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INRIA, Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay CEDEX, France 

Abstract. 
Approximate counting is an algorithm proposed by R. Morris which makes it possible to 

keep approximate counts of large numbers in small counters. The algorithm is useful for 
gathering statistics of a large number of events as well as for applications related to data 
compression (Todd et al.). We provide here a complete analysis of approximate counting which 
establishes good convergence properties of the algorithm and allows to quantify precisely 
complexity-accuracy tradeoffs. 

Introduction. 

As shown by an easy information-theoretic argument, maintaining a counter 
whose values may range in the interval 1 to M essentially necessitates log,M 
bits. This lower bound is of course achieved by a 1 standard binary counter. 
R. Morris [8] has proposed a probabilistic algorithm that maintains an 
approximate count using only about log,log,M bits. This paper is devoted to 
a detailed analysis of characteristic parameters of that algorithm. We provide 
precise estimates on the probabilities of errors, from which the soundness of the 
method can be assessed _and complexity-accuracy trade-offs can be quantified. 

The algorithm itself is useful for gathering statistics on a large number of 
events in a storage efficient way [SI. It was proposed for applications to data 
compression [9]  when building an adaptive encoding scheme to represent ~~~~~- 
random” data (see e.g. [4] for adaptive Huffman codes and [7] for arithmetic 
coding); there, typically a large number of counters need to be maintained to 
gather statistics on the data to be compressed, but high accuracy of each counter 
is not a critical factor in the design of almost-optimal codes. Actually Todd et al. 
report the overall performance of a system using approximate counting which is 
only 4 few percent off a reference system using exact counts. 

There are other cases like data base systems where probabilistic counting 
methods prove useful. We mention a related algorithm; called ‘‘Probabilistic 
Counting” that has been proposed in [3]. This algorithm makes it possible 
to determine the approximate value of the number of distinct elements in a file 
in a single pass using a few operations per element and only O(1) additional 
storage. 
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The plan of the paper is as follows. We start with a simple version of the 
algorithm: approximate counting with base 2, which is very easy to implement 
on a binary computer. It appears (Theorems 1, 2) that this algorithm can 
maintain an approximate count up to M using about log,log,M bits, with an 
error that is typically of one binary order of magnitude. 

The analytic techniques that we use in Sections 2, 3, 4, involve manipulation 
of generating functions related to a discrete time birth-txocess to which the 
algorithm is equivalent, certain properties of the Mellin integral transform, and 
finally some simple identities that properly belong to the theory of integer 
partitions. In Sections 5, 6,.we discuss the more general version of the algorithm 
with an arbitrary base. The analysis shows that, using suitable corrections, one 
can count up to M keeping only log, log,M + 6 bits with an accuracy. of order 
O(2 - 

A preliminary report on this work has been presented at  the International Seminar 
on Modelling and Performance Evaluation Methodology (“On Approximate 
Counting” : Proceedings, Volume 2, pp. 205-236, Paris, January 1983). 

+ 

1. Approximate counting with a binary base. - 

If the requirement of accuracy is dropped, a counter of value n can be replaced 
by another counter C containing hog,nJ which only requires storing about 
log, log, n bits. However since the fractional part of log, n is no longer preserved, 
there now arises the problem of deciding when to  update the logarithmic counter 
in the course of successive incrementations. The idea of [8], [9] is to base this 
decision on probabilistic choices. 

Approximate counting starts with counter C initialized to 1. After n 
increments, we expect C to contain a good approximation to hog, nJ ; we should 
thus increase C by 1 after another n increments approximately. Since the exact 
value of n has not been kept and only C is known, the algorithm has to 
base its decision on the content of C alone. Approximate counting then treats 
the incrementation by the following procedure. 

L. - 

procedure increment (C : integer) ; 

Let DELTA (C) be ajandorn variable w hkh takes value 1 with probability 
2-‘ and value 0 wrth probabi */ i tv  1 -2-‘; 
C := C+DELTA (C) 

The interesting fact about this procedure is the following: if C, is the 
random variable representing the content of counter C after n applications of 
the increment procedure, then the expectation of 2 c n  bears a simple relation to 
n (as we shall prove at the end of Section 2). 

I 
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PROPOSITION 0 [SI : The expectation and variance of 2cn satisfy 

‘% E(2Cm) = n + 2 ;  a2(2Cn) = n(n+ 1)/2. 
- .. 

