfy predidafe
Let I1BT(o) be the increasing binary tree canonically associated tdhen one has the funda-
mentalEquivalence Principlg

sha
1BT(0) = BST(0™Y),

shape . .
whereA” 2 ° B means thatt and B have identical tree shapes. <

Ill. 7.3. Implicit structures. Here again, we note that equations involving sums
and products, either labelled or not, are easily solvedlikstn the univariate case.
The same applies for the sequence construction and forthersgruction, especially
in the labelled case—refer to the corresponding sectioi@hapters | and Il. Again,
the process is best understood by examples.

Suppose for instance one wants to enumerate connectetethpehphs by the
number of nodes (marked hy and the number of edges (markeddy The classC
of connected graphs and the clgsef all graphs are related by the set construction,

G = SET{K},

meaning that every graph decomposes uniquely into contheoteponents. The cor-
responding exponential BGFs then satisfy

G(z,u) = K=Y implying K(z,u) =log G(z,u),
since the number of edges in a graph is inherited (addiji\fedyn the corresponding

numbers in connected components. Now, the number of grap$igeon having k
edges ig"("V/?), so that

65 K =log |1 1 n(n-1)/27" .
(65) (2) og< +2 1+ i

This formula, which appears as a refinement of the univaftataula of Chapter I,
then simply readsconnected graphs are obtained as componentd¢theperator) of
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general graphs, where a general graph is determined by tesgarce or absence of an
edge (corresponding td + u)) between any pair of nodes (the exponefit —1)/2).

Pulling out information out of the formula (65) is howevett obvious due to the
alternation of signs in the expansionlof;(1 4+ w) and due to the strongly divergent
character of the involved series. As an aside, we note haté¢tta quantity

K(z,u) =K (Z,u)

enumerates connected graphs according to size (marked &yd excess (marked
by ) of the number of edges over the number of nodes. This meahtharesults of
Section 5.3 of Chapter Il obtained by Wright’s decomposittan be rephrased as the
expansion (withirC(u)[z]):

st n, —n 1
log (1 n Z(l i u)n(n—l)/2¥ = ZW_i(2) + Wo(2) + - -
(66) T 1n. 1 1u 1
— — —_— — 2 — S — _— = 2 .« ..
= u(T 2T>+<210g1_T 2T 4T>+ )

with 7" = T'(z). See Temperley's early workd65, 466 as well as the “giant paper on
the giant component’282 and the paperd0g for direct derivations that eventually
constitute analytic alternatives to Wright's combinaabepproach.

ExamMPLE 111.23. Smirnov words. Following the treatment of Goulden and Jacks244,
we define a Smirnov word to be any word that has no consecutjual detters. LedV =
SEQ{.A} be the set of words over the alphabkt= {a, ..., a,} of cardinalityr, andS be the
set of Smirnov words. Let alsg; mark the number of occurrences of tjté letter in a word.
One has

1
1= (vi4--+wr)
Start from a Smirnov word and substitute to any lettethat appears in it an arbitrary nonempty
sequence of letters;. When this operation is done at all places of a Smirnov wdrdives
rise to an unconstrained word. Conversely, any word is &stsatto a unique Smirnov word
by collapsing into single letters maximal groups of contigsl equal letters. In other terms,
arbitrary words derive from Smirnov words by a simultanesuisstitution:

W(vi,...,op) =

W =S[a1 — SEQs {a1}, ... ,ar — SEQs;{ar}].

There results the relation

(67) W(vl,...,vr):S( U O )

I I T

This relation determines the MGH vy, . . . , v.) implicitly. Now, since the inverse function of
v/(1 —w)isv/(1+ v), one finds the solution:

- -1
o V1 Ur _ _ Uy
(68) S(vl,...,vr)—W<1+vl,...,1+UT)—(1 g 1+vj> .

j=1

5The variablez marking length being here unnecessary, it is omitted—itldiotherwise somewhat
obscure the simplicity of the calculations.
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For instance, if we set; = z, thatis, we “forget” the composition of the words into lette
we obtain the OGF of Smirnov words counted according to keagt

1 1+z2 n—1_n
= =1 -1 .
1—r=2 1—(r—1)z +ZT(T )

142 n>1

This is consistent with elementary combinatorics since at®m word of lengthn is deter-
mined by the choice of its first letter possibilities) followed by a sequence of— 1 choices
constrained to avoid one letter amongstand corresponding te — 1 possibilities for each
position). The interest of (68) is to apply equally well te tBernoulli model where letters may
receive unequal probabilities and where a direct combifetargument does not appear to be
easy: it suffices to perform the substitution — p;z in this case: see Example IV.9, p. 249
and Note V.7, p. 289

From these developments, one can next build the GF of woatsniver contain more
thanm consecutive equal letters. It suffices to effect in (68) thessitutionv; — v, +- - - +vj".
In particular for the univariate problem (or, equivalentlye case where letters are equiproba-
ble), one finds the OGF

1 _ 1— 2t
Zl;zm T l—rz4(r—1)zmt’
—r—
1+2

1—2z

This extends to an arbitrary alphabet the analysis of single and double runs in binary words
that was performed in Section 4 of Chapter |. Naturally, #pproach applies equally well to

nonuniform letter probabilities and to a collection of Hamgth upperbounds and lowerbounds
dependent on each particular letter. This topic is in paldicpursued by different methods in

several works of Karlin and coauthors (see, e 365]), themselves motivated by applications
tolife SCiences. ... BEND OF ExAamPLE 111.23. 0

> 111.33. Enumeration in free groups.Consider the composite alphatigt= A U A, where
A= {ai,...,a;} andA = {ax,...,a,}. A word over alphabeB is said to beeducedif it
arises from a word ove8 by a maximal application of the reductioaga; — € andaja; — €
(with e the empty word). A reduced word thus has no factor of the fesay or aja;. Such a
reduced word serves as a canonical representation of aeedémthe free groujr,- generated
by A, upon identifyinga; = aj’l. The GF of reduced words with; andwu; marking the
number of occurrences of lettey andaj, respectively, is

Ul ur Uyr Ur
1—u;  1—77 ’

R(ul,...,u,«,u_l,...,u_,«):S< + I P

with S the GF of Smirnov words, as in (68). In particular this spkzis to give the OGF of
reduced words withe marking length,R(z) = (1 + 2)/(1 — (2r — 1)z): implying R, =
2r(2r — 1)™, which checks with what elementary combinatorics gives.

The Abelian image\(w) of an elementw of the free groupF' is obtained by letting
all letters commute and applying the reductiens: aj‘l = 1. It can then be put under the
form ai"* - - a;*", with eachm; in Z, so that it can be identified with an element %f.
Letx = (x1,...,2,) be a vector of indeterminates and defie&™) to be the monomial

z"t - -z, Of interest in certain group-theoretic investigationthis MGF
-1 -1
i) lw|  A(w) _ 271 2T 2Ty zx,
Z;X) 1= zx =S Y s ,
Q%) Z (1—ZJC1+1—Z1’_1 1—Zl’r+1—zx:1)

weR 1
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which is found to simplify to

1—2°
1= 2300y (wy + o)+ (2r = 1)22
This last form appears in a paper of Rivihlp], where it is obtained by matrix techniques.
Methods developed in Chapter IX can then be used to estatgigtihal and local limit laws for
the asymptotic distribution ok(w) overR.,, providing an alternative to the methods df.p,
4395. (This note is based on an unpublished memo of Flajolet, Hog Ventura, 2006.) <
> 111.34. Carlitz compositions Il. Here is an alternative derivation of the OGF of Carlitz
compositions (Note 31, p. 190). Carlitz compositions witfgest summang: r are obtained
from the OGF of Smirnov words by the substitution— z’:

Qzx) =

T

. -1
(9 we = (1-325)

j=1

The OGF of all Carlitz compositions then results from legtin— oo:

oo j -1
(70) K(z)—(l—zlizj> .

The asymptotic form of the coefficients is derived in Chapiemp. 249. <

I1l. 7.4. Inclusion-Exclusion. Inclusion-exclusion is a familiar type of reason-
ing rooted in elementary mathematics. Its principle, ineoitd counexactly consists
in grosslyovercountingthen performing a simple correction of the overcountihgnt
correcting the correction, and so on. Characteristicalymerative results provided
by inclusion exclusion involve an alternating sum. We rigtids process here in the
perspective of multivariate generating functions, wheessentially reduces to a com-
bined use of substitution and implicit definitions. Our aggarh follows Goulden and
Jackson’s encyclopedic treatiszi].

Let £ be a set endowed with a real or complex valued medsuria such a way
that, forA, B C &, there holds

|AUB|=|A|+|B|  whenever AnNB=4.

Thus,| - | is an additive measure, typically taken as set cardinaligy,(e| = 1 for
e € E) or a discrete probability measure 6i(i.e., |e| = p. for e € E). The general
formula
|AU B| = |A| +|B| — |AB]| where AB:= AN B,
follows immediately from basic set-theoretic principles:
Dl =2 lal+ > b= > il
ce AUB acA beB i€ANB

What is called thénclusion-exclusion principler sieve formulas the following mul-
tivariate generalization, for an arbitrary family;, ..., A, C &:
(71)

A1 U+ UA,|

|8\(leQZr)| where ZZE\A
= Z |As| — Z |[A; Agy | 4+ 4+ (1) AL Ay - AL

1<i<r 1<ii1<ia<r
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(The easy proof by induction results from elementary prigeof the boolean algebra
formed by the subsets &f see, e.g.,98, Ch. IV].) An alternative formulation results
from settingB; = A;, B; = Aj;:

|B1Bs---B,| =[] - ) [Bil
(72) = L
+ > IByBi|—--+(-1)"[B1By-- B,|.
1<ip<ig<r
In terms of measure, this equality quantifies the set of dbjsatisfyingexactlya
collection of simultaneousonditions (all theB;) in terms of those that violatat
least somef the conditions (thé_Bj).

