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ABSTRACT 

?his p a p e r  is i n t e n d e d  bo th  as a. t u tor ia l  p a p e r  and a partial 
r e v i e w  of a d v a n c e d  m a t h e m a t i c a l  m e t h o d s  in t h e  average case 
enalysis of a l g o r i t h m s  a n d  d a t a  s t r u c t u r e s .  
A n  analysi-. u s u a l l y  decomposes  i n t o  several  combinator ia l  
e n u m e r a t i o n  p r o b l e m s  (of words, t r e e s ,  p e r m u t a t i o n s ,  d i s t r ibu -  
tions ...) whose  ou tcome  is t h e n  subjec ted  to  a s y m p t o t i c  analysis 
in order  t o  o b t a i n  r e s u l t s  in a f o r m  that is easy t o  i n t e r p r e t .  
7he  main t e c h n i q u e  t o  solve combina tor ia l  e n u m e r a t i o n  prob-  
l e m s  is wia t h e  use o j  genera t ing  j u n c t i o n s .  B e  a p p r o a c h  
p r e s e n t e d  here  is cal led t h e  symbolirr' operator method: a large  
s e t  01 combina tor ia l  cons t ruc t ions  h a v e  d i rec t  t r a n s l a t i o n s  c.s 
operators  o n  c o u n t i n g  genera t ing  f u n c t i m s ,  so that j u n c t i o n a l  
e q u a t i o n s  over  genera t ing  f u n c t i o n s  c a n  be obta ined  rather 
d i r e c t l y  for m a n y  combinator ia l  s t r u c t u r e s  o j i n t e r e s t .  
7PLe main t e c h n i q u e  t o r  a s y m p t o t i c  analysis in this con tex t  re l ies  
o n  complex analysis: analytic f u n c t i o n  t h e o r y  a n d  u s e s  of 
CcLuchy's r e s i d u e  theorem.  h m o s t  cases  t h e  a s y m p t o t i c  

recovered d i r e c t l y  jrom t h e  genera t ing  f u n c t i o n  i t s e l j  with a 
p r o p e r  choice of i n t e g r a t i o n  contour  ( s i n g u l a r i t y  analysis, sad- 
dle p o i n t  m e t h o d s  ...). 
These m e t h o d s  are  briej9.W i l l u s t ra t ed  with several  e x a m p l e s  
r e l a t i n g  t o :  ( I )  t ree  m a n i p u l a t i o n  a. lgori thms in compi l ing  a n d  
s y m b o l i c  manipulation s y s t e m s  ; (2) sor t ing  and search ing  tech-  
n i q u e s  based  o n  compar isons  b e t w e e n  k e y s  ; (3) digital  s e a r c h  
a lg  o r i t h m s  . 

behav iour  01 coef f ic ien ts  of a genera t ing  f u n c t i o n  c a n  be z 
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PART I 
AN INTRODUCTION TO THE ANALYSIS OF ALGORITHMS 

The task of a n a l y z i n g  an algorithm consists in predicting the amount of 
resource tha t  the algorithm will consume when i t  receives as input,  data of 
some fixed size n .  Several c o m p l e z i t y  m e a s u r e s  corresponding to  various 
notions of resource consumption may be defined: 

- time complexity measure (7): this is the time the algorithm takes to  
process a pzrticular data on a given machine model ; it may be expressed 
either in terms of machine cycles or time units (micro-seconds for instance) ; 
Knuth [Kn 66-73] has defined an abstract  machine model MIX, typical of many 
existing machines in which all the algorithms presented a re  programmed, 
time being measured by the number of machine cycles. 

- s t o r a g e  c o m p l e z i t y  m e a s u r e  ( a ) :  this may be measured by the number 
of bits, bytes, words or  more abstractly records tha t  the algorithm consumes. 

Simplified measures may be considered for particular algorithms: for a 
sorting algorithm, one often restricts attention to the number of comparisons 
performed or to  the number of records moved (these are  simplified time com- 
plexity measures).  For algoritnms operating on some external storage de.vice, 
like a disk, a critical determinant of efficiency is usually the number of disk 
accesses (again a simplified time complexity measure) o r  the number of disk 
pages used ( a  simplified storage complexity measure). 

Let A be an algorithm tha t  operates on a set  of inputs E; the size of an 
element w of E is denoted by ( w  I (usually the size of a word is its length, the  
size of an array its dimension e tc  ...). Three quantities can be defined to  
characterise the behaviour of algorithm A over the set,& of inputs of size n 
under  a complexity measure p .  With pa[w] denoting the complexity w.r.t. 
measure p of algorithm A on input WEE, we introduce: 

- the  bes t -case  c o m p l e z i t y :  

- the  w o r s t - c a s e  c o m p l e x i t y :  
pa,WoRsT = maxipa [ 0 ] /  WEE,, 1 

- the  a v e r a g e - c a s e  c o m p l e z i t y :  

Quantities (1) and (2) give indications concerning extremal bounds on 
the complexity of A when applied to data of size n .  Their determination usu- 
ally requires the construction of particular combinatorial configurations t h a t  
force extremal behaviours of the algorithm. Our main interest here is in the  
average complexity of some of the classical algorithms and data  s t ructure .  In 
(3) ,  we have used the  notation ElXl t o  denote the  e z p e c t a t i o n  of the random 
variable X ; the  determnat ion o f t h e  average-case complexity of an algorithm 
therefore requires introduction the of a probabi l i s t ic  mode l  in order for this 
expectation to be properly defined. 

Each class of algorithmic problem usually carries with i t  one or a few 
natural  probabilistic models. If E, is finite, the e m p i r i c a l  mode l  will consist in 
considering all elements of E, to be equally likely; such models a re  often 
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considered when analyzing algorithms tha t  operate on words, t e rm trees or 
expression t rees  in compiling or symbolic manipulation systems. For com- 
parison based sorting algorithms, a simple model consists in assuming t h a t  
e!ements to  be sorted are d r a m  independently from some continuous distri- 
bution ; this incleperdence m o d e l  is equivalent t o  assuming tha t  the algorithm 
is applied to  the reduced set  of all permutation of [ l . .n] ,  with each permu- 
tation being equally likely (having probability 1/ n!). For hashing algorithms, 
one will usually assume hashed values t o  be independent and uniformly distri- 
buted over the address space [l..m] ; there this u n i f o r m  mode l  is again 
equivalent to  assuming each of t he  mn address sequences to  be equally 
likely. 

The preceding discussion indicates t h a t  many probabilistic models for 
analysis are equivalent t o  a model in which elements of either E, or of a finite 
subset E;; of E, are  equally likely, having each probability l / ( c a r d E , )  or 
1/ ( c a r d g ) .  In tha t  case, the average case Complexity of algorithm A can be 
reexpressed (identifying here E, and g) as: 

where 
On ,k = c a r d t w ~ E , / p a [ w ]  = kj (4b) 

Formula (4a) is nothing but  the standard form of expectations 
EIX/=CkPr(X=k) since the probability Pr(X=k) is equal to  an,k/  (card&). 

This brief discussion shows tha t  the problem of analyzing algorithms 
reduces to  c o u n t i n g  various classes of combinatorial s t r u c t u r e s  (words, trees,  
permutations, distributions, graphs, ...) akcording to  their sizes and the  
values of some parameters  related to  the algorithm undgr consideration. 

k 

1. An example: the max-finding algorithm 

Let X[ l . .n] be an array of positive real numbers. The following sequence 
of Pascal instructions returns in maz the  value of the largest element in 
x [ ~ . . n ]  

mar=-1; 
for i := l  t o n  do 

if m a z < X [  i 3 then maz: =X[ i ] ; 

Apart from its data X [ l . . n ] ,  this simple programme uses two auxiliary vari- 
ables (maz and i) so  tha t  its storage complexity is 2 (we do not count  t he  
input) or n + 2  (we count i t ) ,  the  unit being the  storage required to keep one 
integer or real number. A more interesting question is the time complexity of 
t h a t  programme. Knuth analyzes i t  by translating it into some fixed machine 
language (MIX) which in Pascal notation, is equivalent t o  using only a very 
reduced set  of Pascal instructions, like: 

I 

I 
I 
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1 

7Tl.U.z: = - 1 ; 
i : = O ;  
1 : i : = i + l ;  
if i >n then got0 2; 
if max ;r X[ i ] then goto 1 ; 
maz: =X[ i J ; 
goto 1; 
2 : ... 

This form is also equivalent to a fiowchart (graph) like tha t  of Figure 1. 
Thus on almost any classical (non parallel) computer, a compiled form of the  
programme will execute: 

- a fixed number of assignments to  initialise maz and i ; 
- (n + 1) compariso-ns of the Lorm a >n ? 
- n increments of index i 
- n comparisons of the form maz kx[i  J ? 
- a variable number (between 1 and n) of assignments maz:=X[i]. 

I max:=l; I 
A 1 

I 1 i : = o ;  

max:= X[iJ ; 

I 

Figure 1: The f lowchar t  corresponding t o  a low-level  imp lementa t ion  of the 
maz - f ind ing  procedure .  

P 
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In summary, t he  time complexity of max finding (mazf)  on almost any con- 
ceivable machine is going t o  be of the form: 

where € X C H [ X ] ,  fo r  X an arrey,  is the number of times the instruction 
m a z * = X [ i  3 is executed Quantities C c , C , , C 2  a re  so-called i m p l e m e n t a t i o n  con-  
s t a n t s  t h a t  refiect the execution time of elementary instructions for t he  
machine on which the programme is executed. 

The above sketch shows tha t  the analysis of an algorithms starts with a 
pow analysis where one determines the number of times each instruction is 
executed ; taking advantage of the structure of the programme considered 
reduces the  number of independent parameters to a minimum (using the  
"Kirchhoff's laws", see [Kn 68, pp 95. 167-1661). With some experience, a pro- 
gramme can  be analyzed directly at the level of the Pascal source pro- 
gramme, and we shall do s o  in the rest  of this paper. (One could also formally 
specify costs associated to Pascal constructs for a given machine and a given 
compiler . ) . 

Formula (5) is our starting point for analysis. 'We can notice t h a t  
€XCH[X]  is equal t o  the number of left-to-right maxima of vector X, L e .  the  
number of elements (indices j ~ [ l . . n ] )  such tha t  for all i<j :  X [ i ] < X [ j ] .  Thus 
EXCH[X]  is equal t o  1 iff X[ 1 3  is the largest element of the array X[ l..n] and 
€XCH[X]  is equal t o  n iff X [ l . . n ]  is already sorted in increasing order: 
X[ 1 ] < X [ Z ] < X [ 3 ]  ... . These are obviously the extrema1 configurations, whence 

Proposition 1: 7he maz f ind ing  p r o c e d u r e  has ex t rema1  c o m p l e z i t i e s  descr ibed  

Tmazf,BEST = ( C, +k2> + C, n 

Co+( c, + C 2 ) n  9 

b y .  

J 
WORST 

Tmmf n 

w h e r e  Cc, C,  I C2 a r e  i m p l e m e n t a t i o n  d e p e n d e n t  c o n s t a n t s  

To obtain more information on the algorithm when used repeatedly, we 
proceed t o  study i t  under the following probabilistic model: 

Model 1: ( U n i f o r m - h d e p e n d e n t  Model) 7he n el.ements of array X a r e  
a s s u m e d  t o  be i n d e p e n d e n t l y  d r a w n  f r o m  a u n i f o r m  [ 0, l] d i s t r ibu t ion .  

Let J denote the unit interval [0,1]. For X a random variable (vector) 
over P ,  we are interested in the probabilities 

' Pn,k - - Pr(EXCH[X]  = k ) .  

These probabilities can be evaluated by computing multiple integrals. When 
n =2, for instance, one has: 

P2, l  = w X [ ~ l a 2 1 )  = JJz , l r r&1&2 

P2.2 - - P r ( X [ 1 1 < X [ 2 1 =  JJ2,&%&2 

so  t h a t  
1 1 

P2,1 = ; P 2 . 2  = 

and the expected value of EXCH is 
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1 3 1 + - . 2 = -  
- 1 e z c h ,  -- 

2 '  2 2 '  
To avoid computation of multiple integrals, one introduces an alternative 

model: 

Model 2: (7he p e r m u t a t i o n  mode l ) .  R e  a w a y  X is a p e r m u t a t i o n  of [ l . . n ] ,  
e a c h  p e r m u t a t i o n  being t a k e n  with equal  p r o b a b i l i t y  (I/ n!) .  - 
One has  the important: - 
Lemma 1: For the a n a l y s i s  01 the max- f ind ing  p r o c e d u r e ,  the V n i j o m -  
i n d e p e n d e n t  Model a n d  the P e r m u t a t i o n  Model a re  equ iva len t .  
Proof: Associate to  each array X[ l . .n]  consisting of ( n )  distinct elements its 
o r d e ~  t y p e  T = 7 1 ~ 7 2 ,  . . . , T ,  defined by 

- 7 1 ~ 7 2 ,  . . . , T,  is a permutation of [ l . .n ]  
- for all i , j :  T ~ < T ~  iff a i ] < , Y [ j ] .  
The order type is a reduced presentation of the order properties of ele- 

ments of array X. For instance if 

X = (3.14 , 2.71 , 0.55 , 1.41 , 1.73) 

then 

(Write a 1 under the smallest element of X, a 2 under the second smallest 
e t c  ...). Obviously, if 7(x3 is , the order type of vector X, EXCH[X]=EXCH[7(X)]. 

The first observation is now that  und& Model I, the probability t h a t  two 
array elements coincide is 0, s o  tha t  the order type of a random array (under  
modei 1) is defined with probability 1. The main obdervation is tha t  each 
order type is equally likely, by simple symmetry considerations. For instance,  
if n = 3 .  

L , <z cLzIdz2dz3 = L , > Z E > C 3  dZ I d z z d z 3 .  
Thus each order type under Model 1 has probability i / n ! .  Since the cost  of 
the algorithm depends only on the underlying order type of the input ,  the  
lemma is established. 

Observations : (1). The equivalence result will hold t rue for any model where 
array elements a re  taken independently from some continuous distribution 
( i . e .  no point has a non-zero mass) like Gaussian, exponential e tc  ..., so tha t  
the permutation model is really equivalent t o  a general independence model. 
(2). The same equivalence will apply to all algorithms tha t  a r e  only sensitive 
to  the relative order of their input "keys". Thus, comparison based algorithms 
(bubble sor t ,  heapsort ,  quicksort ...) are always analyzed under the permuta- - 
tion model. 

The interest  of the permutation model is tha t  the analysis reduces to a 
counting problem. Let sn,k denote the number of permutations of [ l . .n ]  such 
t h a t  €XCH(o)=k ; from Lemma 1, we have: 

I 



1 
n !  

e x , ,  = -Cks, , , ,  

Vie now proceed to  prove: 4 I 

Theorem I: ??-LE rnaz - f ind ing  procedure  has average  cost  ( u n d e r  t h e  permuta- 
tion m o d e l )  g i v e n  by 

n n a z f ,  = C,+C,n+C2Hn 
wherE H,, deno tes  t h e  n-th h a r m o n i c  n u m b e r :  

Proof. Consider the set  of all permutation o of [ l..n] whose parameter EXCH 
has  value k (there are  s n , k  of these).  Two cases can occur: (i) the last element 
on is equal t o  n so  tha t  0102. . . on-l has ( k - 1 )  as value of EXCH (this can 
happen in sn-l,k-l ways) ; (ii) the  last element has  one of the values 
1,2, ..., n-1 ; thus  0102 . . . on-l already contains value n and has  k as value of 
€.CH (this can happen in (n-l)xsn-l,k-l ways). Whence the recurrence :  

(6) - 
sn ,k - sn -I&-1 +(n -1 Isn-1,k,  

Recurrence (6) is a similar t o  the recurrence defining eiements of Pascal’s 
triangle. I t  makes i t  possible t o  determine all the 5 n . k .  

In order to  derive information from recurrence (6), we introduce gen- 
erating functions. We define for each n ,  the  quantity 

n ’ sn(z)  = x S n , k Z k .  
k=1 ; 

Multiplying both sides of equality (6) by zk and summing over k ,  we get: 

Now from initial values s o ( z ) = l ;  sl(z)=z; s2(z)=z(z+1) ... we find the  
explicit fo rm for sn(z ) :  

n -1 

j =O 
sn+) = n ( z + j ) .  (7)  

From there we can easily conclude since 

where the logarithmic derivative of ( 7 )  permits to  determine the value of (8) 
since: 

8 s ’ n ( z )  1 1 1 
sn(z)  z z + l  z+n-1 * 

- = -+- + . . . + 

2. Generating functions and combinatorial enumerations: A preliminary dis- 
cussion. 

The previous approach is important: t o  count  a class of structures of size 
n, we decompose it into simpler (smaller) classes. This decompos i t ion  is 

I 
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reflected by  a main recurrence  relation (recurrence ( 6 )  on the example of 
max-finding). The recurrence relation is then attacked by the use of g e n e r a t -  
i n g  PwLct ions .  on our example only a technical trick, leading to an explicit 
form (expression (7) on the example). Ke shall see later tha t ,  for essential 
reasons, generating functions are  a tooi of considerable generality. 

Ne first set:  

II Definition: Let lak jk.0 be  a sequence  of c o m p l e x  n u m b e r s .  The ordinary gen- 
erating function (0.g.f .)  of sequence  )ak 1 is def ined  a s  

The exponential generating function (e.g.f.) of sequence  fak j is def ined  as 

Notations: We le t  [z"] f ( z )  denote  the  coep ic i en t  of zn in f ( z )  in t h e  TayloT 
e z p a n s i o n  o f f  a r o u n d  z =O. Thus 

We e x t e n d  that n o t a t i o n  b y  s e t t i n g .  