Thus 2‘-2 represents an gnbiased estimator of n. In the sequel, we give a 
detailed analysis of the probability distribution of C, and characterize its mean 
and variance. 

THEOREM 1. 
has average value 

After n successive increments, the counter of approximate counting 

1, C, = log, n + y / M  - R + + + 0(10g2 n )  + O(n -0 .98 

where ;1 = En I 1/(2” - 1) = 1.6067, ..., y = 0.577721,. . ., is the Euler constant, 
and w is a periodic function of mean value 0 and amplitude less than 10- ’. 

The constant after log2n gives the asymptotic drft  of C, compared to log,n, 
and its numerical value is - 0.27395, . . . ; furthermore, calculations developed 
hereafter show that the actual drift for finite n varies very little with n :  for 
n = 10, 100, 20000, the values of cn-log2n are respectively +0.0453, 

Another interesting feature of the algorithm is the relatively low dispersion of 
- 0.2383, -0.2737. * 

i the results it produces. We can prove: 

THEOREM 2. After n successive increments, the standard deviation of the 
contents of the counter satisfies 

0; = 0: +n(10g2 n )  +o(I), 

where 0, = 0.8736, ... is a constant and n is a periodic function of mean value 
0 and amplitude less than The constant 0, has the explicit expression 

I 
l c  

1 +- - -  
- (2”-1)2 12 1 0 g 2 ~ , ,  ksinh(8k)’ 

n2 2” 
2 -  
0, - 

6 b 2 2  n z 1  - 

In particular,’ corresponding to n = 10, 100, 2oo00, we have 0, = 0.7776, 
0.8618, 0.8734. Thus typically C ,  estimates log,n with an error less than 1. 

Finally, the methods developed here also permit evaluation of the probabilities 
of error. The distribution of values of approximate counting after n increments 
appears to be fairly narrowly centered around the average (better than merely 
predicted from the variance analysis using the Chebyshev inequalities), and for 
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instance in the case of n = 1024 (so that log,n = 10) the following probabilities 
for the counter values, determined by Proposition 1 below, are: 

. ,  

counter value 7 8 9 10 11 12 13 

probability 0.001 1 0.0602 0.3424 0.4218 0.1538 0.0195 O.OOO1 

Thus in that case C,  will differ from log,n by more than 1 unit in only 8 %  
of the cases. More generally, Proposition 3 provides a sort of limiting 
distribution result for the probabilities of counter values. r' 

2. Basic probabilities. 

The possible evolutions of the algorithm can be seen as an evergrowing 
tree: we start from the counter set to 1 ; from this two situations cag result: 
either the counter keeps its value 1 (this has probability i) or it is increased 
to 2 (with probability i); each of these possible stages has itself two possible 
outcomes. The corresponding tree of possibilities'is given in Figure 1, with edges 
labelled with the probabilities of corresponding transitions. From it, we see for 
instance that when n = 3, the probabilities of observing counter values 1, 2, 3, 4 
are respectively 64, 64, 64, 64. 

8 3 8 1 7 1  

d 

/ 
/ 

Fig. 1. The possible evolutions of approximate counting for n = 1,2,3. 
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Another way of viewing the evolutions is by drawing a state diagram : 
1 - 2 4  1 - 2 4  1 - 2 3  1 -2-1  

.. n 2 - 1  n 2-' 2-3 n 2-1 @-@i@- .... ---..(&.-+ 
\ '. 

This is to be interpreted as follows: at state 1 = 1,2,3, .  . ., (i.e. when the 
counter contains value''I), one increment causes the transition to state 1 + 1 with 
probability 2-', and the transition to state I with probability 1 -2-'. This is 
formally a discrete time pure birth process [SI. 

Let pn,I be the probability that the counter contains the value 1 after n 
applications of the stochastic increment procedure. To compute pn, ,, observe 
that the probability of reaching state 1 through n, transitions from state 1 to 
state 1, n2 transitions from state 2 to state 2, ..., n, transitions from state 1 to 
state 1 is: 

with the condition that: 
n,+n,+ ...+ n , + l - l  = n. 