Derangements.Here is a textbook example of an inclusion—exclusion argume
namely, the enumeration olerangementsRecall that a derangement is a permuta-
tion o such thats; # ¢, for all i. Fix £ as the set of all permutations fif, n], take
the measuré - | to be set cardinality, and Ig8; be the subset of permutationsédn
associated to the properdy # i. (There are consequentty= n conditions.) Thus,
B; means having no fixed point atwhile B; means having a fixed point at tlogs-
tinguishedvaluei. Then, the left hand side of (72) is the number of permutattbat
are derangements, that B,,. As regards the right hand side, thih sum comprises
itself (7}) terms counting possibilities attached to the choices dtesl; < - -+ < i;
each such choice is associated to a fa@gr- - - B;, that describes all permutations
with fixed points at the distinguished points. . ., iy (i.e.,0(i1) = i1, ...,0i, = iL).
Clearly,|B;, - -- B;, | = (n — k)!. Therefore one has

D, =nl— (Tf) (n— 1)1+ (Z) (n—2)l =+ (~1)" (Z)O!,

which rewrites into the more familiar form

D, 11 (—1)"

n! :1_ﬁ+5_'“+ n!
This gives an elementary derivation of the derangement eusrddready encountered
in Chapter Il and obtained there by means of the labelledrsktgcle constructions.

The derivation above is perfectly fine but carrying it out @mplex examples
may represent somewhat of a challenge. In contrast, as wesrplain, there exists
a parallel approach based on multivariate generating ifmumgt which is technically
easy to deal with and has great versatility.

Let us now reexamine derangements in a generating funcémsppctive. Con-
sider the sefP of all permutations and build a superggtas follows. The seQ
is comprised of permutations in which an arbitrary numbefixad points—some,
maybe none, not necessarily all—have bdatinguished (This corresponds to ar-
bitrary products of the3; in the argument above.) For instan@econtains elements
like

1537 2) 173)27 l7 2)37 1727&) l? 2)&) l727§7
where distinguished fixed points are underlined. Cleaflgne removes the distin-
guished elements ofa € Q, what is left constitutes an arbitrary permutation of the
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remaining elements. One has
Q=UXP,

wherel{/ denotes the class of urns that are sets of atoms. In panitubeEGF ofQ is
Q(z) = ¢#/(1 — z). What we've just done is to enumerate the quantities thag¢aipp
in (72), but with the signs “wrong”, i.e., all pluses.

Introduce now the variable to mark the distinguished fixed points in objects
of Q. The exponential BGF is then by general principles of thistéar:

vz 1
Q(z,v) =e T

Let now P(z,u) be the BGF of permutations whetemarks the number of fixed
points. (Let us ignore momentarily the fact thatz, «) is otherwise known.) Per-
mutations withsomefixed points distinguished are generated by the substitutie-

1 4 v inside P(z,u). In other words one has the fundamental inclusion-exctusio
relation

Q(z,v) = P(z,1+v).
This is then easily solved as
P(Z,U) = Q(Z,U - 1)7

so that knowledge of (the eas) gives (the harderP. For the case at hand, this
yields

(u—1)z e~ %

1= P(z,O)—D(z)—l_Z,

and, in particular, the EGF of derangements has been retrieNote that the sought
P(z,0) comes out ag)(z, —1), so that signs corresponding to the sieve formula (72)
have now been put “right”, i.e., alternating.

The process employed for derangements is clearly very gerieis a generating
function analogue of the inclusion-exclusion principleunting objects that satisfy a
number ofsimultaneousonstraints is reduced to counting objects that vicdat@eof
the constraints at distinguished “places”—the latter isally a simpler problem. The
generating function analogue of inclusion-exclusion isntisimply the substitution
v +— u — 1, if a bivariate GF is sought, ar— —1 in the univariate case.

P(z,u) = ¢

Rises in permutations and patterns in word3he book by Goulden and Jack-
son 44 pp. 45-48] describes a useful formalization of the indogirocess operat-
ing on MGFs. Conceptually, it combines substitution andliaifpdefinitions. Once
again, thanodus operands best grasped through examples, two of which are detailed
below.

ExampPLE I11.24. Rises and ascending runs in permutation&.rise (also called arascen}

in a permutationr = o1 - - - 04, iS a pair of consecutive elementso; 1 satisfyingo; < oi+1

(with 1 < ¢ < n). The problem is to determine the numbéy ;, of permutations of size having

exactlyk rises, together with the BGR(z, u). By symmetry, we are also enumerating descents

(defined byo; > 0,+1) as well as ascending runs that are each terminated by ardesce
Guided by the inclusion-exclusion principle, we tackle ¢asier problem of enumerating

permutations witldistinguishedises, of which the set is denoted By For instance3 contains
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elements like

261]348-9-11]1512]5-10]13714,

where those rises that are distinguished are representattdyys. (Note that some rises may
not be distinguished.) Maximal sequences of adjacent disishgd rises (boxed in the repre-
sentation) will be calledlusters Then,3 can be specified by the sequence construction applied
to atoms £) and clusters@) as

B =SEQ(Z + (), where C=(Z /Z2)+(Z /' Z /" Z)+ - = SET>2(2).
since a cluster is an ordered sequence, or equivalently, dusétermore having at least two
elements. This gives the EGF Bfas
. 1 1
Tl—(z4+(er—1—-2)) 2—e*’
which happens to coincide with the EGF of surjections.

For inclusion-exclusion purposes, we need the BGB afith v marking the number of
distinguished rises. A cluster of sizecontainsk — 1 rises, so that
1 v

B(z,v) = T-(G+(e —1-z0)fv) vtl-ev

B(z)

Now, the usual argument applies: the BAFz, u) satisfiesB(z,v) = A(z,1 + v), so that
A(z,u) = B(z,u — 1), which yields the particularly simple form

u—1
(73) Az, u) = ——y-
In particular, this GF expands as
2 3 4
z 2 z 3 2 z

The coefficientsA,, , are known as th&ulerian numbers In combinatorial analysis, these
numbers are almost as classic as the Stirling numbers. Alatbtiiscussion of their properties
is to be found in classical treatises likag] or [248. (From Eq. (73), permutations without
rises are enumerated Bz, —1) = €7, an altogether obvious result.)
Moments derive easily from an expansion of (73)at 1, which gives
1 1 22 1222+ 2)

Az = s Dt ga e @

_1)24,_....

In particular:the mean of the number of rises in a random permutation ofrsize} (n — 1)
and the variance is- 1—12n ensuring concentration of distribution.

The same method applies to the enumeratioasaending runsfor a fixed paramete,
an ascending run of lengthis a sequence of consecutive elemenis; - - - 0;4¢ such that
o; < oiy1 < --- < 0i+e. (Thus, arise is an ascending run of length 1.) We define tetlas a
sequence of distinguished runs which overlap in the sergéhty share some of the elements
of the permutation. The exponential BGF of permutationfwistinguished ascending runs is
then

1 =~ k2"
B(z,v)= ———————, where I(z,v) = In kv —,
(zv) 1—2z—1(z,v) (z:7) ; n!

andl, x is the number of ways of covering the segmignt:] with k distinct intervals of lengté
that are contained ifi, n] and have integral end points. The numbgts, themselves result
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from elementary combinatorics (see also the case of pattenwords below) and one has for
the OGF corresponding tb

£+1

I(z0) =Y Luwa" = e .
(z,v) nz; S e (o RN

(Proof: The first segment in the covering must be placed onettiethe other ones appear in
succession, each shifted right by Ytpositions from the previous one.) The last two equations
finally determine the exponential BGF of permutations witesnarked byz and ascending
runs of length? + 1 marked byu,

(74) A(z,u):B(z,u—l),

given the inclusion-exclusion principle.
The resulting formulee are checked to generalize the casised ¢ = 1). They can
be made explicit by first expanding the OGFz, v) into partial fractions, then applying the

transformatior(1 — wz) ™! — e“* in order to translaté(z, v) into I(z,v). The net result is

L
s where j\(z7 1)) = (1 _ Z)(’U 4 1) + Z ¢ (U)ewj(’U)Z

Jj=1

A(z,u) = Al
1—z—1(z,u—1)
involves a sum of exponentials. In this last equationihi@) are the roots of the characteristic
equationw’ = v(1 + --- + w*™1) and thec;(v) are the corresponding coefficients in the
partial fraction decomposition af(z,v). These expressions were first published by Elizalde
and Noy [L50 who obtained them by means of tree decompositions.

The BGF (74) can be exploited in order to determine quaiéatformation on long runs
in permutations. First, an expansiomat= 1 (also, a direct reasoning: see the discussion of
hidden words in Chapter 1) shows that the mean number of dstgmnuns of lengtl? — 1 is
(n — £+ 1)/¢! exactly, as soon as > ¢. This entails that, ifn = o(¢!), the probability of
finding an ascending run of length- 1 tends to 0 as — oo. What is used in passing in this
argument is the general fact that for a discrete varidblevith values in0, 1,2, ..., one has
(with Iverson’s notation)

B(X > 1) = E([X > 1]) = E(min(X, 1)) < E(X).

