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ABSTRACT

This paper is intended both as a tutorial paper and a partial
review of advanced mathematical methods in the average case
analysis of algorithms and dcta structures.

An analysis usually decomposes intoc several combinatorial
enumeration problems (of words, trees, permutations, distribu-
tions ...) whose cutcome is then subjected to asymptotic analysis
in order to obtain results in a form that is easy to interpret.

The main technigue to solve combinatorial enumeration prob-
lems 1is wvia the use of generating functions. The approach
presented here is called the symbolic operator method: a large
set of combinatorial consiructions have direct translations cs
operators on counting generating functions, so fhat functional
equations over generatling funciions can be obtained rather
directly for many combinaterial structures of interest.

The main technigue for asymptotic analysis in this contezt relies
on complex analysis: aenalytic function theory and wuses of
Cauchy's residue theorem. /M mmost cases the asymptotic
behaviour of coefficients of a generating function can be
recovered directly from the generating function itself with a
proper choice of integration contour (singulerity cnalysis, sad-
die point methods ...).

These methods are briefly illustrated with several examples
relating to: (1) tree manipulation clgorithms in compiling and
symbolic manipulation systems ; (2) sorting and searching tech-
nigues based on comiparisons between keys ; (3) digital search
algorithms.
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PART 1
AN INTRODUCTION TO THE ANALYSIS OF ALGORITHMS

The task of analyzing an algorithm consists in predicting the amount of
resource that the algorithm will consume when it receives as input, data of
some fixed size n. Several complerity measures corresponding to various
notions of resource consumption may be defined:

- time complexity measure (7): this is the time the algorithm takes to
process a particular data on a given machine model ; it may be expressed
either in terms of machine cycles or time units (micro-seconds for instance) ;
Knuth [Kn 68-73] has defined an abstract machine model MIX, typical of many
existing machines in which all the algorithms presented are programmed,
time being measured by the number of machine cycles.

- storage complezxity measure (0): this may be measured by the number
of bits, bytes, words or more abstractly records that the algorithm consumes.

Simplified measures may be considered for particular algorithms: for a
sorting algorithm, one often restricts attention to the number of comparisons
performed or to the number of records moved (these are simplified time com-
plexity measures). For algorithms operating on some external storage device,
like a disk, a critical determinant of efficiency is usually the number of disk
accesses (again a simplified time complexity measure) or the number of disk
pages used (a simplified storage complexity measure).

Let A be an algorithm that operates on a set of inputs E; the size of an
element w of E is denoted by |w]| (usually the size of a word is its length, the
size of an array its dimensijon etc ..). Three quantities can be defined to
characterise the behaviour of algorithm 4 over the set)En of inputs of size n
under a complexity measure u. With pe[w] denoting”the complexity w.r.t.
measure u of algorithm 4 on input w€E, we introduce:

- the best-case complezity:
pafEST = minfua 0]/ wEE, (1)
- the worst-case complezity:
uaFORST = maxiua[w]/ weE, | (2)
- the average-case complezity:
paAVERACE = o5 = Elua(w]/ weky, ). (3)

Quantities (1) and (R) give indications concerning extremal bounds on
the complexity of A when applied to data of size n. Their determination usu-
ally requires the construction of particular combinatorial configurations that
force extremal behaviours of the algorithm. Our main interest here is in the
average complexity of some of the classical algorithms and data structure. In
(3), we have used the notation E{X]| to denote the expectation of the random
variable X ; the deterniination of"the average-case complexity of an algorithm
therefore requires introduction the of a probabilistic model in order for this
expectation to be properly defined. ’

Each class of algorithmic problem usually carries with it one or a few
natural probabilistic models. If E;; is finite, the empirical model will consist in
considering all elements of E, to be equally likely; such models are often
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considered when analyzing algorithms that operate on words, term trees or
expression trees in compiling or symbolic manipulation systems. For com-
parison based sorting algorithms, a simple model consists in assuming that
elements to be sorted are drawn independently from some continuous distri-
bution ; this independence model is equivalent to assuming that the algorithm
is applied to the reduced set E, of all permutation of {1..n], with each permu-
tation being equally likely (having probability 1/n!'). For hashing algorithms,
one will usually assume hashed values to be independent and uniformly distri-
buted over the address space [1..m] ; there this uniform model is again
equivalent to assuming each of the m™ address sequences to be equally
likely.

The preceding discussion indicates that many probabilistic models for
analysis are equivalent to a model in which elements of either E,, or of a finite
subset E. of E, are equally likely, having each probability 1/(cardE,) or
1/ (cardE.). In that case, the average case complexity of algorithm A can be
reexpressed (identifying here E,, and E,) as:

—m 1
aa” = mcar‘dE,, ?k.on,k (4a)
where
0n ¢ = cardfwek, / palw] = k| (4b)

Forrmmula (4a) is nothing but the standard form of expectations
E{X{=YkPr(X=k) since the probability Pr(X=k) is equal to 0,/ (cardE,).
k

This brief discussion shows that the problem of analyzing algorithms
reduces to counting various classes of combinatorial structures (words, trees,
permutations, distributions, graphs, ..) atcording to their sizes and the
values of some parameters related to the algorithm undgr consideration.

1. An example: the max-finding algorithm.

Let X[1..m] be an array of positive real numbers. The following sequence
of Pascal instructions returns in maz the value of the largest element in
X[1.n]

mazx.=-1;
fori:=1 ton do
if maz<X[i] then maz:=X[1};’

Apart from its data X[1..n], this simple programme uses two auxiliary vari-
ables (maz and i) so that its storage complexity is 2 (we do not count the
input) or n+2 (we count it), the unit being the storage required to keep one
integer or real number. A more interesting question is the time complexity of
that programme. Knuth analyzes it by translating it into some fixed machine
language (MIX) which in Pascal notation, is equivalent to using only a very
reduced set of Pascal instructions, like:



mazr=—1;
1:=0;
1. 1:=1+];

if i>n then goto 2;

if maz = X[1] then goto 1;
maz:=X[1];

goto 1;

2.

This form is also equivalent to a flowchart (graph) like that of Figure 1.
Thus on almost any classical (non parallel) computer, a compiled form of the
programme will execute:

--a fixed number of assignments to initialise mazr and 1 :
- (n+1) comparisons of the formi>n ?
- 7n increments of index 1
- n comparisons of the form mazr=X[i] ?
- 2 variable number (between 1 and n) of assignments maz:=X{1].

max:=1l;

v

Figure 1: The flowchart corresponding to a low-level implementation of the
maz-finding procedure.
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In summary, the time complexity of max finding (mazf) on almost any con-
ceivable machine is going to be of the form:

Tmazf [X] = Co+Cyn+Co,EXCH][X] (5)
where EXCH[X], for X an arrey, is the number of times the instruction
maz:=X[1] is executed Quantities Cy,C,,C; are so-called implementation con-
Stants that reflect the execution time of elementary instructions for the
machine on which the programme is executed.

The above sketch shows that the analysis of an algorithms starts with a
Jlow analysis where one determines the number of times each instruction is
executed ; taking advantage of the structure of the programme considered
reduces the number of independent parameters to a minimum (using the
"Kirchhoff's laws”, see [Kn 68, pp 95, 167-168]}). With some experience, a pro-
gramme can be analyzed directly at the level of the Pascal source pro-
gramme, and we shall do so in the rest of this paper. (One could also formally
specify costs associated to Pascal constructs for a given machine and a given
compiler.).

Formula (5) is our starting point for analysis. We can notice that
EXCH[X] is equal to the number of left-to-right maxima of vector X, i.e. the
number of elements (indices j€[1..n]) such that for all i<j: X[i1]<X[j]. Thus
EXCH[X] is equal to 1 iff X[1] is the largest element of the array X[1..n] and
EXCH[X] is equal to m iff X[1.m] is already sorted in increasing order:
X[1]<X[2]<X[3]... . These are obviously the extremal configurations, whence

Proposition 1: The maz finding procedure has extremal complezities described
by: : P .
rmazfFEST = (Co+Cp)+Cyn

Tmazf JORST = Co+(Cy+Co)n,

where Cp,C,,C; are implementation dependent constants.

To obtain more information on the algorithm when used repeatedly, we
proceed to study it under the following probabilistic model:

Model 1: (Uniform-independent Model) The n elements of array X are
assumed to be independently drawn from a uniform [0,1] distribution.

Let J denote the unit interval {[0,1]. For X a random variable (vector)
over J", we are interested in the probabilities '

Pnx = Pr(EXCH[X) = k).

These probabilities can be evaluated by computing multiple integrals. When
n =2, for instance, one has:

P2y =PrX[1]2X(2]) = [ [, , dzdz,
P2z =PriX(1)<x[2] = [ f,  d=z.dz;
so that
1 _ 1
Pz = 5 P2z~ >
and the expected value of EXCH is
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To avoid computation of multiple integrals, one introduces an alternative
model:

Model 2: (The permutation model). The array X is a permutation of [1..n],
each permutation being taken with equal probability (1/n!).

One has the important:

Lemma 1: For the cnalysis of the maz-finding procedure, the Uniform-
ndependent Maodel and the Permutation Model are equivalent.

Proof: Associate to each array X[1..n] consisting of (n) distinct elements its
order type T = T, T2, . . ., T, defined by

ST s T, is @ permutation of [1..n]

- for all 4,5 7;<7; iff XT1]<X[;].

The order type is a reduced presentation of the order properties of ele-
ments of array X. For instance if

X =(3.14,2.71,055,1.41,1.73)
then
T=(5,4,1,2,3).

(Write a 1 under the smallest element of X, a 2 under the second smallest
etc...). Obviously, if 7(X) is:the order type of vector X, EXCH[X]=EXCH[7(X)].

The first observation is now that under Model 1, the probability that two
array elements coincide is 0, so that the order type of a random array (under
mode] 1) is defined with probability 1. The main obédervation is that each
order type is equally likely, by simple symmetry considerations. For instance,
if n=38.

fncpzsdxldzzdza = j;pzz”sdzldzzdzs.

Thus each order type under Model 1 has probability 1/n!. Since the cost of
the algorithm depends only on the underlying order type of the input, the

lemma is established. ®

Observations : (1). The equivalence result will hold true for any model where
array elements are taken independently from some continuous distribution
(i.e. no point has a non-zero mass) like Gaussian, exponential etc ..., so that
the permutation model is really equivalent to a general independence model.

(2). The same equivalence will apply to all algorithms that are only sensitive
to the relative order of their input "keys”. Thus, comparison based algorithms
(bubble sort, heapsort, quicksort...) are always analyzed under the permuta-

tion model. ®

The interest of the permutation model is that the analysis reduces to a
counting problem. Let s, , denote the number of permutations of [1.n] such
that EXCH(o)=k ; from Lemma 1, we have:

Sn.k
n!

Pk =



_s-

exch, = #Eksn_k

We now proceed to prove:

Theorem 1: 7he maz-finding procedure has average cost (under the permuta-
tion model) given by

Tmazf, = Cq+Cin+CoH,
where H, denotes the n—~th harmonic number:

1 1 1
Hn-1+2+8+‘ -
Proof: Consider the set of all permutation ¢ of [1.n] whose parameter EXCH
has value k (there are s, ; of these). Two cases can occur: (i) the last element
o, is equal to n so that 0,0, - 0,.; has (k~1) as value of EXCH (this can
happen in s,.;,.; ways) ; (ii) the last element has one of the values
1,2,...m-1; thus 0,0, - - - 0, -, already contains 'value n and has k as value of
EXCH (this can happen in (n=1)Xs,_; ;1 ways). Whence the recurrence:

Sk = 5n—1,k-1+(n_1)sn—1.k- (6)

Recurrence (8) is a similar to the recurrence defining elements of Pascal's
triangle. It makes it possible to determine all the s, ;.. .

In order to derive information from recurrence (6), we introduce gen-
erating functions. We define for each n, the quantity

v n
©osp(z) = Y sp ezt
k=1 i

Multiplving both sides of equality (8) by z¥ and summing over k, we get:
]
sp(z) = x5 () +H(n=1)spy(2) = (2 +(n=1))sp(2).
Now from initial values sg(z)=1; s,(z)=z; sy(z)=z(z+1)... we find the
explicit form for s, (z):

swke) = 11 (z43). (7)

From there we can easily conclude since

— s'n(1)
exch, = ;L?stn,k = () (8)

where the logarithmic derivative of (7) permits to determine the value of (8)
since:

s’y {2
n( ) _—-__1..+ 1 +...+.._.__.1..__._. a
s, (2) z z+1 z+n-—1

2. Generating functions and combinatorial enurmerations: A preliminary dis-
cussion.

The previous approach is important: to count a class of structures of size
n, we decompose it into simpler (smaller) classes. This decompostition is
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reflected by a main recurrence relation (recurrence (6) on the example of
max-finding). The recurrence relation is then attacked by the use of generat-
ing functions, on our example only a technical trick, leading to an explicit
form (expression (7) on the example). We shall see later that, for essential
reasons, generating functions are & tool of considerable generality.

We first set;

Definition: Let fap lkso be a sequence of complez numbers. The ordinary gen-
erating function (o.g.f.) of sequence {a,} is defined as

a(z)=Ya,z,. (9)
k
The exponential generating function (e.g.f.) of sequence {a, | is defined as

8(2) = Do, (10)
%%

Notations: We let [2™]f (z) denote the coefficient of z™ in f (z) in the Taylor
expansion of f around z =0. Thus

J(2)= Y rpz™ => [2"]f(2) =/, .

nz0
We extend that notation by setting:

[Z517 () =iz (2)

n
Those notations read as "coeflicient of z™" (resp. coefficient of %'—) in f(z).

¥

Definitions (9), {10) associate power series to sequences of numbers. In
the most general case (9) and (10) are to be taken as defining formal power
series on which the arsenal of classical algebra can be applied. In most cases
of interest however, the series defined by (9) and (more often) (10) are con-
vergent, so that methods of classical analysis can further be applied to them.

The advantage of generating functions (series) over sequences satisfying
recurrence relations is that they are endowed with a more visible algebraic
structure (a field structure essentially). Figure 2 summarises the correspon-
dence between some important operations on sequences and generating
functions (we have omitted obvious boundary conditions).