Summing over all possible intermediary transitions, we thus find 

(1) P n . 1  - - 2-1(1-1)/2 (1-2-')"1(1-2-2)"2 ...( 1-2-94 

with summation over n, + n2 + . . . n, + 1 - 1 = n. 
If we introduce the corresponding generating functions (for each l ) :  

we observe that (1) expresses the pn ,  I as the coefficients of a Cauchy product 
of simpler functions, so that: 

~ - 1 ( 1 - 1 ) / 2 - , - 1  
L . - . A  with aj = 1 -2-j. 

( l - o ! l x ) ( l - a 2 x ) . . . ( l - a I x )  Hl(4 = 

We obtain an expression different from (l), and indeed simpler to estimate 
numerically, decomposing H ,  into partial fractions. Since we exEect the 
,asymptotically dominant contfibutions in the pn, , to come from the dominant 
e w e  set: 

(4) 

and start evaluating Co, C1,. . .. 
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We have 

Cj = lim, -, a;;jHl(x)( 1 - a l - , ~ ) ,  SO that 

co = 2-W-1)P (1 - 2 - yl- l ) (  1 - al/al) - (1 - a,/Cc,)- l . .  . (1 - a* - &*)-  1 

which after simplification using (a1 - a j )  = 2-j( 1 - 2 - 9  gives : * 
1 -1  Co = (1 -r)  (1 - 1 /4)- . . . ( 1 - 2-('  - " ) -  '. 

Similarly, we find in general 

- (-  1 ) Q - j ( j - 1 ) / 2 ~ , : 1 ~ - 1  (5) cj - l - l - j ,  

where for all k :  
k 

Q k  = n ( 1 - 2 - i ) ,  and Qo = 1. 
i = l  ' 

Now from (4), there immediately follows an expression for the coefficients p n , l  
of H l ( x )  : 

I -  1 

I 

whence with (5 ) ,  (6): 

PROPOSITION 1. The probability p n ,  I of having counter value 1 after n increments is 
I -  1 i 1 - 1 - j  

This expression permits an easy numerical calculation of the probabilities 
involved -. - in approximate counting. We notice also that from their definition the 
quantities pn ,  satisfy the recurrence : 

P n +  1 .  I - - (1 -2 -1 )pn ,1+2- (1 -1 )p" ,1  - 1  

from which by induction follows the already mentioned equality : 

E(2C.) = n + 2 .  

3. Continuing with approximations. 

The expression of Proposition 1 is not as bad as it looks. First the 
product 

(8) 
03 ~ 

Q = n (1-2-i) 
i =  1 



APPROXIMATE COUNTING : A DETAILED ANALYSIS I19 

is convergent and simple comparisons with the geometric series show that 

IQ-Qkl = o(2-") 

with Qk defined in (6). In particular the Qk are always in the interval 
defined by Q = 0.288788, ... and 1, and the denominators in (7) are 
bounded. 

Second, the very fast decrease of the coefficients 2-j(j-')I2 shows that 
numerically the significant contribution comes from small values of the 
index j, and asymptotically only values of j less than O(Jlog,n) need to be 
considered. 

Last, the exponential approximation (1 -a)n !E e -an is usually justified in this 
class of problems (see e.g. [6, p. 1311). 

We first prove that for I small enough compared to n, the probabilities pn, [  are 
small. 

\ 

- .. 

PROPOSITION 2. For 1 < log, n - 2 log, In n, the probabilities pn. I satisfy 
p, ,  I = O(ln n exp( - (In n)')) 

uniformly in n and 1. 

PROOF. Since we have (1-2-')" > (1-2/2')" > (1-4/2')" > ... 
and Qk > Q for all k ,  the pn, i  can be bounded by 

(9 1 . p,,! < Q-21(1 -2-9" = Q-'lexp(nln(1-2-')). 

Now observing that for 

we obtain from (9): 
~ € 1 0 ;  I[ :exp(nln(l - u ) )  = exp(-nu-nu2/2- ...) < e-"", 

pn,I  < Q-21exp(-n2-i) = O(lnnexp((-lnn)')) 

which is thus exponentially small. 
Now when I is large enough, we can prove that the pn, l  approach a 

limiting distribution in the following sense : 

PROPOSITION 3. Let be the function defined by 

Then for 1 > log, n - 2 log, In n, we have pn, = +(nZ-')+ O(n-0*99) 
where the O(.  ) term is unform in n and 1. 
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PROOF. The proof proceeds by stages using the previously mentioned approxi- f ' y  

mations. . 