An inequality in the converse direction can be obtained ftbmmsecond moment method. In
effect, the variance of the number of ascending runs of kefgt 1 is found to be of the exact
form ayn + B¢ whereay is essentiallyl /¢! and 3, is of comparable order (details omitted).
Then, by Chebyshev’s inequalities, concentration of itistion holds as long a&is such that
(¢ + 1)! = o(n). In this case, with high probability (i.e., with probabylitending to 1 as
tends tooo), there are many ascending runs of length 1. In particular:

Let L,, be the length of the longest ascending run in a random penioataf »
elements. Lety(n) be the smallest integer such thdt> n. Then the distribution
of L, is concentrated in the sense thiat /¢y (n) converges in probability to 1: for
anye > 0, one has

Ly,
Iim P(1—-€e< <l4+e¢e)=1.
n—o0 ( £o(n) )

What has been found here is a fairly sharp threshold phenameBND OF EXAMPLE 111.24.
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> 111.35. Permutations without—ascending runsThe EGF of permutations without-, 2—
and3—ascending runs are respectively

-1 -1 -1
x?i m2i+1 mBi m3i+1 m4i x4i+1
(g (20)! (20 + 1)!) ’ (Z; (30! (3i+ 1)!) ’ (g (4i)!  (4i + 1)!) ’
and so on. (See Carlitz's reviewd] as well as Elizalde and Noy’s articl&$Q for interesting
results involving several types of order patterns in peatioms.)

Many variations on the theme of rises and ascending rundeadycpossible. Lo-
cal order patterns in permutations have been intenselaresed, notably by Carlitz
in the 1970’s. Goulden and Jacks@#f, Sec. 4.3] offer a general theory of patterns
in sequences and permutations. Special permutationsmsa#ssociated with binary
increasing trees are also studied by Flajolet, GourdonMartinez [L85 (by combi-
natorial methods) and Devroy&25 (by probabilistic arguments). On another regis-
ter, the longest ascending run has been found above to beef(bsg n)/ loglogn
in probability. The superficially resembling problem of bséing the length of the
longest increasing sequenterandom permutations (elements must be in ascending
order but need not be adjacent) has attracted a lot of aitentiut is considerably
harder. This quantity is- 2v/n on average and in probability, as shown by a pene-
trating analysis of the shape of random Young tableaus duedan, Shepp, Vershik,
and Kerov B36, 485%. Solving a problem open for over 20 years, Baik, Deift, aod J
hansson19 have eventually determined its limiting distribution. &hndemanding
survey by Aldous and Diaconig] discusses some of the background of this prob-
lem, while Chapter VIII shows how to derive bounds that arehef right order of
magnitude but rather crude, using saddle-point methods.

ExXAMPLE 111.25.  Patterns in words. Take the set of all word$/” = SEQ{.A} over a
finite alphabetd = {ai,...,a-}. A patternp = pip2--- px, Which is particular word of
lengthk has been fixed. What is sought is the B8Kz, u) of W, whereu marks the number
of occurrences of pattenm inside a word ofV. Results of Chapter | already give access to
W (z,0), which is the OGF of words not containing the pattern.

In accordance with the inclusion-exclusion principle, sheuld introduce the clask of
words augmented by distinguishing an arbitrary number otioences op. Define acluster
as a maximal collection of distinguished occurrences tlaaehan overlap. For instance, if
p = aaaaa, a particular word may give rise to the particular cluster:

abaaaaaaaaaaaaabaaaaaaaabhb

aaaaa
aaaaa
aaaaa

Then objects oft decompose as sequences of either arbitrary letters #tanclusters:
X =SEQ(A+C(),

with C the class of all clusters.

Clusters are themselves obtained by repeatedly slidingdttern, but with the constraint
that it should constantly overlap partly with itself. L&t) be the autocorrelation polynomial
of p as defined in Chapter I, and $&t) = c(z) — 1. A moment’s reflection should convince
the reader that"2(z)°~! when expanded describes all the possibilities for formilgters
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of s overlapping occurrences. On the example above, oné(bas= z + 22 + 2° + 2*, and
a particular cluster of 3 overlapping occurrences cornegpdo one of the terms iefé(z)? as
follows:

5
z

e N 5
aaaaa,? 2
S
aadaa 4 X (z4 22+ 2% +2%)
—
agdaaa X (z4 2%+ 2% + 2%).

The OGF of clusters is consequently(z) = z* /(1 — &(z)) since this quantity describes all the
ways to write the patternzf) and then slide it so that it should overlap with itself (tisigjiven
by (1 — &(2))™1). A slightly different way of obtaining this expression@f z) is described in
Note 38 below.

By a similar reasoning, the BGF of clustersiig” /(1 — v&(z)), and the BGF oft’ with
the supplementary variablemarking the number of distinguished occurrences is

1
1—rz—wvzk/(1 —ve(2))
Finally, the usual inclusion-exclusion argument (change v — 1) yields W (z,u) =
X(z,u—1). As aresult:

For a patternp with correlation polynomiak(z) and lengthk, the BGF
of words over an alphabet of cardinality whereu marks the number of
occurrences of, is

X(z,v) =

(u—1e(z) —u
(1 =r2)((u—1De(2) —u) + (u—1)2F
The specializations = 0 gives back the formula already found in Chapter I. The same
principles clearly apply to weighted models correspondmgnequal letter probabilities, pro-
vided a suitably weighted version of the correlation polyia is introduced (Note 38 below).
END OF EXAMPLE I11.25. 0

Wi(z,u) =

There are a very large number of formulae related to patterrsirings. For
instance, BGFs are known for occurrences of one or sevettdrpa under either
Bernoulli or Markov models; see Note 38 below. We refer tosBwowski’'s book458
and Lothaire’s chapte2B(, where such questions are treated systematically in great
detail. Bourdon and Valléesp] have even succeeded in extending this approach to
dynamical sourcesf information, thereby extending a large number of presipu
known results. Their approach even makes it possible toyaadhe occurrence of
patterns in continued fraction representations of reallmeng

> 111.36. Moments of number of occurrencé@he derivatives ofX (z, v) atv = 0 give access
to the factorial moments of the number of occurrences of @patin this way or directly, one
determines

1 2" 221 =r2)(c(z) = 1) + 2%) (u —1)?
-1 2
1—rz + (1—-1r2)? (u=1)+ (1—-rz)3 2!
The mean number of occurrences is’ times the coefficient 0f™ in the coefficient ofu — 1)
andis(n — k 4+ 1)r~*, as anticipated. The coefficient @i — 1) /2! is of the form
2r 2k 2r R (1 4 2kr=" — c(1/7)) n P(z)
(1 —rz)3 (1 —rz)? 1—rz’

W(z,u) = I
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with P a polynomial. There results that the variance of the numbecourrences is of the
form

an + B3, a=7r""2c(1/r) — 14+ r 1 - 2Kk)).
Consequently, the distribution is concentrated aroundniggin. (See also the discussion of
“Borges’ Theorem” in Chapter I, p. 58.) <

o> 111.37. Words with fixed repetitionsLet W (z) = [u*]W (z,u) be the OGF of words
containing a pattern exactlytimes. One has, for > 0 ands = 0 respectively,

2ZPN(z)*~!

S W0 - 52

(5 () —
W) b

with N(z) andD(z) given by
N(z) =1 —7r2)(c(z) = 1)+ 2",  D(z)=(1—-rz)e(z) + 2~
The expression di’{”) is in agreement with Chapter |, Equation (48). <

> 111.38. Patterns in Bernoulli sequenceket A be an alphabet where lettarhas probabil-
ity mo and consider the Bernoulli model where letters in words bosen independently. Fix a
patternp = p; - - - pr and define the finite language @fotrusionsas

r'= U {pi+v1pit2- - pr},
i:c;#0
where the union is over all correlation positions of the grait Define now the correlation
polynomial~(z) (relative top and ther,) as the generating polynomial of the finite language
of protrusions weighted by.. For instancep = ababa gives rise td" = {¢, ba, baba} and

v(z) =1+ TaTp2 + 7r27r524.

Then, the BGF of words with marking length and. marking the number of occurrencesyof
is

(u—1)y(z) —u
Wiz,u) = )
B0 = T 1) — ) & (u— Dl
wherer[p] is the product of the probabilities of lettersiof <

> 111.39. Patterns in binary treesConsider the clas8 of pruned binary trees. An occurrence
of patternt in a treer is defined by a node whose “dangling subtree” is isomorphic tet p
be the size of. The BGFB(z,u) of classB whereu marks the number of occurrencesta$
sought.

The OGF ofB is B(z) = (1 —+/1 —42)/(2z). The quantitypB(zv) is the BGF of3
with v marking external nodes. By virtue of the pointing operatibie quantity

Ui (ot onG)

v=1

describes trees with distinct external nodes distinguished (pointed). The ttyan
V= Z Upu®(2P)F  satisfies V = (VB(20)) y—1 4 usp 5

by virtue of Taylor’'s formula. It is also the BGF of trees witlistinguished occurrences of
Settingv — u — 1 in V then gives baclB(z,u) as

B(z,u) = % (1 ~V1-4: 4(u— 1)zp+1) .

In particular
1
B(z,0) = 5 (1 V14t 4zp+1)
gives the OGF of treesot containing pattern. The method generalizes to any simple variety
of trees and it can be used to prove that the factored repgegien(as a directed acyclic graph)
of a random tree of size has expected siz@(n/+/logn); see R09.
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Ill. 8. Extremal parameters

Apart from additively inherited parameters already exadimat length in this
chapter, another important category is that of parametfiset by a maximum rule.
Two major cases are the largest component in a combinastrniedture (for instance,
the largest cycle of a permutation) and the maximum degreesting of construc-
tions in a recursive structure (typically, the height of @elr. In this case, bivariate
generating functions are of little help. The standard tepm consists in introducing
a collection of univariate generating functions defined iopasing a bound on the
parameter of interest. Such GFs can then be constructedetgythbolic method in
its univariate version.

