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Abstract

The efficiency of many discrete algorithms crucially depends

on quantifying properties of large structured combinatorial

configurations. We survey methods of analytic combina-

torics that are simply based on the idea of associating num-

bers to atomic elements that compose combinatorial struc-

tures, then examining the geometry of the resulting func-

tions. In this way, an operational calculus of discrete struc-

tures emerges. Applications to basic algorithms, data struc-

tures, and the theory of random discrete structures are out-

lined.

1 Algorithms and Random Structures

A prime factor in choosing the best algorithm for a
given computational task is efficiency with respect to
the resources consumed, for instance, auxiliary storage,
execution time, amount of communication needed. For
a given algorithm A, such a complexity measure being
fixed, what is of interest is the relation

Size of the problem instance (n)

−→ Complexity of the algorithm (C),

which serves to define the complexity function C(n) ≡
CA(n) of algorithm A. Precisely, this complexity
function can be specified in several ways.

(i) Worst-case analysis takes C(n) to be the maximum
of C over all inputs of size n. This corresponds to
a pessimistic scenario, one which is of relevance in
critical systems and real-time computing.

(ii) Average-case analysis takes C(n) to be the ex-
pected value (average) of C over inputs of size n.
The aim is to capture the “typical” cost of a com-
putational task observed when the algorithm is re-
peatedly applied to various kinds of data.

(iii) Probabilistic analysis takes C(n) to be an indicator
of the most likely values of C. Its more general
aim is to obtain fine estimates on the probability
distribution of C, beyond average-case analysis.
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In cases (ii) and (iii), a model supposed to reflect the
distribution of inputs is assumed.

In the period 1945–1970, both worst-case and
average-case were considered relevant. For instance, in
their report to the U.S. Army Ordnance Department
in 1946, Burk, Goldstine, and von Neumann [5] con-
duct a thorough discussion of the comparative merits
of binary versus decimal computer arithmetics, proving
in the course of the discussion that “for a sum of bi-
nary words, each of length n, the length of the largest
carry sequence is on the average not in excess of log2 n”.
(Their conclusion, based on this and other analyses, is
worthy of note: “In spite of the long-standing tradition
of building digital machines in the decimal system, we
feel strongly in favor of the binary system for our de-
vice.”)

Knuth in the first three volumes of The Art of Com-
puter Programming (TAOCP) [34] published in the pe-
riod 1968–1973 brilliantly demonstrated many basic al-
gorithms to be amenable to a thorough mathematical
analysis, leading to a highly valuable classification of
their merits based on the average-case criterion. Knuth
proved the point that precise analysis is both feasible
and fruitful, but his attention to detail was viewed as
excessive by many. A large fraction of the theoretical
computer science research community reverted to worst-
case analysis based on simple tools from computational
complexity. In all too many cases, this has resulted in an
excess of its own, with works culminating in teratolog-
ical constructions both devoid of mathmematical sim-
plicity and elegance and bearing little relevance to the
practice of computing. At the same time, average-case
and probabilistic analyses have proven to have spectac-
ular impact on the practice of computing, from Hoare’s
use of randomization in quicksort in 1960 to simulated
annealing to Markov models for web search: see Rabin’s
historic paper [44] and the book by Motwani and Ragha-
van [37] for an attractive introduction. Such algorithms,
being based on (pseudo) random choices, offer a frame-
work in which modelling is both mathematically pleas-
ing (simply consider the choices as being perfectly ran-
dom) and practically adequate (since we know of very
good ways to emulate perfect randomness). In addition,



the algorithms being based on randomness, their de-
sign and justification inherently require a non-negligible
amount of probabilistic analysis. Another equally im-
portant motivation for departing from the worst-case
scenario has been Sedgewick’s influential books, Algo-
rithms (see, e.g., [46]). His algorithms aim at being
at the same time conceptually simple and surprisingly
efficient; their design is based on a fascinating mix of
experimental analysis (supported by illuminating visual
traces) and Knuthian analysis (purposely kept hidden
to the reader). In Sedgewick’s own terms [46, p. 27]:
“Analysis is the key to be able to understand algorithms
sufficiently well that we can apply them effectively to
practical problems.”