(i) Truncation of the sum: let r = r (n)  = 2(10g2 n)ll2. We set 
3 

- r 

PA,,  = c ( - 1 Y 2  - j ( j  - 1 112 Q,: 1 ~ - $  - j (  1 - 2 - ( l -~ ' )y  
j =  0 

(10) 

Obviously 

(ii) Simplification of the denominators : define 

using the fact that IQ-Ql - l - j l  = 0 ( 2 - ' + ' + j )  since the sum of 
( r +  1) terms: 

comprises 

(iii) Using the exponential approximation: given the conditions on I and j ,  
u = 2-('-'' is always small, so that: 

' 

1 

since nu2 < 1 for n large enough. Thus setting: 

(14) 

we have 

(iv) Complzting the sum: 
majorization of (1 l), we find : 

is a partial sum of 4 ( n 2 - ' ) ;  using again the 

(16) Ip;,',-4(n2+)1 = o(n-2). 

Thus putting together equations (10) to (16) proves Proposition 3. 

Finally we need information on the tail of the distribution, corresponding 
to values of I larger than log,n. 
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PROPOSITION 4. 
uniformly in n and 6. 

For l = 210g2n+6  with 6 2 0, we have pn,' = O(2-%-Oeg9 1 

PROOF (sketch). ~ The prodf mimics the previous one; let us choose this time 

r = log,n+6 
\ 

as the splitting value for the index in the sum giving p n , l .  In part (i), we now 
have : 

I I - 1  I 

Parts (ii) and (iii) now lead to error bounds of the form O ( 2 - d n - 0 * g g  ) since 

Finally we can again complete the sum as in (iv) introducing error terms of 

We have thus proved: 

2-('-J> = O(n-  ' ) .  

the form (17).  

(18) ; pn, = $ ( n 2 - i ) + O ( 2 - d n - 0 . 9 9 ) .  

Since $ ( x )  is clearly differentiable at x = 0, y e  have 

Thus combining (18 )  and (19 )  completes the proof of the proposition. 4 
In the sequel we shall Geed properties of the function $. Some of them appear 

to be related to classical identities in the theory of partitions. Our 
starting point is the following identity [ 13 : 

(with the usual convention for k = 0 that an empty product is equal to 1). 
Equation (20 )  is also valid analytically for all u, provided that It1 
The coefficient of uktn in the left hand side member counts the number 

of partitions of the integer n into distinct parts and, with a simple transformation 
on partitions, the right-hand side can be similarly interpreted (see also [ l ]  for 
an algebraic proof'). Instantiating (20 )  with u = - 1  and t = 1/2, shows that 

1 .  

and thus +(O) = 0 as could be expected. We shall also need the following 
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identities : 

= - (1 -$)( 1 -a)( 1 -+) . . ., 

a3 1 

= 2[(1 --$)(I -a)(l-+). . .] 1 -2- 
n = l  2"-1' 

which are easily obtained by successive differentiation of (20) with respect to u, 
1 setting then u = - 1 and t = 7. -- . 

4. Determination of asymptotic exGansions. 

function F is defined for all x 2 0 by: 
The developments above suggest approximating cn with the value F ( n )  where 

F ( x )  = l@(x2-l). 
J 

121 
(24) 

For large x, F can be estimated using Mellin transform techniques. 
We first prove 

LEMMA 1. The expected value cn satisfies: 
cn = F(n)+O(n-0*98) .  

PROOF. Let us define the 3 intervals: 

I ,  = [l,1og2n-21og,lnn[ 

I ,  = [log, n - 2 log, In n, 2 log, n[ 

1, = [2log,n, [ 9 

and for j = 1,2,3: 

c'j' = c ip", 1 : P' = l 4 ( 2 3 I ) .  
le I ,  l e i ,  

By Proposition 2, we have: 



APPROXIMATE COUNTING A DETAILED ANALYSIS 123 

and by Proposition 4: 
- \  
\ 

The three last equalities imply Lemma 1. a 
We are thus left with estimating the behaviour of F(x),as given by (24). To that 

purpose, we use the Meffin integral transform which for a real function f is 
defined by (see [2]): 

- 
(25) f * ( s )  = J l [ f ( x ) ;  s] = l; f ( x ) X ” -  ‘dx .  