I11.8.1. Largest components. Consider a constructio = ®{A}, where®
may involve an arbitrary combination of basic construcioand assume here for
simplicity that the construction foB is a non—recursive one. This corresponds to a
relation between generating functions

B(z) = V[A(2)],

where ¥ is the functional that is the “image” of the combinatoriahstruction®.
Elements ofA thus appear as components in an objeet B. Let B denote the
subclass of3 formed with objects whosd—components all have a size at masthe
GF of B is obtained by the same process as tha delf, save thatd(z) should
be replaced by the GF of elements of size at nhogthus,

B®) (2) = O[T, A(2)],
where thetruncation operatoiis defined on series by

b oo
Tof(2) =Y faz"  (f(2) =D fa2").
n=0 n=0

Several cases of this situation have already been encedriteearlier chapters.
For instance, the cycle decomposition of permutationssteaed by

pro) e )

gives more generally the EGF of permutations with longestecy. b,

2 b
PO () = ELE L L2
(2) exp(1 t )

which involves the truncated logarithm. Similarly, the EGfFwords over ann—ary
alphabet

W(z) = (e*)"
leads to the EGF of words such that each letter occurs athises:

2 b\ ™
(®) () — AL L L E
w (z)—<1+1!+2!+ +b! ;
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which now involves the truncated exponential. One findslailyi the EGF of set
partitions with largest block of size at mdst

2 b
S<b>(z)=exp<%+%+---+%).

A slightly less direct example is that of the longest run iregugence of binary
draws. The collectioiV of binary strings over the alphabgt, b} admits the decom-
position

W = SEQ(a) - SEQ(b SEQ(a)),
corresponding to a “scansion” dictated by the occurrentésedletterb. The corre-
sponding OGF then appears under the form

1 1
. m WhereY(Z) = 12

corresponds ty) = SEQ(a). Thus, the OGF of strings with at mdst- 1 consecutive
occurrences of the letterobtains upon replacing (z) by its truncation:

W(z)=Y(2)

1
(k) vy~ (k) _ 2, . k—1
W (z)=Y (Z)l—zYU“)(z) whereY'"W/ (z) =142+ 2"+ -+ 27,
so that i
1—2"
Wk ()= ——— = .
(2) 1—2z+ zkt+1

Such generating functions are thus easy to derive. The dstimpnalysis of
their coefficients is however often hard when compared tatiadgarameters, owing
to the need to rely on complex analytic properties of thedation operator. The bases
of a general asymptotic theory have been laid by Gour@d#|[

> 111.40. Smallest component$he EGF of permutations with smallest cycle of sizé is

z 22 zb)

exp(—f —F — - — 5
1—2z ’
A symbolic theory ofsmallestcomponents in combinatorial structures is easily develase
regards GFs. Elements of the corresponding asymptotiaytteee provided by Panario and
Richmond in B85. <

Ill. 8.2. Height. The degree of nesting of a recursive construction is a génera
ization of the notion of height in the simpler case of tree@ns€ider for instance a
recursively defined class

B = o{B},
where® is a construction. LeB[" denote the subclass 8fcomposed solely of ele-
ments whose construction involves at mbsipplications ofb. We have by definition

B+ = (Bl

Thus, with¥ the image functional of constructiah, the corresponding GFs are de-
fined by arecurrence

B+ — g[BlH],
Itis usually convenient to start the recurrence with théahcondition B[=1(z) = 0.
(This discussion is related to semantics of recursion, p. 31
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Consider for instance general plane trees defined by

G =N x SEQ(G) sothat G(z) :

e

Define the height of a tree as the number of edges on its lobgasth. Then the set
of trees of heighk h satisfies the recurrence

g% = N, g = A x SEQ(g!M).
Accordingly, the OGF of trees of bounded height satisfies

1(,) = Ol = (P+1] () — z
G 2)=0,GY%(z2) =2 G (z) = TG

The recurrence unwinds and one finds
(75) Gl (z) =

1—2
where the number of stages in the fraction equalshis is the finite form (tech-
nically known as a “convergent”) of eontinued fractiorexpansion. From implied
linear recurrences and an analysis based on Mellin tramsfate Bruijn, Knuth, and
Rice [113 have determined the average height of a general planedreet /7n.
We provide a proof of this fact in Chapter V dedicated to aggilons of rational and
meromorphic asymptotics.
For plane binary trees defined by
B=Z+BxB sothat  B(z) = z + (B(2))?,
(size is the number of external nodes), the recurrence is
Bl(z) = 2, BrHU(z) = 2 + (BM(2))2.
In this case, thé3["! are the approximants to a “continuous quadratic form”, lgme
BMG) =24+ (24 (z+ ()
These are polynomials of degré® for which no closed form expression is known,
nor even likely to exi§t However, using complex asymptotic methods and singylarit
analysis, Flajolet and Odlyzkd 97] have shown that the average height of a binary
plane tree isv 2\/7n.
For Cayley trees, finally, the defining equation is
T=2Z%SET(T) sothat T(z)=zel®,
The EGF of trees of bounded height satisfy the recurrence

T[O] (Z) =z, T[h+1] (Z) — ZeT[h](z)-

5These polynomials are exactly the much studied Mandelbobyinpmials whose behaviour in the
complex plane gives rise to extraordinary graphics.
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We are now confronted with a “continuous exponential”,

. ze?

TP (2) = zezeze
The average height was found by Rényi and Szekeres who lapsegain to complex
asymptotics and found it to be v/27n.
These examples show that height statistics are closelieteta iteration theory.
Except in a few cases like general plane trees, normally gebah is available and
one has to resort to complex analytic methods as exposedtirctoning chapters.

I1l. 8.3. Averages and moments.For extremal parameters, the GF of mean val-
ues obey a general pattern. LZ€be some combinatorial class with GEz). Consider
for instance an extremal paramefesuch thatf(")(z) is the GF of objects withy-
parameteat mosth. The GF of objects for whicly = h exactlyis equal to

M) = 1),
Thus differencing gives access to the probability distidn of height overF. The
generating function of cumulated values (providing medunasafter normalization)

is then -
Son M) - )]
ho:oo
> - M)
h=0
as is readily checked by rearranging the second sum, oraguily using summation
by parts.

For maximum component size, the formulae involve truncassdor series. For
height, analysis involves in all generality the differesnbetween the fixed point of a
functional® (the GF f(z)) and the approximations to the fixed poirft{ (z)) pro-
vided by iteration. This is a common scheme in extremalsiasi.
>> 111.41. Hierarchical partitions.Lete(z) = e* — 1. The generating function

e(e(--- (e(2)))) (h times)
can be interpreted as the EGF of certain hierarchical parsit (Such structures show up in
statistical classification theor¢ 75, 476.) <

> 111.42. Balanced treesBalanced structures lead to counting GFs close to the ortagmeld
for height statistics. The OGF of balanced 2-3 trees of hdiglounted by the number of leaves
satisfies the recurrence

70 (z) = ZM (2° + 2°) = (2" (2))* + (2"(2))?,

which can be expressed in terms of the iterates(ef) = 2> + 2°. Itis also possible to express
the OGF of cumulated values of the number of internal nodssiéh trees. <

(1]

(2)

> 111.43. Extremal statistics in random mapping@ne can express the EGFs relative to the
largest cycle, longest branch, and diameter of functioraplgs. Similarly for the largest tree,
largest component. [Hint: se&9g for details.] <

> 111.44. Deep nodes in treesThe BGF giving the number of nodes at maximal depth in
a general plane tree or a Cayley tree can be expressed in ¢éransontinued fraction or a
continuous exponential. <
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lll.9. Perspective

The message of this chapter is that we can use the symbolfoohebt just to
count combinatorial objects but also to quantify their pndigs. The relative ease
with which we are able to do so is testimony to the power of tlethod as major
organizing principle of analytic combinatorics.

The global framework of the symbolic method leads us to arabstructural cat-
egorization of parameters of combinatorial objects. Firg concept oinherited pa-
rametergpermits a direct extension of the already seen formal tagiosl mechanisms
from combinatorial structures to GFs, for both labelled anthbelled objects—this
leads to MGFs useful for solving a broad variety of classicathbinatorial problems.
Second, the adaptation of the theoryrézursive parameterprovides information
about trees and similar structures, this even in the absgreelicit representations
of the associated MGFs. Thirextremal parametenshich are defined by a maximum
rule (rather than an additive rule) can be studied by anmadyfmilies of univariate
GFs. Yet another illustration of the power of the symbolictimeel is found in the
notion of complete GFswhich in particular enable us to study Bernoulli trials and
branching processes.

As we shall see starting with Chapter IV, these approachesrbe especially
powerful since they serve as the basis for #symptotic analysis of properties of
structures Not only does the symbolic method provide precise inforomaabout
particular parameters, but also it paves the way for theodlexty of general theorems
that tell us what to expect about a broad variety of combilttypes.

Multivariate generating functions are a common tool fromssical combinatorial analy-
sis. Comtet’s bookd8] is once more an excellent source of examples. A systentiatizaf
multivariate generating functions for inherited paramete given in the book by Goulden and
Jackson244].

In contrast generating functions for cumulated values oaipeters (related to averages)
seemed to have received relatively little attention urité advent of digital computers and
the analysis of algorithms. Many important techniques arplicit in Knuth's treatises, es-
pecially [306, 307. Wilf discusses related issues in his bodlO§ and the paper494.
Early systems specialized to tree algorithms have beeropegpby Flajolet and Steyaert in
the 1980s 169, 213, 214, 455 see also Berstel and Reutenauer's wofd][ Some of the
ideas developed there initially drew their inspirationnfrahe well established treatment of
formal power series in noncommutative indeterminates;tisedoooks by Eilenbergld9 and
Salomaa—SoittoladR3 as well as the proceedings edited by Bersté] [ Several computations
in this area can nowadays even be automated with the helpnoputer algebra systems, as
shown by Flajolet, Salvy, and Zimmermar20p, 424, 51h






Part B

COMPLEX ASYMPTOTICS






A\

Complex Analysis, Rational and
Meromorphic Asymptotics

The shortest path between two truths in the real domain
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Generating functions are a central concept of combindttiréory. In Part A,
we have treated them as formal objects, that is, as formakpeeries. Indeed, the
major theme of Chapters I-IIl has been to demonstrate hovalgebraic structure
of generating functions directly reflects the structureahbinatorial classes. From
now on, we examine generating functions in the lighaoélysis This point of view
involves assigningaluesto the variables that appear in generating functions.