From this table results that a large number of non-linear recurrences
(those that obtain by combinations of 1-7 in Figure 2) over number sequences
correspond to functional equations over generating functions that may often
be solved using the classical tools of algebra and analysis.

n n
Examples: (1) If c¢,=3 @, then c¢,=3 a,U,_, where U;=1, so that
E=0 E=0

c{z)=a(z)(1=-z)"!; thus ;(z)=c (z)(1=2) whence @, =Cy, —Cy, —y. This is the sim-
piest case of an inversion relation. (In this case it could of course have been
derived by elementary algebra.)
() 1 cn=kgo(2)ak, then c(z)=e?a(z) ; thus a(z)=e=*c(z) and
n =
a,= 2 (—1)* (Z)cn_k, vet another inversion relation.
k=0
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N Seguences i o.p.f i ep.t
1. Cn = Gnzby c(z) =a(z)zb(z) c(z) =a9z)=b(z)
.| cp = Y apbpy c(z)=a(z)xb(z)
k=0
n - - -~

8. le,=3% (Z)akbn._k - c{z)=a(z)xb(z)
k=0

i { -~ z —~
4. | ¢, = Qpoy c(z) =za(z) c(z)=fa(z)dz

o
5. | Cn = Gnuy c(z) = (a(z)=a(0)/z | E(2) = 25(z)
= =22 S(2) = 285
8. | cp =na, c(z)-::dza(z) _ c(z)—z;dza(z)

! On dt | ~ ~ -~
o= c(2) = [la(t)~a(0) & | E(2) = [la(t)-a(0)) &
L 0 ¢
Figure 2: The translation of operations on sequences into operators on
generating functions: sum (1), Cauchy (convolution) product (2) ; binomicl
Cauchy (convolution) product (3) ; backward and forward shifts (4-5) ;
differentiation and integration (6-7).

(3) The implicit relation (n=0)

n
A"=30,a, 4
k=0

with the initial condition ag=1 is equivalent to a non-linear recurrence
defining the a, inductively:

1 n n~-1
an = (4" - 3 apan).
Ca k=1
Introducing generating functions for the original relation, we find:

(e(2)) = v

whence

a(z):——L— . %=[2n)~
Vi-4z n
and the solution to the original recurrence is found, by standard Newton
expansion of (1-42z)~1/2 to be:
_ (2n
ay = ( n )

(4) The relation between generating functions ¢ (z)=a (z +z?) corresponds (as
can be checked by expanding) to the recurrence relation ;

Cn = ;a‘n-—k (n):k)' .
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. Other operations on sequences have translations into generating func-
tions; sometimes, however, analycity of intervening power series in some
domain may be required. A most notable formula is for the Hadamard pro-
duct: if ¢, =a, b, then

c(z) = 5= fa(t)b(Z

for a suitable contour encircling the origin in the t-plane (this therefore
assumes that the generating functions have a non zero radius of conver-
gence). Also there is a simple relation between ordinary and exponential gen-
erating functions, via the Laplace-Borel transform (a mere notational variant
of the classical Laplace transform):

zdt

a(z) = fa(zt)e™tdt.
o

3. Asymptotic methods: A preliminary discussion.

Once an exact expression for the analysis of an algorithm (like that of
Theorem 1) has been obtained, it is natural to try and establish approxima-
tions that may be of a form simpler to interpret. To that purpose, one deter-
mines asymplotic expansions of expressions under consideration w.r.t. to the
parameter n, as n geis large. In most cases the expressions so obtained are
quite accurate (typically within a few percents of the exact values) as soon as
n exceeds 20-50. These asymptotic forms make comparison between algo-
rithms much simpler.

Elementary problems usually requ1-e only simple asymptotic methods
based on real approzimations. In the case of the max-finding procedure, we
have:

Theorem 2: The maz-finding procedure has average cost given by:

Tmazf, = Cin+C,logn+0(1).

Proof: From the standard comparison between a decreasing function and an
integral results that!
k+1

dt 1
< — —
[ 5<%
so that, by summation:
H,.y—1 <log(n+l) < H,

and

H, =logn+0(1). .

T We let log denote the natural logarithm log=log, and occasionally make use of the
notation lg =log,.
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Notice that a beiter approximation for H, is available, and one has the
strenger form
1 1
=logn + 9y + —— + O(—).
o =logn + 7+ 5=+ 0(—)
and the expansion can be pushed to any degree of accuracy.

In the above approximation, we have made use of some of the classical
notations of Landau, which we now recall:

Notations: (1) f (n)=0(g (n)) i for some constant ¢ and for all n larger than
seme fized ng:

If(n)l <ecg(n).

(2) f (n)=o(g(n)) iff for all c there exists a ny such that for all n lerger than
Mo’

|f(n)] <cg(n)

Amongst real analysis methods for obtaining asymptotic expansions, one
may mention:

(A) The approximation of finite sums of continuous functions by integrals. For
instance, to approximate

n=1
Sp = 2 Vk(n=k)
k=1
consider )
Sn '""1\/ k k.1 '
22V Ry,
which is 2 Riemman sum relative to the function Vz(1~z). Thus as n -e:
S 1
—32— ~ sz(1~z Jdz
n 0

so that

2
™
S, = 5 + 0(n%)
(B) More general expansions are obtained by the use of the Euler Maclaurin
summation formula (covering for instance the case of H, above and provid-
ing full asymptotic expansions).

Apart from the purpose of simplifying expressions, an equally important
reason for performing asymptotic approximations, is that sometimes func-
ticnal equations over generating functions are available but these only define
the functions implicitly and no closed-form expression is available. Nonethe-
less in many such cases one can still obtain asymptotic expansions for the
coeflicients using complex analysis.

For instance, Polya in 1937, has obtained the asymptotic expansion of
coefficients of a function satisfying a functional equation of the form

N
f(z)—1-—zf(z2)
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for which little more is known bevond the continued fraction expansion ;

f(z)=

This function occurs in the enumeration of structurally difierent isomeres of
alcohols of the form C, Hyp, 4 OF. Similarly, the counting of balanced 2-3 trees
leads to the functional equation:

J(z)=z+f (2%+29)
from which Odlyzko [0d 82] has shown that
n
In ~ Ew(logn)
for some continuous periodic function w, with ¢ being the golden ratio

(1+V3B)/ 2.

The major tool in obtaining these asymptotic estimates is the Cauchy
integral formula that relates the values of a generating function in a complezx
domain to its coeflicients:

[27]f (z) = -I—{ﬂz) dz_

21 zﬂ+1

for a suitable contour of integration I'.

4. Overview of methods for the analysis of valgorithms.
P

The main paths to be taken when analyzing algorithms and data struc-
tures are depicted in Figure 3. Main steps are:

1. Extracting basic combinatorial parameters: the original problem is
transformed in this way into a combinatorial enumeration problem of a
more or less classical type.

2. Obtaining exact (explicit) expressions for the average cost of the algo-
rithm under consideration when applied to an input of size n, if at all
possible.

3. Obtaining asymptotic values of these average costs for large n (this
phase may or may not be carried out from the previous one).

The main routes are as follows

1- Flow analysis (FLOW): the use of various conservation laws
(Kirchhofl's laws) possibly in relation with combinatorial properties of
objects (e.g. a binary tree with m binary modes has {(n+1) external
nodes) leads to a minimal set of parameters (random variables) whose
expectation/distribution under the probabilistic model of use is sought.

2- Symbolic operator method (OPER): this is the method of choice
for obtaining generating functions of average values and enumeration
quantities. It uses a set of mapping lemmas with which a working kit of
combinatorial constructions can be mapped directly into operators over
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Algorithms and
data structures

(FLOW
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\

\
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\
AN
|
AN
N Asymptotic
~ - . costs

Figure 3: Main paths for the analysis of algorithms.

generating functions. In this way rather complicated generating function
expressions are obtained often at relatively little cost.

3- Complex analysis methods (COMPLEX) for going from functional
equations over generating functions to asymptotic of their coeflicients.
One uses local analysis of generating functions (it is sufficient that these
be defined implicitly ; an explicit form is not required) around singulari-
ties, saddle points .. . The main tool is Cauchy’s integral formula.
Another important tool is the Mellin integral transform.
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Other classical and important routes are:

4- Recurrences based on decompesitions (RECUR): by looking at the
way structures together with associated parameters decompose into
simpler structures, one is often lead to recurrences. In happy cases, the
recurrences obtained in this way can be solved explicitly by elementary

methods (HACK,). In other cases forming generating functions leads to

functional equations after some calculations (HACK,) ; however, in
almost all ceses where the chain RECUR+HACK, or RECUR+HACK,
succeeds, it can be bypassed by the simpler symbolic operator methoed.

5- Taylor expansions (EXPAND): this applies essentially to cases
where functional equations can be solved explicitly. One then uses the
classical toecls of algebra and analysis to extract coefficients of generat-
ing functions. The asymptotic analysis of these explicit forms (ASYMPT)
relies then largely on real analysis techniques - like the Euler Maclaurin
summation formula - and sometimes on complex analysis methods (Mel-
lin transform techniques, most notably).

6- Direct probabilistic methods (PROBA4): in many cases - mostly
graph algorithms and combinatorial optimisation problems - one can
replace the analysis of a complicated parameter by that of a much
simpler one which may be asymptotically equal, equal with high probabil-
ity etc ... . This way of approaching problems has been well illustrated by
works of Erdos, Renyi and other Hungarian mathematicians whence the
name of Hungarian methods sometimes given to them.

&
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PART II
COMBINATORIAL ENUMERATION METHODS
The Symbolic Operator Approach

1. The symbolic operator method

We define here a class of combinatorial structures as a pair of a finite or
denumerable set C and a function w: C»N called the size or weight function,
~such that for all n, w™(n) is finite. We let C,, denote the set of all structures
in C that have size n. The counting problem for C is to determine the integer
sequence {Cy, {n=o defined by

= |w~Y(n)| = cardC,

that is to determine for each n how many elements in C have size n. The size
function is often denoted by |.| or |.|¢ if the dependence on C is to be
emphasised.
The ordinary generating function (0.g9.f.) of C (w.r.t. weight w) is the for-
mal power series
c(z)= 3 ca2™. (1)
na0

The exponential generating function (e g.f.) of C (w.r.t. weight w) is the
formal power series

¥

C(z) = Ecn

nz0

z. ; | (2)

It is useful to notice that ¢(z) and ¢(z) can be expressed alternatively as

c(z) = Zzw“’) . c(z)= ) e

oeC oeC

z'u)(a)
w(o)!

(3)

To see i, observe that the term z™ in (3) appears as rmany times as there are
structures of size n in C.

The main approach which we explore here for the counting problem of C
is via the generating functions ¢(z) or c(z).

A combinatorial construction ¢ of degree k is an operation that associ-
ates to k classes of structures C,,C,, . . . ,C; a class A=9(C,,Cs, . .. ,C;).

Definition: 4 combinatorial construction is o.g.f. admissible iff there exists an
operator ¥ over formal power series such that

A=9(C,,Cy, - - .Cp) => a(z)=¥(c,(z).ca(z), ..., ce(z))
(a(z)cy(z) - aretheo.g.f of classes AC,, - - ).

One has the obvious analogous notion of e.g.f. admissible functions.

In other words, a construction is admissible iff the counting sequence
{a,} of A can be determined from the counting sequence {cy,{ - - of C; - -
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so that no further internal structural information on C;,C; is required to
solve the counting problem for A.

Notations: In the seguel, we adhere - unless otherwise stated - to the nota-
tional convention of representing a class (C), the counting sequence ({c,} or
EAC,,K) and the corresponding generating functions (c(z) or C(z); C(z) or
¢(z)) by the same group of letters.

The remainder of this chapter is devoted to the presentation of a certain
number of admissible constructions. Admissibility lemmas thus map these
combinatorial constructions into operators over generating functions. The
counting problem for a class C therefore reduces to finding a suitable con-
struction of C in terms of simpler structures (and possibly C itself if the con-
struction is recursive) by means of admissible constructions : if the construc-
tion is non-recursive, then the generating function for C will obtain as a func-
tional on simpler functions ; if the definition is recursive, then one obtains a
functional equation defining ¢(z) (or ¢(z)) implicitly. We call this approach
the symbolic operator method for counting problems.

Notice that while the classical enumeration approach based on produc-
ing recurrences from suitable decompositions is very sensitive to small varia-
tions on the formulation of the problem considered, the operator approach is
usually far more flexible. Before presenting admissible for ordinary generat-
ing functions (Section 2) and for exponential generating functions (Section
3), we illustrate this methed informally by an example taken from the count-
ing of permutations. )

let P=P, be the class of all perrnutatxon with P, the set of permuta-
tions of size m, i.e. permutation over [1..m]. A direct reasoning (value 1 can
appear in any of n positions, value 2 in any of the remaining (n—1) positions
...) shows that

Py = cardP, =n!, (4)
and the e.g.f of the class of permutations is
‘ 1
p(z)= Tni—=—— (5)
n§0 1=z

equations (4) and (5) being clearly equivalent.

One way to arrive at (5) by the symbolic operator method is to construct
permutations at ‘'sets-of' cyclic permutations (each permutation has a
unique cycle decomposition). If C is the class of cyclic permutations,
¢, =(n-1)!so that the e.gf. of Cis

2 = 2" _ ozt
c(z)-—E:(n 1)!7“ —E:n.
Thus one has :

c(z) = log((l—z)’l) (6)

Now the set-of construction in this context is known, in the operator
approach to correspond to a left composition with an exponenual (see Sec-
tion 3 for precise statements); here this glvesp(z)—exp(c(z)) or:
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p(z) = expllog(1-z)71J. (7)

Equation (7) is also clearly equivalent to (6) whence to (5).

This seemingly uselessly complicated detour is important. The method

behind the derivation of (7) allows for a large number of variations :

A.

Restrictions on the number of cycles. Let Pl be the set of permutations
whose number of cycles is in some fixed set I'CN; the corresponding
exponential generating function is obtained by composing with

J

y(u)=3 —z.‘—;-‘— (so that I'=N gives back the exponential) the e.g.f. of eyclic
jer /-

permutations. For instance the e.g{. of permutations having an even

number of cycles is

3(z) = cosh(log(1-z)™!) = %.(_1._1..2_.1,1_2)

i
so that there g, = %— for n22.

Restrictions on cycle length : let AP be the set of permutations whose
cycles all have length in a fixed set ACN. The corresponding exponential
generating function is obtained by replacing in (7) the function
)
log(1=2)"! by the function a(z)= 3, ——. (so that A=N gives back equation
JEA
(7)). For instance to obtain the e.g.f. of permutations without cycles of
length 1, replace log(1-2z)~! by log(1-z)~!=2z so that this function is

e

r(z) = pp—

From there follows the (19-th century) result’ that the number of
derangements - permutations without fixed points - is

no(1)
rnzz%,—!l—.