Those n o t a t i o n s  r e a d  as "coefficient of zn" ( re sp .  c o e f i c i e n t  of -) Z n  in (2 ) .  n !  

Definitions ( 9 ) ,  (10) associate power series to  sequences of numbers. In 
the most general case (9) and (10) are t o  be taken as defining f o r m a l  power 
series on which the arsenal of classical algebra can be applied. In most cases 
of interest  however, the series defined by (9) and (more often) (10) are  con- 
vergent, s o  t ha t  methods of classical analysis can further be applied to them. 

The advantage of generating functions (series) over sequences satisfying 
recurrence relations is tha t  they are endowed with a more visible algebraic 
s t ructure  (a field structure essentially). Figure 2 summarises the correspon- 
dence between some important operations on sequences and generating 
functions (we have omitted obvious boundary conditions). 

From this table results t ha t  a large number of non-linear recurrences 
(those tha t  obtain by combinations of 1-7 in Figure 2) over number sequences 
correspond to f u n c t i o n a l  equations over generating functions tha t  may often 
be solved using the  classical tools of algebra and analysis. L 

n c Examples: (1) If cn= a,, then cn=2akun_t  where vj=1, so t h a t  

c(z)=a(z)(l-z)-' ; thus a ( z ) = c ( z ) ( l - z )  whence an=cn-cn-l. This is t he  sim- 
plest case of an i n v e r s i o n  relatjon. (In this case it could of course have been 
derived by elementary algebra.) 

(2) If cn= 5 (:)ak,  then F ( z ) = e Z G ( z )  ; thus G ( z ) = e - z F ( z )  and 

an= 

k =O le -0 

k -=O 
k n  

n 

1: =O 
(-1) ( k ) c n - k ,  yet another inversion relation. 

I 
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Seauences 

c ,  = a n i b n  
n 

cn = z a k b n - k  

c, = a,,, 

c n = n a ,  
m. un c ,  = - n 

c ( z )  = a ( z ) i b ( z )  
c ( z )  = a ( z ) x b ( z )  

c ( z )  = z a ( z )  

c ( z )  = ( a ( z ) - a ( O ) ) / z  

C ( 2 )  = & ( Z ) X 6 ( Z )  

C ( Z )  = J a ^ ( z ) d z  
z 

0 g(z) = -a(z  d -  j 
dZ 

d -  F ( z )  = 2 - a ( z )  
dz  

q z )  = J[&(t)-&(O)J d t  
C 

1 Figure 2: %E: translation 0.f operat ions  o n  sequences  i n t o  operators  07 
~ g e n e r a t i n g  f u n c t i o n s :  sum ( 1 )  I. Cauchy  ( convo lu t ion )  p r o d u c t  (2) ; binornia 
1 Cauchy  ( convo lu t ion )  p r o d u c t  (3) ; b a c k w a r d  and fOTWaTd s h i f t s  (4-5)  
' d i n e r e n t i a t i o n  a n d  i n t e g r a t i o n  (6- 7). 

(3) The implicit relation (nr0) 
n 

k =O 
J 4n= a k a , , k  

with the initial condition ac=l is equivalent to  a non-linear recurrence 
defining the  a, inductively: 

Introducing generating functions for the original relation, we find: 
1 

1-42 
( a ( 2 ) ) 2  = - 

whence 

a ( 2 )  = 4 - = z F  1 ; -n=[%). 
and the  solution to  the original recurrence is found, by standard Newton 
expansion of ( 1 - 4 ~ ) - " ~ ,  t o  be: 

an = (%> 
(4) The relation between generating functions c ( z ) = a  (z+z2) corresponds (as 
can  be  checked by expanding) to  the  recurrence relation ; 

n - k  . 
k ) *  cn = z % - k (  k 
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. .Other operations .on sequewes  have translations into generating func- 
tions; sometimes, however, analycity of intervening power series in some 
domain may be required. A most notable formula is for the Hadamard pro- 
duct: if c, =an b ,  then 

L 
for a suitable contour encircling the origin in the t-plane (this therefore 
assumes t h a t  the generating functions have a non zero radius of conver- 
gence). Also there is a simple relation between ordinary and exponential gen- 
erating fmc t ions ,  Xia the Laplace- Bore1 transform (a  mere notational variant 
of the classical Laplace transform): 

- 
x 

a ( z )  = J i ( z t  >e" d t .  
0 

3. Asymptotic methods: A preliminary discussion. 

Once a n  exact expression for the analysis of an algorithm (like t h a t  of 
Theorem 1) has been obtained, i t  is natural  t o  t r y  and establish approxima- 
tions tha t  may be of a form simpler to  interpret .  To that  purpose, one deter-  
mines asymptotjc expansions of expressions under consideration w.r.t. to t h e  
parameter  R,  as  n geLs large. In most cases the expressions so obtained a re  
quite accurate (typically within a few percents of the exact values) as soon as 
n exceeds 20-50. These asymptotic forms make comparison between algo-  
rithms much simpler. 

Elementary problems usually require only simple asymptotic methods 
based on real  a p p r o z i m u t i o n s .  In the case of the max'finding procedure, we 
have : 

Theorem 2: me maz- ,qnding procedure  h a s  average  cost  g i v e n  by: 

T r n a z f ,  = C,n+Cz  l o g n + 0 ( 1 ) .  

Proof: From the standard comparison between a decreasing function and an 
integral results that '  

1 
k + l  k 

so tha t ,  by s u m a t i o n :  
* 

h+l-l < l og (n+ l )  < H, 
and 

I 

rr, =log n + O( 1). 

' W e  let log denote the natural logarithm log=log, and occasionally make use of the 
notation ig "log,. 

1 
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Notice tha t  a bet ter  approximation for H, is available, and one has  the 
stronger form 

1 1 
2 n  n2 

rr, = log7L + 7 + - + 0(- ) .  

ana  the expansion can be pushed to any degree of accuracy. 

notations of Landau, which we now recall: 
In the abo-qe approximation, we have made use of some of the classical 

Notations: ( 1 )  f ( n ) = O ( g  ( n ) )  i f l f o r  s o m e  c o n s t a n t  c a n d  for all  n l a t g e r  than 
some f i z e d  no: 

I! ( n )  I < c 9 ( n ) .  

(2) 
no: 

( n ) = o  ( g  ( n ) )  i f l  for all c there exists  a no such that for all  n 1ctge.r than 

I f ( n ) l  < c g ( n ) .  

Amongst real analysis methods for obtaining asymptotic expansions, one 
may mention: 
( A )  The approximation of finite sums of continuous functions by integrals. For 
instance, to  approximate 

k =I  

consider 

whjch is a Riemman sum relative t o  the function d m .  Thus a s  n-w  

so t h a t  
m2 

8 
sn = - + o ( n 2 )  

(B)  More general expansions are  obtained by the use of the Eule.r Maciaurin 
summation f o r m u l a  (covering for instance the case of Hn above and provid- 
ing full asymptotic expansions). 

Apart from the purpose of simplifying expressions, an equally important 
reason for performing asymptotic approximations, is tha t  sometimes func- 
tional equations over generating functions a re  available but these only define 
the functions implicitly and no closed-form expression is available. Nonethe- 
less in many such cases one can still obtain asymptotic expansions for the 
coefficients using complex analysis. 

For instance, Polya in 1937, has obtained the asymptotic expansion of 
coefficients of a function satisfying a functional equation of the form 

. I  
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f o r  which little more is known beyond the  continued fracticn expansion ; 
1 

2 
f ( z > =  

1- 
22 1- 
ZG 1-- . . .  

I. This function occurs in the enumeration of structurally diflerent isomeres of 
alcohols of the form CnHZn+, OH. Similarly, the  counting of balanced 2-3 trees 

L leads t o  the  functional equation: 
f ( z )  = 2 +f ( z * + z ~ )  

from which Odlyzko [Od 821 has  shown tha t  

f o r .  some continuous periodic function w ,  with (p being the golden ratio 
(I +e)/ 2. 

The major tool in obtaining these 
integral formula t ha t  relates the values 
domain t o  its coefficients: 

i z n ~ r ( ~ >  = 

for  a suitable contour of integration T. 

asymptotic estimates is the Cauchy 
of a generating function in a complez 

1. 

2. 

3. 

4. Overview of methods for the analysis of 'algorithms. 
J 

The main paths  to be taken when analyzing algorithms and da ta  s t ruc-  
tu res  a re  depicted in Figure 3. Main steps are:  

Extracting basic combinatorial parameters:  the original problem is 
transformed in this way into a combinatorial enumeration problem of a 
more or less classical type. 
Obtaining exact (explicit) expressions for the  average .cost of the  algo- 
rithm under  consideration when applied to  an input of size n ,  if a t  all 
possible. 
Obtaining asymptotic values of these average costs for large n (this 
phase may or may not be carried out from the previous one). 

The main routes  are  as follows 

1- Flow analysis (FLOW): the use of various conservation laws 
(Kirchhoff's laws) possibly in relation with combinatorial properties of 
objects (e.g. a binary t ree  with n binary modes has  (n+l) external 
nodes) leads to  a minimal se t  of parameters (random variables) whose 
expectation/distribution under the probabilistic model of use is sought. 

2- Symbolic operator method (OPER): this is the method of choice 
for obtaining generating functions of average values and enumeration 
quantities. I t  uses a set of mapping lemmas with which a working kit of 
combinatorial constructions can be mapped directly into operators over 
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\ 
\ 

i- 3 

. I  

P,symptotic 
costs 

d a t a  structures 

I FL OW - 
0 

b 

4 Cornbi na tori a 1 
0 & - - lcount inp problem 

I 
I over 
I generating functions 

4 

Figure 3: Main paths 107 the analysis of algorithms. 

4 

generating functions. In this way ra ther  complicated generating function 
expressions a re  obtained often a t  relatively little cost. 

3- Complex analysis methods ( C O M P U X )  for going from functional 
equations over generating functions to asymptotic of their coefficients. 
One uses local analysis of generating functions (it is sufficient tha t  these 
be defined implicitly ; an explicit form is not required) around singulari- 
ties, saddle points ... . The main tool is Cauchy's integral formula. 
Another important tool is the  Mellin integral transform. 
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I -  

I * 

.. 

Other classical and important routes are:  

4- Recurrences based on decompositions (RECUR):  by looking a t  t he  
way s t ructures  together with associated parameters decompose into 
simpler structures,  one is often lead to recurrences. In happy cases, t he  
recurrences obtained in this way can be solved explicitly by elementary 
methods (HACK,).  In other cases forming generating functions leads to  
functional equations a f t e r  some calculations (HACK,) ; however, in 
almost all cases where the chain RECUR+HACKI or RECUR+HACK, 
succeeds, i t  can be bypassed by the simpler symbolic operator method. 

5- Taylor expansions (EXPAND): this applies essentially to cases 
where functional equations can be solved explicitly. One then uses the  
classical tools of algebra and analysis to  extract  coefficients of generat- 
ing functions. The asymptotic analysis of these explicit forms (ASYMPT) 
relies then largely on real analysis techniques - like the Euler Maclaurin 
summation formula - and sometimes on complex analysis methods (Mel- 
lin transform techniques, most notably). 

6- Direct probabilistic methods (PROBA):  in many cases - mostly 
graph algorithms and combinatorial optimisation problems - one can 
replace the analysis of a complicated parameter  by tha t  of a much 
simpler one which may be asymptotically equal, equal with high probabil- 
ity e t c  ... . This way of approaching problems has been well illustrated by 
works of Erdos, Renyi and other Hungarian mathematicians whence the  
name of Hungarian methods sometimes given to  them. 

v 

J 
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PART I1 
COMBINATORIAL ENUMERATION METHODS 

The Symbolic Operator Approach 

1. The symbolic operator method 

- We define here  a c lass  of combinator ia l  s t r u c t u r e s  as  a pair of a finite or 
denumerable set  C and a function w .  C + N  called the s i ze  or weight functioR, 
such t h a t  for all n ,  w’’(n) is finite. We let C, denote the se t  of all s t ruc tures  
in C tha t  have size n. The coun t ing  p r o b l e m  for C is t o  determine the  integer 
sequence jcnjnzo defined by 

c, = lw- l (n) l  = cardC, 

t h a t  is to determine for each n how many elements in C have size n .  The size 
function is often denoted by 1 . 1  or I . lc  if the  dependence on C is to  be 
e mp h asi se d. 

The o r d i n a r y  genera t ing  f u n c t i o n  (0.9.1.) of C (w.r.t. weight w )  is the for- 
mal power series 

The e z p o n e n t i a l  genera t ing  f u n c t i o n  (e .g . f . )  of C (w.r.t. weight w )  is t he  
formal power series 

I t  is useful to  notice tha t  c ( z )  and c^(z) can be expressed alternatively as  

To see i t .  observe tha t  the term zn in (3) appears  as  many times as there  a re  
s t ruc tures  of size n in C. 

The main approach which we explore here  for the counting problem of C 
is via the  generating functions c ( z )  or g ( z ) .  

A combina tor ia l  cons t ruc t ion  9 of degree k is a n  operation tha t  associ- 
a t e s  to k classes of s t ructures  C,,C2, . . . , Ck a class A=+(Cl,C2, . . . , Ck) .  - 
Definition: A combinator ia l  cons t ruc t ion  is 0.g.f. admissible iff t here  e x i s t s  an 
operator  .k over  f o r m a l  p o w e r  ser ies  s u c h  that c 

A=@(CI,G, ’ ,C,) => u ( z ) = \ ~ ( c , ( z ) , c ~ ( z ) ,  . . . , c , ( z ) )  

( u ( z ) , c l ( z )  . + . are  t h e  0.g. f .  of c lasses  A,C,, . . . ). 

One has  the  obvious analogous notion of e.g.f. admissible functions. 
In other  words, a construction is admissible iff the  counting sequence 

!a, { of A can be determined from the  counting sequence I C  l,n I * * . of C1 . . * 



so t ha t  no fur ther  internal structural  information on Cl,C2.., is required to  
solve the counting problem fo r  A. . '  
Notations: In the sequel, we adhere - unless otherwise stated - t o  the nota- 
tional convention of representing a class (C), the counting sequence (IC,{ or 
IC,{) and the  corresponding generating functions ( c ( z )  or C ( z ) ;  E ( z )  or 
E ( z ) )  by the same group of letters. 

The remainder of this chapter is devoted t o  the presentation of a certain 
number 0: adrmssible constructions. Admissibility lemmas thus map these 
combinatorial constructions into operators over generating functions. The 
counting problem for a class C therefore reduces to finding a suitable con- 
struction of C in terms of simpler structures (and possibly C itself if the con- 
struction is recursive) by means of admissible constructions : if the construc- 
tion is non-recursive, then the generating function for  C will obtain as a func- 
tional on simpler functions : if the definition is recursive, then one obtains a 
functional e q u a t i o n  defining C ( Z )  (or c ( z ) )  implicitly. We call this approach 
the s y m b o l i c  operator  me thod  for  counting problems. 

Notice tha t  while the classical enumeration approach based on produc- 
ing recurrences from suitable decompositions is very sensitive to  small varia- 
tions on the  formuletion of the problem considered, the operator approach is 
usually far more flexible. Before presenting admissible for  ordinary generat- 
ing functions (Section 2) and for exponential generating functions (Section 
3) ,  we illustrate this method informally by an  example taken from the  count- 
ing of permutations. 

Let P=yP, be the class of all permutation, with P, the set  of permuta- 
tions of size n, L e .  permutation over [ l . .n] .  A direct reasoning (value 1 can 
appear  in any of n positions, value 2 in any of the remaining (n-1) positions 
...) shows t h a t  

p, = cardP, -= n! ,  (4) 

and the e.g.f of the class of permutations is 

equations (4) and (5) being clearly equivalent. 
One way to  arrive a t  (5) by the symbolic operator method is to construct 

permutations a t  " s e t s - o f '  cyclic p e r m u t a t i o n s  (each permutation has  a 
unique cycle decomposition). If C is the class of cyclic permutations, 
c , = ( n - l ) !  so t h a t  the e.g.f. of C is 

4 

Thus one has  : 

+) = 10gp-z ) -~ )  

Now the set-of construction in this context is known, in the  operator 
approach to correspond to  a left composition_with an e_xponential (see Sec- 
tion 3 for precise statements); here this g ivesp(z)=exp(c(z) )  or : 
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( 7 )  $ ( z  ) = expjiog( 1-2 )-'I. 

Equation (7)  is also clearly equivalent to (6)  whence to  ( 5 ) .  

behind the  derivation of ( 7 )  allows for a large number of variations : 
This seemingly uselessly complicated detour is important. The method 

A .  Restrictions on the number of cycles. Let Pr be the set  of permutations 
whose number of cycles is in some fixed set  R N ;  the corresponding 
exponential generating function is obtained by composing with 

* 

0. 

Y(ZL)= C 7 U j  (so t ha t  k N  gives back the exponential) the e.g.f. of cyclic jcr  3 .  
permutations. For instance the e.g.f. of permutations having an even 
number of cycles is 

n! 
2 

so t h a t  there  qn = - for nr2.  

Restrictions on cycle length : let *P be the  set  of permutations whose 
cycles all have length in a fixed se t  AcN. The corresponding exponential 
generating function is obtained by replacing in (7) the  function 

log(1-2)'' by the  function a ( z ) =  C 23. (so t ha t  A=N gives back equation 

(7)). For instance to  obtain the e.g.f. of permutations without cycles of 
length 1, replace log(1-z)" by log( l-z)-I-z so tha t  this function is 

C(2)  = -. e -z 

B. 

j c h  3 

1 -2 

From there  follows the  (19-th century) result.' tha t  the  number of 
derangements - permutations without fixed points - is 

C. Joint restrictions of the  two previous types can be combined defining the  
class *Pr whose e.g.f. is r ( h ( 2 ) ) .  For instance to  obtain the e.g.f. G ( z )  of 
permutation having an odd number of cycles each of an odd length, take 

y ( u )  = -(eU-e-) 1 
2 

,- 

s o  t ha t  
c 

A(z) = .-l-(log(l+z)-log(l-z)) = l o g 7 /  l+z 
2 1-2 

2 

di=p' &)  = 

whence by expanding 
- 2n)!(2n+1)! 