Comparatively little benefit results from assigning onlglrealues to the vari-
ablez that figures in a univariate generating function. In contrassigningcomplex
values turns out to have serendipitous consequences. Waelowo, a generating
function becomes a geometric transformation of the compliaxe. This transforma-
tion is very regular near the origin—one says that @flytic (or holomorphig. In
other words, nea, it only effects a smooth distortion of the complex planertier
away from the origin, some cracks start appearing in thaigctThese cracks—the
dignified name issingularities—correspond to the disappearance of smoothness.
turns out that a function’s singularities provide a wealtinformation regarding the
function’s coefficients, and especially their asymptotiterof growth. Adopting a
geometric point of view for generating functions has a lgygg-off.

By focussing on singularities, analytic combinatoricatte in the steps of many
respectable older areas of mathematics. For instance; Eadegnized that the fact
for the Riemann zeta functiof(s) to become infinite at 1 implies the existence of
infinitely many prime numbers, while Riemann, Hadamard, dath Vallée-Poussin
uncovered deeper connections between quantitative gregef prime numbers and
singularities ofl /{(s).

1Qu0ted in The Mathematical Intelligencer, v. 13, no. 1, \&firit991.
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The purpose of this chapter is largely to serve as an acéesstboduction or a
refresher of basic notions regarding analytic functiong &tart by recalling the el-
ementary theory of functions and their singularities inydestuned to the needs of
analytic combinatorics. Cauchy’s integral formula expesscoefficients of analytic
functions as contour integrals. Suitable uses of Cauchyégyral formula then make
it possible to estimate such coefficients by suitably sglgan appropriate contour
of integration. For the common case of functions that hamgldarities at a finite
distance, the exponential growth formula relatesltivationof the singularities clos-
est to the origin—these are also known as dominant singielsi-to theexponential
order of growthof coefficients. Thaatureof these singularities then dictates the fine
structure of the asymptotics of the function’s coefficieetpecially thesubexponen-
tial factorsinvolved.

As regards generating functions, combinatorial enun@maproblems can be
broadly categorized according to a hierarchy of increastngctural complexity. At
the most basic level, we encounter scattered classes, atedimple enough, so that
the associated generating function and coefficients carsloe explicit. (Examples of
Part A include binary and general plane trees, Cayley tosrangements, mappings,
and set partitions). In that case, elementary real-arsatgshniques usually suffice
to estimate asymptotically counting sequences. At the, ieidrmediate, level, the
generating function is still explicit, but its form is sudiat no simple expression is
available for coefficients. This is where the theory devetbin this and the next chap-
ters comes into play. It usually suffices to have an exprageita generating function,
but not necessarily its coefficients, so as to be able to deducesgrasiymptotic es-
timates of its coefficients. (Surjections, generalizecaidgements, unary-binary trees
are easily subjected to this method. A striking examplet, dfidrains, is detailed in
Section IV. 4.) Properties of analytic functions then mdks &nalysis depend only on
local propertiesof the generating function at a few points, its dominant slagties.
The third, highest, level, within the perspective of analgpmbinatorics, comprises
generating functions that can no longer be made explicitat®ionly determined by a
functional equationThis covers structures defined recursively or implicifyrbeans
of the basic constructors of Part A. The analytic approa@nepplies to a large
number of such cases. (Examples include simple familieseafst balanced trees,
and the enumeration of certain molecules treated at the etimiscchapter. Another
characteristic example is that of nonplane unlabelledstiesated in Chapter VII.)

As we are going to see in this chapter and the next four onegthlytic method-
ology applies to almost all the combinatorial classes st Part A, which are pro-
vided by the symbolic method. In the present chapter we aautythis programme
for rational functionsandmeromorphic functionsvhere the latter are defined by the
fact their singularities are simpjyoles

IV. 1. Generating functions as analytic objects

Generating functions, considered in Part A as pufetynal objects subject to
algebraic operations, are now going to be interpretezhadyticobjects. In so doing
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FIGURE IV.1. Left: the graph of the Catalan OGF{(z), for z € (—1, +1); right: the
graph of the derangement EGFz), for z € (—1,+1).

one gains an easy access to the asymptotic form of their cieetffs. This informal
section offers a glimpse of themes that form the basis of @napv—VII.

In order to introduce the subject softly, let us start witlotsimple generating
functions, one,f(z), being the OGF of the Catalan numbers (¢fz), p. 33), the
other,g(z), being the EGF of derangements (2f" (z), p. 113):

1 exp(—=z
@ fo)= s (-VI=E),  gz)= 222,
At this stage, the forms above are merely compact desanptibformal power series
built from the elementary series

1 1
(1_y)_1 - 1+y+y2+7 (1—y)1/2 = 1—§y—§y2_7
1 1
exply) = byt gyt

by standard composition rules. Accordingly, the coeffitsest both GFs are known
in explicit form

fm 1 =1 () =l = (g )

Stirling’s formula and comparison with the alternatingisegivingexp(—1) provide

respectively
4"7,
) fo ~ —,  gn= ~ e 1=0.3678T.
n—oo \/7n3 n—oo
Our purpose now is to provide intuition on how such approxiames could be
derived without a recourse to explicit forms. We thus exanhreuristically for the

moment, the direct relationship between the asymptotiméq2) and the structure of
the corresponding generating functions in (1).

Granted the growth estimates available fgrandg,, it is legitimate to substitute
in the power series expansions of the GKs) andg(z) any real or complex value
of a small enough modulus, the upper bounds on modulus bgirg ; (for f) and
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FIGURE IV.2. The images of regular grids b(z) (left) andg(z) (right).

pg = 1 (for g). Figure 1 represents the graph of the resulting functionsmsuch
real values are assigned 0 The graphs are smooth, representing functions that are
differentiable any number of times ferinterior to the interval—p, +p). However, at
the right boundary point, smoothness stop&:) become infinite at = 1, and so it
even ceases to be finitely defingti) does tend to the limi{ asz — (1), but its
derivative becomes infinite there. Such special points atlwsmoothness stops are
calledsingularities a term that will acquire a precise meaning in the next sestio

Observe also that, in spite of the series expressions bémeggént outside the
specified intervals, the functiorf§z) andg(z) can becontinuedn certain regions: it
suffices to make use of the global expressions of Equatiqnvft) exp and\/ being
assigned their usual real-analytic interpretation. Fetance:

1

JE=5(1-v5),  g-2=%.

Such continuation properties, most notably to ¢benplexrealm, will prove essential
in developing efficient methods for coefficient asymptotics

One may proceed similarly with complex numbers, startintpwiumbers whose
modulus is less than the radius of convergence of the sesfgsy the GF. Figure 2
displays the images of regular grids pyandg, as given by (1). This illustrates the fact
that a regular grid transforms into an orthogonal networtusf/es and more precisely
that f andg preserve angles—this property corresponds to complegrdifitiability
and is equivalent to analyticity to be introduced shortlgeBingularity off is clearly
perceptible on the right of its diagram, sincezat i (corresponding tgf (z) = %),
the functionf folds lines and divides angles by a factor of 2.

Let us now turn to coefficient asymptotics. As is expresse@pythe coefficients
fn andg,, each belong to a general asymptotic type for coefficientsfahation F,
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namely,
[2"]F(z) = A"0(n),

corresponding to an exponential growth fac#tst modulated by a tame facté(n),
which is subexponential. Here, one has= 4 for f,, and A = 1 for g,; also,
0(n) ~ 1(v/mn3)~tfor f, andd(n) ~ e~ for g,. Clearly,A should be related to the
radius of convergence of the series. We shall see that ablgtrfor combinatorial gen-
erating functions, the exponential rate of growth is givgrdb= 1/p, wherep is the
first singularity encountered along the positive real aXisgorem 1V.6). In addition,
under general complex-analytic conditions, it will be &fithed that/(n) = O(1) is
systematically associated to a simple pole of the gengratimction (Theorem IV.10,
p. 245), whiled(n) = O(n—?/?) systematically arises from a singularity that is of the
square-root type (Chapters VI and VII). In summary, as thegpter and the next ones
will copiously illustrate, the coefficient formula

3) [2"]F(2) = A™0(n),

with its exponentially dominating term and its subexporeadriactor, is central. We
have:

First Principle of Coefficient Asymptotics. Thelocationof a function’s
singularities dictates thexponential growtlfA™) of its coefficients.
Second Principle of Coefficient AsymptoticsThenatureof the function’s
singularities determines the associatgexponential factdp(n)).

Observe that the rescaling rule,
[z"]F(z) = p~"[2"]F(pz),

enables one to normalize functions so that they are singiilar Then various the-
orems, starting with Theorems V.9 and V.10, provide sidfit conditions under
which the following central implication is valid,

(4) hz)~o(z) = [Z"h(z) ~ [2"]o(2).

Thereh(z), whose coefficients are to be estimated, is a function samgull andr(z)

is a local approximation near the singularity; usuallys a much simpler function,
typically like (1 — z)“ 1og5(1 — z) whose coefficients are comparatively easy to esti-
mate (Chapter VI). The relation (4) expressesapping between asymptotic scales
of functions near singularities and asymptotics scalesoefficients Under suitable
conditions, it then suffices to estimate a function locatlp éew distinguished points
(singularities), in order to estimate its coefficients apyatically.

> IV.1. Euler, the discrete, and the continuoustulers’s proof of the existence of infinitely

many prime numbers illustrates in a striking manner the waafysis of generating functions
can inform us on the discrete realm. Define, for real 1 the function

() =3

n=1
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known as the Riemann zeta function. The decompositiorafiges over the prime numbers
2,3,5,...)