Joint restrictions of the two previous types can be combined defining the
class AP whose€ e.g.f. is ¥(A(z)). For instance to obtain the e.g.f. s(z) of
permutation having an odd number of cycles each of an odd length, take

Y(u) = S(e¥—e™)

AMz) = —1—(log(1+z)-—log(1-—z }) = log 1tz
2 ‘ 1~z
so that
S(z) = —e
Vi-z2’

whence by expanding
(Rn )(Bn +1)!
227 (n1)?

S2n+1 T
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This example illustrates the flexibility of the operator approach, i.e. its
insensitivity to a large number of changes in definitions of combinatorial
structures.

2. Admissible constructions for ordinary generating functions.

A kit of admissible constructions for e.g.f's is displayed on Figure 1,
together with the corresponding operators over generating functions.
Definitions and mapping lemmas follow.

i

|

| | Construction Operator

! Union C = A+B c(z) =a(z)+b(z)

| Cart. product C = AxB c{z)=a(z)b(z)

{ Diagonal C = A(AxA) c(z) =a(z?

| | Sequence-of C=A" c(z)=(1-a(z))"!

I I Marking C=puA c(z) = z:—za(z)
Substitution C = A[B] c(z) =a(db(z))
Set-of C=2A c(z) = exp(a(z)-—-é—a(zz)-f-:li—a(zs) <)
| Multiset-of C= MﬁA; c(z) =.‘exp(a(z)+é—a(zz)+é—a(zs) )

P
Figure 1: Admissible constructions for ordinary generating functions.

Definition 1: A class C is the union (sum) of two classes A and B which we
denote by C=A+B iff:

- in the set-theoretic sense C=A_B ;

- sizes |.|, and |.|g are compatible over ANB and |z |c= if 2 €A then |z |,
else |z |p

Definition 2: A class C is the cartesian product of classes A and B, denoted by
C=AxB, iff
- in the set-theoretic sense C=AxB ;

- H{a.B) le=lalat|Blp
Definition 3: 4 class C is the sequence class of class A iff with ¢ o structure of
size O (called the empty structure):
C = {ei+A+AXA+AXAXA+ - - -

with size being defined consistently with unions and cartesian products.
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Definition 4: 4 class C is the diagonal of AxA denoted by c= A(AXA) iff C consists
of all elements (a,a),a€A, with

|<0<.0<)lc=2]0‘|A-

Definition 5: 4 class C is the marking of class A denoted by C = uA i
C= i Apx[1.m]
n=0

with [(a,v)le = |al,

Definition 6: 4 class C is the composition of class A and B, denoted by C=A[B],
7
C= iA,anxBx-wa,
n=C

the mumber of factors in the general term being equal te n, with

[(a.B1.B2. - - Bn)lc=1BylptiBalpt - +|Bn 15

Definition 7: 4 class C is the powerset class of class A denoted C=24 iff, in the
set theoretic sense, Cis the class of subsets of A : C=24 and

ltayaz, - aglle=loglatlaz|at - - +lag o
19lc=0
Definition 8: 4 class C is the multiset class of class A denoted C—Mf | if Ccon-
sists of multisets of elements of A of the fo'rm iaf‘,az .. .aft) (of means «
repeated j times) and 4
alads - el lo =y lag [atizloalat - +ilag a

A iew words of explanation are in order. We say that C is the disjoint
union of A and B if the intersection AMB is empty. The notion of a cartesian
product of classes (and of diagonals) is the standard one with the size of a
couple being the sum qf the sizes of its components ; the notion extends trivi-
ally to the product of any number of factors. The notion of a power class also
corresponds to the standard power set construction. The power multiset class
of A, M{A] is the class of sets of elements of A with repetitions allowed ; it thus
corresponds to the standard multiset construction.

Composition and marking are useful when dealing with objects like trees,
graphs, words consisting of atomic elements (nodes, edges, positions ete ...)
where the size of a structure is the number of elements it comprises. A
marked structure from uA in this context is then a structure of A augmented
by distinguishing one of its elements. Similarly the substitution operation
A[B] is equivalent to constructing all structures obtained from some a€A by
substituting to all atomic elements of a objects from B still reteining the
structural properties of a (this is really a sort of "marked” substitution).

Notice also that, in order for the sequence construction A’, substitution
construction B[A] and multiset-of construction M{A}, to be defined (i.e. to
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result in sets that are classes of structures satisfying the finiteness condition
of |]7!). one usually has to impose the condition that A contains no structure
of size 0. We shall also impose a similar restriction on the set-of construction.
Such conditions ensure that the operators given in Figure 1 are well defined
operalors over formal power series.

We have

Theorem 1: The constructions of disjoint union, cartesian product, diagonal,
sequence-of, marking, substitution, set-of (powerset) and multiset-of are
admissible.

The corresponding operators are given in Figure 1. The proof of this theorem
proceeds through a chain of easy lemmas.

Lemma 1: Jf ANB=¢ and C=A+B, then c(z)=a(z)+b(z).

Proof : ¢, =a, +b, . ®
Lemma 2: Jf C=AxB then c(z)=a(z).b(z).

Proof :
C(Z)= 2 zl(a-ﬂ)l .

(a.8)eC .
- Z 22'“"‘"5': Ezla!. 22'5’ [ ]
a€ABcB achA peB J

Lemma 3: [f C=A(AxA) then C(z)=a(2z?).
Proof : ¢ 5, =a, ;¢ o, +;=0. .
Lemma 4: [f C=A", then c(z)=(1-a(z))™}

Proof :c(z)= (a(z))x =
£=0

Lemma 5: [f C=uA, thenc (z)=z§z—a(z).

Proof : ¢, =na,,. ®
Lemma 6: Jf C=A[B], then c(z)=a(b(z)).

Proof : From the union and cartesian product mapping lemmas, one has

c(z)=Xbec(z)k. .
k
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Lemma 7: If C=2A, then

e (z)=exp( 3 Z 0o 4oy,
=

Proof : Class C is isomorphic to the finite size elements of the (infinite) carte-
sian product

C= T {lej+{a}]

achA
(¢ a null structure of size 0) so that translating to generating functions
c(z)=11 (1+zlah)
ach

and grouping terms:
=11 (142™)%.
n=1

Computing logc (z), we find :

2 anlog(1+z™)

n=] -

a, i ﬁ.:l_Lj-_lsz‘
=1

J

g"l}j-l i o z7i
n=l

0

loge(z)

1

L]

ingl] iME

n
1

L}

J

1]
s

f.__l..}'j;la(zj), .

n

i=1
Lemma 8: If C=M{Al, then

c(z)=exp | i -;.*a(zj)i-

Jj=1

Proof : The class C is isomorphic to the finite size elements of the (infinite)
cartesian product

C= 1 {ai’

a€h

so that by the mapping lemma for the sequence construction

c(z) = J[(1—zleh?

ach
=11 (1-2n) %
n=l

and the calculation develops as in the previous case. ®
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3. Admissible constructions for exponential generating functions.

We consider here particular classes of combinatorial structures consist-
ing of labelled objects. Corresponding constructions have natural interpreta-
tion in terms of exponential generating functions.

We shall first motivate our constructions over labelled structures by an
example, namely determining the number of connected graph over a set of n
distinguished vertices. Let G=G, be the class of labelled graphs where G,, is

n

the set if all undirected graphs over the set of vertices [1.n]. Let K be the
subclass of G consisting of all graphs of G that are connected. One interesting
question is the relation between the quantities kp=card(K,) and
gn=card(G,). Notice first that one has directly
nin-1) (n)

=2 2

gn=2 % (8)

since a graph over n vertices is obtained by selecting a subset of the set of
the ('g) possible edges. The graphs corresponding to n=3 are depicted in Fig-
ure 2.

1 2 3
1 2 3 1 2.3 1 2 3
.\_/

>
>
>

Ny
w
—
w
—t
(AN

>

2 3

Figure 2 The labelled graphs over the set of vertices {1,2,3]. From this table
results that g;=8 and kz=1

To approach the determination of {k, {,.¢ We define GS¢) as the class of
graphs consisting of ¢ connected components so that Gi{=K,, and we start
by relating g,)=cardG{¢) to k,,. Let us take first ¢ =2.

The cartesian product KxK generates couples of connected graphs. But
one has G{®#KxK for the following two reasons:
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(A) Connected components of graphs in G are not ordered, while com-
ponents of elements of KxK are, by definition of the cartesian product.

(B) Elements of KxK are not well labelled in the sense that structures of
size n do not have elements (nodes) labelled with distinct integers from
[1.n].

To take care of problem (B}, one must relabel objects from KxK to make
them well labelled objects.

Definition: 4 bipartition Il of [1..n] is a pair 1=(a,.B) of subsets of [1..n] such
that ayf=[1..n]. anp=¢. The type of the bipartition is the integer pair
(ol 18D

Let c={u,v) be a pair of labelled structures, so that u is labelled by ele-
ments from [1..l] and v is labelled by elements of [1.m]. The action of a
bipartition TI=(a,8) of type (I,m) on c=(u,v) is defined as the pair ¢={u D)
where ¥ 1is similarly obtained from u by replacing labels 1,2,---1 by

oay.ap, - a; and ¥ is obtained from v by replacing labels 1.2, --,m by
B1.82. " ' .Bm Where

a<az< LAy 1 B1<B2< - LBy
are the elements taken in increasing order of a and B. The action of [T on u

and v is denoted by II<(v,v)>.

Example : Let c=(u,v) be aeﬁned by

2 4,
2 1
5 1
v = 7
3
3 5
L 6

Consider the bipartition H=(§3,5,6,9,12;,f1,2,4:7,8,10.11{) ; its type is (5,7) so
that its action on (u v) is defined. The result is the couple :

( /\ 2/7\1| )
\5/ ’ 1l1 ’

N
9 10

which is a well labelled structure over [1..12]. ®
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Definition 9: The partitional product of two labelled structures @ and T
denoted by u*v is defined as the set

u*v={ I<(u,v)> | of type (Ju|,|v]) ]

The partitional préduct of two classes of (labelled) structures A and B is
defined as

A*B= U (uw).
uchA
veB

(The size of any element of (u*) is |u|+|v|).

Returning to our original problem concerning the enumeration of
labelled graphs, we thus see that the partitional product K*K generates all
well labelled couples of connected graph. Each graph of G®) formed with two
connected components Ky,K, thus appears in K*K twice : once as (K;,K,) and
once as (K, K;). We can therefore write the symbolic equations :

2GR =zK*K. (9a)
G(‘?)-‘-%'(K’K) (9b)

The main interest of the partitional product for enumerations is the fol-
lowing :

Lemma 9: If classes A cmd B have ezponential generating functions a(z) and
b(z). then the exponential generating function c(z) of class C=A*B satisfies :
c(z)=a(z).b(z).

Proof : If w and v are structures of A and B of respective size | and m, then
the number of bipartitions of type (,m) is the binomial coeflicient

l+m
i}
Thus the cardinality C, of C, satisfies the recurrences:

Cn = 2 (l-’zm)albm

L+m =
=3 (7)azbn-1

AT LT —z)t

From the last equality,"the lemma follows. ®

We have thus found for §©®)(z) the relation
§@(z) = (E(2))*.

A straightforward generalization shows that more generally
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-~ 1 -~
g Nz)==(k(z)). (10)
Since G= i G(), we find from (10) the relation
c=0

§(z)=1+E(z)+—2l,—(1€(z))2+§1‘-(12(z))3+ -

(G®) consists of the empty graph on O vertices), or :
g(z)=exp(k(z)). (11)

Using (8) and inverting (11), we have thus found:

Proposition 1: The ezxponential generating function of the class of labelled
graphs satisfies

-~ n
k(z)=log (1+ 3, gnin-1)722_y

'
nal n:

Notice that the above series is divergent ; however k(z) is defined as a

2 3
formal power series thet can be—evaluated by log(l+u)=u —Zfé-+£3- -+ - . Tak-

ing coefificients, we find :

kn= 2 &_:}_)_‘7_:1_ Z (‘nl.ng.'n.'. . ,n.)z(?)*-(?)‘k....‘-(?)

j=1 J LGS TE I - PE R W J

from which one can conclude for instance:+

P
Proposition 2: As n tends to infinity the ratio k,,/ g, tends do 1.
Thus almost all graphs of size n are connected for large n.

Definition 10: 7The k ~th partitional power (k=1) of class A is defined by
AkE>=pA*p *A

where the number of factors is equal to k. When k=0, a<®> is defined as a
class consisting of a unique structure of size 0 (called the empty structure or
null structure and usually denoted by ¢).

The partitional complez A<"> of A is defined as the sum :
A< >= f: A<k,
k=0
Definition 11: The k —th Abelian partitional power of class A is defined as
AlR)=ftw, w,, . w ) | (wywy, ... wy )EAR?]

The abelian partitional complezx al*lof a is defined as the sum

al*l= i o k)
k=0
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Notice that the partitional complex construct is for labelled objects the
analogue of the sequence construct (order of elements in k-uples count) ; the
abelian partitional is a sort of analogue of the power-set construct (orders of
elements are not takeninto account). We then have :

Lemma 10: Assume that C=A<"> then

1

E(Z):T-_TIT—Z—).

Lemma 11: Assume that C=Al"] then

c(z)=ezp(a(z)).

Proofs are direct extensions of the previous ones. For the partitional com-
plex, one has :

c(z) = T (E(z))* = ——nt

k=0 l1-a(z)

For the Abelian partitional complex, each element of Al¥] corresponds to k!
elements of A<¥> In symbols

A%> =k 1Alk]
so that, there
6(z) = T 2-(&(2))* = exp(d(2)).
k20 ™ -

2

Construction Operator !
Union C=AyB S(z) = A(z)tb(z)
Partit. prod. C=A"B ¢(z) =a(z).b(z)
Partit. complex C =A< c(z) = (1—a(z))™*
Abel. part. complex C=al"l c(z) = exp(a(z))
Marking ' = uA c(z) = z-i—a(z)
Labelled subst. C = A[B] c(z) =a(b(z))

z
Min-rooting C=pA c(z) = f&(z) dz
0

Figure 3: A set of e.g.f. admissible constructs.

In summary, we get:

Theorem 2: The constructions: disjoint union, partitional product, partitional
complez, abelian partitional compler and marking are e.g.f. admissible.
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The corresponding operators are given in Figure 3. Other operations
(min-rooting, labelled substitution) could also be shown to be e.g.f. admissi-
ble.