This transform is useful for studying harmonic sums like (24) : from the obvious 
functional property 

(26) Jl[f(ax);s] = a--”f*(s), a > 0, 

J 

it follows formally that the Mellin transform of F is 

F*(s) = ( I2’”4*(s). 
1 2 1  

The Mellin transform of 4 is itself computed using (26) repeatedly: from the 
definition of 4 (again formally) we expect 

since, as is classicaIly known [lo] : 
J 

k4) 
Thus formally, we have: - 

(30) F*(s)  = 2T(S)(2“- l ) - 2 t ( S ) ,  

where 



124 C. PHILIPPE FLAJOLET 

Analytical1y:the . r  integral in (29) is defined for Re(s) > 0. For s: - 1 < Re(s) < 0, 
we have - 

- 
(e-x- l)xs-'dx = f(s). Using (21), we also have 

8 

.\ 

; ! - a  , 4(x) = Q-' (-1Y'2-j(j-1)/2Q,~1iexp(-2j~-1), 
j 2 0  

whence the integral defining the Mellin transform of d is defined for 
- 1 < Re(s) < 0. Actually (28) holds for any s,Re(s) > - 1, and 4* has a 
removeable singularity at  s = 0. It is finally easy to see that (27) hdds  provided 
the sum there is convergent, which requires Re(s) < 0. Thus equations (30), (31) 
are justified for s in the strip - 1 < Re@) < 0; there the integral of the f9rm (25) 
expressing F*(s)  is absolutely convergent. 

The singularities of F*(s)  are related to the terms in the asymptotic 
expansion of F ( x )  when x -, co [2]. To see that, we use the inversion theorem 
for Mellin transforms which gives 

F(x) = - F* (s)x - SdS, 
(32) ~ 2rn r+im d - i c o  

where d can be taken arbitrarily inside the domain of absolute convergence of 
the integral giving F*(s). Here, we may take any d in the interval ] - 1, O[.  

By Cauchy's residue theorem, assuming the contour of integration can be 
moved to the right with F*(s)  meromorphic: 

F* (s)x -"ds - 1 Res(F*(s)x -") 
S 

(33 1 

where the summation is extended to all poles of F*(s) in the strip 
d < Re(s) < E. 

The first integral should be O ( X - ~ )  representing smaller and smaller terms 
(for large x) as E increases. A simple computation shows that if F*(s)  has a D O I ~  
oLorder k at s,, = ao+it,, then ----------" 

Res (T(s)x-') - = Z - ~ O P ~  - (In x), 
s = s o ,  

where Pk-l is a polynomial of degree k -  1. Since X - ~ O  = x - O o e - i f o l n x  

we thus see that successive poles of- F* starting from the left yield successive 
terms in the asymptotic expansion of F ( x )  for x + 00. 

We shall therefore first identify singularities of F*(s)  for Re(s) 2 0 and then 
return to a formal justification of (33). 
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(i) F*(s)  has a double pole at s = 0 as the following expansions show: 

\ r(s) = s -1r(s+*i) = s-'(1-ys+0(s2)) (see e.g. [IO]) .. (34) 

(35) '2'(2'- = ~ - ~ ( I n 2 ) - ~ ( 1  +O(s2)) 

(36) 
\ 

((s) = ((0) + s('(O)+ (s2/2)<"(0) + O(s3). 

We already know from (21) that ((0) = 0. Using (22), we can transform ( ' (0) :  

Similarly with (23) : 

Thus for ( around 0:  

(37) ((s) = sIn2(1 +In2(1-9)+O(s2)) 
J 

1 - sln x + O(s2(In x ) ~ )  , - s I n x  = with ;1 = (2"- 1)-l. We also have x-' = 
nsl 

so that the residue of F*(s)x-' at 0 can be evaluated exactly, and we find 
from (34) and (37): 

(38) - 
1 Res ( X - ~ F * ( S ) )  = -log2x-y/ln2+;1-i. 

s = o  

(ii) F*(s)  also has a simple pole at xk = 2ikn/ln 2 for all k~ Z\O. Due to the 
periodicity of ((s) and 2', we can use some of the previous expansions; in 
particular around xk : 
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Thus : 

A 
R ( M , E )  =R,+R,+R3+R4,  where 

R ,  = ( d + i t l t ~ [ - M ; M ] }  

R ,  = (u+iMlu~[d;E]}  
- - b  

i 

R ,  = (E+ i t I t ~ [ - M ; M l )  

PHILIPPE FLAJOLET 

- ,  

I M 

\y 

F.l‘c( 

with R oriented clockwise. For any positive d and iM not equal to one of the 
zk,  we have by Cauchy’s theorem applied to the contour R and the integrand 
F* (s)x - s  : 

E + i M  

(2x i ) - ’  [ r+iM.+ 1 + r-iM + r-7 = -zRes(F*(s)x-”) 
d - i M  d + i M  E + i M  E - i M  

d 

where the sum is extended to all poles s with 

- M < Im(s) < +M, d < Re(s) < E. 