11 11 11
C(S)7(1+§+225+"')<1+§+32s+"')<1+§+525+"')“'

e

expresses precisely the fact that each integer has a urgégoengosition as a product of primes.
Analytically, the identity (5) is easily checked to be vaiat all s > 1. Now suppose that there
were only finitely many primes. Lettend to1™ in (5). Then, the left hand side becomes
infinite, while the right hand side tends to the finite lirhft, (1 — 1/p)~': a contradiction has
been reached. <

®)

> IV.2. Elementary transfersElementary series manipulation yield the following gehega
sult: Let h(z) be a power series with radius of convergeneel and assume thdi(1) # 0;
then one has

ny h(2) n h(1) n 1 h(1)
[z ]1 — h(1), [z2"h(2)V1 —z Pt [z2"]h(2) log T .
See Bender’s survey] for many similar statements. <

> IV.3. Asymptotics of generalized derangemeifitse EGF of permutations without cycles of
length 1 and 2 satisfies (p. 113)

22 _
6zz/2 63/2

j(z) = 4 with  j(2)

~ .
z—1 1—2,’

-3/2

Analogy with derangements suggests that]j(z) ~ e . [For a proof, use Note 2 or

refer to Example 8.] Here is a table of exact valueqzfj(z) (with relative error of the

approximation bye~3/2 in parentheses):
n=>5 n =10 n =20 n = 50
gn : 0.2 0.22317 0.2231301600 0.22313016014842982893328640022
error:  (10~1) (2-107%) (3-10719) (10733)

The quality of the asymptotic approximation is extremelgdcsuch a property being invariably
attached to polar singularities.

IV. 2. Analytic functions and meromorphic functions

Analytic functionsre a primary mathematical concept of asymptotic theorgyTh
can be characterized in two essentially equivalent ways (g£2.1): by means of
convergent series expansions (a la Cauchy and Weierstral3py differentiability
properties (a la Riemann). The first aspect is directlytegldo the use of generating
functions for enumeration; the second one allows for a piwabstract discussion
of closure properties that usually requires little comfiata

Integral calculus with analytic functions (see IV. 2.2)asgs a shape radically
different from what it is in the real domain: integrals be@quintessentially inde-
pendent of details of the integration contour—certaingy/phime example of this fact
is Cauchy’s famous residue theorem. Conceptually, thispeddence makes it pos-
sible to relate properties of a function at a point (e.g. dbefficients of its expansion
at 0) to its properties at another far-away point (e.g. gdue at a pole).
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The presentation in this section and the next one congiauriénformal revied
of basic properties of analytic functions tuned to the neddsymptotic analysis of
counting sequences. The entry i BENDIX B: Equivalent definitions of analyticity
p. 687 provides further information, in particular a prodftioe Basic Equivalence
Theorem, Theorem IV.1 below. For a detailed treatment, er the reader to one
of the many excellent treatises on the subject, like the bdmkDieudonné129,
Henrici [265, Hille [269, Knopp [299, Titchmarsh 69, or Whittaker and Wat-
son [493.

IV.2.1. Basics. We shall consider functions defined in certaggionsof the
complex domainC. By a region is meant anpensubset of the complex plane
that isconnectedHere are some examples:

~-

simply connected domain slit complex plane indented disc nubus

Classical treatises teach us how to extend to the complexaiothe standard
functions of real analysis: polynomials are immediatelieaded as soon as complex
addition and multiplication have been defined, while theamemntial is definable by
means of Euler’s formula. One has for instance

22 = (22 — y?) + 2ixy, e” = e cosy + ie” siny,
if z = x + 1y, thatis,x = R(z) andy = $(z) are the real and imaginary partsof
Both functions are consequently defined over the whole cexybaneC.

The square-root and the logarithm are conveniently desgiifbpolar coordinates

by
6) vz = pe?, logz =logp+i,

if z = pe’. One can take the domain of validity of (6) to be the complenplslit

along the axis fron to — oo, that s, restrict) to the open intervgl—, +), in which

case the definitions above specify what is known apthmeipal determination There

is no way for instance to extend by continuity the definitidny6: in any domain
containing O in its interior since, far > 0 andz — —a, one hasy/z — iy/a as

z — —a from above, while,/z — —i\/a asz — —a from below. This situation is
depicted here:

2The reader previously unfamilar with the theory of analytinctions should essentially be able to
adopt Theorems V.1 and IV.2 aaxXiom$ and start from there using basic definitions and a fair krealgke
of elementary calculus. Figure 18 at the end of this chagie273) recapitulates the main results of
relevance taAnalytic Combinatorics
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The values of/z
asz varies alongz| = a.

The pointz = 0 where several determinations “meet” is accordingly knowraa
branch point

Analytic functions. First comes the main notion of an analytic function that
arises from convergent series expansions and is closeltetelo the notion of gener-
ating function encountered in previous chapters.

Definition IV.1. A functionf(z) defined over a regiof? is analyticat a pointz, € Q
if, for z in some open disc centred &t and contained irf2, it is representable by a
convergent power series expansion

(7) F(2) =" enlz = 20)™

n>0
A function is analytic in a regiof iff it is analytic at every point of).

As derived from an elementary property of power series,rgav&inctionf that is
analytic at a pointg, there exists a disc (of possibly infinite radius) with thegerty
that the series representirfi¢z) is convergent foe inside the disc and divergent for
outside the disc. The disc is called ttlisc of convergencand its radius is theadius
of convergencef f(z) atz = zo, which will be denoted bR cony (f; 20). Quite ele-
mentarily, the radius of convergence of a power series gawdormation regarding
the rate at which its coefficients grow; see Subsection Bb&low for developments.
Itis also easy to prove by simple series rearrangement (se€XDIX B: Equivalent
definitions of analyticityp. 687) that if a function is analytic at, it is then analytic
at all points interior to its disc of convergence.

Consider for instance the functigitz) = 1/(1 — z) defined ovelC \ {1} in the
usual way via complex division. It is analytic at O by virtuktbe geometric series

sum,
1 n
Tl DERER
n>0
which converges in the dige| < 1. Ata pointzy # 1, we may write
I 1 1 1
1—2z  1—z—(2—20) l—201—-572
(8) Z < 1 )n+1 0
= (Z — Zo)n.
n>0 1 =20

The last equation shows th#(z) is analytic in the disc centred at with radius
|1 — 2|, that is, the interior of the circle centredztand passing through the point 1.
In particularRconv (f, 20) = |1 — 20| and f(z) is globally analytic in the punctured
planeC \ {1}.
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The last example illustrates the definition of analyticilowever, the series re-
arrangement approach that it uses might be difficult to cautyfor more complicated
functions. In other words, a more manageable approach tgtaity is called for.
The differentiability properties developed next providels an approach.

Differentiable (holomorphic) functions. The nextimportant notion is a geomet-
ric one based on differentiability.

Definition IV.2. A functionf(z) defined over a regiof® is calledcomplex-differen-
tiable (alsoholomorphig at z, if the limit, for complex,

lim flzo+6) — f(20)

5—0 1)
exists. (In particular, the limit is independent of the watends to0 in C.) This limit
is denoted as usual bf/(zg) or d—“"zf(z)\zo. A function is complex-differentiable {
iff it is complex-differentiable at every € Q.

Clearly, if f(z) is complex-differentiable at, and f'(z¢) # 0, it acts locally as a
linear transformation:

f(2) = f(20) ~ f'(20)(2 — 20) (z = 20).
Thenf(z) behaves in small regions almost like a similarity transfation (composed
of a translation, a rotation, and a scaling). In partictitateserves anglésind infin-
itesimal squares get transformed into infinitesimal sgsiesee Figure 3 for a render-
ing.
For instance the functiogyz, defined by (6) in the complex plane slit along the
ray (—oo, 0), is complex-differentiable at anyof the slit plane since

: \/z—i- —Vz V14+6/z—-1 1
©) %Lo H%)\/z 5 27

which extends the customary proof of real analysis. Sityilay1 — z is analytic in
the complex plane slit along the ré&y, +c0). More generally, the usual proofs from
real analysis carry over almost verbatim to the complexetd the effect that

! 1
ol =1 +ds G =ra+sds (3) =—F (Foa) = (o0
The notion of complex differentiability is thus much moremageable than the notion
of analyticity.
It follows from a well known theorem of Riemann (see for imsta 65 vol. 1,
p 143] and A°PENDIX B: Equivalent definitions of analyticityp. 687) that analyticity
and complex differentiability are equivalent notions.

Theorem IV.1 (Basic Equivalence TheoremA function is analytic in a regiof if
and only if it is complex-differentiable in.

The following are known facts (see again Appendix B): if adtion is analytic
(equivalently complex-differentiable) 1, it admits (complex) derivatives of any or-
der there. This property markedly differs from real anaysiomplex differentiable

A mapping of the plane that locally preserves angles is afleccaconformalmap.
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RN,

S

LR
R

R

FIGURE IV.3. Multiple views of an analytic function. The image of the dom& =
{z | IR(2)] < 2,I9(2)| < 2} by f(2) = exp(z) + z + 2: [top] transformation of a
square grid irf2 by f; [middle] the modulus and argument §fz); [bottom] the real and
imaginary parts off (z).

(equivalently, analytic) functions are all smooth. Alsaidatives of a function are
obtained through term-by-term differentiation of the ssniepresentation of the func-
tion.

Meromorphic functions. We finally introducemeromorphié functions that are
mild extensions of the concept of analyticity (or holomoypand are essential to the
theory.

The quotient of two analytic functiong(z)/g(z) ceases to be analytic at a point
a whereg(a) = 0. However, a simple structure for quotients of analytic fiors
prevails.