4. Sample applications.

We give here some brief indications on how to derive a collection of com-
binatorial enumeration results using the symbolic operator method. From
our previous discussions, the problem reduces to finding proper construc-
tions (decompositions) for classes of combinatorial structures in terms of
admissible set-theoretic constructs.

1. Combinations: Let C be the power set of [1..m], where m is a fixed integer;
an element of C is sometimes called a combination of elements of [1.m].
Then:

with ¢ the null structure (of size 0). Thus, translating to o.g.f:
C(z)=(1+z)™

and the number of n-combinations of a set of m elements is:

[z7](1+42)™ = (7:') .

2. Combinations with repetitions. Let M be the multiset class of [1.m]. An ele-

ment of M is sometimes called a combination with repetitions of elements of
[1.m]. Thus:

¥ e

M(z)=(1=-2z)™

so that the number of n-combinations with repetitions of a set with m ele-
ments is found to be;

[z7}(1—2)™ = (" 721

3. Arrangements. An arrangement of n elements of [1..:m ] is an injective map
from [1.mn] to [1.m]. The set A of all arrangements with m fixed has the
presentation:

A= (fej+{1)™

where 1 represents a labelled structure of size 1. Thus the e.g.f of Ais:
A(z) = (142)™

and the number of n-arrangements from a set with m elements is:

[%](l+z)"" :n(n-—l)(n._z) . (n_m+1) '
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4. Set partitions. A partition of a set S is a family of sets b = {8, , -, £, ]
such that the g; _called blocks_ are pairwise disjoint and cover S. Let B be
the family of all partitions of an initial segment of N={1,2,3, - - - {. Then:

B~ {{1] + {12 + {123} + - -- '],
thus

B(z) = exp(e®~1) .

From that last equation results that the number of partitions of a set with n
elements is the n-th Bell number:

Bn

"

[Z]expler-1)

1« k7

€.~ m

€ k=0

A similar reascning shows that the number of partitions of a set of cardinality
n comprising k& blocks is:

n z __1\k
Sn,kz[i_qL}_L

nt"* k!

"

1 k ; .

7 (-,
* Osy<k

a Stirling number of the second kind.

5. Permutations. We have already examined the decomposition of permuta-
tions into cycles. lf Cis the class of all cyclic permutations and P the class of
all permutations, then P~ Cl"). In particular, the class of permutations with
k cycles, Cl*] has for e.g.i:

Cle) = (—log (1-2) )k .

Let s, , be the number of permutations of [1..n] with k cycles; s, , is called a
Stirling number of the first kind and s, , =[z"/n!] Clkl(z). Using bivariate
generating functions, we easily find:

kz" -
S put— = (1-2)
= n!
whence by expanding the identity:

Tsppuf =u(u+l)(w+2) - (u+n-1)
x

Thus these numbers coincide with those appearing in the analysis of the
meax-finding procedure:

Spx = [uf]u(u+l)(u+2) - (u+n=-1).
6. Integer compositions. A composition of the integer m is a sequence
(my, - - ,7) such that each 7; is an integer larger than 0, and the 7; add up
te n. The set CO of all compositions satisfies:
co=T

where 1 is the set of integers 21, and the weight of integer k€l is w(k)=k. We
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thus have:

CO(z) = where /(z) = z+z%+2%+ - .

—_—t
1-7(z)

so that the number of compositions of an integer n is:

1—-2
ZM]—=—=2""1 (n21).
7. Integer partitions. A partition of integer n is defined like a composition,
except thal one imposes the further restriction that the m; form a non-
decreasing sequence. Let IP be the class of all integer partitions. One can see

that:

P~ (1} (2)° (3§ -
where again the weight of integer k is equal to k itself. From there one
obtains the generating function expression:

IP(z)= T[(1=2zk)" . =
Ex1

As was pointed oul in the introduction, a large number of enumeration
results follow from these combinatorial constructions. For instance the
number of (set) partitions of a set of n elements where each block has size at
most h is:

[Z-]explen(z)-1)

:
where ¢, is the truncated exponential series:

h o7
eh(z) = —' .
j=0 J-
Compositions or (integer) partitions into bounded summands can be dealt
with in a similar fashion.
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PART III
ASYMPTOTIC METHODS FROM COMPLEX ANALYSIS

The problem we examine here is an inversion problem. Given some infor-
mation about a generating function f (z) - at best an ezplicit form, at worst
only a functional equation defining the function implicitly - how to recover
some asymptotic information on the n-th Taylor coeflicient f,, of f(z).

One way consists in obtaining explicit forms for the coeflicients Jn if at
all possible. For instance, assume we are interested in the probability that a
random permutation of [1..n] has no fixed point (i.e. no cycle of length 1).
From the preceding chapter, this probability is:

<1> ny€_*
rg = [2n) £

from which follows the explicit form:

n __lk
71> = 2-(——1—

ko k!

Observing that n{!> is a partial sum of the expansion of exp(—1), we find:

<15 = o=l 4 Ot

Tin € of (n+1)! )
However, if we need the probability that a permutation has no cycles of
length 1 or 2, we find 3

—z-z%/2
S i

and expanding leads to a double sum, whose approximation, though feasible,
requires some work. The problem gets worse if cycle lengths of the form
1,2, - ,k are prohibited.

In general, the complexity of that method increases drastically as the
size of the defining equation grows. With techniques we are going to examine
in this chapter, one can reason as follows:

The function f(z) = exp(-z~2%/2)/(1-z) has a unique singularity (a

pole) at z=1. Around that pole, one has:

j(z) - e~3/2

»

l1-2
therefore:
=372

[z27]f (2) ~[27]

and the quantity on the r.h.s is equal to e ~3/2, independently of n.

The basic inversion theorem to be used to justify that reasoning is Cauchy'’s
residue theorem, or equivalently Cauchy s integral formula for coefficients of
analytic functions, namely:

(=711 @) = g [1 () 0z (1)

1=-2
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for I" a simple closed contour around the origin.
The choice of the integration contour T in Formulae (1) is guided by
several principles to be detailed below. In many cases, that formula makes it

possible to extract useful asymptotic information about f,, =[27]7 (2).

a. If f(z) is meromorphic in the complex plane C, extend I to a circle of
large radius, taking residues of the integrand of (1) into account.

b. If f(z) has non polar singularities on its circle of convergence, take for
I" a contour that comes close to the singularity in order to extract infor-
mation from the singular behaviour of the function. If the function is
small around its singularity, take a contour that extends beyond the cir-
cle of convergence; if it is "moderately"” large, take a contour that partly
coincides with the circle of convergence; if it is "very” large, take a con-
tour properly contained in the disk of convergence and use saddle point
methods.

c. If f(z) is entire, take I' to be a circle that crosses the saddle point(s) of
f(z).

Notice that these methods do not always require f (z) to be explicitly deter-

mined: it is often sufficient that some local properties of f(z) be obtained

from defining equations.

Finally, a number of combinatorial sums can be studied asymptotically
by means of the Mellin (integral) transform. The method applies well to the
asymptotic analysis of harmonic sums that are of the form:

F(z) = Yarg (Bez) .
k .

M

1. The exponential order formula for coeflicients of analytic functions.

We start by recalling a few basic definitions:

Definition: 4 function f(z) of the complez variable 2 is said to be analytic at

z =g if it has a power series expansion, also called Taylor expansion conver-

gent in a neighbourhocod of a: '
f(z)= Yea(z—a)™. (2)

nz0

A function f (z) of the complez variable z is said to be meromorphic at z=a

if in a neighbourhood of a it has for z#a a convergent expansion (called a

Laurent expansion) of the form:

f(z)= ¥ epl(z=a)". (3)

ne—-M

If c_y#0, then f (z) has a pole cforder M at z=a.

A function is analytic (meromorphic) in a domain ifl it is analytic (mero-
morphic) at very point of the domain. A point at which an analytic function
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ceases to be analytic is called a singularity of the function. We let Sing(f)
denote the set of singularities of function f.

Definition: If f(z) has a pole of order M=1 at z=a, the coefficient c_y of its
Laurent expansion at z=a is called the residue of f at z=a and is denoted
by:

Res(f(z);z=a) .

With a slight extension of our previous notations, we could write:

L 17 (2).

Res(f (z)iz=a) = [

2
Examples: A. f (z)=ezp(z +—zé-—) has no singularity in the whole of the complex
plane C; it is an entire function.

B. f(z)= g=-/2, (1—2z)? has a_double pole at z=1, where local expansions
reveal that .

g2 2¢g-3/2
1) =T T e

so that Res(f (z);z=1) = —2¢~3/2,

C. f(z) =e™%/27%*/4/,/TZ7 is analytic in |z |=1 except for a non polar singu-

larity at z=1. ®

+ 0(1)

We can now state the celebrated Cauchy residue theorem:

P
Theorem 1: [Cauchy's residue theorem] Let T be a simple closed curve
oriented positively, and assume that f is meromorphic in a domain D con-
taining I in its interior, and has no poles on I'. Then:

—%—-‘»I[f(z)dz = Y'Res(f (z);z=s) (4)

2in 5

where the sum is over the set of all poles s of f (z) in the interior of T.

In particular the integral of an analytic function along a closed contour is
equal to 0. An immediate consequence of Theorem 1 is:

Theorem 2: [Cauchy's integral coeflicient formula] Let I' be a simple closed
contour, oriented positively, with the origin in its interior, that is contained
inside the domain of analyticity of f (z). Then:

=2l ) = g [T ) (5)

Proof: By Cauchy's residue theorem, the integral 1is equal to
Res(f (z)/ z™*1;z2=0) which is exactly f,,. ®

An important property of analytic functions is that the radius of
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convergence of the Taylor expansion of f at a denoted R(f ;a) is equal to
R(f:a)=min{ |s—a| | s€Sing(f)}.

In other words an analytic function always has a singularity on its circle of
convergence.

We can now state a theorem relating the exponential order of coeflicients
of an analytic function to the location of its singularities.

Theorem 3: [The exponential coeflicient bound] If f (z) = Y f,. 2" is such that:

F= min |s|
seSing(s)
then for any £>0:
R7T(1=e)" < |fal < RT(14e)*. - (8)
%.0. a.e.

The notation a, < b, means that a, is smaller than b, infinitely often (for
i.0.

infinitely many values of n ) while a,, < b, means that a, <b, almost every-

where (except for at most a finite number of values of n ).

Proof: If the lower bound was not satisfied, then f (z) would be analytic in a
larger domain. The upper bound follows from Cauchy's integral formula tak-

ing as integration contour a circle of radius R(1-n) where (1-n)"!=(1+4c). ®

Applications: 1. For the.exponential generating function of surjections 1!
1 :
z)= , we have: L
fl)= s _

Sing(f ) = {log2 + 2ikm | keZ}’
so that A=log? and for any &:

(10 Z) (1= < In <a.¢.(1022)n(1+£)n

2. With f (z) = e™#/2-2*/4/VT=Z _ the singularity nearest to the origin is 2=1,
so that:

(1=e)* < fa < (142)"

3. Consider the functional equation f(z) = z + f (22+23) defining f (z) impli-
citly. lterating the equation, we find:
f(z)= T ok)(z) (7)
k=0

where o(z)=z2%+z%, and o%*)(z) denotes the k-th iterate of o(z). The fixed
points of o are:

—O--v——l—\/g‘ —:—1—-!‘—\_/_2
Z2p = ,al—-_T,ZZ’ > .

One can observe that 2z, is an attractive fixed point of ¢ so that the sum (7)

1 The coeflicient of z"/n! in 7 (z) is the number of surjections from {1..,n] onto an
initial segment of N
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converges fast in a netghbourhood of the origin. On the other hand the sum
(7) becomes infinite when z=z, (There it becomes a sum of infinitely many
identical terms that are non-zero). A slightly more refined analysis reveals
that z; is the singularity of f nearest to the origin. Since 1/ 2z, is the well
1+V5

2

(1= < f < (l4g)"
1.0. a.e.

known golden ratio ¢ = , we have the bounds:

As a final conclusion to this section, if / is the distance of the origin to
the nearest singularity of f, we have:

Sn =B8(n)R™T (8)

where ¥ grows 1i.0. {aster than any decreasing exponential «™ , a<1 and grows
a.e. faster than any increasing exponential f* , >1. It is the purpose of the
next sections to indicate methods by which the growth of the subexponential
factor ¥(n) can be precisely guantified. One has for instance for the above
examples:

1. =

o((=2=)m):

log2
2. Jfa=O0(n7VE);
X
3. fn=0(%)

and fuller asymptotic expansions can be obtained in all cases.

2. Rational fractions and meromorphic functions.

We have seen in the last section that the location of singularities of a
function determines the exponential growth of its coeflicients. In this and the
next section, we refine on that observation showing that the nature of the
singularities is rélated to the growth of the subexponential factor ¥(n) that
appears in the formula:

Jn ~B(R)R™ .

We start with the simplest class of functions, namely the rational fractions.

These are of the form

for two (relatively prime) polynomials N(z) and D{(z). If f(2) is to be analytic
at 0, one should further assume that D(0)#0. Since N(2)=D{(z)f (z), the
coefficients of a rational fraction (9) satisfy a linear recurrence relation

zkjfn—ka =0

with initial conditions determined by N(z). Conversely any linear recurrence
relation leads to a generating function that is a a rational function.



- 138 -

The asymptotics of coefficients of rational fractions is easy enough. Let
ay, ap, ... bet the (finite) set of zeros of D(z). Then the partial fraction decom-
position of f(z) is:

flz)= p—ik (10)

7k (z—aj)k
7k
= Z _—
j,k(l-—z/aj)"

The sum in (10) is finite and all coefficients 7; & such that k is larger than the
order of the root a; of D(z) are equal to zero.

From (10), taking coeflicients, we get:
- n+k—1
fn "Z\L'fj,kaf—n( k"l ) f (ll)
7.

and since the binomial coefficient is a polynomial of degree (k~1) in n:

Theorem 4: If f (z)=M is a rational fraction that is analytic at the origin,
D(z) Yy g

then the n-th Taylor coefficient of f has the exact expression:

fn= Zaj""l'lj(n) (1%)
J

where the «; are the poles of f and each [l; is a polynomial whose degree is
equal to the multiplicity of the pole of f at a; minus 1.

Notice that if the a; are arranged in order of increasing modulus, then (12)
has the character of an asymptotic expansion in whiclveach term is exponen-
tially smaller than the previous one. Notice also that non-real a's will
correspond to fluctuating terms since, if a=pe*?:

a™ = p™(cos(n¢)-sin(ng)) .