If we let A4 tend to ihfinity - keeping E fixed - in such a way that 
M = (2k + l)x/ln 2 for some integer k ,  we observe that, along the contour, t (s)  
and 2’/(2“- 1), stay uniformly bounded. The very fast decrease of T ( s )  when 
Im(s) tends to infinity [ 101 verifies that the second and fourth integrals then tend 
to- 0. 

The first term converges to F ( x )  by the inversion formula (32) .  As to the 
thirll one, it is bounded in modulus by: 

for all x > 0. On the right hand side, the sum is a partial sum of a Fourier 
series of log,x, which is also convergent. 

We have therefore established that 
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for any positive E. Combining (40) with Lemma 1, and taking E = 1 establishes 
Theorem 1. In passing, we have proved: 

COROLLARY. 

\ 

The periodicJunction that expresses the fluctuations of' c,, is 

Such periodicities areaot of infrequent occurrence in the analysis of algorithms : 
a function similar to o turns up in the analysis of radix exchange sort, as shown 
in [6, p. 1311 where an integration contour similar to ours is used. 

Let us last briefly mention how to prove Theorem 2 relative to the variance. 
After n increments, the variance of the counter content is: 

(42 

To handle the sum, we first approximate it by G ( n )  where 

(43 

introducing only vinishing error terms. The Mellin transform of (43) is 

which now has a triple pole at s = 0, and double poles at s = 2kni/ln2. 
Thus G(x) = O(log2x) as x -+ co. 
One can actually determine the terms in the asymptotic expansion of G 

up to 0(1) error terms. The main terms in G ( n )  cancel with those of e," and we 
are left with the result of Theorem 2. 

5. Extensions to an arbitrary base. 

The previous analysis has shown precisely that the performances of 
approximate counting (with base 2) remain remarkably stable with the number 
of increments. However, for certain applications, the expected error of 
about one binary order of magnitude might be prohibitively large. 

The performance of the algorithm might for instance be improved by 
keeping several counters and averaging their contents which can be done in 
a storage efficient manner (keeping only one counter and a set of differences). 
It turns out, however, that an effect similar to averaging is achieved more 
elegantly - and in a way simpler to implement - by using a different base: 
in the increment procedure of Section 1, only change the definition of DELTA(C), 
letting DELTA(C) be a random variable that takes the value 1 with probability 



I28 PHILIPPE FLAJOLET 

a-' and the value 0 with probability 1 -a". The number a is called the base. 
The corresponding state transition diagram is then : 

Apart from notational details, this is exactly Morris' original algorithm [SI. 
If we take a < 2, the value of the counter content after n increments will be 
larger than with a binary base, and we should expect a smoother behaviour of 
the counter contents as a function of n, thus giving a better accuracy 
(see [SI). From a practical standpoint, the transition probabilities need not be 
recomputed each time, and can be stored once and for all in a table. 

As in the binary case (see the end of Section 2), we can easily prove: 

PROPOSITION .5 [SI: r f  C, is the value of the counter of approximate counting 
after n increments, then E(acn) = n(a-  l ) + a  so that 

is an unbiased estimator of n. The variance of D, is 02(D,) = (a -  l ) n ( n +  1)/2. 

In the sequel, we give the generalization of our previous results to the 
case of an arbitrary base and concentrate on the corrections necessary to obtain 
an unbiased estimator of log, n. 

We let c,,(a) denote the expectation of C, and use similar obvious 
generalizations of our previous notation for other quantities of interest. The 
calculations develop in a way similar to before (replacing essentially 2 by a in 
most formulae) and we find: 

J 

' 

(i) For the probability distribution of counter' values : 
I -  1 

~ , , ~ ( a )  = C (- l Y a - j ( j - 1 ) / 2  Qj (a) -  QI -  - j(a)-l(l - a-('-J')" 
j = O  

(46) 

m 
with Q,(a) = n ( l - a - i ) .  

i = l  

(ii) For the expected counter value after n increments: 

(47a) C,(a) = log, n + ?/in a- A(a)+++ o ( a  ;log, I?)+ O(1). 