Definition IV.3. A functionh(z) is meromorphi@t z iff, for z in a neighbourhood of
zo With z # zp, it can be represented §5z)/g(z), with f(z) andg(z) being analytic

4“Holomorphic" and “meromorphic” are words coming from Gkeeneaning respectively “of com-
plete form” and “of partial form”.
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at zo. In that case, it admits neat, an expansion of the form

(10) h(z) = Z hn(z — 20)".

n>—M
If h_as # 0and M > 1, thenh(z) is said to have goleof order M at z = zy. The
coefficienti_, is called theresidueof h(z) at z = 2o and is written as

Res[h(z); z = z].

A function is meromorphic in a region iff it is meromorphicaaty point of the region.

IV.2.2. Integrals and residues. A path in a regiorf? is described by its param-
eterization, which is a continuous functiormapping|0, 1] into 2. Two pathsy, v’
in  having the same end points are said tdbenotopidin ) if one can be contin-
uously deformed into the other while staying witl§tras in the following examples:

homotopic paths ‘ @ @

A closed pathis defined by the fact that its end points coincid€d) = (1), and
a path issimpleif the mappingy is one-to-one. A closed path is said to blap of
Q if it can be continuously deformedlithin €2 to a single point; in this case one also
says that the path is homotopic to 0. In what follows we imljicestrict attention to
paths that are assumed to be rectifiable. Unless othervaitaelsall integration paths
will be assumed to be oriented positively.

Integrals along curves in the complex plane are defined inghal way as curvi-
linear integrals of complex-valued functions. Explicitlet f(x + iy) be a function
and~ be a path; then,

/ fe)de = / FO/ @)Y (1) dt

1
- /[AC—BD]dt—H’/ [AD + BC| dt,
0 0

wheref = A+ B andy’ = C +1iD. However integral calculus in the complex plane
is of a radically different nature from what it is on the raakl—in a way it is much
simpler and much more powerful. One has:

Theorem IV.2 (Null Integral Property) Let f be analytic inQ2 and letA be a simple
loop ofQ2. Then/, f = 0.

5By default, paths used in this book are assumed to be pdgitireented piecewise continuously
differentiable (hence rectifiable); in addition, closedhseare assumed to be positively oriented.
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Equivalently, integrals are largely independent of dstafl contours: forf analytic
in 2, one has

(1) [r=]+

providedy and~’ are homotopic (not necessarily closed) pathQ.im proof of The-
orem IV.2 is sketched in APENDIX B: Equivalent definitions of analyticity. 687.

Residues.The importantResidue Theoremue to Cauchy relateglobal prop-
erties of a meromorphic function (its integral along closedves) to purelylocal
characteristics at designated points (the residues ag)ole

Theorem IV.3 (Cauchy’s residue theoreml.et 2(z) be meromorphic in the regiof
and let\ be a simple loop if2 along which the function is analytic. Then

% A h(z)dz = zs:Res[h(z); z = s,
where the sum is extended to all polesf ~(z) enclosed by.
PROOF (Sketch) To see it in the representative case whétg has only a pole at
z = 0, observe by appealing to primitive functions that

P dz

/\h(z)dz: > h”LHL’LhI N

n>—M
n#t—1

where the bracket notatidm(z)]| , designates the variation of the functio(x) along
the contour\. This expression reduces to its last term, itself equa&itg._,, as is
checked by using integration along a circle (set re*’). The computation extends
by translation to the case of a unique pole at «.

In the case of multiple poles, we observe that the simple t@ponly enclose
finitely many poles (by compactness). The proof then follnos a simple decom-
position of the interior domain of into cells each containing only one pole. Here is
an illustration in the case of three poles.

&

(Contributions from internal edges cancel.) O

Global (integral) to local (residues) connectiongiere is a textbook example of
a reduction from global to local properties of analytic ftions. Define the integrals

© dr
1 ::/ —_—
" oo L2
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and consider specifically,. Elementary calculus teaches us tliat= 7 since the
antiderivative of the integrand is an arc tangent:

o0
I = / _de [arctan 2]t = 7.
oo 1+ 22 o0

Here is an alternative, and in many ways more fruitful, deion. In the light
of the residue theorem, we consider the integral over theleviiee as the limit of
integrals over large intervals of the forfa R, +R], then complete the contour of
integration by means of a large semi-circle in the upperplhe, as shown below:

-R o +R
Let v be the contour comprised of the interval and the semi-cilciside~, the
integrand has a pole at= i, where

1 1 1 1

1+22 (z+i)x—i) 2x—i
so that its residue there isi/2. By the residue theorem, the integral taken oyés
equal to2ir times the residue of the integrandiatAs R — oo, the integral along
the semi-circle vanishes (it is less thaR /(1 + R?) in modulus), while the integral
along the real segment givésin the limit. There results the relation givirlg:

1 .
I, = 2im Res (1—1——12’33 = z) = (2im) (—%) =T.

The evaluation of the integral in the framework of complerlgsis rests solely
upon the local expansion of the integrand at special polirete( the point). This is a
remarkable feature of the theory, one that confers it mudiplétity, when compared
to real analysis.

> IV.4. The general integral,,,. Leta = exp(g—fn) so thato®™ = —1. Contour integration
of the type used fof; yields

S 1 -
Iy = 2i7rjz_;ReS <W;x:a23 1) )

while, for anys = o*~! with 1 < j < m, one has

]

1 1 1 B
1422 emp2mpB2m—1lag -3~ 2mzxz—pf
As a consequence,
Loy, = — & (a+a3+...+a2m_l) :%.
m msin 7~

In particular,l, = w/v/2, Is = 21/3, Is = £/20/2 + /2, and 1 I5, L I, are expressible by
radicals, but%h, %.[9 are not. The special casé;ein, %1257 are expressible by radicals.<]
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> IV.5. Integrals of rational fractionsGenerally, all integrals of rational functions taken over
the whole real line are computable by residues. In particula

g /+°° dx K /+°° dzx
e (L a)m? T ) (124 22)(22 4+ 22) - (m2 + 22)
can be explicitly evaluated. <
Cauchy’s coefficient formula.Many function-theoretic consequences derive from

the residue theorem. For instancef iis analytic in€, zo € Q and\ is a simple loop
of Q2 encirclingzg, one has

(12) o) = = A 102

2 C— 2z
This follows directly since

Res [f(¢)/(¢ — 20);¢ = 0] = f(20).

Then, by differentiation with respect t@ under the integral sign, one gets similarly

(13) f(k) (20) /f = 2) k+1

The values of a functlon and its derlvatlves at a point cas Heiobtained as values of
integrals of the function away from that point. The world n&dytic functionsis a very
gentle one in which to live: contrary to real analysis, a tiorcis differentiableany
number of timeas soon as it is differentiabt;ce Also, Taylor’s formula invariably
holds: as soon af(z) is analytic atzg, one has

(14) f(2) = f(z0) + f'(20)(2 — 20) + %f”(zo)(z )2

with the representation being convergent in a small distredratz,. [Proof: a veri-
fication from (12) and (13), or a series rearrangement as.ir)(B. 688.]

A very important application of the residue theorem consewefficients of ana-
lytic functions.

Theorem IV.4 (Cauchy’s Coefficient Formula) et f(z) be analytic in a region con-
taining 0 and let\ be a simple loop around that is positively oriented. Then the
coefficienfz"] f (z) admits the integral representation

fa = 106 = 5= [ 16 S

24T
PrRooF This formula follows directly from the equalities

5= [ 1) g = Res [0z = 0] = [)7(2),

29

of which the first follows from the residue theorem, and theosel from the identifi-
cation of the residue at 0 as a coefficient. O
Analytically, the coefficient formula allows one to dedunéirmation about the
coefficients from the values of the function itself, usingqdately chosen contours of
integration. It thus opens the possibility of estimating toefficientd2"]f(z) in the
expansion off (z) near0 by using information oryf(z) awayfrom 0. The rest of this
chapter will precisely illustrate this process in the caketional and meromorphic
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functions. Observe also that the residue theorem provigesitmplest known proof
of the Lagrange inversion theorem (seeRENDIX A: Lagrange Inversionp. 677)
whose rble is central to tree enumerations, as we saw int€fsapand Il. The notes
below explore some independent consequences of the rehigiiem and the coeffi-
cient formula.

> IV.6. Liouville’s Theoremlf a function f(z) is analytic in the whole of and is of modulus
bounded by an absolute constafitz)| < B, then it must be a constant. [By trivial bounds,
upon integrating on a large circle, it is found that the Tagoefficients at the origin of index
> 1are all equal to 0.] Similarly, if (z) is of at most polynomial growthf(z)| < B (]z|+1)"
over the whole ofC, then it must be a polynomial. <

> IV.7. Lindelof integrals. Leta(s) be analytic inR(s) > 1 where it is assumed to satisfy
a(s) = O(exp((m — 0)|s|)) for somed with 0 < § < 7. Then, one has fdrarg(z)| < 6,

1/2+i00

Za(k)(—z)k = —% /1 a(s)z® sirz:rs ds,

k=1 /2—ico

in the sense that the integral exists and provides the anatyttinuation of the sum iparg(z)| <
0. [Close the integration contour by a large semi-circle anright and evaluate by residues.]
Such integrals, sometimes called Lindelof integralsyjg® representations for many functions
whose Taylor coefficients are given by an explicit ne(, 333. <

> 1V.8. Continuation of polylogarithmsAs a consequence of Lindelof's representation, the
generalizegolylogarithmfunctions,

Lin k(2) = Z n~*(logn)* 2" (deR, k€Zso),
n>1

are analytic in the complex plar@é slit along (1+, c0). (More properties are presented in
Section VI. 8; see alsdl[r6, 22(.) For instance, one obtains in this way

> 1 [+ log(3 +t7) T
“ —1)"1 R —— AT =0.22 oo =1 _
E (=1)"logn 4/ cosh(x D) dt = 0.22579 g1/ 5

n=1 -
when the divergent series on the left is interpretefligs (—1) = lim,_, _;+ Lio,1(2). <