22n (n !)2 
S 2 n + 1  - ( 
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This example illustrates the Aexibility of the operator approach, i.e. its 
insensit ivity to  a large number of changes in definitions of combinatorial 
s t ructures .  

2. AdrnissibIe constructions for ordinary generating functions. 

A kit of admissible constructions for e.g.f's is displayed on Figure 1, 
together with the corresponding operators over generating functions. 
Definitions ana  mapping lemmas follow. 

Construction 
Unior, 
Cart. product 
Diagonal 
Sequence-of 
Marking 
Substitution 
Set-of 

Multiset-of 

c 

C = A+B 
C = AxB 
C = A(AxA) 
C = A' 
C = p A  
C = A[B] 
c = 2A 

C = M f A ]  

I Operator 
c ( z )  = a ( z ) + b  (2) 
c ( z )  = a ( z ) . b ( z )  

c ( z )  = a ( z 2 )  
c ( 2 )  = ( l - u ( z ) ) - *  

c ( 2 )  = z - a ( 2 )  

c ( z )  = a ( b ( z ) )  
c ( z )  = e x p ( a ( z ) - - - a ( z 2 ) + - a ( z 3 )  . . ) 

c ( z )  =.exp(a ( z )+ ; ; -a ( z2 )+; ; -a ( z3 )  . . . ) 

d 
d z  

1 1 
2 3 
1 1 

J 

I Figure 1: A d m i s s i b  le  cons t ruc t ions  f o r  o r d i n a r y  genera t ing  f u n c t i o n s .  
I 

Definition 1: A c las s  C is t h e  union (sum) 01 t w o  c las ses  A a n d  B w h i c h  w e  
deno te  b y  C=A+B iff: 

- in t h e  se t - theore t ic  s ense  C = A y B  ; 
- s i z e s  1 .  I A a n d  1 .  
else  Iz I B .  

are  compa t ib l e  over  A n B  a n d  I z I c= i j  z EA t h e n  I z I A 

Definition 2: A c las s  C is t h e  Cartesian product o j  c las ses  A a n d  B, deno ted  b y  
C=AxB, iff 

- in t h e  se t - theore t ic  s ense  C=AxB ; 
- I (a,B) I C= I a I A+ I B I B. 

Definition 3: A c las s  C is t h e  sequence c las s  of c las s  A iff with c a s t r u c t u r e  of 
s i z e  0 (cal led t h e  e m p t y  s t ruc ture ) :  

C = C ]  +A+AxA+AxAxA+ . . . 
with s i z e  be ing  de f ined  cons i s t en t l y  with u n i o n s  and Car tes ian  p r o d u c t s .  
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Definition 4: A class C is t h e  diagonal oj’ AxA denoted  b y  c=A(AxA) iff C cons i s t s  
o f  all e l e m e n t s  (a ,a ) ,aEA,  with 

I ( a , a ) l c = 2 1 a l A .  

Definition 5: A c las s  C is t h e  marking 01 c las s  A deno ted  by C = p A  i .  
L 0)  

c =  & x [ l . . n ]  
n =O 

c with 1 ( a , v )  I = 1 a J A .  

Definition 6: A c las s  C is t h e  composition of c lass  A and B, denoted  b y  C=A[B], 
iff 

Definition 7: A c las s  C is t h e  powerset class of c lass  A denoted  C=2A i . ,  in t h e  
s e t  theore t ic  s e n s e ,  C is t h e  c l a s s  of s u b s e t s  of A . C=2A a n d  

I)alva2* . . .  ,akjlCC=la11A+1a21A+.”+IakIA. 

1 Qlc : 0 

Definition 8: A c las s  C is t h e  multiset class o j  c las s  A denoted  C=MIAJ iff C con-  
sists of m u l t i s e t s  of e l e m e n t s  of A of t h e  j o m  ~ a { l , a ~ e ,  . . . , alk{ (a’ m e a n s  a 
r e p e a t e d  j t i m e s )  a n d  d 

A few words of explanation a re  in order. We say tha t  C is the  d i s jo in t  
u n i o n  of A and B if the intersection A n B  is empty. The notion of a Cartesian 
product of classes (and of diagonals) is the  standard one with the size of a 
couple being the  sum Qf the  sizezof i ts  compon,ents ; the  notion extends trivi- 
ally to  the  product of any number of factors. The notion of a power class also 
corresponds to  the  standard power set  construction. The power multiset class 
of A, MIA] is t he  class of sets of elements of A with repetitions allowed ; i t  thus 
corresponds to  the  standard multiset construction. 

Composition and marking a re  useful when dealing with objects like trees, 
graphs,  words consisting of a t o m i c  e l e m e n t s  (nodes, edges, positions e t c  ...) 
where the  size of a s t ructure  is the number of elements it comprises. A 
marked s t ructure  from pA in this context is then a s t ructure  of A augmented 
by distinguishing one of i ts  elements. Similarly the substitution operation 
A[B] is equivalent to constructing all s t ructures  obtained from some a € A  by 
substituting to  all atomic elements of a objects from /3 still retaining the  
s t ructural  properties of a (this is really a sor t  of “marked” substitution). 

Notice also tha t ,  in order for the sequence construction A’, substitution 
construction B[A] and multiset-of construction M I A { ,  to be defined (2.e. t o  

c 
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result in se t s  t ha t  a re  classes of s t ructures  satisfying the finiteness condition 
of I I-]), one usually has  to impose the condition tha t  A contains no s t ructure  
of size 0.  We shall also impose a similar restriction on the set-of construction. 
Such conditions ensure tha t  the  operators given in Figure 1 a re  well defined 
operators over formal power series. 

Vie have 

Theorem 1: The cons t ruc t ions  of dis jo in t  u n i o n ,  Car tes ian  p r o d u c t ,  d iagona l ,  
s e q u e n c e - o f ,  m a r k i n g ,  s u b s t i t u t i o n ,  set-a f b o w e r s e t )  and m u l t i s e t - o l  a r e  
admiss ib  1 e.  

The corresponding operators a re  given in Figure 1. The proof of this theorem 
proceeds through a chain of easy lemmas. 

Lemma 1: if A n B = $  and. C=A+B, t h e n  c ( z ) = a ( z ) + b  (2). 
Proof : Cn=O,+bn. 8 

Lemma 2: if C=AxB t h e n  c ( z ) = a  ( z ) . b  (2). 

Proof : 

Lemma 3: lf C=A(AxA) t h e n  C ( z ) = a ( z 2 ) .  

Proof: ~ ~ ~ = a , ; c ~ ~ + ~ = o .  8 

Lemma4: rfC=A', t h e n  c ( ~ ) = ( l - a ( z ) ) - ~  

Proof : c ( z ) =  C ( ~ ( 2 ) ) ~ .  8 

k:sO 

d 
dZ Lemma 5: r f  C=pA, t h e n  c ( z  ) =z -a ( z  ) 

Proof. c,=na,. 8 

Lemma 6: /f C=A[B], t h e n  c ( z ) = a ( b  (2)) .  

Proof : From the union and Cartesian product mapping lemmas, one has  

c ( z ) = C b k c ( z ) ' .  m 
k 

D 

n 
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Lemma 7 :  If C=2*, then ~- 
IC 

Proof : Class C is isomorphic to the  finite size elements of the (infinite) car te-  
~ - sian product 

( c  a null s t ruc ture  of size 0) so  t ha t  translating to  generating functions 

c ( z ) =  n (1+21al)  
a € A  

and grouping terms : 
rn 

= n ( l + P ) Q " .  
n=l 

Computing logc ( z ) ,  we find : 
m 

l ogc (2 )  = c a, log( l+zn)  
n = l  - 

Lemrna 8:  r f  C = M [ A ] ,  then 

Proof : The class C is isomorphic to  the finite size elements of the  (infinite) 
Cartesian product 

C =  n [a] '  
a EA - s o  t h a t  by the  mapping lemma for the sequence construction 

c ( z )  = n(l-zlal) - '  

= n (1-2")- 

acA 
OD 

n=]  

and the calculation develops as in the previous case.  rn 
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, 
1 2 3  
* 0 

1 2 . 3  1 2 3  
0 - 1 2 3  - 

* G O  
I 

3. Admissible constructions for exponential generating functions. 

We consider here  particular classes of combinatorial s t ructures  consist- 
ing of labe l led  objec ts .  Corresponding constructions have natural interpreta- 
tion in terms of exponential generating functions. 

We shall first motivate our  constructions over labelled s t ructures  by an  
example, namely determining the number of connected graph over a se t  of n 
distinguished vertices. Let G=yG, be the class of labe l led  graphs  where G, is 

the se t  if all undirected graphs over the set  of vertices [ l . .n].  Let K be the 
subclass of G consisting of all graphs of G tha t  a r e  connected. One interesting 
question is the relation between the  quantities k,=card(K,,) and 
gn=card(G,). Kotice first t ha t  one has directly 

n 

A 
2 3  1 3 

R 
3 2  

2 3 

Figure 2 ?he labe l led  graphs  o v e r  the set of v e r t i c e s  )1,2,3{. B o r n  this t a b l e  
r e s u l t s  that g 3=0 a n d  k 3= 1 

To approach the determination of lknjnrO we define G?) as the  class of 
graphs consis t iw of c connected components so tha t  GA’)=K,,, and we start 
by relating g,(C)=cardGt) t o  k,. Let us take first c =2. 

The Cartesian product KxK generates couples of connected graphs. But  
one has  G(‘)+KxK for the following two reasons: 

D 

n 
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* 

( A )  Connected components of graphs in G(*) a re  not ordered, while com- 
ponents  of elements of KxK are ,  by definition of the Cartesian product. 
(B) Elements of KxK are  not  well labelled in the  sense tha t  s t ructures  of 
size n do not  have elements (nodes) labelled with distinct integers from 
[1..n]. 

To take c a r e  of problem (B),  one must relabel objects from KxK to  make 
them well labelled objects. 

.. 
Definition: A bipartition TI of [ l..n] is a pair Tl=(a,B) of subsets 01 [1..n] such 
that a u B = [ l . . n ] ,  an@=$. 7he type of the bipartition is the integer pair 
( la 1 1  I B  1 ) .  

Let c = ( u , v )  be a pair of labelled s t ructures ,  so tha t  u is labelled by ele- 
ments  from [l..L] and v is labelled by elements of [ l . .mJ .  The action of a 
bipartition n=(a,B) of type ( l , r n )  on c = ( u , v )  is defined as the pair C=@;?c,) 
where t~ is similarly obtained from u by replacing labels 1,2, . . . 1 by 
al ,a2,  . . . a1 and 0 is obtained from LJ by replacing labels 1,2,. . . ,m by 
B1,B2,  . . . VBm where 

a;<a2<. , <am ; B,<P2< . . <pm 
a re  the elements taken in increasing order of a and p. The action of I’I on u 
and v is denoted by .TJ<(u,v)>. 

Example : Let c = ( u , v )  be defined by v 

u =  

4 

1 
V 

6 

Consider the  bipartition ~=([3,5,6,9,12~,11,2,4:7,8,10,11{) ; its type is ( 5 , 7 )  so 
that its action on (u,tr) is defined. The result is t he  couple : 

A 
2 \ / 3  

9 

which is a well labelled s t ructure  over [ 1 ..12]. 

1 
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Definition 9: Tae partitional product of two labe l led  s t m c t u r e s  a a n d  5 
deno ted  b y  u2, is def ined  a s  the se t  

u%=1 D<(u,v)>lX of type ( tu  1, Iv  I )  1 
Tne partitional product of two classes  of (Label led)  s t m c t u r e s  A a n d  B is 
def ined  a s  

A*B= u ( ~ 2 , ) .  
u EA 
v EB 

I (The size o f a n y  e l e m e n t  o f ( u % )  is Iu I S ~ V  I). 

Returning to  our original problem concerning the enumeration of 
labelled graphs,  we thus see tha t  the partitional product K'K generates all 
well labelled couples of connected graph. Each graph of G(2) formed with two 
connected components K,,K2 thus  appears in KCK twice : once as (K,,K2) and 
once as ( K 2 , K I )  We can therefore write the  symbolic equations : 

2G(2)=K 'K. (9a) 
G(2)=-(K*K) 1 

(9b) 2 

The main interest  of the partitional product for enumeratjons is the  fol- 
lowing : 

Lemma 9: r f  c las ses  A a n d  B have e z p o n e w i a l  genera t ing  f u n c t i o n s  & ( z )  a n d  
g ( z ) .  t h e n  the exponent ia l  genera t ing  f u n c t i o n  r ( z )  of c las s  C=A*B sa t i s f ies  : 

3 
; ( z ) = & ) . G ( z ) .  

Proof : If u and v a re  s t ructures  of A and B of respective size 1 and m ,  then 
the number of bipartitions of type ( 1  ,m)  is the binomial coefficient 

( 1  :"I. 
Thus the  cardinality C,, of C, satisfies the  recurrences : 

From the  last equality,'the l e m Z  follows. 8 

We have thus  found for i ( 2 ) ( z )  the  relation 

A straightforward generalization shows tha t  more generally 

Y 

I 
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1 
C !  

c 

g (C ’ (  2 ) = - ( E (  2 ) )C 

03 

Since G= G( ‘ ) ,  we find from (10) the relation 
c =o 

9̂ ( 2 )= 1 +L ( 2  ) + +(C( 2 ) )2+ f,(E(z))3+ . . ‘ 
2. 3. .. (G(’) consists of the empty graph on 0 vertices), or  : 

- i ( z  )=exp(L(z )). 

Using (8) and inverting ( l l ) ,  we have thus  found: 

Proposition 1: The exponen t ia l  g e n e r a t i n g  f u n c t i o n  of t h e  c lass  of Labelled 
g r a p h s  sa t i s f i e s  

Notice t h a t  the  above serjes is d ivergen t  ; however E ( z )  is defined as a 

. Tak- formal power series t ha t  can be-evaluated by log(l+u)=u--+-.  . . 

ing coefficients, we find : 

u2 u3 
2 3  

from which one can conclude for instance: ,: 
1 

Proposition 2: As n t e n d s  t o  i n f i n i t y  t h e  ratio k n /  g, t e n d s  do 1.  

Thus almost all graphs of size n a re  connected for large n.  

Definition 10: The k -th partitional power ( k 2 l )  of c lass  A is def ined b y  

A<“: >=A *A *. . . *A 

w h e r e  t h e  n u m b e r  of f a c t o r s  is e q u a l  t o  k .  When k = O ,  u<O> is def ined as a 
class cons i s t ing  01 u u n i q u e  s t r u c t u r e  of s i ze  0 (called t h e  e m p t y  s t r u c t u r e  or  
null s t r u c t u r e  a n d  u s u a l l y  denoted  b y  c). 

The p a r t i t i o n a l  c o m p l e z  A<’’ of A i s  def ined as t h e  sum : 

A<*>= A a > > .  
k =O 

Definition 11: The k -th A b e l i a n p a r t i t i o n a l  p o w e r  o f  class A is def ined as 
A [ k J = 1 1 ~ 1 , ~ 2 , .  . . , W k {  I ( W l ” U 2 , .  . . , wj.)€A<k>j 

The a b e l i a n p a r t i t i o n a l  c o m p l e z  a[ ’]  01 a is def ined  a s  t h e  sum 
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Kotice tha t  the partitional complex construct. is for labelled objects t he  
analogue of t he  sequence construct (order of elements in k-uples count) ; the  
abelian partitional is a sor t  of analogue of the power-set construct (orders of 
elements a re  ?LO: t akenin to  a c c m n t ) .  U'e then have : 

Lemrna 10: A s s u m e  t h a t  C=A<'>, t h e n  

cc(z)=-y.?-. 1 

1 a ( z )  

L e m  11:  A s s u m e  that C=A['], t h e n  

c^(z ) = e z p  ( Z ( z  1) 

Proois a r e  direct extensions of the  previous ones. For the partitional com- 
plex, one has  : 

q z )  = ( G ( 2 ) ) k  = - 1 
l - a ( z )  k:aO 

For the  Abelian partitional complex, each element of Aik]  corresponds to  k !  
elements of A < k > .  In symbols 

ACk>,k !A[kl, 

so tha t ,  there  

Construction I i Operator 
Union 
Partit. prod. 
Parti t .  complex 
Abel. par t .  complex 1 C = A[' ]  

Marking i C = ~ A  g ( z )  = z - a ( z )  
Labelled subst.  1 C = A[B] g ( z )  = a ( b ( z ) )  

Min-rooting 1 C = p A  I z ( z )  = J a ^ ( z ) d z  

1 C = A u B  ' i ( z )  = a^(z)+;(z) 
C = A'B i ~ ( z )  = . " ( z l .&(z)  

1 c ( z )  = exp(a^(z)) 
i C = A -  I c_(z )  = ( l - a ( z ) ) - l  

I d -  
d z  

2 I 

Figure 3: A se t  of e.9. f .  admis s ib l e  cons t ruc t s .  

In summary, we get: 

Theorem 2: ?he cons t ruc t ions :  d i s jo in t  union, p a r t i t i o n a l  p r o d u c t ,  p a r t i t i o n a l  
c o m p l e z ,  a b e l i a n  par t i taonal  c o m p l e z  a n d  m a r k i n g  are  e.9.f .  admis s ib l e .  
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The corresponding operators a re  given in Figure 3 .  Cther operations 
(min-rooting, labelled substitutjon) could also be show3 to be e.g.f. admissi- 
ble. 