A result very similar to Theorem 4 holds much more generally for mero-
morphic functions. One has:

Theorem 5: Let f (z) be meromorphic for |z |<R and analytic for |z |=R. Let
oy, ap, ... ,bet the (finite) set of poles of f (z) with modulus less than R. Then
there exist polynomials 1y, Il,, .7 such that ‘

Jn = 20L(n) + O(R™) . (13)
J
The degree of I1; is equal to the order of the pole a; minus 1.

Notice that the remainder term is exponentially smaller than any of the
terms in the sum (13). We present two proofs of Theorem 5.

Proof 1: [Method of subtracted singularities]
If 7 (z) has a pole of order §; at a;, then for some function h; analytic at a;:
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hj(z)
6y -

r(z)=

(Z-G',')

Expanding k; around a; up to terms of order é,, we find a polynomial Q5.
namely

1 d

%= 57 aer @) e (o)
such that:
Qj(z)
7 (z) R

is analytic at z=a;. Thus the rational fraction obtained by collecting singular
contributions from poles:

o &)

Q(z) ;__———(z-—aj)d’

is such that f (z)—@(z) is analylic for |z |<R. Wriling
[z27]7(z) =[2"]Q(z) + [2™](f (2)-Q(z))

and applying Theorem 4 to the first term, the Cauchy exponential bound to
the second term concludes the proof of the theorem.

Figure 1: The integration contour used to extract coefficients of meromorphic
Sfunctions.

Proof 2: [Contour integration method]
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Let ¢ be a number 0<¢<27 be such that the hali-rey Argt(z)=¢ crosses no
pole of f(z) with modulus less than K. Let p be smaller than the radius of
convergence of f at 0. Consider the contour (see Fig. 1):

T= Ty +Tp+Ta+T,

where
Ti=tz | lzi=p]
To=t{z | pslz|=R ;Argt(z)=¢]
Te=(z | lz|=R
T,=-Tp.

Iy is oriented positively {(anticlockwise), I'sy negatively (clockwise); I's is
traversed in the direction from I’y to '3, and T, is the same as I'; except that
the orientation is reversed.

The contour T encircles all the poles of f (2) with modulus less than F in
a clockwise direction. Therefore, by the residue theorem,

ff() e =-EReS(f z)z Nz =a;) (14)

217"

{Notice the minus sign due to the orientation of I'). Now the integral decom-
poses into

1 1 1
= + + =
21.1' f 2111 e T Zin'r[ 2imy
? . 3 4
Contributions relative to I'; and F4 cancel each other. -The contribution rela-

tive to Iy, is O(RF™) by trivial majorisation. Finally E—i—:f is equal to f,. Thus
\ rl

the proof is completed once we check that each of the residues in (14) is of
the form a;"{l;(n). ®

Examples: 1. Let R be the set of O—1 strings without 2-runs (i.e. no 2 consecu-
tive ones may appear in these strings). One has the description:

R = (e+1)(0(e+1))"

so that:
1
r =(l+z) —————
(z) = (1+2) T20055)
- 1+2
1=z —2z?

From the partial fraction decomposition of 7(z), we get:

;o= 1+\/“(1+\f5)n + 1-—\/5(1-—\/'5')ﬂ

To2VvE P 2v5 2
2. Let f (z)=1/(2—e?) whose set of singularities has been already determined.
The residue at a=log?2 of f is -—é—. By periodicity of the exponential, this is

also equal to the residue of f at any other pole. The sum of residues in
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Theorem 5 appears to be convergent, so that one can write the ezact formula:

[ 3 _i__= 1 1 n+1 ~n~1
2"l = 2 eg?) ST
where:
21.1:7'
Xe = logZ '

3. The probablhty that a random permutation of [1.n] has no cycle of length
=k is:

. 1.1
rith = 1t ==t +
with H, =1 >3

Ll
»

Notice finally that these expansions are usually quite good owing to the fast
decrease of terms. For instance

2—e?® 1209600

while the first term of the asymptotic expansion yields:

(

= 28.1766873346

11 = 28.176687 !
logz) 8.1766873361

3. Non polar singularities.

Assume that a function f(z) has a unique singularity of smallest
modulus a. Results from the last section entail that, when f is meromorphic,
we can translate an asymptotic relation for the function:

f(z)~g(2) z-a, (15)

where a is the singularity nearest to the origin, into the corresponding rela-
tion for coeflicients:

[27]f(2) ~[2"]g(z) mnoe. (16)

We propose here to describe general conditions under which the transition
from (15) to (16) can be eflected, relaxing the conditions that functions be
meromorphic or singularities be of a polar type.

Developments in this section assume that asymptotic information is
available for the function in some area of the complex plane around its singu-
larity. They make it possible to translate 0(.) estimates for functions into O(.)
estimates for coeflicients, whence the name of transfer or translation
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lermmas given to them.
One of the main uses of transfer lemmas is as {ollows. Assume we have an
asymptotic expansion for f around a in the form:
f(z)=o0(z)+o0(z)+ - - +0,(2)+ 0(g(z), (17)
for some elementary functions o, ... belonging to an asymptotic scale. Then, if
proper conditions are satisfied, (17) translates into
Jn =010 t020+ - +opn +0(gs). (18)

Application of this method therefore calls for two types of results:

1. Building up a catalogue of coeflicients of standard singular {unctions
appearing in asymplotic expansions, in exact or asymptotic form, using
real or complex analysis.

2. Establishing conditions under which transfer lemmas hold true.

Notice also that these methods can be trivially extended when a function has
a finite number of singularities on its circle of convergence. Just add up the
contributions to the coefiicients coming from each singularity.

7 Function Coefl.

i oy L

ilog(l z) | n_

5(1‘2)7 n : r#0,1,2 -
ﬁ I(—r)" a
(1-2)"log®(1-2)7! crsn T tlogt T#0,1,2, -
L(1-2 Tlogs(1-2)7! rin 7l r=0,1,2 -

Table 2: 4 simplified catalogue of the asymptotic form of coefficients of some
standard singular functions.

Table 2 provides a simplified catalogue of the asymptotic form of
coeflficients of some standard functions. Such a catalogue can be built from
direct expressions available for coeflficients or from contour integration tech-
nigues. For instance:

[z"]-log(1~2) = —

s(s+1)(s+2) - - - (s+n—1) - (s+n-1

[z")(1-2) = o b

As to transfer lemmas, they are summarised in Table 3. (Notice, in passing,
the analogy between Tables 2 and 3). We shall prove here:

Theorem 8: (i) Assume that g (z) is analytic in the domain
D=fzllz|s1,z%#1)}

and that as z tends to 1 inside D, one has:
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| _Punction | Coeff. | Comd. |
0(loghi—2)) | O(1EL) |
io 1-2)75) ; O(ns-1) 520 |
l0((1-2)") o) | r=0 |

Table 3: A simplified set of transfer results (see Theorem 6 for walidity
conditions).

g(z)=0(|1-2z]7%)
with s>1. Then:

[z"]g(z) = O(n®7}).
(ii) Assume that g (z) is analytic in the indented disk:

D={z | |z|s1+6,8<]|Argt(z~1)|<2m ]

where 6,8 are such that §>0, 0<¥< -;l Assume that, as z tends to 1 inside D

g(z)=0(|1-2]")
with r>0. Then:

[27]g(z) = O(R™"1) .

7

Proof: (Sketch)

(i) Use the Cauchy formula with a contour I' that consists of the circle
|z |=1 except for a small notch at distance 1/n of z=1: ' = [y+I'; where

1
To=1t{2z z|lgl, |z2-1|=—
o=tz | lzls1, |z-1]=1]

-
1

. 1
=(z | z]=1, |2=1]= 1]
Next evaluate each integral using trivial bounds. One has:

[1) S = o™

AL n

ff( ) ToeT *0(1.Zl1—e‘“|d19.

There ¥, is the argument of the intersection of I's and Iy in the upper half
plane.

(ii)__ Use likewise the Cauchy integral formula with a contour
T= Fo"_, + FI.O + Tz
where

Tow=1lz | [z-1|=w, |Argt(z—p)|>T,;
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(1)

Figure 4: The contours used in order to establish Theorem 6.

Tye=1{z | |z=1|20, |z|<r,, Argi(z —p)=01]
Tp=lz | |z|=r,, |Argt{z —p) |21

i

for some 7, 1<7 ;<146 (6>0) and ¥,. ¥9<U,< 5

. letting w shrinkto 0. ®

A full discussion of the proof is given in papers by Odlyzko and Flajolet-
Odlyzko.

Notes: 1. Many more results are available using these techniques. The under-
-lying idea is to take a contour of integration that comes close to the singular-
ity. It the function is small (i.e. tends to 0) as the argument approaches the
singularity then one tries to extend the contour of integration outside the
disk of convergence in a manner similar to what was done for polar singulari-
ties. If the function is large then the contour can stay within the disk of con-
vergence of the function.

2. The fact that the singularity of the function was assumed to be at z=1 is of
course not restrictive (otherwise, normalise the function). Also the case
where the function has a finite number of singularities on its circle of conver-
gence can be dealt with using composite contours. The outcome is that con-
tributions from each of the singularities cumulate.

3. The classical Darbouz-Polya method is in the same spirit. It however
assumes smoothness conditions while here our conditions concern orders of
growth. The present approach lends itself nicely to generalisations; also in
some cases, only order-of-magnitude informations are available and it
appears to be well suited to combinatorial enumeration problems.

- —_—
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4. Tauberian theorems assume much weaker conditions on the function g:
basically all that is required is some information on the function as z-1-
along the recl azris However, in the context of combinatorial enumerations,
they do not seem to provide information for the same variety of singular
behaviours while they require some so-called Tauberian side conditions that

may be hard to establish. ®

Examples: 1. When counting certain combinatorial configurations ("'clouds”),
one encounters the generating function:

(2) e—2/1~2%/ 4

z) = ———m—
4 Vi—z

g=3/¢

Vi-z

Thus, by the transfer lemme (Theorem 6.i):

- e=3/4

Vi-—z

e=3/4

V7

+ 0(|1-2 |}/%).

+ 0(n~%2)

[z™]1(z)

+ 0(n-3%/2)

H

2. Let f (z) be the solution analytic at the origin of equation:
J =z (1+f+f7),
that is:
1-z2 -V 1—2z~-32°
2z '

Function f is the o.g.f. of unary binary trees, in which’each node has degree
0. 1 or 2. The dominant singularity of f(z) is at z=1/3 (the other one is at
z=-1), where locally f admits an expansion of the form:

f(z)=4vV1=3z + 0(]|1-32 [%/%)

f(z)=

from which one finds:

+0(3"7% . .

" _ 3n+]
[z7]f(2) = PYV et

4. Saddle point bounds.

We only give here a brief introduction to the subject of saddle point
methods which allow derivation of asymptotic expansions for integrals of ana-
lytic functions depending on a (large) parameter. In the context of extract-
ing coeflicients of analytic functions, one way of conceiving these methods is
as a refinement of trivial bounds on the Cauchy integral formula.

Assume throughout this section that f (z) is an analytic function that is
entire and has positive coefficients. By Cauchy’'s integral formula, one has:

Inm =) = g[S (19)
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Take as contour of integration I' a circle of radius R. Since f (z) has positive
coeflicients, we have for any 2 such that |z |=R: |f(z)|<f(R), and thus,
from trivial majorisations of (19):

1 f(R
fn= -é—;jﬁ—?;—:%-2rﬁ (20)

< IR
R™

The bound (20) is valid for any positive K. Notice that f (R)/ R™, which is
infinite at #=0 and A=« is unimodal over R*. Thus there is a real number p:
0<p<e that minimises f (R)/ R™*!. That number is a root of equation:

_d..ﬂ_ffl =0
dR pm
sc that is satisfies:
pt (p)—nf(p) =0. (21)
In other words:

Theorem 7: Let f be entire and have positive coefficients, Define the function
wu) by:

wf'(u
J(u)
Then the n-th Taylor coefficient of f (z) satisfies the bound:
‘ <~-1>
< M ' ‘ 22
In® )

where w<"1>(.) denotes the functional inverse of w(.). ’

wlu) =

Example: Take f{z)=-exp(z). Then [z™]f(z)=1/n! We have trivially:
w(u) = u so that w<™>(n) = n, whence by Theorem 7 the (expected) bound:

1 e”
—‘.5._...,
n nn

a weak form of Stirling's formula. ®

Note: Since the bound (2) is valid for any R, the function w(.) need not be
inversed exactly and may be .olved only asymptotically or approzimately. Of

course, the better the approximation, the better the bound. ®

Example: Let f,, be the number of involutions in the set of permutations of
[1.m]. Involutions are characterised by the fact that they have only cycles of
length 1 and 2. Thus their e.g.f is:

~ n 2
F(z) = TrnZr =explz+ ).

In that case, w(u) = u+u?, so that an approximation to w<™>(n) is Vn /2,
whence:
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IS 2nn9n—n—le—n/8+\’§/2‘ =

The estimates we have just seen can be refined. In many cases of
interesti, only a small fraction of the contour contributes significantly to the
integral. There, local approximations can be performed and an asymptotic
estimate of the integral (instead of just an upper bound) can be obtained.