L(a) = c (a"- l ) - l .  
n r l  

I 
I 

i 

~ 

I 

i 

i 

I 

~ 

I 

I 

I 



APPROXIMATE COUNTING : A DETAILED ANALYSIS 129 

a E(Xn ) 

2 10.001 13 
2112 10.00307 
2114 10.00712 
2118 10.01 5 16 
21/16 10.03027 

(iii) For the standard deviation of the counter values: 

(47b) o:(a) = o:(a)+x(u;log,n) +o(l), where 
', 

W 

7 n  

0.872 
0.607 
0.425 
0.298 
0.2 17 

1 1 1 
+ - - -  , 8 = 2x2/ lna .  

2 n2 a" 
a,(a) = - - 

.\. 'In2' ng1 ( ~ " - 1 ) ~  12 ]nuk$, ksinh(6k) 

- 

2 
2112 

2114 
2118 
21/16 

There follows from theke equations that for the content of the counter (with 
base a), the normalized value 

7.01581 0.864 
7.03 139 0.596 

7.12340 0.276 
7.23907 0.174 

7.06266 0.409 

(48) X = (C-K(a)).log,a where K ( a )  = y/lna- (a"-l)- '+$ 
n z l  

is apart from negligible periodic fluctuations, an asymptotically unbiased estimator 
of log,n. The values K ( a )  for a = 2, 2112.. .21/16 are: 

K(2) = - 0.2729 ; K(2'12) = - 2.8030 ; K(2"") = -9.8598 
K(2"*) = -27.9714; K(2"I6) = -72.1936. 

Figure 2 displays the expectations of X, (the value of the normalized variable 
X of (48) after n increments) for n =. 128, 1024 and a few values of a, together 
with the corresponding standard deviations of X, defined by: 

4 

' (49) 7,2(') = E ( ( X ,  - E(x">>2) .  

Fig. 2. Bias and, accuracy of the normalized X value for sample values of a and n. 

Table 2 shows that X is a very good estimate of log2n even for small 
values n (n - lo3). For smaller n (n - lo2) there is a slight bias which increases 
when a gets closer to 1. If necessary, corrections for smaller values of n could be 
easily tabulated using (47a) and introduced in the algorithm. 

The accuracy of. that version of the algorithm is thus essentially determined 
by the dispersion of results it produces. The values of T,, for finite n are remarkably 
close to the asymptotic limit T,(u) = a,(a)/lna as shown by a cornparisan of 



130 PHILIPPE FLAJOLET 

results in Figure 2 with the values: 

Thus to determine the effect of smaller bases on the accuracy of the 
algorithm, we only need to determine the dependence of 7,(a) on a. To do.so, 
it proves convenient, as we shall see, to study the behaviour of 7&2) as a + 1; 
this will lead to-very good numerical estimates on z,(a) for general a. From (47), 
we have: 

+o(ln2a), a + 1. - 1 .’,(a) = (log, a) ,  [a -1  n z l  ( a n - 1 ) 2  

7r2 

The asymptotics of the function appearing in the expression above 

for small x are easily determined, again by Me11 
the transform of c(x) is: I 

so that, when x + 0:  

n transform techniques since 

c(x) - 1 Res(c*(s)x-’; a), CJ = 2, 1,0, - 1, ... . 
0 

~ ( x )  = (n2/6)x - - 2 - ’ x-l  +O(l) .  
- -. 

Thus, using this result in the expression of ~ ~ ( u ) :  

6. Final conclusions. 

We have examined in Section 5 ,  two possible ways of using the idea of 
approximate counting with a general base. 

(i) The first one, which corresponds to Morris’ original algorithm, estimates n 
by. means of the random variable D defined by formula (45) and produces 
an unbiased estimate of n. 

(ii) The second one estimates Iog,n by means of the random variable X 
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defined by formula (48) and (apart from negligible fluctuations) leads to an 
asymptotically unbiased estimate of log, n. 