4. Sample applications. - 
W e  give here  some brief indications on how to derive a collection of com- - binatorial enumeration results using the symbolic operator method. From 

our  preL1ous discussions, the problem reduces to  finding proper construc- 
tions (decompositions) for classes of combinatorial structures in terms of 
admissible set- theoreiic constructs.  

1 .  Combinations: Let C be the power se t  of [ l . .m].  .where m is a fixed integer; 
an  element of C is sometimes c a h d  a combination of elements of [ l . .m),  
Then: 

(=1 

with c the null s t ructure  (of size 0) .  Thus, translating to 0.g.f: 

C(2)  = ( l + z ) m  

and the  number of n-Combinations of a se t  of m elements is: 

2. Combinations with repetitions. Let M be the m ~ l t i s e t ~ c l a s s  of [ l..m]. An ele- 
ment  of Id is sometimes called a combination with repetitions of elements of 
[ l . .m] .  Thus: 

I= 1 

M ( 2 )  = (1-2)" 

so tha t  t he  number of n-combinations with repetitions of a set with m ele- 
ments  is found t o  be; 

[ z " ]  (1  - 2 ) -  = (n;,,'> 
3. Arrangements. An arrangement of n elements of [ l..m] is an injective map 
from [l..n] t o  [1..m]. The se t  A of all arrangements with m fixed has the  
presentation: 

A e ( I & ! + I l l ) "  - 

- 

where 1 represents  a labelled s t ructure  of size 1. Thus the  e.g.f of A is: - 
i ( 2 )  = (l+z)rn 

and the  number of n-arrangements  from a set  with m elements is: 
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4. Set partitions. A partition of a set  S is a family of sets b = , . . , P k ]  
such tha t  the P j  -called blocks- are paimise disjoint and cover S. Let B be 
the family of all partitions of an initial segment of N = 11,2,3, ' . 1 Then: 

B ! ! I f  + 1121 + 11231 + . . { [ ' I ,  -- --- - 
thus 

B ( z )  = exp(ez- l )  . 
From t h a t  last equatjon results that  the number of partitions of a set  with n 
elements is the n - t h  Beli number: 

z n  
n !  

B, = [ -Jexp(eZ-l)  

A similar reascning shows that  the number of partitions of a set  of cardinality 
n comprising k blocks is: 

= ( ? ) ( - l ) j ( k - j ) ,  , 
! O s j s k  

a Stirling number of the second kind 
5. Permutations. We have' already examined the  decomposition of pemauta- 
t ions into cycles. If C is the class of all cyclic permutations and P the class of 
all permutations, then  P d']. In particular, the c l a y  of permutations with 
k cycles, d k ] ,  has for e.g.f: 

Z . [ k l =  (-log(l-z))k . 
Let S, ,k  be the number of permutations of [ l . .n] with k cycles; snk  is called a 
Stirling number of the first kind and S , , k = [ z n / n ! ]  ? r k ] ( z ) .  Using bivariate 
generating functions, we easily find. 

z n  
n!  x S n , k ' L L k  - = (1-2)- 

n .k 

whence by expanding the identity: 

C S n &  = u ( u + l ) ( u + 2 ) .  . . (u+n-l) 
k 

Thus these numbers coincide with those appearing in the analysis of t h e  
max- fin ding procedure : 

sn .k = [ u k ] u ( u + l ) ( Z L + 2 )  * * (u+n-l) .  

6.  lnteger compositions. A composition of the integer n is a sequence 
(T,, . . . , T k )  such tha t  each 7i j  is an integer larger than 0,  and the rj add up 
to  n .  The set  CO of all compositions satisfies: 

co % I' 
where I is t he  set  of integers 21, and the weight of integer k E I  is w ( k ) = k .  We 

c 

n 



- 31 - 

thus  h ave : 

C U ( z )  = where I ( z )  = z + z 2 - t z 3 + ~  
l - l ( z )  

s o  t ha t  the  number of compositions of an integer n is: 

tzn11_2z - - Zn-' (nrl) 

7. lnteger partjtions. A partition of integer n is defined like a composition, 
except t h a t  one imposes the  further restriction tha t  the nj form a non- 
decreasing sequence. Let IF' be the class of all integer partitions. One can see 
tha t :  

* 

P x 11 1' [ Z ] '  131' ' 

where again the weight of integer k is equal to  k itself. From there  one 
obtains the generating function expression: 

I P ( 2 )  = n ( l -zk) - l  . . 
kT1 

A s  was  pointed out in the  introduction, a large number of enumeration 
results follow from these combinatorial constructions. For instance the  
number of (set)  partitions of a set of n elements where each block has  size a t  
most  h is: 

where eA is the  truncated exponential series: 
1 

h 
e h ( z )  = - .  

j = o  j !  

Compositions or  (integer) partitions into bounded summands can  be dealt 
with in a similzr fashion. 

. 

I 
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PART 111 
ASYMPTOTIC METHODS FROM COMPLEX ANUYSIS 

The problem we examine here is an  i n v e r s i o n  p r o b l e m .  Given some infor- 
mation about a generating function f ( 2 )  - a t  best an e z p l i c i t  f o r m ,  a t  worst 
only a f u n c t i o n a l  e q u a t i o n  defining the function i m p l i c i t l y  - how to recover 
some asymptotic information on the n - t h  Taylor coefficient 1, of f ( 2 ) .  

One way consists in obtaining explicit forms for the coefficients In, if a t  
all possible. For instance, assume we are interested in the probability tha t  a 
random permutation of [ l . . n ]  has no fixed point ( i e .  no cycle of length 1 ) .  
From the  preceding chapter,  this probability is: 

- 
- 

f : - x n  which follows the explicit form: 

Observing tha t  ~;n<l> is a partial sum of the expansion of exp(-1), we find: 

However, if we need the'probability t h a t  a permutation has no cycles of 
length 1 or 2, we find 

and expanding leads to a double sum, whose approximation, though feasible, 
requires some work. The problem gets worse if cycle lengths of the form 
1 , 2 ,  " .  , k are  prohibited. 

In general, the complexity of t ha t  method increases drastically as the  
size of t he  defining equation grows. With techniques we are going to examine 
in this chapter,  one can reason as follows: 

The function f (z) = exp(-z-z2/2) / (1-z)  has  a unique s i n g u l a r i t y  (a 
pole) at z = 1 .  Around tha t  pole, one has: 

. 
t h e r e f  ore:  

and the quantity on the r.h.s is equal to independently of n.  
The basic inversion theorem to be used to  justify tha t  reasoning is Cauchy's  
r e s i d u e  t h e o r e m ,  or equivalently Cauchy's  i n t e g r a l  formula for coefficients of 
analytic functions, namely: 
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for 1 a simple closed contour around the origin. 
The choice of the integration contour ? in Formula (1) is guided by 

several principles to  be detailed below. In many cases, tha t  formula makes i t  
possible t o  extract  useful asymptotic information about f, = [ z n ] f  (2 ) .  

a .  

b .  

C .  

If f ( z )  is m e r o m o r p h i c  in the complex plane C, extend ? to a circle of 
large radius, taking residues of the integrand of (1) into account. 
If f ( z )  has n o n p o l a r  s ingu lar i t i e s  on its circle of convergence, take for  
7 a contour t h a t  comes close to  the singularity in order to  extract  infor- 
mation from the singular behaviour of the function. If the function is 
small around its singularity, take a contour tha t  extends beyond the cir- 
cle of convergence; if it is "moderately" large, take a contour tha t  partly 
coincides with the circle of convergence; if it  is "very" large, take a con- 
tour  properly contained in the disk of convergence and use saddle point 
methods. 
If f ( z )  is e n t i r e ,  take r to be a circle t h a t  crosses the sadd le  p o i n t ( s )  of 
f (2 ) .  

Notice tha t  these methods do not always require f ( z )  to be explicitly deter- 
mined: i t  is often sufficient t hz t  some local properties of f ( z )  be obtained 
from defining equations. 

Finally, a number of combinatorial sums can be studied asymptotically 
by means of t he  Mell in  ( in t egra l )  t r a n s f o r m .  The method applies well t o  t he  
asymptotic analysis of h a r m o n i c  s u m  t ha t  are  of the form: 

; F ( z  1 = C Q k 9  (BkZ 1 . 
k 

\ 

J 

1. The exponential order formula for coefficients of analytic functions. 

We s ta r t  by recalling a few basic definitions: 

Definition: A f u n c t i o n  f ( z )  of t h e  c o m p l e z  var iab le  z is said t o  be analytic at 
z =c i f  i t  has a p o w e r  ser ies  e z p a n s i o n ,  also cal led  Taylor expansion conver-  
g e n t  in a ne ighbourhood of a : 

A f u n c t i o n  f ( z )  of t h e  c o m p l e z  var iab le  z is sa id  t o  be meromorphic at z =a 
i f  in a ne$hbourhood of a at has f o r  z # a  a convergen t  e z p a n s w n  (cal led a 
Laurent expansion) of t h e  form: 

f ( z )  = C c , (z -a )n  . 

If cLM#O,  t h e n  f ( z )  has a pole o f o r d e r  M at z=a .  
nr-hi 

(3) 

A function is analytic (meromorphic) in a domain iff i t  .is analytic (mero- 
morphic) at very point of the domain. A point a t  which an analytic function 

c 

t 
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ceases to be analytic is called a s i n g u l a r i t y  of the function. We let S ing( f )  
denote the  se t  of singularities of function I. 

Definition: I f f  ( z )  h c s  a pole  01 order M21 a t  z = a ,  t h e  coef f ic ient  c - ~  o f  i t s  
L a v r e n t  e x p a n s i o n  at z=a is cal led t h e  residue o f f  at z = a  a n d  is deno ted  
by: 

- Res(f ( z ) ; z = a )  . 

With a slight extension of our previous notations, we could write: 
1 

z -a Res(f ( z ) ; z = a )  = [-If ( z )  

2 2  

2 
Examples: A. f ( z ) = e z p  ( z  +-) has no singularity in the whole of the  complex 
plane C; it is an en t i re  function. 
B. .( ( z )  = e’z-se/2/ ( 1 7 ~ ) ~  has &double pole a t  z =1, where local expansions 
reveal t ha t  

s o  t h a t  Res ( j  ( z ) ; z= l )  = -2e’3/2. 
C .  f (2) = e - ~ / 2 - ~ ‘ / 4 /  JEF is analytic in 1 2  1 ~ 1  except for a non polar singu- 
larity a t  z =1. m 

’We can now s ta te  the  celebrated Cauchy rekidue theorem: 

I 
Theorem 1: [Cauchy’s residue theorem] Let I‘ be a s i m p l e  closed c u r v e  
or ien ted  p o s i t i v e l y ,  and a s s u m e  that f is meromorph ic  an a d o m a i n  D con-  
t a i n i n g  I’ in its i n t e r i o r ,  a n d  has n o  p o l e s  o n  r. Then:  

w h e r e  t h e  sum is over t h e  se t  of all p o l e s  s o f f  ( z  ) in t h e  i n t e r i o r  of F. 

In particular t he  integral of an  analytic function along a closed contour is 
equal to  0. An immediate consequence of Theorem 1 is: 

. Theorem 2: [Cauchy’s integral coefficient formula] Let r be a s i m p l e  closed 
c o n t o u r ,  or ien ted  p o s i t i v e l y ,  with t h e  or ig in  in i t s  i n t e r ior ,  that is c o n t a i n e d  
i n s i d e  t h e  d o m a i n  of a n a l y t i c i t y  o f f  ( 2 ) .  m e n :  

Proof: By Cauchy’s residue theorem, the  integral is equal to  
Res( f ( z  )/ zn+l;z =0) which is exactly j , .  

An important property of analytic functions is t ha t  the  radius of 
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convergence of the Taylor expansion of f a t  a denoted R( f  ; a )  is equal to  

R ( f ; a )  = m i n i  I s - a I  I s ~ S i n g ( l ) ] .  

In other  words  an analytic function always has  a singularity on its circle of 
convergence. 

Vie can now s t a t e  a theorem relating the  ezponential order of coefficients 
of an analytic function to  the  Location of i t s  singularities. 

Theorem 3: [The exponential coefficient bound] I f f  ( z )  = C f n z n  is such that: 

R = min 1s I 
s ESingV ) 

then f o r  any c>O: 

R,-(l-&)"I, I f "  I < R-(l+&)" 
2.0. a.e. 

The notation a, < b ,  means that a, is smaller than b,  infinitely often (for 
infinitely many values o f  n )  while a, < b ,  means that a,,<b, almost every- 

where (except f o r  ut most u f i n i t e  number of values o f  n). 
Proof: If t he  lower bound was  not  satisfied, t hen  j ( z )  would be analytic in a 
larger domain. The upper bound follows from Cauchy's integral formula tak- 
ing as integration contour a circle of radius R(1-q) where (l-q)-l=(l+c). 

1.0. 

0.0.  

. 
Applications: 1. For the !exponential generating function of surjections t 
f ( z ) = -  , w e  have: * 

2-e \ 

Sing(f)  = f log2 + 2ikn I ~ E Z ] '  

so t h a t  R=log 2 and for any c: 

1 ( -)" (1 +&), . 
1 

<i .o . jn  <a.e. log 2 
( -)" ( 1 -&)n log 2 

2. With f ( z )  = e -x /2 - z2 /4 /  6, the  singularity nearest  to the origin is z =1, 
s o  t ha t :  

( l -&)n <, f, < (l+&>, 
2.0.  a.0. 

3. Consider t he  functional equation f ( z )  = z +f ( z2+z3)  defining l ( z )  impli- 
c i t ly .  Iterating the  equation, we find: 

f (2) = &(z) 
k:aO 

where 0 ( z ) = z 2 + z 3 ,  and &)(z) denotes the k - th  i terate of a ( z ) .  The fixed 
points of B are:  

-l+G 
2 .  

; z 2 =  
-1 -6 

2 
z o = o ;  z l =  

One can observe t h a t  z o  is a n  attractive fixed point of 0 so t h a t  the sum (7) 

L 

c 

' The coefficient of z " / n !  in I(.) is the  number of surjections from [ L n ]  onto an 
initial segment of N 
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converges fast in a nelghbourhmd of the origin. On the other hand the sum 
(?) becomes infinite when z = z 2  (There it becomes a sum of infinitely many 
identical terms t h a t  are  non-zero). A slightly more refined analysis reveals 
t h a t  z 2  is t h e  singularity of f nearest  to  the origin. Since l / z 2  is t he  well 

known goLden ratio q = - 1+d/5, we have the bounds: 
2 

p ( 1 - c ) “  < In < ( l + & ) n  = 
5.0.  a.e.  

. As a final conclusion to this section, if R is t he  distance of the origin t o  
the nearest  singularity of f , we have: 

f, =*(n)R+ (8) 
where 19 grows i . 0 .  faster than any decreasing exponential an , a<l and grows 
a.e .  faster than  any increasing exponential P , 8>1. I t  is the purpose of t he  
next sections t o  indicate methods by which the  growth of the subexponen t ia l  
f a c t o r  $(n) can  be precisely quantified. One has  for instance for t he  above 
examples : 

3. f n  = O&); 
n 

and fuller asymptotic expansions can be obtained in all cases. 

1 
2. Rational fractions and meromorphic functions. 

W e  have seen in the last section t h a t  the locat ion  of s ingu lur i t i e s  of a 
function determines the exponen t ia l  g r o w t h  of i t s  coefficients. In this and the  
next section, we refine on t h a t  observation showing t h a t  t he  n a t u r e  of t h e  
s zngu lar i t i e s  is related to  the growth of the s u b e z p o n e n t i a l  f a c t o r  *(n) t h a t  
appears  in the  formula: 

f, - d ( n ) R + .  

We start with the  simplest class of functions, namely the  rational j r a c t i o n s .  
These a r e  of t he  form I 

for  two (relatively prime) polynomials N ( z )  and D ( z ) .  If f ( z )  is t o  be analytic 
a t  0,  one should fur ther  assume t h a t  D(0) i tO .  Since N ( z ) = D ( z ) f ( z ) ,  t he  
coefficients of  a rational fraction (9) satisfy a l i n e a r  recurrence  t e l a t i o n  

2.f n-k Ok = 
k 

with initial conditions determined by N ( z  ). Conversely any linear recurrence 
relation leads t o  a generating function t h a t  is a a rational €unction. 



- 38 - 

The asymptotics of coefficients of rational fractions is easy enough. Let 
a,, a2, ... bet the (finite) s e t  of zeros of D ( z ) .  Then the partial f r a c t i o n  decom-  
p o s i t i o n  of f ( z )  is: 

y:, .k = c  j , k ( l - z / a : , ) k  
The sum in (10) is finite and all coefficients y,,k such that  k is larger than the  
order  of t he  root aj  of D ( z )  a r e  equal to  zero. 

From ( l o ) ,  taking coefficients, we get: 

End since the  binomial coefficient is a polynomial of degree (k -1) in n : 

-m is a ra t iona l  f r a c t i o n  that is a n a l y t i c  at t h e  or ig in ,  Theorem 4: f l  f (2)- 
D ( z  1 

t h e n  t h e  n-th Taylor  coeJficient o f f  h a s  t h e  e z a c t  e zpres s ion :  

f 7. = Caj-nj (n 1 (12) 
j 

w h e r e  t h e  a j  are  t h e  po le s  of f a n d  e a c h  nj is a p o l y n o m i a l  whose  degree is 
e q u a l  t o  t h e  m u l t i p l i c i t y  of t h e  pole  o f f  at aj m i n u s  1. 