> IV.9. Magic duality. Let ¢ be a function initially defined over the nonnegative integaut
admitting a meromorphic extension over the wholé€ofunder growth conditions in the style

of Note 7, the function
F(z) =) ¢(n)(=2)",
n>1
which is analytic at the origin, is such that, near positivinity,

F(z)_~ B(x) =3 (-n)(-2)",

n>1

for some elementary functiof'(z). [Starting from the representation of Note 7, close the
contour of integration by a large semicircle to the left.]skch cases, the function is said to
satisfy the principle omagic duality—its expansion ab andoo are given by one and the same
rule. Functions

o log(142), exp(-2), Lia(-2), Lia(~2),
satisfy a form of magic duality. RamanujaAZ] made a great use of this principle, which

applies to a wide class of functions including hypergeoimetnes; see Hardy’s insightful dis-
cussion 260, Ch XI].
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> IV.10. Euler—-Maclaurin and Abel-Plana summationignder simple conditions on the an-
alytic function f, one has Plana’s (also known as Abel’'s) complex variablesiam of the
Euler—Maclaurin summation formula:

S g = L0+ [ s [T IS0y,

62i7ry -1
(See P66, p. 274] for a proof and validity conditions.) <

> IV.11. Norlund-Rice integrals.Let a(z) be analytic forR(z) > ko — 1 and of at most
polynomial growth in this right half plane. Then, witha simple loop around the interval
[ko, n], one has

- n—k _ 1 als nlds
> <k>(—1> a(k’)f%T/ﬂ/ O T

k=kg
If a(z) is meromorphic in a larger region, then the integral can bienased by residues. For

instance, with
N~ (n) (=D N~ () (=D
sox (1) S
it is found thatS, = —H, (a harmonic number), whild, oscillates boundedly as —
+o00. [This technique is a classical one in the calculus of finiféedences, going back to
Norlund [374). In computer science it is known as the method of Rice'sgraks P07 and
is used in the analysis of many algorithms and data strusiamuding digital trees and radix

sort [307, 458.] <

IV. 3. Singularities and exponential growth of coefficients

For a given function, a singularity can be informally defirgsda point where the
function ceases to be analytic. (Poles are the very simgylestof singularity.) Singu-
larities are, as we have stressed repeatedly, essentiagtficeent asymptotics. This
section presents the bases of a discussion within the frankesf analytic function
theory.

IV.3.1. Singularities. Let f(z) be an analytic function defined over the interior
region determined by a simple closed cumyeand letz, be a point of the bounding
curve~y. If there exists an analytic functiofi*(z) defined over some open s@t
containingzo and such thaf*(z) = f(z) in Q* N Q, one says thaf is analytically
continuableat z; and thatf* is animmediate analytic continuatioof f.

Y

Analytic continuation ’ f*(z) = f(z) onQ* N Q.

(f) ()

Consider for instance the quasi-inverse functiity) = 1/(1 — z). Its power se-
ries representatiofi(z) = > ., 2" initially converges inz| < 1. However, the
calculation of (8) shows that it is representable locallysbgonvergent series near
any pointzy # 1. In particular, it is continuable at any point of the unitdisx-
ceptl. (Alternatively, one may appeal to complex-differentiapito verify directly
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that f (z), which is given by a “global” expression, is holomorphicnbe analytic, in
the punctured plan€ \ {1}.)

In sharp contrast to real analysis where a function admitmafy smooth ex-
tensions, analytic continuation is essentiallyique if f* (in Q*) and f** (in Q**)
continuef at zg, then one must havg*(z) = f**(z) in the intersectiof2* N O**,
which in particular includes a small disc arouad Thus, the notion of immediate
analytic continuation at a boundary point is intrinsic. Tiecess can be iterated and
we say thay is ananalytic continuatiofiof f along a pathy, even if the domains of
definition of f andg do not overlap, provided a finite chain of intermediate fiorct
connects andg. This notion is once more intrinsic—this is known as the gipfe of
unicity of analytic continuatiofRudin [419, Ch. 16] provides a thorough discussion).
An analytic function is then much like a hologram: as soont s $pecified in any
tiny region, it is rigidly determined in any wider region wiegt can be continued.

Definition IV.4. Given a functionf defined in the region interior to the simple closed
curve~y, a pointzy on the boundaryy) of the region is asingular pointor a singular-
ity” if f is notanalytically continuable at,.
Granted the intrinsic character of analytic continuatiwe,can usually dispense with
a detailed description of the original domdhand the curvey. In simple terms, a
function is singular aty if it cannot be continued as an analytic function beyepd
A point at which a function is analytic is also called by castraregular point

The two functionsf(z) = 1/(1—2) andg(z) = v/1 — z may be taken as initially
defined over the open unit disk by their power series reptaien. Then, as we
already know, they can be analytically continued to larggrans, the punctured plane
Q= C\ {1} for f [e.g., by the calculation of (8)] and the complex plane dbing
(1, 4+00) for g [e.g., by virtue of differentiability as in (9)]. But bothasingular at 1:
for f, this results from the fact that (sayjz) — oo asz — 1; for g this is due to the
branching character of the square-root. Figure 4 displdgsvdypes of singularities
that are traceable by the way they deform a regular grid nbauadary point.

It is easy to check from the definitions that a converging poseeies is analytic
inside its disc of convergence. In other words, it can havsingularity inside this
disc. However, itmusthave at least one singularity on the boundary of the disc, as
asserted by the theorem below. In addition, a classicakré&meocalled Pringsheim’s
theorem, provides a refinement of this property in the cagenutions with nonneg-
ative coefficients, which includes all combinatorial geateng functions.

Theorem IV.5 (Boundary singularities)A functionf (z) analytic at the origin, whose
expansion at the origin has a finite radius of convergeR¢ceecessarily has a singu-
larity on the boundary of its disc of convergengg,= R.

PrROOF Consider the expansion

(15) F(2) =) fa2",

n>0

6The collection of all function elements continuing a givendtion gives rise to the notion &iemann
surface for which many good books exist, e.dL57, 444. We shall normally avoid appealing to this theory.
For a detailed discussion, se?p, p. 229], 99 vol. 1, p. 82], or 69.
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FIGURE IV.4. The images of a grid on the unit square (with cornetist- ) by various
functions singular at = 1 reflect the nature of the singularities involved. Singtiesiare
apparent near the right of each diagram where small gridcequgget folded or unfolded in
various ways. (In the case of functioifig, f1, f4 that become infinite at = 1, the grid
has been slightly truncated to the right.)
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assumed to have radius of convergence exagtlywe already know that there can
be no singularity off within the disc|z| < R. To prove that there is a singularity
on |z| = R, suppose a contrario th#{z) is analytic in the dis¢z| < p for somep
satisfyingp > R. By Cauchy’s coefficient formula (Theorem IV.4), upon irvating
along the circle of radius = (R + p)/2, and by trivial bounds, it is seen that the
coefficient[z"] f(z) is O(r~™). But then, the series expansion pfwould have to
converge in the disc of radius> R, a contradiction. ]

Pringsheim’s Theorem stated and proved now is a refinemdittesfrem V.5 that
applies toall series having nonnegative coefficients, in particular,egating func-
tions. It is central to asymptotic enumeration as the redwimf this section will
amply demonstrate.

Theorem V.6 (Pringsheim’s Theorem)If f(z) is representable at the origin by a
series expansion that has nonnegative coefficients andsaificonvergencg, then
the pointz = R is a singularity off(z).
> IV.12. Proof of Pringsheim’s Theoren(See also469, Sec. 7.21].) In a nutshell, the idea
of the proof is that iff has positive coefficients and is analyticiatthen its expansion slightly
to the left of R has positive coefficients. Then the power serieg @fould converge in a disc
larger than the postulated disc of convergence—a clearautintion.

Suppose a contrario thgl(z) is analytic atR, implying that it is analytic in a disc of
radiusr centred aik. We choose a numbérsuch that) < h < %r and consider the expansion
of f(z) aroundzg = R — h:

(16) F2) =" gm(z—20)™.

m>0

By Taylor’s formula and the representability pfz) together with its derivatives at by means
of (15), we have

n>0

and in particularg,, > 0.
Given the wayh was chosen, the series (16) convergesat R+ h (so thatz — zo = 2h)
as illustrated by the following diagram:
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This is a converging double sum of positive terms, so thattiva can be reorganized in any
way we like. In particular, one has convergence of all theesenvolved in

fR+R) = Y (;)fnm—h)m"(zh)m

= S l(R—h)+ 2R)"
= S fu(R+R)"

n>0
This establishes the fact th#, = o((R + h)™), thereby reaching a contradiction with the
assumption that the serie representatiofi bs radius of convergence exacly Pringsheim’s
theorem is proved. <
Singularities of a function analytic at 0 which lie on the bdary of the disc of
convergence are callatbminant singularities Pringsheim’s theorem appreciably
simplifies the search for dominant singularities of comtonal generating functions
since these have nonnegative coefficients—it is then seiffi¢o investigate analytic-
ity along the positive real line and detect the first placelaictvit ceases to hold.
For instance, the derangement EGF and the surjection EGF,
672
D(z) = . R()=(2-¢&)"!
1—=z
are analytic except for a simple pole at= 1 in the case ofD(z), and except for
pointsy; = log 2+ 2ikn that are simple poles in the caseR(z). Thus the dominant
singularities for derangements and surjections ateaaidlog 2 respectively.
It is known thaty/Z cannot be unambiguously defined as an analytic function in
a neighbourhood of = 0. As a consequence, the function

Clz) = (1-V1—-42)/2,
which is the generating function of the Catalan numberspisiralytic function in

regions that must exclude/4; for instance, one may opt to take the complex plane
slit along the ray(1/4, +o0). Similarly, the function

L(z) = log

1—2
which is the EGF of cyclic permutations is analytic in the g@ex plane slit along
(1, +00).

A function having no singularity at a finite distance is cdlentire