The saddle point method applies to integrals of the form:

] =

h(z)gz | (23)

where h(z)=h,(z) depends on a large parameter n. The case of Cauchy's for-
mula (19) corresponds to the particular form:

h(z) = ha(z) = log [ (z) = (n+1)logz .
The method proceeds as follows:
1. Determine R = K, such that:

d

- hi(z) ;::R-':O' (24)

Quantity R is called a saddle point of the integrand due to the local
topography of the surface defined by |h(z)| and |e*(#)|. Notice that
with the notations of Theorem 7, one has R, = w< !>(n+1) which is
expected to be close to the quantity w< ??(n) appearing in Theorem 7.
The idea is to evaluate integral (23) using as contour T a circle of radius
R satisfying (24). : _

2. Select an adequate angle ¥ = ¥,, (usually ¥ will be small), satisfying the

two (conflicting) requirements: y
ehFldz « fer®ldz (C1)
T/ Tv] r
h(RY+Lh"(R)(z -R)*
eh#) ~e 2 * zel[v] . (C2)

There T[1¥] denotes the part of the circle |z |=F consisting of points z
such that |Argt(z)|=v. Condition (C1) requires ¥ to be large enough so
that the dominant part of the integral comes from [[¢] while condition
(C2) requires ¥ to be small enough that local expansions be valid.
3. 1f (Ci) and (CR) are satisfied, then one has:
h(R)+ Lh(R)(z—R)?
1 e 2 : dz

JEI

2im ris]
The last step is now to complete the integral; setting z=F +1it:
'—"_h"(R)

]"fe , (C3)

a Gaussian integral that can be evaluated, leading to:
eh(R)

] R ——mr
- — V27nh"(R)



-48_

What we have seen above is general enough to apply to a wide class of
integrals depending on a (large) parameter. Restricting ourselves to the spe-
cial form of integral (19), we can state:

Theorem 8: Assuming approzimations (C1), (C2), (C3) to be valid, one has:

e™(R,)

[27]f(z) ~ m

(24)

where:
hiz)=logf(z)—(n+i)logz
R, =w<>(n+1)

<-1>

and w () is the functional inverse of:

oy L)
wi) = =y

Applications: 1. Stirling's formula:
etn "

VZrm

[2")e* ~

2. The number of involutions:
n
[i_]eu—zz/z ~ lpn/2,ms2eVE =14
n! - V2

kS

3. The number of set partitions:

[z™]exp(e®—1) ~ e~ ( i .

logn

5. Mellin transform techniques.

The Mellin transform associales to a real function f(z) defined over
[0;+=] a complex function f"(s) written M[f (z);s] or M[f ()], and given by:

-

f‘(s)={f<z)x=-1dz. (25)

If f is continuous and satisfies:
J(z)=0(z*) z-0
f(z) = 0(zf) zow
then, it is easy to see that the transform (25) is defined in the strip - called

the fundamental strip - —a<Re(s )<—PB. Let 6(z) be the function whose value is
1 for Osz=<1 and 0 for 1<z; it is easy to see that:

1
s +a

M[é(x)z?] =
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and thus the Mellin transform associates to a (particular) function that is
O(z%) at 0 & transformed function with a pole at s=—a. From this observa-
tion, proceedii:g by linearity, it is easy to see that more generally, the
transform of a function with an asymptotic exzpansion around 0 of the form:
Jiz)~ Te;z
J

is a function meromorphic in a left half plane that has a pole of residue c; at

=—a,. Smaller terms in that expansion correspond to poles that are farther
to the left. A similar reasoning applies to asymptotic expansions towards
(poles farther to the right correspond to smaller contributions). In other
words:
A.  The asymptotic ezpansions of a funciion at O (or =) are reflected by the

poles of its Mellin transform in a left half-plane (a right half plane
respectively ).

The converse of that property is also (mildly conditionally) true. To prove
this, one starts with the inversion formulea, that corresponds to the classical
Fourier inversion;
1 CH+teo
) o e * -5

_ (=)= grm [ fH(s)z™ s (26)
where ¢ is in the fundamental strip of f. (Notice the analogy with (25)). If
7 ' (s) is meromorphic, one can evaluate the integral in (26) by residues: take
as contour of integration the vertical line Re(s)=c completed by a large con-
tour in the left half-plane. Under (often satisfied) suitable conditions, one can
apply Cauchy’'s residue theorem to that integral and get:

7(z) ~ T Res[f " (s)z~ ; s=a] ) (27)

where the sum is extended to all poles a of f°(s) to the right of the vertical

line Re(s)=c. Notice that if f° has only simple poles, then (27) can be rewrit-

ten as:
7 (z) ~ ORes[f (s)is=a)z ™ o (28)
a

where the asymptotic nature of expansion (28) is obvious. If f°(s) has multi-

ple poles, then generalised expansions with powers of logz appear. In sum-

mary:

B. The poles of a Mellin transform in a left half-plane (right half plane)
translate (under certain smallness conditions of f ' (s) towards i«) into
terms of an asymptotic expansion of f (z) at O (resp. +e).

Thus the correspondence between asymptotic properties of f and singulari-

ties of f° fares both ways. This justifies the importance of that transform for

asymptotic analysis.

The usefulness of the Mellin transform is also due to a very elementary
functional property, namely:

M[f(az);s]l=a~Sf"(s), a=20,

which using linearity (assuming summations and integrations may be



interchanged) extends to:

i._:)\kf(akx) = (Taeg) S (s) (29)
x

Sums on the left hand side of (29) are called harmonic sums. Equation (29)
shows that:

C.  Harmonic sums are transformed by the Mellin transform into the product
of a generalised Dirichlet series and the transform of the basis function.

We shall only illusirate some of these points by means of a few elementary
examples.

Examples. 1. Let f (z)=e®. The transform of f is the classical Gamma func-
tion:

T(s) = f¢5~:vcp(:::).'x:s’1 dz ,
)

k
with <0;==> as fundamental strip. To the term (—1)* %—- in the expansion of f

around 0 there corresponds (Point A above) a simple pole of I(s) at s=—k
with:

; k! s+k
In other words, the expansion: .
e~% ~ —1)F zk
kso k!

translates into the meromorphic expansion:

rsym v {208 L

&
kso k! s+k

and in that case both expansions are actually convergent.
2. The following sum appears in relation to the analysis of the expected
height of a planar tree with n nodes:
S(z) = T d(k)e k= (30)
k2]

where d (k) is the number of divisors of k. Sum (30) is typically a harmonic
sum whose transform is (¢(s) is the Riemann zeta function);

5°(s) = ZEET(F) (31)

where the fundamental strip of (31) is <1;+=>. Function S has a double pole
at s=1 and a simple pole at s =0. Hence the meromorphic expansion:

1

1 1
(s~1)2 )

1-"\'
+-__ — —
41(2 4s

sy~ Lok
S(s)~21"(2) ,
whence:

S(z)~_\/;]_og£+\/-ﬁ(§.-l_ggi)}.+ -L-}-O(g:”) z -0,
z 4 2 z 4
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for any positive 4. &

The Mellin transform has a host of applications to: (1) situations where
number-theoretic functions appear (like above the divisor function); (2)
non-standard asymptotic expansions corresponding to periodicities. Exam-
ples are: height of trees, carry propagation, digital trees or tries ... .
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PART IV
APPLICATIONS

It is our purpose here to offer a brief guide to some of the existing litera-
ture on the subject of analysis of algerithms and data structures, putting
enumeration and asymptotic methods in perspective. Since we cannot afford
the space necessary to discuss the vast existing literature, we shall restrict
ourselves to examining & few data structures, closely related to trees, and
corresponding algorithmic processes.

1. Trees and tree manipulation algorithms.

This sections discusses uniform statistics on trees of various compositions. It
corresponds to what was called in Part I, the empirical model. The trees we
condider are term trees in some algebraic structure.

Consider first the family B of (planar) binary trees; it is a data structure
recursively defined by:

B=%+ <0,B,B> (1)

where "®" denotes an empty tree (nullary node), and "o denotes an internal
(binary) node. (We have used an obvious linearised notation for trees). Define
the size of 2 binary tree to be the number of internal nodes it comprises.
Equation (1) translates into the fixed point equation for the corresponding
generating function B(z):

B(z)=1+2 B%z), J (2)
a guadratic equation that has the solution:
= lovi=4z
B(z) = s . (3)
Whence the explicit result:
1 2n '
B"_n+l<"l)' ()
and from Stirling's formula:
4n
SV ©

The transition from (1) to (2) is general enough. Let ) be a subset of the
non-negative integers. Consider the family T = T[Q] of trees such that
(out)degrees of nodes are restricted to be in the set 0 (binary trees
correspond to O = {0,2{). Such a family is called, after Meir and Moon [MM78],
the simple family of trees associated to degree constraints . Define w, to be
equal to 1 if k€ and 0 otherwise. One can write for T the symbolic equation:

T=Ywg <o, TT - T>. (6)
k

where the number of occurrences of Tin the general term of the sum is equal
to k. With the size of a tree now defined as the total number of nodes that
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tree comprises, equation (6) translates into:
T(z) = zw(T(2)) (7)
where o(u) = Yw,z*.
k
.The Taylor coeflicients of the solution T(z) of (17) can be obtained
exactly using the Lagrange inversion Theorem [He77] that relates the

coeflicients of the muiltiplicative powers of a function (w(.)) to those of its
functional inverse (related to 7). Hence:

Theorem 1: The number of trees of size (total number of nodes) n in the fam-
ily defined by degree constraints () is:

Tn = —{ulo(u) . (8)

3=

Notice that in Formula (8), the w; need not be 0-1 parameters. Allowing for
general integral w, will make it possible to count term trees, that is trees
whose nodes are labelled with operators; in that case w, represents the
number of operators of degree (arity) k.

If w(u) is simple enough, then Theorem 1 will provide useful counting
results. We mention here:

- The number of general trees (&, = 1 for all k, 1.e w(u)=(1—u)"!) of sizen
is:

_L_(Z'n-Z

- The number of t-ary trees (t22), i.e.;’w(u) = 1+u! with a total of t n+1
nodes (and thus with n t-ary internal nodes) is:

1 tn+1
marlm )

In case w(u) has a more complex form, one has to resort to asymptotic
analysis, and indeed [MM78] have shown that Formula (5) obtained here by
elementary methods nicely generalises.

Function T(z) in Equation (7) is the solution (in %) of:

Flzy)=0 ., Flzy)=y-zw(y). (9)

Thus (9) defines y implicitly as a function of z. From the implicit function
theorem, we know that a solution y with value y4 at a point z4 (F(24,90)=0) is
analytically continuable provided:

8
ggF(z ) | (zoyo) Z0 -

From there can be seen that the singularity (-ies) of ¥ closest to the origin is
(are) the quantity (-ies) of smallest modulus p such that (p,7) are a set of
solutions of the system:

0 -
Flp.m)=0 ; 3 F(zy) | o) =0.
Hence, here:

p= L (10)
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where 7 is one of the rools of equation:
w(T)=T0'(T) =0 (11)

Assume for simplicity that there is a unique 7 of smallest modulus satisfying
(11). Then, around (p.7) the dependency between y and z is locally of the
form:

(1—y)2 —4(z=p) =0, (12)

as can be checked using the expansien of F. From (12), one can establish for-
mally that vy has the form:

y<z>=h1<z>+n2<z>\/1-§ (13)

where h, and hj are analytic at z=p. That form lends itself nicely to a singu-
larity analysis (of a "square-root" type) and one gets the very general result
of [MM78] which we state in the little restrictive case where 7(z) has a unique
singularity on its circle of convergence (the same assumption is made in the
rest of this section):

Theorem 2: (MM78] If t(z) has a unigue singularity on its circle of conver-
gence, the number of trees in T[] with size n satisfies asymptotically:

ty =8, (0]~ Cp™mn=3/2

where the constanis C and p are given ezplicitly by p=71/¢(T) and
C=(p(1)/ (2me"(7)))/ 2 with T the smallest positive root of the equation
o) =T¢'(r) = 0.

The main methods for estimating tree parameters are as follows:

1. The symbolic operator approach is a convenient tool for writing symbolic
equations in the style of (1), (7). One may have though to extend it to
equations over mulisets (elements are taken with multiplicities
corresponding to values of the parameter to be analysed [Fi81, SF83,

_Fs8z]). ,

2. Most generating functions have expressions in terms of the implicitly
defined function ¢(z). Thus, the Lagrange inversion theorem is an impor-
tant tool that often leads to exact counting results otherwise difficult to
attain.

3. Singularity analysis of intervening generating functions is also of con-
stant use in this context. Since function ¢(z) has algebraic singularities,
the methods of Chapter Il often apply here. Other important techniques
are saddle point methods and Mellin transform techniques in those cases
where, in summations, there appear coefficients of an arithmetical
nature.

Some examples follow. We only sketch the main steps of derivations.

The simplest of all tree algorithms is certainly recursive tree traversal: to
traverse a tree in preorder, visit its root, then recursively traverse all its root
subtrees in left-to-right order. The time complexity of that procedure is
clearly linear in the size of the tree, while its storage complexity is equal to
the maximum size of the recursion stack, a quantity that coincides with the
height of the tree.

The first result on the expected height of planar trees has been obtained
by De Bruijn et al..
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Theorem 3: [DBKR71] The ezpected height of a general planar tree (all node
degrees allowed) with n nodes satisfies:

H, =~ + 0(1).

Proof: Let G be the family of general trees:
G =0+ <0.G> + <0,G,G> + <0,G.GG> - - (14)

An equation similar to (14) describes the family Glh) of trees with height at
most h:

Glr*+1) = 6 + <0,GIM)> + <0,GI) GIM)> + <o0,GIA] GIM] GIRDS - - (15)
whence the equations:
- 2 . [h+1] = z
z) = ; z) = 16
g(z) 1-g(z) g (z) 1 [h‘](z) (18)

from which follows thaf:
1-Vi—4z Froy(2)
9(2)2—-——-—-——- : [h)(2) = g it
2 I = E R )
where the F's satisfy the linear recurrence relation:
Frhia(z) = Fl(z) -2z F(z).

The F's can be expressed as functions of g(z) itself, and using Lagrange
inversion, one gets:

(17)

Ina1=9A3 = 5 (n+1—3(h+2)) "z(n—j2(2+2)) + (n-l-?{h-rZ)) (18)

and:
n+1 Ed(k)[(n+1_k)) ( (n 1...)¢)] (19)
The asymptotic evaluation of (19) calls for evaluations of sums of the form:
( an
n—
= k) e 20
n

Using the Gaussxan approximation of binomial coefficients, (20) is approxi-
mated by T(1/ Vn ) where:

T(z) = 2d (k)e k=" (21)
- ,

The problem is thus to evaluate asymptotically 7(z) given by (21) when z
tends to 0. The Mellin transform of T(z) is readily determined to be

7(s) = 3¢S (22)

It has a double pole at s=1, a simple pole at 0 whence the asymptotic expan-
sion

T(z)= —zl—z-(]ogx+01) + Cp + O(z™), (23)

as z-0, for any m>0. A combination of expansions of the form (23) leads to
the statement of the theorem. ®
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That result has been generalised by Flajolet and Odlyzko who proved:
Theorem 4: [FO83] The expected height of a tree of size n in a simple family
of trees satisfies:

Hy, ~4~Vn
where the explicitly computable constant 4 is 4=(271/ ((7)¢" (7)) 2¢'(T).