Notice t h a t  if t he  aj a r e  arranged in order of increasing modulus, t hen  (12)  
has t h e  character  of a n  asymptotic expansion in whicbeach term is e z p o n e n -  
tially s m a l l e r  than the previous one. Notice also tha t  non-real a ' s  will 
correspond t o  P u c t u a t i n g  t e r m s  since, if a=pe'+': 

a- = p-"(cos(np)-s in(ny) )  . 

A result very similar t o  Theorem 4 holds much more generally for m e r o -  
m o r p h i c  functions. One has: 

Theorem 5: Let f ( 2 )  be meromorph ic  f o r  I z  IsR a n d  a n a l y t i c  f o r  I z  I=R. Let  
a,, a2, ... ,bet  t h e  ( P n i t e )  s e t  o f p o l e s  of j ( 2 )  with m o d u l u s  Less than R. ?hen 
t h e r e  e x i s t  po lynomials '  TI,, TI2, ... , s u c h  that - 

j, = Caj"II j (n)  + O(R-")  . (13) 
j 

The degree  of IIj is equa l  t o  t h e  order  of t h e  p o l e  aj m i n u s  1. 

Notice t h a t  t h e  remainder term is exponentially smaller t han  any of t h e  
t e rms  in the sum (13). We present two proofs of Theorem 5. 

L 

Proof 1: [Method of subtracted singularities] 
If (2) has a pole of order dj at a j ,  then for some function hj analytic a t  aj 
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Expanding hj around aj up to  terms of order  d j ,  we 2nd a polynomial Qj, 
namely 

such tha t :  . 

is analytic a t  z = a j .  Thus the rational fraction obtained by collecting singular 
contributions from poles: 

is such t h a t  j ( 2 ) - Q ( z )  is analytic for Iz IsR. Writing 

[ z n l I ( 4  = [Zn3 Q ( z )  + [ ~ " 3 ( 1 ( z > - Q ( z ) )  

and applying Theorem 4 to the first term, the  Cauchy exponential bound t o  
t h e  second te rm concludes the  proof of the theorem. 

Figure 1: 
Tunc t i o n s  

1 .  

7he  i n t e g r a t i o n  con tour  u s e d  t o  e z t r a c t  coefficien,; 01 meromo7ph ic  

Proof 2: [Contour integration method] 
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Let y be a number 05s;o<27: be such tha t  the half-ray Argt(z)=g crosses no 
pole of j ( z )  with modulus less than R. Let p be smaller than the radius of 
convergence of f a t  0 .  Consider the contour (see Fig. 1) :  

r = r,+T2+?3+r4 

where 

= I 2  1 I z l = p {  

?'3=12 I Izl=R( 
T2 = [ z  I p s l z  ISR; Argt(z)=cpj 

7 -  7 ' 4  - - 1 2 .  

TI is oriented positively (anticlockwise), r3 negatively (clockwise); r2 is 
traversed in t h e  direction from TI to r3, and r4 is the same a s  T2 except that 
the  orientation is reversed. 

The contour 7 encircles all the poles of I ( z )  with modulus less than R in 
a clockwise direction. Therefore, by the residue theorem, 

(Notice t h e  mnus  sign due t o  t h e  orientation of r). Now the integral decom- 
poses into 

Contributions relative to r2 and T4 cancel each other.  The contribution rela- 
tive t o  is O(R-") by trivial majorisation. Finally LJ is equal to  I,. Thus 

the proof is completed once we check t h a t  each of the residues in (14) is of 
t he  form a j T I j ( n ) .  ' 

2i7~ r, 

Examples: 1. Let R be the set of 0-1 strings without 2 - m ~  (i .e.  no  2 consecu- 
tive ones may appear  in these strings). One h a s  the description: 

R = ( c + l )  (0 ( c + l ) ) *  

so tha t :  
1 

T ( Z )  = (1+z)  I-z(l+z) 
1 +z - 

1-Z-Z2 ' 

From t h e  partial fraction decomposition of ~ ( z ) ,  we get: 

1" , 
1-G ( 1 - 6  + - -  r,=- ~+a (I+*)% - 

2 6  2 245 2 

2. Let f ( z ) = l /  (2-e')  whose se t  of singularities has  been already determined. 
The residue at a =log 2 of is -A By periodicity of the exponential, this is 

2 '  
also equal to  the  residue of f at any other  pole. The sum of residues in 

&. 

c 
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Theorem 5 appears  i o  be convergent. so tha t  one can write the e z a c t  formula: 

where. 
2ik Ti  XI; = 1+- 
log 2 

3. The probability tha t  a random permutation of [ l..n] has  no cycle of length . sk is: 

s o  t ha t  for any positive real R: 

+ o ( 1 )  
<k > = e -A 

Xn 

Notice finally tha t  these expansions a re  usually quite good owing to  the  fast  
decrease of terms.  For instance 

- 34082521 = 28.1766873346 [ d o ] - - -  1 - 
2-e' 1209600 

while t he  f i r s t  term of the .asymptotic expansion yields: 

28 .1  'ra687336 1 ! -(-)I1 1 1  = 
2 log2 

3. Non polar singularities. 

Assume t h a t  a function ( 2 )  has a unique singularity of smallest 
modulus a.  Results from the last section entail tha t ,  when f is meromorphic, 
we can t r a n s l a t e  an asymptotic relation for the  function: 

f ( z )  - g ( z )  z-+a % (15) 

- where a is the  singularity nearest  to the  origin, into the corresponding rela- 
tion for coefficients: 

We propose here  to describe general conditions under which the  transition 
from (15) to  (16) can be effected, relaxing the conditions tha t  functions be 
meromorphic or singularities be of a polar type. 

Developments in this section assume tha t  asymptotic information is 
available for the  function in some area of the  complex plane around its singu- 
larity. They make it possible to translate O(.) estimates for functions into O(.) 
estimates for coefficients, whence the  name of t r a n s f e r  or t r a n s l a t i o n  
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lemmas given t o  them. 

asymptotic expansion for f around a in the form: 
One of the main uses of transfer lemmas is as follows. Assume we have a n  

1 ( z )  = G ~ ( z )  + ~ ~ ( 2 )  + . ' + o k ( z  j + O ( g ( z )  , (17) 
for some elementary functjons o1 ... belonging t o  an asymptotic scale. Then, if 
proper conditions a re  satisfied, (17) translates into 

f n  = 0l.n + u2,n + ' , ' + 0 k . n  + o(gn) (18) 

Building a p  a cata logue  of coefficients of standard singular functions 
appearing in asymptotic expansions, in exact. or  asymptotic form, using 
real o r  complex analysis. 
Establishing conditions under which t ransfer  lemmas hold t rue 

Application of this method therefore calls for two types of results: 
1. 

2 .  

Kotice also t h a t  these methods can be trivially extended when a function h a s  
a finite number of singularities on its circle of convergence. Just  add up the  
contributions to  the coefiicients coming from each singularity. 

I I 
I I 

l l  
I R. 

i Table 2: A s imp l i f i ed  ca ta logue  of t h e  a s y m p t o t i c  f o r m  of coef f ic ien ts  of s o m e  
j standard s i n g u l a r  f u n c t i o n s .  
I 

Table 2 provides a simplified catalogue of the asymptotic form of 
coefficients of some standard functions. Such a catalogue can be built from 
direct  expressions available for coefficients or  from contour integration tech- 
niques. For instance: 

1 
n [."I -log(l-z) = - 

s (,s + l ) ( s  +2) . ' . ( s+n-1)  = (S+?-I)  
[ Z n ]  (1-2)- = n!  s 1  

A s  to  transfer lemmas. they a re  summarised in Table 3. (Notice, in passing, 
the analogy between Tables 2 and 3). We shall prove here: 

Theorem 6:  ( i )  A s s u m e  t h a t  g (z ) is a n a l y t i c  in t h e  d o m a i n  

D = Iz I ( z  J s l ,  zflj 
a n d  t h a t  as z t e n d s  to  1 i n s i d e  D ,  one has: 
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i 

I I - I Table 3: A s imp l i f i ed  se t  of t r a n s f e r  r e s u l t s  (see Theorem 6 f o r  v a l i d i t y  i cond i t ions ) .  I 
g ( z )  = O (  11-2 I ” )  

[ z ” ] g ( z )  = O ( n S - ’ ) .  

with s > 1. m e n .  

( i i )  A s s u m e  that g ( z  ) is a n a l y t i c  in t h e  i n d e n t e d  d isk:  

D = [ z 1 Iz I s l + d ,  d<IArgt(z- l )1<2n 1 
w h e r e  d , d  are  s u c h  that d>O, 0<29<z. A s s u m e  that, as z t e n d s  t o  1 i n s i d e  D :  

2 

s ( z )  = O( 11-2 1‘) 

[ z ” ] g ( z )  = O ( h - - ’ ) .  

with r >O. m e n :  

J 
Proof: (Sketch) 
(i), Use the  Cauchy formula with a contour r t ha t  consists of the  circle 
Iz I=1 except for a small notch a t  distance l / n  of z = l :  I‘= ro+ri where 

ro = 1 2  I 12 1 ~ 1 ,  l z - i I = n  1 j 

1 
n T2 = [ z  I 12 [=I, 12-112-j . 

Next evaluate each integral using trivlal bounds. One has: 

n 

There d o  is the  argument of the  intersection of To and I’l in the  upper half 
plane. 
(ii)- Use likewise the Cauchy integral formula with a contour 

r = ro,u + rl,o + r2 
where 
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( i  1 ( i i )  

Figure 4: The c o n t o u r s  u s e d  in order t o  e s t a b l i s h  Theorem 6. 

T2 = [ z  I 12 I=rl , IArgt(z-p)Ir291 1 

for some 7 , :  l<r,<l+d (6>0) and 19,. 1 9 < 2 9 , < ~  letting osh r ink  to  0 2 '  

A full discussion of the proof is given in papers by Odlyzko and Flajolet- 
Od I yz k 0 .  

Notes: 1 .  Many more results a r e  available using these techniques. The under- 
lying idea is t o  take a contour of integration tha t  comes close to the singular- 
i t y .  It t he  function is small ( L e .  tends to 0 )  as the argument approaches t h e  
singularity then one tries to  extend the  contour of integration outside the 
disk of convergence in a manner similar to  what was  done for polar singulari- 
ties. If t h e  function is large then the  contour can stay within the disk of con- 
vergence of t he  function. 
2. The fact  t h a t  t he  singularity of t he  function w a s  assumed to  be at z = 1  is of 
course not restrictive (otherwise, normalise the function). Also the  case 
where the function has  a f i n i t e  number of singularities on its circle of conver- 
gence can  be dealt with using composite contours. The outcome is t h a t  con- 
tributions from each of the singularities cumulate. 
3. The classical Da.rbow-Polya method is in the same spirit. I t  however 
assumes s m o o t h n e s s  condi t ions  while here  our conditions concern orders o j  
g r o w t h .  The present approach lends itself nicely to  generalisations; also in 
some cases, only order-of-magnitude informations are  available and i t  
appears  t o  be well suited to  combinatorial enumeration problems. 
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4 .  Tauberian theorems assume much weaker conditions on the function g :  
basically all t h a t  is required is some informetion on the function as 2-1- 
along the rebL axis However, in the context of combinatorial enumerations, 
they do no? seem t o  provide information for the same variety of singular 
behaviours while they require some so-called Tauber~an  side conditions t h a t  
may be hard to establish. . 

.. 
Examples: 1. When counting certain combinatorial configurations (”clouds”), 
one encounters  the generating function: 

” e - z /  1 - z e / 4  
f ( z ) =  

Thus, by the transfer lemma (Theorem 6.i): 
e -3/ 4 

G [ z ” ] f ( z ,  = [ Z n ]  - + O ( n - 3 / 2 )  

e - 3 /  4 

cm = -  + O ( n ’ 3 / 2 ) ,  

2. Let f ( 2 )  be the solution analytic a t  t he  origin of equation: 

f = z ( l + f + f 2 ) ,  

t h a t  is: 

Function f is t he  0.g.f. of unary binary trees, in which’each node has  degree 
0,  1 or 2. The dominant singularity of f ( 2 )  is a t  z = 1 / 3  (the other  one is a t  
z =-I ) ,  where locally J’ admits a n  expansion of t he  form: 

f ( 2 )  = + O( 11-32 p2) 
from which one finds: 

3n+l + O(3n-5’z) . . 
2- 

[ 2 ” 3 f ( z )  = 

- 4. Saddle point bounds. 

We only gjve here  a brief introduction to  the subject of s a d d l e  p o i n t  
m e t h o d s  which allow derivation of asymptotic expansions for integrals of ana- 
lytic functions depending on a (large) parameter.  In the  context of extract-  
ing coefficients of analytic functions, one way of conceiving these methods is 
as a refinement of trivial bounds on the  Cauchy integral formula. 

Assume throughout this section t h a t  f ( z )  is an analytic function t h a t  is 
e n t i r e  and has  p o s i t i v e  coef f ic ients .  By Cauchy’s integral formula, one has: 
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Take as contour o! integration a circle of radius R.  Since f ( z )  has  positive 
coefficients, we have for any z such t h a t  I z  I=R: If(z)l~f(R), and thus ,  
f rom trivial majorisations of (19) :  

2s fo 
Rn 

The bound (20) is valid for any positive R. Notice tha t  f ( R ) / R n ,  which is 
infinite a t  R=O and R=m is unimodal over R+. Thus there is a real number p:  
O<p<= t h a t  minimises f ( R ) /  F+'. That number is a root of equation: 

sc t h a t  is satisfies: 

P f ' ( P ) - W  (PI  = 0 f 
In other  words: 

Note: Since the  bound ( 2 )  is valid for any R, the  function w ( . )  need not  be 
inversed exactly and may be .olved only asymptotically or approzimately. Of 
course,  t he  bekter the approximation, t he  bet ter  t he  bound. . 
Example: Let In be the number of involutions in the set of permutations of 
[ l . . n ] .  Jnvolutions a r e  characterised by the  fact  t h a t  they have only cycles of 
length 1 and 2. Thus their  e.g.f is: 

v 

c 

Theorem 7: Let f be entire and have positive coejjkients., Define the function 
w ( u )  b y :  

u f ' ( u )  
f ( u )  

w ( u )  = 

Then the n-th Taylor coefficient o f f  ( z )  satisfies the bound: 
f ( w < - l > { n ) )  

(n)In ' f n  (w <-I> 
I 

where w <-l>( .) denotes the functional inverse of w (.). 

Example: Take f (2) = exp(z) .  Then [znJ f ( 2 )  = 1 / n ! .  We have trivially: 
w ( u )  = u so t h a t  w<-l'(n) = n ,  whence by Theorem 7 the  (expected) bound: 

a weak form of Stirling's formula. . 

In t h a t  case,  w ( u )  = u+u2,  so  t h a t  an approximation to  w<-I>(n) is 6/ 2 ,  
whence: 
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The estimatns we have jast seen can be refined. In many cases of 
interest ,  only a s m a l l  f r a c t i o n  of the  c o n t o u r  contributes significantly t o  t h e  
integral. There, local approximations can  be performed and an asymptotic 
estimate of t he  integral (instead of just an upper bound) can be obtained. - 

The saddle point method applies to  integrals of the form: 

where h ( z ) = h , ( z )  depends on a large parameter  n .  The case of Cauchy’s for- 
mule (19) corresponds to the particular form: 

h ( z )  E h , ( z )  = l o g f ( 2 )  - ( n + l ) l o g z  

The method proceeds as follows: 
1. Determine R = R, such tha t :  

Quantity R is called a saddle p a i n t  of the integrand due to the  local 
topography of the surface defined by lh(z)l and l e h ( Z ) I .  Notice t h a t  
with t h e  notations of Theorem 7, one has  Ii& = w<-I> ( n + l )  which is 
expected t o  be close to  the quantity w‘ - I> (n )  appearing in Theorem 7. 
The idea is t o  evaluate integral (23) using as  contour r a circle of radius 
R satisfying (24). 
Select a n  adequate angle I9 = 19, (usu,ally 29 will be small), satisfying t h e  2 .  
two (conflicting) requirements: J 

There r[29] denotes the pa r t  of the circle l z  I=R consisting of points z 
such t h a t  IArgt(z) [SO. Condition (Cl) requires I9 to be large enough so 
t h a t  t he  dominant par t  of the integral comes from T‘[29] while condition 
(C2) requires I9 t o  be small enough t h a t  local expansions be valid. 
If (Cl) and (C2) a r e  satisfied, then one has: 3. 

h ( R )  + + “ ( R ) ( Z - R ) ~  
.6 I = -  dz . S e  

2 2 ~  r[fij 

The last s tep is now to  c o m p l e t e  the integral; setting z =R +it: 

-OD 

a Gaussian integral that  can be evaluated, leading to: 

I 
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What we have seen above is general enough t o  apply to  a wide class of 
integrals depending on a (large) parameter.  Restricting ourselves to  t he  spe- 
cis]  form of integra! (19), we can s ta te :  

Theorem 8: Assuming approzimations (Cl), (E), (C3) t o  be valid,  one has: 

where : 

h ( z )  = l o g  f ( 2 ) - ( n + i ) l o g z  

Rn = zL;<-1’ (n+1) 

and uj<-”(.) is t h e  functional inverse of 

Applications: 1 .  Stirling’s formula: 

e n n *  
dZ5i ‘ 

[ z n ] e z  - 
2.  The number of involutions: 

3. The number of se t  partitions: \. 

I n 
log n 

[z”] exp(ez- l )  - e-] (-)” . m 

5. Pellin transform techniques. 

The Metlzn transform associates to  a real function f ( 2 )  defined over 
[O;+m] a complex function f * ( s )  written M[f (2);s J o r  M[f (.)I, and given by: 

If f is continuous and satisfies: 

f ( 2 )  = O ( z U )  z+o 

f (z)  = O(Z6) 2-r- 

then,  it is easy to see t h a t  the transform (25) is defined in the strip - called 
the fundamental s t e p  - -a<Re(s)<-p,  Let 6(z) be the  function whose  value is 
1 for OSzS1 and 0 for l<z; it is easy to  see tha t :  

I 
. I  

1 M[6(2)za] = - 
S +a 
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and thus  the  Mellin transform associates to  a (particular) function t h a t  is 
O ( z a )  a t  0 e transformed function with a pole a t  s = - a .  From this observa- 
t ion,  proceedi.-g by linearity, i t  is easy to  see tha t  more generally, t he  
transform of a function with an asymptotic ezpansion around 0 of t he  form: 

- is a function meromorphic in a le f t  half plane t h a t  has  a pole of residue c j  a t  
s =-aj. Smaller terms in t h a t  expansion correspond t o  poles t h a t  a r e  far ther  
to  the left. A similar reasoning applies to  asymptotic expansions towards 00 
(poles far ther  t o  the right correspond to  smaller contributions). In o the r  
words: 
A .  7he asymptotic ezpansions of a function at 0 (or m) are reflected by t he  

poles of i ts  Mell in  transfomn in a l e f t  half-plane (a r igh t  half plane 
re  sp e c tiv e 1 y ). 