As measures of tde accuracy of these algorithms, it is reasonable to consider: 
(i) The quotient betweedthe standard deviation of the estimate D and n, 

which provides a measure of the relative accuracy of the algorithm. By 
Proposition 5, this ratio is asymptotic to 

\ 
’\ 

(ii) The standard deviation of the estimate X of log, n which from equation (50) 
is closely approximated by the function 

The meaning of these formulas is probably best understood if we set a = 2l/” 
so that one gets better accuracy when rn gets large. Using approximations for 
large m, we find 

pl (2llrn) - (In 2/2rn)’I2 ; p2(21/’”) - (rn In 4)- 1/2  

(both approximations are fairly tight and for instance the approximation of pl 
is at most 3 %  off the exact value of r , (a)  for all m >= 1). 

As. for the storage requirement of the aldgorithm, it is E(1+ hog, C , ] ) ;  
a quantity upper bounded by (and actually close to) 1 +log, E(C,), which by 
our previous results is itself close to log, log, n +log, m. Thus setting now 
6 = log, rn we can roughly summarize the situation as follows : . 

FACT. Using approximate counting with base a = 22-a one can count up to  n 
using storage of about log, log, n + 6 bits; the accuracy of the results is close 
to 0.59 2-’12 and 0.85 2-6/2 respectively for the linear estimate algorithm 
(version ( i )  based on the variate D )  and for the logarithmic estimate algorithm 
(version ( i i )  based on the variate X ) .  

As an example, consider taking as base a = 21/16 = 1.0 44...; such a confi- 
guration leads to an expected error on the estimate of log,n close to 0.2125. 
ff an unbiased estimate of n is sought using (45) the relative error given by (45) is 
typically less than 15%. This value of a makes it for instance possible to count 
up to about 65000 (216 = 65536) using 8 bits since log,(log, 216/10g, 2”16) = 8, 
and thus results in this particular case in halving the storage requirement of 
standard binary counters. 

Figure 3 displays the result of a sample run of Approximate Counting with 
D, plotted against n for n = 0.. .lo5, using base a = 2’/16 and confirms the good 
behaviour of the algorithm. 
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Fig. 3. - A simulation of the linear estimate D, of approximate counting plotted against n, for 
o 5 n 6 105. 

. .  

Notice finally that a simpler solution to the problem of approximate counting 
would be a direct sampling method in which the approximate counter C is 
increased with a fixed probability p (instead of using a probability that decreases 
geometrically with the counter value C). For instance, if p = 1/256, on can still 
count up to M = 65536 = 216 using an average of log,(Mp) = 8 bits. The 
corresponding algorithm then simply provides p -  C, as an estimate of n and the 
corresponding transition diagram is 

1 - P  1 - P  1-P 1 - P  

That direct sampling algorithm is trivial to analyze since the distribution of 
counter values is the Bernoulli probability : 

Pr(C,  = k )  = (;)py* - - p r k .  

However, it turns out that direct sampling has the major disadvantage of 
providing greatly inaccurate estimates for n small while approximate counting 
leads to an expected constant relative accuracy of the estimate. 

Figure 4 exemplifies (to some extent) this situation. Here we have used 
p = 1/256 for direct sampling and base a = 21/16 for approximate counting, so 
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I .  I -I- ? .-- 

I 

I I I 
-I- 2- 0 -y- 1.5 

Fig. 4. The ratio between estimates of approximate counting with base 21'16 = 1.044 (AP-CO) or 
of direct sampling (SAMPLE) with p = 1/256 and exact counter values for 0 5 n 5 20000 

(simulations). 

that both algorithms allow to count up to 2"6 = 65536 using only 8 bits. 
Considering values of n = 100, 200, ..., 2000, we notice that the relative 

accuracy of SAMPLE becomes better as n increases (where the results become 
more accurate than AP - CO). However, on that particular simulation, while the 
accuracy (ratio of estimate to exact value) of A P  -CO was always between 0.70 
and 1.25, that of SAMPLE varied from 0.00 to 1.26; for n = 100, 200, 300 the 
estimate of AP-CO were respectively 88, 218, 366 while those of SAMPLE 
were 0, 0, 253; for n = 4300, SAMPLE still underestimated n by more than 
a factor of 2 (the accuracy was 0.41). 

As a last conclusion approximate counting appears as the method of choice 
when a fairly constant relative accuracy is needed over a large range of 
values while saving storage for keeping incremental counters. 
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Recently K. Melhorn and K. Simon have shown the author some 
interesting connections of this work with the analysis of topological sorting 
under a random graph model; in particular they had obtained independently 
the first term in our expansion (47a). 
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