Returning to the notations of equations (6), (7), we see that the generat-
ing function of trees of height at most A, 7"} is defined by the recurrence:

Tih+1)(z) = zw(TIR](2)) (24)
with T{%)(z )=z and the generating function of height of trees is:
H(z) = $[T(z)-T*)(z)] . (25)
I3

The scheme (25) is nothing but an iterative approximation scheme to the
fixed point equation (7) determining 7. A singularity analysis of (24) leads to
the result. This necessitates determining the behaviour of the iterative
scheme (24) near z=p, which is a singular iteration problem, from which one
can prove that:

K 1
H(z) ~ > log ponll
1-=  1-=
P P

and the result of Theorem 3 follows directly.

Methods similar to those emploved in the proof of Theorem 4 had been
introduced in an earlier analysis of Odlyzko [0d83], where he counted the
number of balanced 2-3 trees of sizen.

P
Theorem 5: [0d83] The number of balanced 2-3 trees with n ezternal nodes
satisfies:

E ~ £-W(logn)

where p is the golden ratio 1+2\/5

and W{.) is a continuous and periodic func-

tion.

Odlyzko's result actually includes the counting of a variety of balanced trees.
Such trees occur in the management of "dictionaries” and they allow inser-
tions, deletions and queries to be performed in guaranteed O{logn) time. The
occrrence of the golden ratio in Theorem 5 is to be expected after the discus-
sion in Chapter 3 of the equation f (z) = z + f (2%4+29) that is satisfied by the
o.g.f of the E,.

The next algorithm to be examined is pattern matching on trees. The
problem is to detect occurrences of a given pattern tree in a larger text tree.
For instance, in symbolic manipulation systems, one may look for cases of
application of a rewrite rule of the form: :



* +
GAMMA GAMMA ——— %pi sin

|
NATre

%pi S

and recognizing cases where the pattern on the lh.s. appears calls for a
pattern-matching algorithm. '

Contrary to what happens in the case of strings where efficient worst
case linear time algorithms are known, it is conjectured here that no linear
time algorithm may exist for tree-matching. The sequential tree matching
algorithm corresponds to a simple backtracking search. It operates as fol-
lows:

1. TFor each node of the‘text tree, examine the subtree rooted at that node
to see if it matches the pattern, using.the comparison procedure (2).

2. To compare a subtree against a pattern, traverse simultaneously the
pattern tree and the text's subtree in preorder ahd abort that traversal
as soon as a mismatch is detected.

The sequential matching algorithm has clearly a quadratic worst case com-

plexity of the form 0O(n?). However, one can prove in contrast that the

expected case is linear, namely:

Theorem 6: [SF83] The sequential tree matching algdrith.m, when applied to a
fized pattern P and all trees of size n, has expected cost given by:

Tmaich, ~w(P)n

where w(P) is a function of the structure of pattern P that is uniformly
bounded by an absolute constant: w(P)sW.

The proof of the theorem depends on the following lemma [SF83):

Lermnma: For a simple family of tres and a fized pattern P with i internal
nodes and e external nodes, the asymptotic probabilty of occurrence of P at a
randomn node of a large random tree of size n satisfies:

OCCn<P> ~ Te—lpi )
The algebraic part of the proof is a direct application of the symbolic opera-

tor method applied to multisets of trees. Generating functions for the number
of occurrences of trees have simple expressions in terms of the function T(z)



- 59 -

and a singularity analysis yields the statement of the Lemma.

The same type of analysis can be applied to a large variety of of tree
algorithms. In [FS82], the authors set up a general framework within which a
number of algorithms on trees can be (semi-) automatically analysed. As an
illustration, we cite:

Theorem 7: The symbolic differentiation algorithm has, for any set ) of opera-
tors and any set A of differentiation rules with at least one "expanding” rule,
the average case complexity,

Tdif fn = C(QA)Nn%2 + O(n) .

A less standard singular behaviour occurs in the problem known as the
common subezpression problem or tree compaction where a tree is compacted
into a dag by avoiding duplication of identical substructures. The singularity
in that case is of the form [FSS85]

1
V(1-2)log(1=z)"}

and one finds:

Theorem 8: [FSSB85] The ezpected size of the (mazimally compacted) dag
representation of a random tree of size n in a simple family of trees satisfies:
= n O(n
= + .
B =7 Viogn logn )

Thus the gain to be expected when compacting trees into dags should be
expected to approach 100% as the trees get large, although convergence may
be quite slow.

P

Finally, register allocation in compiling is the subject of [FRV79], [Ke79].
The optimal register allocation strategy for expressions involving binary
operators has been determined by Ershov as early as 1958. We have:

Theorem 9: [FRV79],[Ke79] The ezpected number of registers to evaluaie a
binary tree of size n using Ershov's algorithm satisfies:

R, =log,n + P(logsn) + o(1),

where P(u) is o periodic function of its argument that has period 1 and small
amplitude. :

In the analysis, there appears the combinatorial sum:
Vo = Tvalk) (2T
k2l

in which v,(k) is the exponent of 2 in the prime number decomposition of k.
Exponential approximations lead to analogous sums with the binomial
coeflicient replaced by an exponential (vide Eqns (20)-(21)). The Mellin
transform of the approximation is:
s
1) I( _;_)

2 25—

and its line of regularly spaced poles s=12;§; corresponds to periodic
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fiuctuatlions in the form of a Fourier series.

Notice on this example the first occurrence of periodicity phenomena of
a non-trivial nature.

2. Digital searching and sorting algorithms.

Let S be a finite setl of distinct binary strings (or keys), each of some fixed
length <+« To the set S is canonically associated a special type of tree,
called a trie and denoted by trie (S), that is defined recursively as follows:

- if card(S)=0 then trie(S) is the empty tree;

- if card(S)=1 then trie(S) consists of a unique node (leaf) labelled with
the unique element of 5;

- If card(S)=2 let S; and S; be the subsets of S formed by elements
beginning with a 0 and a 1 respectively; let SJ' (j=0,1) denote the set of
elements of S; stripped of their initial bit; then trie (S) is defined as:

trie (S) = <o,trie (Sp ), trie (S])> .

If Jeftmost edges in a tree are labelled with zeros and rightmost edges are
labelled with ones, then the set of all labellings from the root of the tree to
the leaves is a minimal prefix set of S. For this reason tries are also known in
coding theory as prefiz trees.

Tries as a data structure have been discovered by Fredkin (see [Kn73])
and they support insertions, deletions and queries: to retrieve a key from a
trie, for instance, follow a path from the root of the tree that is guided by the
successive bits of the key to be found, branching left on 0’s and right on 1's.
By construction, if ¢ is finite, the worst case cost of these operations is o)
which represents a logarithmic cost if I®log,n. If {=e (the results will basi-
cally apply for finite | as soon as L>>logy,n) then, under the assumption that
bits of keys are uniform and independent, the expected cost of any of the
above operations is logon +0(1) as we propose to show.

The probability that a trie formed with n random keys has.a leftmost trie
of size k¥ and a rightmost trie of size n—k is the Bernoulli probability:

1 (n
Pk = 5 (R) (26)
Let v[t], w(t], - - denote parameters of tries, like path length, number of
nodes... . Let v,, w,. - be the expectations of v[t], w[t], -+ - when the

tries ¢ are built from a set a n random keys, and let finally v(z), w(z), - -
denote the corresponding exponential generating functions. From the form
(28) of splitting probabilities, we find the following relations between struc-
tural definitions of parameters and exponential generating functions of
expected values:

vit]=w[t]+z{t] => v(z)=w(z)+z(z) (27)
it = witg]xz[t)] => v(z) = w(F)xz(3) (28)

where to and ¢, denote the left and right subtrees of t. There (27) is nothing
but the additive property of expectations and generating functions while (28)
comes from the equalities
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n
Ve, = Z Prn gk Wi Ty (29)
k=0
or equivalently:
Un o _ 1 & Yk Zn-k
n! 2n Lokt n—k!’

Let us first analyse the storage occupation of tries. The number of inter-
nal nodes of a trie ¢, denoted by s[t], satisfies the recursive definition:

s(t)=s[to] Ult,]+ Ulto)s[t,]+1, (30)

where (/ is the constant unit valuation Ult]=1, and (30) holds as soon as the
number of keys in ¢ exceeds 1. Thus using the general scheme (27)-(28) in
(30), observing that U(z)=e® and taking care of initial conditions, we find for
the corresponding e.g.f s(z) the equation:

s(z)=2e”zs(%)+e’—1—z (31)

since the e.g.f. of U[.] is U(z)=e*. Equation (31) can be solved by iteration,
and we get the explicit form:

(1=3r)x

s(z)= T 2¥[e*—(1+-2)e ] (32)
k20 2
so that taking coeflicients in (31):
1 n 1
Sp = L2k [1-(1-==) (1~ )71 33

The next step in the derivation is to use Mellin transforms. To that purpose,
the simplest way consists in introducing the function:

S(z) = T 2*[1-e™=/# (1+-2)) (34)
k=0 2
which derives from (34) when we use the exponential approximation:
(1"0. )n X g —GnN
substituting = for n. One can justify that approximation here and show that
s, = S(n)+0(nl’?) (see [Kn73]).

The interest of the form (34) is that it is a harmonic sum. Its Mellin
transform is defined for ~2<Re(s)<-1 and from the preceding chapter we find

that it is
S'(s):-ﬁms_)_' (35)
128+
Poles to the right of the fundamental strip of S* determine the asymptotic
behaviour of S(z) as z gets large. There is a simple pole s=0 that is due to
I'(s) and poles at points x;, = —1+ lucﬂz for k€Z due to the denominator of

)
(85). Computing residues, we find t%)e following theorem of Knuth (using
suggestions by De Bruijn, see [Kn73, pp. 13111]):

Theorem 10: [Kn73] The ezpected storage occupation (measured by the
number of internal nodes) of a trie built on n uniform and independent keys
is:
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s, = TV ek[1—(1—2 )l yne ’
n e [ 2") 2"( 2") ]

a gquantity that is asymptotic to:

n . ———
1+ v
logZ(l Q(logen)) + O(Vn)
where @(u) is a periodic function with period I, mean value 0 and Fourier
erpansion given by:

Qu)= T gqeeT™ gy = (1%, )(x)
k e/ 10} °g

The expected cost of a positive search in a trie is p,,/n where p,, is the
expected path length when n keys are present in the trie. Path length p[t] is
defined inductively by:

plt]=plt]Ult,] + Ultolp(t,] + [t] (36)
which, as before leads to
P(z) =2e*/%p(Z) + z (e -1)
whence the exact expression:
1
=n Y [1-(1-—)""1].
?iﬂ k{;Q[ 2)(- ]
One has p,, ~nP(n) where: :
P(z)= T (1-e™=/%)
k20 4
whose Mellin transform is given by:
pz) = - D).
1-2%
Thus a residue calculation shows that:

Theorem 11: [Kn73] Under the uniform model, the expected cost of a positive
search in a trie of size n s

— ___1_ n-l
3230{1 (1= ]
a quantity that is asymptotic to:

2 vn

where R(w) is a periodic function with period 1, mean value 0 and Fourier
erpansion given by:

; 1
Ru)= Y re™2¥m™m . r =
keZ (0] log2

logamn + E-’ng--i- + R(logyn) + O(

Txe)

)
&
3

with x, = Tog 2
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An important use of tries is as an access method for large files stored on
disk. A b—trie with leal capacity equal to b (b=z1) is obtained by modifying
the initial definition of tries in such a way that the recursive splitting is
stopped as soon as a subset of size b or less is encountered. Leaves can thus
contain up to b elements and can be stored in pages on disk. Dynamic Hash-
ing is obtained in that way when the trie is built on hashed values of records
instead of records themselves (thus ensuring uniformity of pseudo-keys on
which the trie is built). The previous methods easily generalise, and one finds
[Kn73].[La78].[FNPS79] for Dynamic Hashing and the closely related Extendi-
ble Hashing scheme:

Theorem 12: [Kn73],[La78],[FNPS79] Under the uniform model. the number of
pages necessary to store the file using a Dynamic or Ertensible Hashing
scheme with page capacity b is:
n
blog?
where &, is a periodic function with mean value 0.

(1+@,(logon ))+0(vVn ),

Thus under both schemes pages tend to be about 70% full (log2=0.69...).

Exiendible hashing relies on a further paging of the internal nodes of the
trie. The corresponding analysis have been given by Flajolet [FI83] and Reg-
nier (under a Poisson model) [ReB3]. The analysis is closely related to the
analysis of height in tries. Letting 7, , denote the probability that a trie with
n keys has height sh, one finds with e, (z) denoting the truncated exponen-
tial:

T Tpn T [%]eb(”fh_)z" : (37)

From there, limiting distributions can be determin)ed using saddle point
methods. In this way, one obtains:

Theorem 13: [F183],[Re83] Under the uniform model, the expected size of the
paged directory in the Extendible Hashing scheme is asymptotic to:

n 1+1/b Qz(logn)

where & is a periodic function with mean value close to 4/ b.

Many more results follow using these technigues. The underlying splitting
process with the Bernoulli splitting probabilities of (26) appears as a model of
some polynomial factorisation algorithms, of communication protocols and
more classically of radir exchange sort. We can cite here [Kn73, pp. 131f1]:

Theorem 14: [Kn73] Radiz-exchange sort of n keys when applied to infinitely
long strings uses an average of n logzn+0(n ) comparisons.

A systematic discussion of algebraic methods involved in all these ana-
lyses is given in [FRS84a]. The corresponding asymptotic methods are dis-
cussed in [FRS84b]. A detailed analysis of Dynamic and Extendible Hashing is

given in Regnier’'s thesis [ReB83]..
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3. Comparison besed searching and sorting

Binary search trees are also amongst the oldest known data structures. Let
S be a sequence of distinct real numbers (or of any totally ordered set):
S=(sy,85. - ,5,). The binary search tree built on S is denoted by bst(S) and
is defined recursively as follows:

- Make the first element s; of S the root of the tree.

- Separate the remaining elements (sz,sa3 - - .5,) into two subsequences
S¢ and S,, where S, (S,) is the subsequence consisting of elements
smaller (larger) than s;. Then:

bst(s) = <s,,bst (S.),bst(S5)> . (38)

Observe that once a binary search tree has been built, the sequence is almost
sorted since a preorder traversal, that takes only linear time, will list the ele-
ments in increasing sorted order.’

Binary search trees support insertions, deletions and queries [Kn73] as
we shall now see in expected O(logn) time under the uniform-independence
mode] (or equivalently under the permutation model, where S is taken to be a
random permutation of [1.n]).