The converse of t h a t  property is also (mildly conditionally) t rue .  To prove 
this, one starts with the inversion formula,  t h a t  corresponds t o  the classical 
Fourier inversion; 

* 

c +im 

where c is in t he  fundamental strip of f .  (Notice the analogy with (25)). If 
f * ( s )  is meromorphic, one can evaluate the integral in (26) by residues: t ake  
as contour of integration the vertical line Re(s)=c completed by a large con- 
t o u r  in the left half-plane.. Under (often satisfied) suitable conditions, one can 
apply Cauchy's residue theorem to t h a t  i n k g r a l  and get: 

f ( 2 )  - CRes[f * ( s j z - s  ; s=a]  
a 3 

where the  sum is extended t o  all poles a of f ' ( s )  t o  the right of t he  vertical 
line Re(s)=c.  Notice tha t  if f has  only simple poles, then (27) can be rewrit- 
ten as: 

f ( 2 )  - Res[ f ' (s );s =a] z - ~  
U 

where the asymptotic nature  of expansion (28) is obvious. If f * ( s )  has  multi- 
ple poles, then generalised expansions with powers of logz appear. In sum- 
mary: 
€3. ?%e poles of a Mell in  transfonn in a l e f t  halj-plane (right half plane) 

translate (under  certain smallness conditions of f *(s) towards am) into 

Thus the correspondence between asymptotic properties of f and  singulari- 
ties of j fares both ways. This justifies t he  importance of t h a t  transform for  
asymptotic analysis. 

- t erms  of an asymptotic ezpansion off ( 2 )  at 0 (resp. +=). 

- 

The usefulness of the Mellin transform is also due t o  a very elementary 
functional property, namely: 

M[f ( a z ) ; s ]  = a"f ' ( s )  , a s O ,  

which using linearity (assuming summations and integrations may be 
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interchanged) extends t o :  
P 

z h k f  ( a k Z )  (xhkaks)f * ( S )  
k k 

Sums 3n the  !eft hand side of ( 2 9 )  are  called h a r m o n i c  sums. Equation (29) 
shows tha t :  
C .  H a r m o n i c  sums a r e  t r a n s f o r m e d  by t h e  MeLLin t r a n s f o r m  i n t o  t h e  p r o d u c t  

01 a genera l i sed  ih r i ch le t  ser ies  and t h e  t r a n s f o r m  of t h e  basis f u n c t i o n .  

We shall only illustrate some of these points by means of a few elementary 
examples. 

Examples. 1. Let f ( z ) = e Z .  The transform of 3 is the classical Gamma func- 
tion: 

00 

r(s) = S e x p ( z ) z s - l d z  , 
C 

k 
with <O;==> as fundamental strip. To the te rm ( - l ) k  in the expansion of f 
around 0 there  corresponds (Point A above) a simple pole of F(s) a t  s = - k  
with: 

k 

In other  words, t h e  expansion: 

translates into the  m e r o m o r p h i c  expansion: 

p ( - l f k  1 T(S) = 
kkC k !  s + k  ' 

and in t h a t  case both expansions a re  actually convergent. 
2 .  The following sum appears in relation to  the  analysis of the expected 
height of a planar t r ee  with n nodes: 

S ( x )  = d ( k ) e - k Z z P  
k k l  

where d ( k )  is the  number of divisors of k .  Sum (30) is typically a harmonic 
sum whose transform is (((s) is the Riemann zeta function); 

where the fundamental strip of (31) is <I;+->. Function S' has a double pole 
a t  s =1 and a simple pole a t  s =O.  Hence the meromorphic expansion: 

whence: 

S(x) - -fig 10 x + fi(3-W)L + i + O ( x M )  x + o  I 

X 4 2 x 4  



- 51 - 

8 

for  any positive M .  m. 

The Mellin transform has 2 host of applications to: (1 )  situations where 
number-theoretic functions appear  (like above the divisor function); ( 2 )  
n on - s t  an d ard asymptotic expansions corresponding to  periodic i ti es. Exam- 
ples are: height of trees,  carry propagation, digital trees or tries ... . 
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PART N 
AF'PLICATIONS 

It is our purpose here to  offer a brief guide to  some of the existing litera- 
tu re  on the  subject of analysis of algorithms and data  s t ructures ,  putting 
enumeration and asymptotic methods in perspective. Since we cannot afford 
the space necessary to  discuss the vast existing l i terature,  we shall res t r ic t  
ourselves to  examining a few data structures, closely related to t rees ,  and 

- 
- corresponding algorithmic processes. 

1. Trees and tree manipulation algorithms. 

This sections discusses uniform statistics on t rees  of various compositions. 1: 
corresponds to  what was called in Par t  I, the  empirical model. The t rees  we 
condider a re  t e r n  t r e e s  in some algebraic s t ructure .  

Consider first the fami ly  B of (planar) binary f rees ;  it is a data s t ructure  
recursively defined by: 

B = + <o.B,B> (1) 

where " R "  denotes an empty tree (nullary node), and "0" denotes an  internal 
(binary) node. (We have used an obvious linearised notation for trees).  Define 
the size of a binary t ree  t o  be the number of internal nodes i t  comprises. 
Equation (1) translates into the fixed point equation for the corresponding 
generating function B ( z ) :  

J (2) B ( 2 )  = 1 4- 2 BZ(2) , 
a quadratic equation that  has the solution: 

1 -+ 1-42 
22 B ( 2 )  = 

Whence the explicit result: 

B, = -"(2,"), 
n+l  

and from Stirling's formula: 

(3) 

(4) 

- The transition from (1) t o  (2) is general enough. Let R be a subset of the 
non-negative integers. Consider the family T = T[R] of t rees  such t h a t  
(out)degrees of nodes are  restricted to  be in the set  SI (binary trees 
correspond to  R = 10,2{). Such a family is called, af ter  Meir and Moon [MM78], 
the  simple lamily of t r e e s  associated to degree constraints R .  Define wk to be 
equal t o  I if k e n  and 0 otherwise. One can write for T the symbolic equation: 

T = C W k  <o,T,T, . . . ,T> . 
k 

where the number of occurrences of T in the genera! te rm of the sum is equal 
to  k .  With the size of a tree now defined as the total number of nodes t h a t  
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t r ee  comprises, equation (6) translates into: 

T ( z )  = z o ( T ( z ) )  (7) 
where w ( u )  = ~ w k z k .  

k 

The Taylor coeffisirnts of a h e  solution T ( z )  of (17) can be obtained 
exactly using the Lagrange  i n v e r s i o n  Theorem [He??] t h a t  reiates t he  
coefficients of t he  multiplicative powers of a function (o(.)) t o  those of its 
functional inverse (related t o  T ) .  Hence: 

Theorern 1: The n u m b e r  of t r ees  of s i z e  ( total  n u m b e r  of n o d e s )  n in t h e  fam- 
ily dewfined b y  degree c o n s t r a i n t s  fl is: 

1 
n 

T, E - [u”-’]w(zL)”  , 

Notice t h a t  in Formula (8), t he  wk need not be 0-1 parameters. Allowing f o r  
general integral wk will make i t  possible t o  count term trees, t h a t  is trees 
whose nodes a r e  labelled with operators; in t h a t  case ok represents t h e  
number of operators of degree (arity) k . 

If w(u) is simple enough, then Theorem 1 will provide useful counting 
results. We mention here: 
- The number of general trees ( G k  1 for all k ,  i.e w(u)=(l-u)-I) of size n 

is: 
1 2n 2 ;( n - 1 ) .  

-( tn+1 n 1 .  

- The number of t-ary t rees  ( t 2 2 ) ,  i . e : w ( u )  = l+ut with a total of t n + l  
nodes (and thus  with n t -ary internal nodes) is: 

~ 

1 t n + 1  

In case o(u) h a s  a more complex form, one has to resort  t o  asymptotic 
analysis, and indeed [MM?8]  have shown t h a t  Formula (5) obtained here  by 
elementary methods nicely generaiises. 

Function T(z) in Equation (7) is the solution (in y )  of: 

F ( z , y )  = 0 , F ( z , y )  = y - z w ( y ) .  ( 9 )  
Thus (9)  defines y implicitly as a function of z .  From the’ i m p l i c i t  f u n c t i o n  
t h e o r e m ,  we know t h a t  a solution y with value yo at  a point z o  (F(zo,yo)=O) is 
analytically continuable provided: 

From the re  can be  seen t h a t  t he  singularity (-ies) of y closest to  t he  origin is 
(a re)  t he  quantity (-ies) of smallest modulus p such tha t  ( p , r )  are  a s e t  of 
solutions of t h e  system: 

Hence, here: 
T p =  - 

4 7 )  
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where 7 is one of the roots  of equation: 

w ( 7 ) - 7 0 ' ( 7 )  = 0 (11) 
Assume for simplicity tha t  there  is a unique 7 of smallest modulus satisfying 
( 1 1 ) .  Then, around ( p , ~ )  the dependency between y and z is locally of the  
iorm: 

( 7 - y ) Z  - A (2 -p) = 0 , (12) 
a s  can be checked using the expansion of F .  From (12), one can establish for- 
mally tha t  y has the form: 

J1-t (13) 
* 

P 
Y ( Z >  = h , ( z )  + h z ( z >  

where h, and h, are analytic a t  z =p. That form lends itself nicely to a singu- 
larity analysis (of a "square-root" type) and one gets the very general result  
of [MM78] which we s ta te  in the little restrictive case where T ( z )  has a unique 
singularity on its circle of convergence ( the  same assumption is made in the  
res t  of this section): 

Theorem 2: [MM78] f l  t ( z )  h a s  a u n i q u e  s i n g d a r i t y  o n  i ts  c i rc le  of c o n v e r -  
g e n c e ,  t h e  n u m b e r  01 t r e e s  in T[ n] with s i z e  n s a t i s f i e s  a s y m p t o t i c a l l y :  

w h e r e  t h e  c o n s t a n t s  C a n d  p a r e  g i v e n  e z p l i c i t l y  b y  p = r / p ( ~ )  a n d  
C=(p(7)/  (27~p"(7) ) ) ' /~  with 7 t h e  s m a l l e s t  p o s i t i v e  r o o t  of t h e  e q u a t i o n  
p(7) -Tp'(7) = 0. 

The main methods ior estimating t ree  parameters  are  a s  follows: 
1. The symbolic operator approach is a convenient tool for writing symbolic 

equations in the  style of ( l ) ,  (7). One may have though to extend it to  
equations over m u l i s e t s  (elements a re  taken with multiplicities 
.corresponding to values of the parameter  to be analysed [F181, SF83, 
FS821). 
Most generating functions have expressions in terms of the implicitly 
defined function t (2 ) .  Thus, the  Lagrange inversion theorem is a n  impor- 
t a n t  tool tha t  often leads to  exact counting results otherwise difficult to  
a t ta in .  
Singularity analysis of intervening generating functions is also of con- 
s tan t  use in this context. Since function t ( z )  has  algebraic singularities, 
the methods of Chapter I11 often apply here .  Other important techniques 
a re  saddle point methods and Mellin transform techniques in those cases  
where, in summations, there  appear  coefficients of an  arithmetical 

2. 

3. 

. nature .  
Some examples follow. We only sketch the main s teps  of derivations. 

The simplest of all t ree  algorithms is certainly r e c u r s i v e  t r e e  t r a v e r s a l :  to  
traverse a t ree  in preorder,  visit i t s  root,  then  recursively traverse all its root  
subtrees  in left-to-right order. The time complexity of tha t  procedure is 
clearly linear in the size of the t ree ,  while its storage complexity is equal to 
the  maximum size of the recursion s tack,  a quantity tha t  coincides with the  
h e i g h t  of the t ree .  

The first result  on the  expected height of planar t rees  has been obtained 
by De Bruijn e t  al.. 

- .  

I 
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Theorem 3: [DBKR’II] The e z p e c t e d  h e i g h t  o j  a g e n e r a l  p l a n a r  t r e e  (al l  n o d e  
d e g r e e s  a l l o w e d )  with n n o d e s  satisfies: 

Rn = * + O ( 1 ) .  

Proof: Let G be the  family of general trees:  

(14) G = o + <o,G> + <o,G,G> + <o,G,G,G> . . . 
An equation similar to (14) describes the  family G[’] of t rees  with height at  
most h: 

(15) ~ [ h + ’ l  = o + < o , ~ [ h l >  + <o,G[hJ,~[hb + < o , ~ [ h l , ~ [ h l , ~ [ h b  . . . 
whence the equations. 

from which follows thaf:  

where the  F’s  satisfy the  linear recurrence relation: 

F . + 2 ( z )  = FA+I(z)-z F h ( z )  . 
The T ’ s  can be expressed as functions of g ( z )  itself, and using Lagrange 
inversion, one gets: 

and:  

(19) Bn+l= ~ d ( k )  [ ( n + l - k ) )  2 n  - 2  (n2_nk) + ( 4 : y - k )  1 .  
k 

The asymptotic evaluation of (19) calls for evaluations of sums of the form: 
f 2 n )  

U s k g  the  Gaussian approximation of binomial 
mated by T (  1/ 6) where: 

T ( Z  = ~d (k ) e  -”*’ 
k 

( 2 0 )  

coefficients, ( 2 0 )  is approxi- 

( 2 1 )  

The problem is thus  to  evaluate asymptotically T ( z )  given by ( 2 1 )  when z 
tends to 0 .  The Mellin transform of T ( z )  is readily determined to be 

I t  has  a double pole a t  s =1, a simple pole at  0 whence the asymptotic expan- 
sion 

( 2 3 )  T ( z )  = -(logz+C,) 1 + c2 + O ( z r n ) ,  
22 

as t + O ,  for any m>O. A combination of expansions of the  form ( 2 3 )  leads t o  
the  s ta tement  of the theorem. 
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That result  has  been generalised by Flajolet and Odlpzko who proved 

Theorem 4: [F083] The ezpec ted  he igh t  of a t ree  of s i ze  n in a s i m p l e  f a m i l y  
of t rees  satisfies: 

R,, - A 6  

w h e r e  t h e  e z p l i c i t l y  c o m p u t a b l e  c o n s t a n t  A is A = ( 2 ~ i /  (p (~ )p"( ; - ) ) ) ' / *p ' (~ ) .  - 
Returning t o  the notations of equations (6),  (7), we see t h a t  t he  generat-  

ing function of t r ees  of height a t  most h ,  fl'], is defined by the recurrence: 
% 

T [ ' + l J ( Z )  = z w (  T [ h ] ( Z ) )  (24) 
with f l 0 ] ( z ) = z ,  and the  generating function of height of t rees  is: 

H ( 2 )  = ~ [ T ( z ) - T [ q z ) ] .  
A 

The scheme ( 2 5 )  is nothing but an iterative approximation scheme to  the  
fixed point equation (7) determining T .  A singularity analysis of (24) leads t o  
the  result .  This necessitates determining the behaviour of t he  iterative 
scheme (24) near z =p, which is a s i n g u l a r  i t e r a t i o n  p r o b l e m ,  from which one 
can  prove tha t :  

K 1 

1-- 1-- 
P P 

H ( z )  - -log - , 
z z 

and the  result of Theorem 3 follows directly. 
Methods similar to those employed in the  proof of Theorem 4 had been 

introduced in a n  earlier analysis of Odlyzko [Od83], where he counted the  
number of balanced 2-3 t rees  of size n .  

Theorem 5: [Od83] 7he n u m b e r  of .ba lanced  2-3 t r ees  with n e x t e r n a l  n o d e s  
sa t i s f i e s  : 

'' 

I 

and W( .) is a c o n t i n u o u s  a n d  per iod ic  f u n c -  w h e r e  p is t h e  g o l d e n  ratio - 
t i o n .  

1+* 
2 

Odlyzko's result actually includes the counting of a variety of balanced trees. 
Such trees occur  in the  management of "dictionaries" and they allow inser- 
tions, deletions and queries to be performed in guaranteed O(1ogn) time. The 

sion in Chapter 3 of t he  equation j ( 2 )  = z + f ( z 2 + z 3 )  t h a t  is satisfied by the  
0.g.f of t he  E, .  

. occrrence of t he  golden ratio in Theorem 5 is t o  be expected after the  discus- 

The next  algorithm t o  be examined is p a t t e r n  m a t c h i n g  on trees. The 
problem is t o  detect  occurrences of a given pat tern t r ee  in a larger text  tree.  
For instance,  in symbolic manipulation systems, one may look for cases of 
application of a rewrite rule of t he  form: 
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/-\ / * \  

S 

S 01 1 S ,,pi 

and recognizing cases where the pattern on the 1.h.s. appears calls for a .  
pattern-matching algorithm. 