The basic principle is that a tree of size n is formed of two similar sub-
trees of size K and n—1-K where K is a random variable between 0 and n -1
with probability distribution:

Pr(k=k) = -71; (39)

independently of n. Equation (39) refiects the fact that the first element of a
random permutation can take any of the possible values with equal probabil-
ity (1/m). As in the preceding section it is easy to set up schemes that asso-
ciale to parameters of trees generating functions of expected values.

Let v[t].w[t], - - be functions of trees; let v,w,, -- be their
corresponding average values and let v(z),w(z), -+ be the corresponding
ordinary generating functions. With t, and {, denoting the left and right sub-
trees of tree ¢, one has (compare with (27), (28)):

vit]=wt]+z[t] => v(z) = w(z)+z(z) (40)
v[t] = wltylxz[t,] => v(z) = }w(t)z(t)dt . (41)
0

Thus again any additive-multiplicative valuation over binary search trees can
be analysed, and in general one will have a set of integral equations that
reduce to a differential system for associated generating functions.

As & first example, consider the problem of determining the expected
path length of binary search trees. Path length is here defined inductively by:

plt]=pltol+p [t ]+]t -1 (42)
From (40), {(41), we find:
. dt z
Pe)=2[pt) {57 + i (43)
which difierentiates into:
piz)-2REL _ _1¥z 4 (44)

1-2 (1-—2)3
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Equation (44) can be solved by the variation-of-constant method, and we find:

p(z)=2 log(1—2) -z

(1-2)%
2+z
=2H' ——
(z) (1_2)2

where H(z )=}, A,z™ is the generating function of the harmonic numbers.
Hence, expanding and performing simple asymptotics:

Theorem 15: The expected number of comparisons to sort a sequence of n ele-
ments building a binary search tree is under the uniform-independent per-
mutation model

Pp =2(n+1)H,,, —3n-2
and asymptotically;

Pn = 2nlogn + (2y-3)n + O(logn) .

As an immediate corollary to Theorem 15, we get that the expected cost of a
positive search in a b.s.t of size n is 2logan+0(1).

Height of binary search trees leads to interesting equations over gen-
erating functions. Let h, denote the expected height of a binary search tree
with n nodes. Then from {(39), one finds:

h(z) = kZO[y(Z)—yh(Z)] (45)
where yg(z)=1 and
Ynei(2) = _{yl?(t)dt ; (46)

and ¥ (z )=y .(2z)=(1-2)"1.
Thus the y, form a sequence of Picard approrimants to y.. Although it is
natural to conjecture that:

1
1—2

c
R ~ ——

(2) T log (47)
for some constant ¢, the singular expansion (47) appears to be amazingly
difficult to establish. Devroye [De85], using the theory of certain types of
branching processes, has determined directly the asymptotic form of A, :

Theorem 16: [De85] The expected height of a binary search tree with n nodes
satisfies:

h, ~clogmn
where ¢ =4.311070 - - - 1is the root of (2e/ ¢ ) =e that is >2.

Returning to the scheme (40), (41), we see that it will apply to any
additive-multiplicative function of a splitting process whose probabilities
satisfy (39). There are at least three instances where the splitting probabili-
ties have this specific form:
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A Quicksort: it is a way of sorting that resembles closely the recursive
definition (38) of binary search trees. Essentially quicksort is character-
ised by an in place partitioning of S into S, and S,. (Also these two sets
are replaced by their mirror images).

Heap-ordered trees or non-balanced heaps. they are trees canonically
associated to sequences of distincis elements. Let S be such a sequence,
then it can be decomposed into:

<Sleﬂ.min(5),5,.,-gh,> (48)

with Siep (Spgne) being the factor of S formed with elements to the left
(right) of min(S). Using decomposition (48) recursively, a tree is canoni-
cally associated to a sequence; it is characterised by the fact that labels
increase along any branch starting at the root. and so constitutes a
heap-ordered tree. Since in a random permutation, the minimum value
occurs at any place with equal probability, (39) is satisfied, so that again
the scheme (40)-(41) can be used.

C. Multidimensional search trees or k-—d-—trees. They serve to represent
sets of rnultidimensional records consisting of several fields.: a search
tree is formed by using successive fields cyclically as discriminators as
one proceeds along a branch from the root.

We shal] only cite here a few results along those lines:

trf

Theorem 17: The expected number of compariscns to sort n elements using
Quicksort is:

C, = 2(n+1)(HnH-%) ~2nlogn + 2(7-%—) + O(logn) .

The reader is referred to {Kn73] and Sedgewick's papers [Se77a], [Se77b],
[SeBO] for a complete discussion of the complexity of Quicksort.

Theorem 18: The expected number of comparisons required to perform eztrac-
tion of the minimum in a heap-ordered tree of size n 1S:

C, = O(logn) .

Heap-ordered trees serve to implement mergeable priority queues. An
eflicient representation is in the form of pagodas [FVV78].

Theorem 19: [FP85] The expected number of elementary field comparisons
required to perform a partial match query in a k—d—tree cf size n when
records have dimension k and s flelds are specified in the query satisfies
asymptotically:

Z;&S/k] ~ Kml=s/k+9(s/k)

where ¥(u) is the root in [0:1] of equation:
(V+3—u)¥ (9+2—u )™ -2 =0 .

The proof of Theorem 19 proceeds by first setting a system of integral equa-
tions for generating functions of costs using (40)-(41). That system reduces
to a differential system of order 2k —s. It cannot be solved explicitly in terms
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of standard transcendental functions. However, using the classical theory of
regular singular points of differential sysiems, a singularity analysis can be
periormed and Theorem 19 foliows.

A result akin to Theorem 19 has recently been established for guad-trees
[FGPRB5]. See also Puech’s work [PuB4] for related applications.

We should finally mention that decomposition (48) which corresponds to
the symbolic equation:
P~¢ + {min{x(P*P)

for the set P of all permutations is an important starting point for obtaining
many statistics over permutations (runs, left-to-right minima ...).

4. Conclusions.

We have tried to demonstrate on a few cases the role of generating functions
as a crucial tool in the analysis of algorithms and data structures. The gen-
eral pattern behind these analyses can be described as jollows:

Bach class of simple data structure carries with it a natural class of gen-
erating functions with a particular algebraic structure and a set of ana-
lytic properties that can be used both for exact and asymptotic analysis.

Table 1 illustrates the algebraic translation mechanisms for multiplicative
valuations of trees in each of the three cases considered previously: planar
binary trees with the uniform statistics, digital tries and binary search trees.

The set of resolution techniques, as we have seen, are for each case:

1. Lagrange inversion and singularity analysis of functions with algebraic
singularities. J

2. Diflerence equations, iteration and Mellin transform techniques.

3. Differential equations: exact solution methods (operators, variation-of-
constant) and the theory of regular singular points.

i Trees Splitting of n Splitting Pb. | vit]=wlis]z[t,]
' ‘ B B !
) 1. Planar Bin. <k n-1-k> 5 f v(z) = zw(z)z(z)
n i
»Z.Tries <k n-k> -21"-(2) l viz)=w(z/2)z(z2/2)
1 z .
i 3. Bin. Search <k m-1-k> -711- i v(z) = fw(t Yz (t)dt
I ol

Table 1: For each class of trees, description of the splitting sizes and
probabilities; translation over generating functions of a multiplicative
valuation on subtrees: (1) for o.9.f. of cumulated values; (2) for e.g.f. of
ezxpected values; (3) for 0.g.f. of expected values.

Amongst the many areas in the analysis of algorithms that are
natural applications of these methods and that we have not had time to
discuss, we would like to mention:
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- The cycle structure of permutations and the problem of in situ per-
mutation [Kn71], [Se83]

- Inversion tables for permutations and sorting algorithms: bubble
sort. insertion sort [Kn73] and shellsort [Ya80].

- 2-sorted permutations, lattice path and merging algorithms [Kn73],
[Se78].

- Distributions, occupancy statistics and hashing algorithms [{Kn73],
[GM85], [KW66], [GoB1].

- String statistics [GO81].

- Random graphs and set-merging ("Union-Find") algorithms [KS78].

Problems in the area of the exacl analysis of algorithms may be of

several types:

1. Finding proper decompositicns of combinatorial problems in a way

that lends itself to treatment by generating functions. If that approach

succeeds, it usually has a high yield since, as we have tried to demon-

strate, a large number of analyses will be amenable to a uniform treat-
ment.

2. Pinding approzimate models that fall into category (1) if the combina-
-torial structure of the original problem is too intricate to lead to an
exact analvtic rmodel.

3. FPinding ezact or asymptotic solutions for functional equations over
generating functions, for models arising from (1) or (2).

To the category of (1) or -most probably- (2) there belongs the
analvsis of AVL trees, 2-3 trees and other balanced structures under the
permutation model. See [JK77] for an analysis of a data structure that
does not have a randomness preservation property and [Se85] for an
analysis of heapsort.

A simple example of (3) is provided by the pfoblem of the distribu-
tion of the number of comparisons in Quicksort. The bivariate generating
function satisfies:

9 - 2

59 C(z.q) =qC(qz.q)

and the problem there is to determine the easymptotic behaviour of the
coeflicients of polynomials [2™]C(z.g). Related limiting distribution
results have been obtained by Louchard [Lo84], Jacquet and Regnier
[JR85]. However, despite the practical importance of Quicksort (there
are several hundred thousand implementations running since Quicksort
is part of the standard sort availabie on the Unix system) the form of the
limiting distribution is yet unknown.
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PARTV
BIBLIOGRAPHY

Instead of giving here a complete bibliography, we shall restrict ourselves to
indicating general references for the subject covered in Parts I-1Il together
with brief historical and bibliographical comments and citing the set of
papers whose results are mentioned in Part IV.

1. General References.

The subject of analysing algorithms is as old as algorithms, and thus predates
the advent of computers. For instance, in his discussion of the analytical
engine, Babbage evaluates the complexity of his (mechanical) integer multi-
plication method in terms of the number of "turns of the handle” (a measure
certainly very relevant to his application). After computers became used for
non-numerical data processing, it became obvious that some algorithms per-
formed in a greatly varying manner depending on the specific configuration
of the input data, a fact not so frequent with numerical algorithms. Average
case analysis naturally emerged as a simple way of obtaining global informa-
tion on the effectiveness of an algorithm, when it is used repeatedly. It is the
merit of Knuth, in volume 1 of The Art of Computer Programming (first pub-
lished in 1968) to have shown that a large number of classical algorithms
could be exactly analysed, even at the very detailed level of assembly
language programs. Knuth also demonstrated the importance of combina-
torial enumeration techniques and asymptotic analysis in that context. For
the subjects covered here, the basic references are thus:

[Kn68] D. E. Knuth. The Art of Computer Programming, Volume 1: Punda-
mental Algorithms, Addison Wesley, Reading Mass., 41968.

[Kn73] D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting
and Searching, Addison Wesley, Reading Mass., 1973.

For a presentation of many algorithms of interest in computer science, one
may refer to:

[SeB83] R. Sedgewick. Algorithms, Addison-Wesley (1983).

[GoB4] G. Gonnet. Handbook of Algorithms and Data Structures,
Addison-Wesley (1984).
The goals and methods of average case analysis of algorithms are discussed in
Knuth's invited lecture at the 1971 IFIP Congress. An interesting recent sur-
vey is given by Sedgewick in:
[SeB3] R. Sedgewick. "Mathematical Analysis of Combinatorial Algo-
rithms", in Probability Theory and Computer Science, Louchard and
Latouche Editors (1983).
The following booklet, corresponding to lecture notes from the course on
analysis of algorithms at Stanford University, discusses in greater detail some
of the points studied here (most notably saddle point methods):

[GK81] D. Greene and D. E. Knuth. Mathematics for the Analysis of Algo-
rithms Birkhaeuser Verlag (1981).

Two other books on that subject are:
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R. Kemp. Fundamentals of the Average-Case Analysis of Particular Algo-
rithms, Wiley-teubner Series in Computer Science, J. Wiley, New-York
(1984)

and for an elementary introductlion:
F. Purdem, C. Brown. The Analysis of Algorithms in print (1985).

Concerning the combinatorial enumeration problems, the 19th century tech-
nique was almeoest invariably the set-up of recurrences. In a book (Combina-
tory Anclysis) published in 1915, Major Percy MacMahon was the first one to
systematically depart from the recurrence approach. MacMahon developped
a very personal algebraic view of the field of combinatorial analysis. That
approach was revived in the sixties through works by Rota, Foata and
Schutzenberger. The symbolic operator approach is exposed systematically in
the reference book of Jackson and Goulden:

[GJIB3] 1. Goulden and D. Jackson. Combinatorial Enumerations J. Wiley,
New-York (1983).
The reading of that book may be complemented by the encyclopedic (and
generating function oriented) book of Comtet.: ]
[Co74] L. Comtet. Advanced Combinatorics D. Reidel, Dordrecht (1974).
A shori survey of the domain of combinatorial enumerations appears in:
{St78] R. Stanley. Generating Functions, M.A.A. Monographs, (1878).

The field of asymptotic analysis is much closer to classical (pure and applied)
mathernatics, so that many classical references exist that we do not have
space tc cite. Two very useful problem solving oriented books are:
[DB80] N. G. De Bruijn. Asymptotic Methods in Analysis reprinted by
Dover (1984).
[BO78]) C. Bender and S. Orszag. Advanced Mathemeatical Methods for
Scientists and Engineers, McGraw-Hill (1978).
and the necessary background from complex analysis can be found in:
[(He77] P. Henrici. Applied Computational and Complez Analysis, J. Wiley,
New-York, 2 Vol. {1974,1877).
A concise survey of asymptotic counting techniques is given by:
{Be74] E. Bender “Asymptdlic Methods in Enumerations”, SIAM Review
1974. ~
and the book of Sachkov provides a complete exposition of probabilistic and
asymptotic methods in combinatorial analysis:
[Sa78] X. Sachkov. Vergjatnostnie Metody v Kombinatornom Analize,
Nauka Moscow (1978).
Finally, for further applications of the symbolic operator method to the
analysis of algorithms, one may refer to the following works:
[FI81] P. Flajolet. Analyse d'algorithmes de manipulation d arbres et de
fichiers, Cahiers du B.U.R.O 34-35, Paris (1981}, 209p.
[Gr83] D. Greene. 'Labelled Formal Languages and Their Uses” (Thesis),
Stanford University Rep. STAN-CS-83-982 (1983), 148p.
[St84] J-M. Stevaert. Complezite’ et Structure des Algorithmes, Thesis,
University of Paris VIl (1984), 215p.