Contrary to  what happens in the case of strings where efficient worst 
case linear time algorithms a re  known, it is conjectured here t h a t  no linear 
time algorithm may exist for tree-matching. The sequen t ia l  t ree  m a t c h i n g  
a l g o r i t h m  corresponds to a simple backtracking search. It operates as fol- 
lows: 
1. For each node of theitext t ree ,  examine the  subtree rooted a t  t h a t  node 

to  see if i t  matches the pat tern,  using.;the comparison procedure (2). 
2. To compare 2 subtree against a pa t t e rn ,  traverse simultaneously the  

pa t t e rn  t r ee  and the tex t ' s  subtree in preorder ahd abort  t h a t  traversal 
as soon as a mismatch is detected. ' 

The sequential matching algorithm has clearly a quadratic worst case com- 
plexity of t he  form O ( n 2 ) .  However, one can prove in contrast  t h a t  t he  
expected case is linear, namely: 

Theorem 6: [ SF831 The sequen t ia l  t ree  m a t c h i n g  a l g o r i t h m ,  w h e n  appl ied  t o  a 
f i z e d  p a t t e r n  ? a n d  all t rees  of s i ze  n ,  has ezpec ted  cost  g i v e n  b y :  

v n a t c h ,  -w ( P )  n 
w h e r e  w ( P )  is a f u n c t i o n  of t h e  s t r u c t u r e  o f  pa t t e rn .  P t h a t  is u n i f o r m l y  
bounded  b y  an absolu te  cons tan t :  w ( P ) S  W .  

The proof of t he  theorem depends on the following lemma [SF83]: 

Lemma: For a s i m p l e  f a m i l y  of t r e s  a n d  a f i xed  p a t t e r n  P with i i n t e r n a l  
n o d e s  a n d  e e z t e r n a l  n o d e s ,  t h e  a s y m p t o t i c  p r o b a b i l t y  of occurrence  of P at a 
r a n d o m  n o d e  of a l a rge  r a n d o m  tree  of s i z e  n sat i s f ies :  

occn<P> LI T.-lpi 

The algebraic pa r t  of the proof is a direct application of the symbolic opera- 
tor  method applied to  multisets of trees.  Generating functions for the number 
of occurrences of trees have simple expressions in terms of t he  function T ( z )  
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and a singularity analysis yields the  s ta tement  of the  Lemma. 
The same type of analysis can be applied t o  a large variety of of t r ee  

algorithms. In [FS82], t he  au thors  set up a general framework within which a 
number of algorithms on trees can be (semi-) automatically znalysed. A s  an  
illustration, we cite: 

Theorem 7 :  7he s y m b o l i c  d i f f e ren t ia t ion  a l g o r i t h m  has, f o r  a n y  s e t  0 of opera-  
to r s  a n d  a n y  se t  A 01 d i f f e ren t ia t ion  r u l e s  with at l eas t  one ”expand ing”  r u l e ,  
t h e  average  case  c o m p l e x i t y ;  

T d i f f ,  = C ( L ~ , A ) ~ ~ / ~  + O ( n )  . 

- 

0 

A less s tandard singular behaviour occurs in the  problem known as the  
c o m m o n  s u b e x p r e s s i o n  p r o b l e m  or  t ree  c o m p a c t i o n  where a tree is compacted 
into a dag  b:r avoiding duplication of identical substructures .  The singularity 
in t h a t  case is of the  form [FSS85] 

1 

d( 1-2 ) log ( l L z ) - ’  
and one finds: 

Theorem 0: [FSS85] me expec ted  s i z e  of t h e  ( m a x i m a l l y  c o m p a c t e d )  dag  
r e p r e s e n t a t i o n  of a r a n d o m  t r e e  of s i ze  n in a s i m p l e  f a m i l y  of t r e e s  sa t i s f i e s :  

n e). JL = y . / ~ o g n  + l ogn  

Thus the  gain to be expicted when compacting trees into dags should be 
expected to  approach 100% as  the  trees ge t  large, although convergence may 
be quite slow. 

1 

Finally, reg i s t e r  a l locat ion  in compiling is the  subject of [FRV79], [Ke79]. 
The optimal register allocation strategy for expressions involving binary 
operators  has  been determined by Ershov a s  early as 1958. We have: 

Theorem 9: [FRV79],[Ke79] 7he expec ted  n u m b e r  of reg i s t e r s  t o  e v a l u a t e  a 
binary t ree  of s i z e  n u s i n g  B s h o v  ‘s a l g o r i t h m  sa t i s f ies :  

a = log,n + P(log,n) + o ( I ) ,  

w h e r e  P ( u )  is a per iod ic  f u n c t i o n  of i ts  a r g u m e n t  that has per iod  1 and small 
a m p l i t u d e .  

. In the  analysis, there  appears  t he  combinatorial sum: 

in which v 2 ( k )  is t he  exponent of 2 in t he  prime number decomposition of k. 
Exponential approximations lead to  analogous sums with the  binomial 
coefficient replaced by an  exponential ( v i d e  Eqns (20)-(21)). The Mellin 
t ransform of t he  approximation is: 

ar,d its line of regularly spaced poles s=- 2ik Ti corresponds to periodic log 2 
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fluctuations in the form of a Fourier series. 

a non-trivial nature .  
Sotice on this example the first occurrence of periodicity phenomena of 

2. Digital searching and sorting algorithms. 

Let S be a finite se t  of distinct binary strings (or keys) ,  each of some fixed 
length l S + m .  To the set  S is canonically associated a special type of t ree ,  
called a trie and denoted by trie ( S ) .  t h a t  is defined recursively a s  follows: 
- 
- 

if card(S)=O then t r i e ( C )  is the empty t ree ;  
if c a r d ( S ) = l  then t r i e (S j  consists of a unique node (leaf) labelled with 
the unique element of 5; 
If c a r d ( S ) r 2  let SC and S, be the  subsets of S formed by elements 
beginning with a 0 and a 1 respectively; let S’ ( j = O , 1 )  denote the se t  of 
elemerits of Sj stripped of their initial bit; then t r i e ( S )  is defined as: 

t r i e ( S )  = < o , t r i e ( S i ) , t r i e ( S ; ) > .  

If leftmost edges in a t ree  a re  labelled with zeros and rightmost edges a r e  
labelled with ones, then the set of all labellings from the root of the t ree  t o  
the leaves is a minimal prefix se t  of S.  For this reason tries a re  also known in 
coding theory as prefiz trees.  

Tries as a data  structure have been discovered by Fredkin (see [Kn73]) 
and they support  insertions, deletions and queries: t o  retrieve a key from a 
trie,  f o r  instance,  follow a*path from the r ao t  of t he  tree t h a t  is guided by t h e  
successive bits of the key to  be found, branching left on 0’s and right on 1’s. 
Ey construction, if 1 is finite, t he  worst case cost of tkjese operations is O ( 1 )  
which represents a logarithmic cost if 1 z log2n .  If 1 =m (the results will basi- 
cally apply for finite l as soon as t>> log2n)  then,  under the  assumption t h a t  
bits of keys a re  uniform and independent, t he  expected cost of any of t he  
above operations is log2n+0(1 )  as we propose to  show. 

The probability t h a t  a trie formed with n random keys has a leftmost tr ie 
of size k and a rightmost trie of size n -k  is the Bernoulliprobability: 

- 

Let v [ t ] ,  w [ t ] ,  . . . denote parameters of tries, like path length, number of 
nodes ... . Let TJ,, w , , .  . be the expectations of v [ t ] ,  w [ t ] ,  . . . when the  
tr ies t a r e  built from a se t  a n random keys, and let finally v ( z ) ,  w ( z ) ,  . . . 
denote the corresponding exponential generating functions. From the  form 
(26) of splitting probabilities, we find the following reiations’ between s t ruc-  
tural  definitions of parameters and ezponential generating junctions of 
expected values: 

v [ t J  = z u [ t ] + z [ t ]  => v ( z )  = w ( z ) + z ( z )  (27) 
z z 

v [ t ]  = W [ t O ] X Z [ t l ]  => v ( z )  = w ( 2 ) x z ( $  

where t c  and t denote the left and right subtrees of t . There (27) is nothing 
bu t  t he  additive property of expectations and generating functions while (28) 
comes from the equalities 
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n 

k =O 
vn = Pn.k Wk.xn-k 

or  equivalently: 

- = - v - -  V% 1 W k  zn-k 
n! zn k t 0  k !  ’72-k! ’ 

- Let us  first analyse the storage occupation of tries. The number of inter- 
nal nodes of a trie t , denoted by s [ t  1, satisfies t he  recursive definition: - 

(30) a1 = s [ t o l . ~ ~ p , l +  W o J s [ t , J +  1 , ‘I 
where li is the constant u n i t  v u l u u t i o n  U [ t ] = l ,  and (30) holds as soon as the  
number of keys in t exceeds 1. Thus using the general scheme ( 2 7 ) - ( 2 8 )  in 
(30),  observing t h a t  U ( z ) = e z  and taking care  of initial conditions, we find for 
t he  corresponding e.g.f s ( 2 )  t he  equation: 

s ( z )  = 2e”2s ( - )  + ez- l - - z  
2 

since the  e.g.f. of V [ . ]  is U ( z ) = e z .  Equation (31) can be solved by iteration, 
and we get t he  explicit form: 

2 
(31) 

so t h a t  taking coefficients in (31): 

sn = C 2 k [ l - ( l - - ) n  1 --(1--)n-’j n 1 . 
k 20 2k 2k 2 k  (33) 

The next  s tep in the  derivation is to  use Mellin transforms. To t h a t  purpose, 
t he  simplest way consists in introducing the function: 

which derives from (34) when we use the exponential approximation: 

(1 -a)n 4 e’an 

substituting z for n.  One can  justify t h a t  approximation here and show t h a t  
s, = S ( n ) + O ( n 1 / 2 )  (see [Kn73]). 

The interest  of t he  fo rm (34) is t h a t  i t  is a harmonic sum. Its Mellin 
transform is defined for -2<Re(s)<-1 and from the preceding chapter we find 
t h a t  i t  is 

Poles t o  the  right of the fundamental strip of S’ determine the asymptotic 

r(s) and poles at points x k  = -I+- 2ik TI 2 for k EZ due t o  the denominator of 
(35). Computing residues, we find t8e following theorem of Knuth (using 
suggestions by  De Bruijn, see [Kn73, pp. 131ff-J): 

I 

- behaviour of S(z) as z gets large. There is a simple pole s=O t h a t  is due t o  
- . 

lo 

Theorem 10: [Kn73] 7he e zpec ted  s torage  occupa t ion  (measured  b y  t h e  
n u m b e r  of i n t e r n a l  n o d e s )  of a t r i e  bu i l t  o n  n u n i f o r m  and i n d e p e n d e n t  keys 
is: 
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s, = 2k [1-(1--)"--(1--)"-'] 1 n 1 , 

k 20 Zk 2k 2k 
a q u a n t i t y  that is a s y m p t o t i c  t o  

w h e r e  Q(u)  i s  a per iod ic  f u n c t i o n  with per iod  1 ,  m e a n  value 0 and Four ier  
e z p a n s i o n  g i v e n  by: 

2ik 77 withXk = -I+- 
log2 ' 

?he expected cost  of a positive search in a trie is p,/  n where p ,  is the  
expected path length when n keys a re  present in the trie. Path length p [ t  J is 
defined inductively by: 

P P I  = P P o l ~ ' P , l  + W O b ~ ~ I l  + It I 

p ( z >  = ~ e z / 2 p ( Z )  + z ( e Z - 1 )  

(36) 
which, as before leads t o  

2 
whence t h e  exact  expression: 

p ,  = n [1-(1--)""] 1 
k 20 Zk 

One hasp ,  - n P ( n )  where: 

whose hiellin transform is given by: 

P ( 2 )  = - ro 
1 -ZS 

Thus a residue calculation shows tha t :  

Theorem 11: [Kn73] lincler t h e  u n i f o r m  m o d e l ,  t h e  expec ted  cost of a p o s i t i v e  
s e a r c h  an a tr ie  o f  s i z e  n is: 

[1-(1--)"-'] 1 
kk0 Z k  

a q u a n t i t y  that is a s y m p t o t i c  t o  
i o g 2 n  + r+ 1 + R ( l o g 2 n )  + O ( x )  1 

log2 2 
w h e r e  R ( u )  is a per iodic  f u n c t i o n  with per iod  1 ,  m e a n  value 0 a n d  Fourier 
e - p a n s i o n  g i v e n  by: 

R ( U )  = rke-2*m ; rk = -r(&) 1 
log 2 k c Z /  l O j  

2ik Ti with xk = - 
l o g 2 .  
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An important use of tries is a s  an access method for large files stored on 
disk. A b- tr ie  with leaf capacity equal t o  b ( b r l )  is obtained by modifying 
the  initial definition of tries in such a way tha t  the recursive splitting is 
stopped a s  soon a s  a subset of size b or  less is encountered. Leaves can thus 
contain u p  to  b elements ana can be stored in pages on disk. D y n a m i c  Hash-  
i n g  is obtained in tha t  way when the tr ie is built on hashed values of records 
instead of records themselves ( thus  ensuring uniformity of pseudo-keys on 
which the  trie i s  bgilt). The previous methods easily generalise, and one finds 
[Kn73],[La7Cj,[FNPS79] for Dynamic Hashing and the closely related Extend i -  
b 1 e H z s k i n g  c i h em e : 

Theorem 12: [Kn73],[La78],[FNPS79] Linde.r t h e  u n i f o r m  m o d e l .  t h e  n u m b e r  o f  
p a g e s  n e c e s s a r y  t o  s tore t h e  f i l e  u s i n g  a D y n a m i c  or Extens ib le  Hashing  
s c h e m e  with p a g e  c a p a c i t y  b is: 

-- - 
9 

w h e r e  Q1 is a p e r i o d i c  f u n c t i o n  with m e a n  v a l u e  0 

Thus under both schemes pages tend to be about  70% full (log 2=0.69 ...). 
Extendible hashing relies on a fur ther  paging of the internal nodes of t he  

trie. The corresponding analysis have been given by Flajolet [F183] and Reg- 
nier (under a Poisson model) [Re83]. The analysis is closely related to the 
analysis of height in tries. Letting 7 ~ ~ , ~  denote the  probability t h a t  a tr ie with 
n keys has height s h ,  one finds with e b ( z )  denoting the  truncated exponen- 
tial: 

From there ,  limiting distributions can be determinled using saddle point 
methods. In this way, one obtains: 

Theorem 13: [F183],[Re83] Under  t h e  u n i f o r m  m o d e l ,  t h e  expec ted  s i z e  of t h e  
p a g e d  d i rec tory  an  t h e  Ez tendib le  Hashing  s c h e m e  is a s y m p t o t i c  t o :  

w h e r e  Qz is a per iod ic  f u n c t i o n  with m e a n  v a l u e  close t o  4/ b . 

Many more results follow using these techniques. The underlying splitting 
process with the  Bernoulli splitting probabilities of (26) appears as a model of 
some p o l y n o m i a l  f a c t o r i s a t i o n  algorithms, of c o m m u n i c a t i o n  protocols  and 
moi'e classically of r a d i z  exchange  sor t .  We can cite here [Kn73, pp. 131ff]: 

Theorem 14: [Kn73] Radiz -exchange  sort of n k e y s  w h e n  appl ied  t o  i n f i n i t e l y  
Long s t r i n g s  u s e s  an average  of n l o g z n + O ( n )  compar i sons .  

bY 

4 

- 
A systematic discussion of algebraic methods involved in all these ana- 

lyses is given in [FRS84a]. The corresponding asymptotic methods a r e  dis- 
cussed in [FRS54b]. A detailed analysis of Dynamic and Extendible Hashing is 
given in Regnier's thesis [Re83].. 
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3. Comparison besed searching and sorting 

Einary search t rees  are  ais0 amongst the oldest known data structures.  Let 
S be a sequence oi distinct real numbers (or  of any totaliy ordered set):  
S=(sl ,s2,  ’ ’  .s,). ?he  b i n a r y  s e a r c h  t r ee  built on S is denoted by b s t ( S )  and 
is defined recursiveiy a s  follows: 
- 
- 

Make the first element s 1  of C the  root of t he  tree.  
Separate the remaining elements (s2 ,s3 ,  . . . ,sn) into two subsequences 
C< and S,, where S, (S,) is the subsequence consisting of elements 
smaller (larger) than s 1. Then: 

‘I 

.n 

9 

b s t ( s )  = <s,,bst(S,),bstjS,)>. (381 

Observe t h a t  once a binary search tree has  been built, the sequence is almost 
sorted since a preorder traversal, t ha t  takes only linear time, will list the  ele- 
ments  in increasing sorted order. 

Binary search t rees  support insertions, deletions and queries [Kn73] as 
we shall now see in expected O(1ogn) time under the uniform-independence 
model (o r  equivalently under the permutation model, where S is taken to  be a 
random permutation of [ 1 ..n I ) .  

The basic principle is t ha t  a t ree  of size n is formed of two sirnilar sub- 
trees. of size K and n-1-K where K is a random variable between 0 and n-1 
with probability distribution: 

(39) 
1 P r ( K = k )  = - n 

independently of n .  Equation (39) reflects the fact  t h a t  the first element of a 
random permutation can take a n y  of t he  possible values with equal probabil- 
i t y  ( l / n ) .  A s  in the preceding section it i s  easy to  se t  up schemes t h a t  asso- 
ciate t o  parameters of t rees  generating functions of expected values. 

Let v [ t ] , ~ . [ t ] ,  . . be functions of trees; let v,,w,, . . . be their  
corresponding average values and let v ( z ) , w ( z ) ,  . . . be the corresponding 
o r d i n a r y  g e n e r a t i n g  f u n c t i o n s .  With t o  and t denoting the left and right sub- 
t rees  of t r ee  t ,  one h a s  (compare with (27),  (28)): 

v [ t ]  = w [ t  ] + z [ t  J => v ( z )  = w ( z ) + z ( z )  (40) 

(41) 

Thus again any additive-multiplicative valuation over binary search trees can 
be analysed, and in general one will have a set  of i n t egra l  e q u a t i o n s  t h a t  
reduce to a d i f l e ren t ia l  system for associated generating functions. 

As i? first example, consider the problem of determining the expected 
pa th  length of binary search trees. Path length is here  defined inductively by: 

z 
.[t] = w [ t a ] x z [ t , ]  => . (z )  = J w ( t > z ( t ) d t  

0 

P P I  = P [ t o l + P [ t , l + l t  1-1 (42) 

From (40), (41), we find: 

which differentiates into: 

,’ I 

-, I 
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Equation (44) can be solved by the var ia t ion -o f - cons tan t  method, and we find: 

2+2 = Z H ' ( 2 ) -  
( 1 - 2 ) 2  

where H ( z ) = x , H , z n  is the generating function of the harmonic numbers. 
Hence, expanding and performing simple asymptotics: .r 

m 
Theorem 15: The expected n u m b e r  of c o m p a r i s o n s  t o  sort  a sequence  of n ele- 
m e n t s  bu i ld ing  a binary s e a r c h  tree is u n d e r  t h e  u n i f o r m - i n d e p e n d e n t  p e r -  
mutation m o d e l  

C 

p ,  = 2(n+l)H,,l - 3 n - 2  
a n d  a s y m p t o t i c a l l y  I. 

p ,  = 2 n l o g n  + ( 2 7 - 3 ) n  + O(1ogn) 

A s  an immeciiate corollary to  Theorem 15, we get t h a t  the expected cost of a 
positjve search in a b.s.t of size n is 2 1 0 g 2 n + 0 ( 1 ) .  

Height of binary search t rees  leads t o  interesting equations over gen- 
erating functions. Let h, denote the expected height of a binary search t r ee  
with n nodes. Then from (39), one finds: 

and  y (z)=y-p(z)=( l-z)-I.  
Thus the  y h  form a sequence of Picard a p p r o z i m a n t s  t o  y-. Although i t  is 
natural  to  conjecture tha t :  

C 1 h ( z )  hl -log - 
1-2 1-2 (47) 

for  some constant c ,  the singular expansion (47 )  appears to  be amazingly 
difiicult to  establish. Devroye [De&], using the  theory of certain types of 
branching processes, has  determined directly the  asymptotic form of h, : 

Theorem 16: [De851 The ezpec ted  he igh t  of a b i n a r y  s e a r c h  tree with n n o d e s  
sa t i s f i e s :  

4 
h h,, c l o g n  

- w h e r e  c =4.3110'70 . . . is t h e  root o j  ( 2 e /  c ) ~  =e that is >2. 

Returning t o  the scheme (40), (41), we see tha t  it will apply t o  any 
additive-multiplicative function of a splitting process whose probabilities 
satisfy (39). There a r e  a t  least three instances where the  splitting probabili- 
t ies have this specific form: 
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Quicksort: it is a way of sorting tha t  resembles closely the recursive 
definition (38) of b:nary search trees.  Essentially quicksort is character-  
ised by an i n p l a c e  partitioning of S into S, and s,. (Also these two sets 
a re  replaced by their  mirror images). 
Heap-ordered t r ees  or  non- balanced heaps. they a re  trees canonicaliy 
associated to  sequences of distincts elements. Let S be such a sequence, 
then it can be decomposed into: 

< SLezt, min ( S) , Sright> (48) 
M-ith sleli (S*ht) being the  factor of S formed with elements t o  the  left 
(right) of min(S) .  Using decomposjtion (48) recursively, a t ree  is canoni- 
cally associated t o  a sequence; it is characterised by  the fact  t h a t  labels 
increase along any branch starting a t  the root.  and so consti tutes a 
heap-ordered t ree .  Since in a random permutation, t he  minimum value 
occurs a t  any place with equal probability, (39) is satisfied, so  t h a t  again 
the scheme (40)-(41) can be used. 
Mul t id imens iona l  s e a r c h  t r ees  or k -d -trees. They serve t o  represent  
se t s  of rnultidimensionel records consisting of several fields.: a search 
t ree  is formed by using successive fields cyclically as discriminators as 
one proceeds along a branchfrom the root. 

We shall only cite here a few results along those lines: 

Theorem 17: ?he expec ted  n u m b e r  of c o m p a r i s o n s  t o  sort  n e l e m e n t s  u s i n g  
Quicksort  is : 

4 4 
3 3 

C,, = 2 ( n + 1 ) ( 4 , + ~ - - )  * 2n logn  + Z ( y - - )  + O ( 1 o g n )  . 

The reader  is referred t o  [Kn73] and Sedgewick’s papers [Se77aj, [Se77b], 
[Se80] for  a complete discussion of t he  complexity of Quicksort. 

Theorem 18: The ezpec ted  n u m b e r  of compar i sons  required  to  p e r f o r m  e z t r a c -  
t i o n  of t h e  minimum in a heap-ordered  t r ee  of s i z e  n is: 

C,, = O(1ogn).  

Heap-ordered t rees  serve to implement mergeable priority queues. An 
efficient representation is in the form of p a g o d a s  [FVV78]. 

Theorem 19: [FP85] The e zpec ted  n u m b e r  of e l e m e n t a r y  f i e ld  c o m p a r i s o n s  
requ i red  t o  p e r f o r m  a partial m a t c h  q u e r y  in a k -d - t ree  of s i ze  n w h e n  
records  h a v e  d i m e n s i o n  k a n d  s f i e ld s  are  speci f ied in t h e  q u e r y  s a t c f i e s  
a s y m p t o t i c  a1 ly : 

c i S / k l  ... K n l - S / k + S ( s / k )  

w h e r e  Q ( u )  is t h e  root in [0;1] of e q u a t i o n :  
(Q+3-U)U (d+2“2L)l” - 2  = 0 . 

The proof of Theorem 19 proceeds by first setting a system of integral equa- 
tions for generating functions of costs using (40)-(41). That system reduces 
t o  a differential system of order 2k -s.  I t  cannot  be solved explicitly in terms 

n 

a 

t 
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t 

. 

of s tandard transcendental  functions. However, using the classical theory of  
regular singular points of differential systems: a singularity analysis can be 
performed and Theorem 19 foliows. 

A result  akin t o  Theorem 19 has recently been established for q u a d - t r e e s  
[FG?R65]. See also Puech’s work [Pu84] for related applications. 

We should finally mention tha t  decomposition (48)  which corresponds to  
the symbolic equation: 

0 P x c + imin]x(P*P) 
for t he  se t  P of all permutations is an important starting point for obtaining 
many statist ics over permutations ( runs ,  left-to-right minima ...). 

* 
P 

4. Conclusions. 

We have tried to  demonstrate on a few cases the role of generating functions 
a s  a crucial tool in the analysis of algorithms and data structures.  The gen- 
eral  pat tern behind these analyses can be described as follows: 

Each class of simple data  s t ructure  carries with it a natural class of gen- 
erating functions with a particular algebraic s t ructure  and a se t  of ana-  
lytic properties t h a t  can  be used both for exact and asymptotic analysis. 

Table 1 illustrates t he  algebraic translation mechanisms for multiplicative 
valuations of t rees  in each of the three cases considered previously: planar  
binary t r ees  with the  uniform statistics, digital tries and binary search trees.  

The se t  of resolution techniques, as we, have seen, a r e  for each case: 
1. Lagrange inversion and singularity analysis of functions with algebraic 

singularities. I 

2. Difference equations, iteration and Mellin transform techniques. 
3. Differential equations: exact solution methods (operators, variation-of- 

constant)  and the theory of regular singular points. 

9 

C Table 1: For e a c h  c l a s s  o j  t r e e s ,  d e s c r i p t i o n  of t h e  s p l i t t i n g  s i z e s  and 
p r o b a b i l i t i e s ;  t r a n s l a t i o n  o v e r  g e n e r a t i n g  f u n c t i o n s  o f  a m u l t i p l i c a t i v e  
v a l u a t i o n  o n  s u b t r e e s :  ( 1 )  f o r  0 . g . f .  of c u m u l a t e d  v a l u e s ;  (2) f o r  e . g . f .  of 
e z p e c t e d  v a l u e s ;  (3) f o r  0 . g . f .  of e x p e c t e d  v a l u e s .  

* 

Amongst the many areas  in the  analysis of algorithms t h a t  are 
natural  applications of these methods and t h a t  we have not had time t o  
discuss, we would like to  mention: 
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- The cycle s t ructure  of permutatioris and the problem of in situ per- 
mutation [Kn71], [SeR3] .  

- lnversion tables for permutations and sorting algorithms: bubble 
s o r t .  insertion sort  IKn73] and shellsort [k'a80]. 

- 2-sorted permutations, lattice path and merging aigorithms [Kn73], 
[ Se'i 81. 
Distributions, occupancy statistics and hashing algorithms [Kn73], 
[Gh185], [KW66], [Go81]. 
String statistics [ G O 8  13. 
Random graphs and set-merging ("Union-Find") algorithms [KS78]. 

- 

- 
- 
Froblems in the  area of the exact analysis of algorithms may be of 
se ve r a 1 types 
1. P i z d i n g  p r o p e r  decomposi t ions  of combinatorial problems in a way 
t h a t  lends itself t o  t reatment  by generating functions. If t ha t  approach 
succeeds,  i t  usually has a high yield since, as we have tried t o  demon- 
s t r a t e ,  a large number of analyses will be amenable to  a uniform t rea t -  
ment.. 
2 .  f i n d i n g  a p p r o z i m a t e  modeLs t h a t  fall into category ( 3 )  if t he  cornbina- 
torial s t ruc tu re  of the origmal problem is too intricate to  lead t o  a n  
exa c t analytic model. 
3 .  f i n d i n g  e z a c t  or a s y m p t o t i c  so lu t ions  f o r  f u n c t i o n a l  e q u a t i o n s  over 
generating functions, for models arising from (1) or (2). 

To the  category of (1) or -most probably- (2) there  belongs t h e  
analysis of A V L  trees,  2-3 t rees  and other  balanced  s t r u c t u r e s  under  t h e  
permutation model. See [JK77] for a n  analysis of a data s t ructure  t h a t  
does not  have a randomness presenjation property and [Se85] for an 
analysis of heapsort .  

A simple example of (3) is provided by the  ptoblem of t he  distribu- 
tion of t he  number of comparisons in Quicksort. The bivariate generating 
function satisfies: 

and the  problem there is to  determine t h e  zsymptotic behaviour of t he  
coefficients of polynomials [ z n ]  C ( z  ,q ). Related limiting distribution 
results have been obtained by Louchard [Lo84], Jacquet and Regnier 
[ JR851. However, despite the practical importance of Quicksort ( t he re  
a r e  several hundred thousand implementations running since Quicksort 
is p a r t  of t he  standard sort  availabie on t h e  Unix system) the form of the  
limiting distribution is yet unknown. 
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PART V 
BIBLIOGRAPHY 

Instead of giving here a complete bibliography, we shall restrict  ourselves to 
indicating general references fo r  t h e  subject covered in Par ts  1-11] together 
with brief historical and bibliographical comments and citing the  set  of 
papers whose results are mentioned in Par t  N. 4 

4 

1. General References. 

The subject of analysing algorithms is a s  old as algorithms, and thus  predates 
the  advent of computers. For instance, in his discussion of the  analytical 
engine, Babbage evaluates the  complexity of his (mechanical) integer multi- 
plication method in terms of the number of "turns of the handle" (a measure 
certainly very relevant t o  his application). After computers became used for 
non-numerical data  processing, i t  became obvious tha t  some algorithms per- 
formed in a greatly varying manner depending on the specific configuration 
of the input da ta ,  a fact  not so frequent with numerical algorithms. Average 
case analysis naturally emerged as  a simple way of obtaining global informa- 
tion on the effectiveness of an algorithm, when it is used repeatedly. I t  is the  
merit of Knuth, in volume 1 of 7he Art of Computer  P r o g r a m m i n g  (first pub- 
lished in 1968) to  have shown tha t  a large number of classical algorithms 
could be exactly analysed, even a t  the  very detailed level of assembly 
language programs. Knuth also demonstrated the  importance of combina- 
torial enumeration techniques and asymptotic analysis in tha t  context. For 
the  subjects covered here,  the  basic references are  thus:  

[Kn68] D. E. Knuth. 7he Ar t  of Computer  P r o g r a m m i n g ,  Volume 1: f i n d a -  
m e n t a l  A lgor i thms ,  Addison Wesley, Reading Mass., 4968. 
[Kn?3] D. E. Knuth. 7Re Art  of Computer  P r o g r a m m i n g ,  Volume 3: Sor t ing  
and S e a r c h i n g ,  Addison Wesley, Reading Mass., '1973. 

For a presentation of many algorithms of interest  in computer science, one 
may refer to:  

[Se83] R. Sedgewick. Algor i thms ,  Addison-Wesley (1983). 
[Go841 G.  Gonnet. Handbook o j  Algor i thms  a n d  Data  StrzLctures,  
Addison-Wesley (1984). 

The goals and methods of average case analysis of algorithms are  discussed in 
Knuth's invited lecture a t  the 1971 IFIP Congress. An interesting recent  sur-  
vey is given by Sedgewick in: 

[ Se83] R. Sedgewick. "Mathematical Analysis of Combinatorial Algo- 
.. a rithms", in Probabi l i ty  Theory a n d  C o m p u t e r  Sc ience ,  Louchard and 
I Latouche Editors (1983). 

The following booklet, corresponding to  lecture notes from the course on 
analysis of algorithms a t  Stanford University, discusses in greater  detail some 
of the  points studied here (most notably saddle point methods): 

[GK81] D. Greene and D. E. Knuth. Mathemut i c s  f o r  t h e  Analysis of Algo- 
rithms Birkhaeuser Verlag ( 198 l) .  

Two other books on tha t  subject are:  
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R. Kemp. F u n d a m e n t a l s  o f  t h e  Average-  Case Ana lys i s  of Par t i cu lar  Algo- 
rithms, ~~~~~~~-teubner Series in Computer Science. J .  Viley, New-York 
(198.3) 

7. Purdom, C .  Erow-n. n e  A n a l y s i s  Gf Algor i thms  in print (1985). 
and ? o r  a n  elementary introduction: 

Concerning the combinatorial enumeratior! problems, the 19th century tech- 
nique w a s  almost invariably the set-up of recurrences.  In a book ( C o m b i n a -  
t o r y  A n a l y s i s )  published in 1915, Major Percy MacMahon was the first one t o  
s y s t e ma t i  c all 1)’ d e p a r t  from t h e r e  cu r  re n ce appro a c h . M a cM a h  on d eve1 o p ped 
a very personal algebraic view of the field of combinatorial analysis. That 
approzch was  revived in the sixties through works by Rota, Foata and 
Schutzenberger.  The symbolic operator approach is exposed systematically in 
the reference book of Jackson and Goulden: 

[ G J 8 3 ]  1.  Goulden and D. Jackson. Combinator ia l  Enumerations J .  Wiley, 
New-York (1983). 

The read.ing of t h a t  book may be complemented by the encyclopedic (and 
generating function orjented) book of Comtet: 

[Co74]  L. Corntet. Advanced  Combinator ics  D. Reidel, Dordrecht (19743. 
A shsrr. survey of t he  domain of combinatorial enumerations appears in: 

[S:78] R. Stanley. Generat iFg f i n c t i o n s ,  M.A.A. Monographs,  (1978). 

The field of zsymptotic analysis is much closer to  classical (pure and applied) 
mathematics,  so  t h a t  many classical references exist that  we do no t  have 
space tc cite. Two very useful problem solving oriented books are: 

[DB60] K .  G. De Sruijn. A s y m p t o t i c  Methods in Ana lys i s  reprinted by 
Dcver ( 1984). 
[BO781 C. Bender and S. Orszag. Advanced  Matb.ematical Methods f o r  
Sc ien t i s t s  a n d  k g i n e e r s ,  McGraw-Hill (1978). 

[He771 P. Henrici. Applied Computa t iona l  a n d  Complex  A n a l y s i s ,  J .  Wiley, 
New-York, 2 Vol. (1974,1977). 

and the necessary background from complex analysis can  be found in: 

A concise survey of asymptotic counting techniques is given by: 
. [Be741 E. Bender ‘”AsymptoTic Methods in Enumerations”, SIAM R e v i e w  

and the book of Sachkov provides a complete exposition of probabilistic and 
asymptotic methods in combinatorial analysis: 

[ Sa781 X. Sachkov. Veroja tnos tn ie  Metody v K o m b i n a t o r n o m  A n a l i z e ,  
Kauka Moscow (1978). 

Finally, for fur ther  applications of t he  symbolic operator method t o  t h e  
analysis of algorithms, one may refer to  the following works: 

[F181] P. Flajolet. A n a l y s e  d ’a lgor i thmes  de m a n i p u l a t i o n  d ’arbres  et  d e  
f i ch ie r s ,  Cahiers du B.U.R.0 34-35, Paris (1981), 209p. 
[ G r 8 3 ]  D .  Greene. “Labelled Formal Languages and Their Uses” (Thesis), 
Stanford University Rep. STAN-CS-83-982 (1983), 148p. 
[St841 J-M. Steyaert .  Complex i te  ’ e t  S t r u c t u r e  des  Algor i thmes .  Thesis, 
University of Paris VI1 (1984), Z15p. 
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