This paper offers a partial review of methods princi-
pally elaborated in the past decade, whose aim is to de-
velop a calculus meant to “measure” properties of large
combinatorial objects. A fair fragment of this research is
motivated by algorithmic efficiency. At the same time, it
is deeply rooted in a mathematical tradition that goes
back to Pólya in the 1930’s; cf [42] and [28, 43]. As
we shall see, the basic ideas are simple, though some
amount of [easy] complex analysis (mostly going back
to Cauchy) is needed at some stage. Signal processing
depends on Fourier transforms, coding theory and cryp-
tography make a deep usage of finite fields and number
fields; there is no decent reason why the metric study of
algorithms could be kept “free” of mathematics of sorts.
As we propose to demonstrate, going from the discrete
to the continuous realm, and back, provides a wealth of
metric properties of discrete structures.

The prime reference for this survey is the forth-
coming book Analytic Combinatorics [21]. For analy-
sis of algorithms per se examined in a similar spirit,
we refer to treatises by Hofri [30], Mahmoud [36], Sz-
pankowski [48], as well as our own elementary Introduc-
tion [47].

Plan. A skeleton of the theory of analytic com-
binatorics starts with core constructions together with
their translations into generating functions (§2), contin-
ues with a geometric interpretation of generating func-
tions as transformations of the complex plane (§3), and
concludes with perturbative methods that yield distri-
butional information on properties of large random strc-
tures (§5). Boltzmann models that graft naturally on
the core theory are discussed in §4. A sample of impor-
tant results in average-case and probabilistic analysis of
algorithms and data structures is discussed in §6.

2 The Formal Game of Constructions

Our first goal is to develop an effective theory of (el-
ementary) combinatorial enumerations, which is based
on constructions.

We regard combinatorial objects as being formed
of atoms. The size (noted | · |) of an object is the
number of atoms it comprises. For instance, a binary
string is composed of letters, each an atom of {•, ◦} ≡
{a, b}, in which case size is the usual length; a tree
is made of nodes that are also atoms (e.g., • for a
generic node, ↓• for the root node, ◦ for a leaf),
and so on. A combinatorial class C is a finite or
denumerable collection of combinatorial objects, and we
let Cn represent the subset (assumed to be finite) of
objects that have size n. We denote by Z = {•} the
“atomic” class comprised of a single atomic object of
size 1 and by 1 = {ε} the neutral class composed of a
single object of size 0 (analogous to the “empty” word).
Since we are interested in enumerative properties, we
freely identify two classes C,D that are isomorphic, in
the sense that there exists a size-preserving bijection
between them. In this way, details in the actual
representation of objects become immaterial1. Given
a class C, we systematically denote by Cn the number
of objects in C having size n.

A (combinatorial) construction is an operation that
associates a combinatorial class to one or several classes.
The core set of constructions, which we consider here are

(2.1) +, ×, Seq, PSet, MSet, Cyc,

corresponding respectively to disjoint union (union of
disjoint copies, systematically obtained by using differ-
ent “colours”), cartesian product (the formation of or-
dered pairs), the building in all possible ways of finite
sequences (“lists”), multisets (“heaps”, sets with repeti-
tions allowed), plain sets (multiplicities are 0 or 1), and
directed cycles. Subscripts to constructions indicate a
corresponding restriction on the number of components,
e.g., Set≥5 denotes sets of at least 5 elements. This
gives us a systematic way to express specifications. For
instance, the equations

W = Seq(Z + Z), G = Z × Seq(G),

specify the class of binary words and the class of rooted
plane trees respectively. Nonplane trees are described
by H = Z ×MSet(H), since subtrees stemming from
the root form a multiset (order does not count; repe-
titions are allowed). As illustrated by such examples,
both recursive and nonrecursive (or “iterative’) specifi-
cations are allowed.

It is a programing exercise to describe familiar com-
binatorial structures in the language of constructions.
Examples from [21] include words containing or ex-
cluding a pattern (as a factor or subword), degree-

1Readers interested in foundational issues should study Joyal’s
elegant theory of species exposed in [4], which places itself within
the framework of category theory.



constrained trees, trees of bounded height (either bal-
anced or not), functional graphs, necklaces, lattice paths
of various sorts, noncrossing geometric graphs in the
plane, coupon collector and birthday sequences, to name
a few. This framework can be viewed as an exten-
sion of context-free grammars enriched by commuta-
tion/association rules. In particular, all languages de-
fined by regular expressions and finite-state automata
as well as derivation trees of context-free languages are
a priori specifiable.

Definition 2.1. For a class C, with counting sequence
(Cn), the ordinary generating function (ogf) is the
formal power series,

(2.2) C(z) :=
∑
n≥0

Cnzn =
∑
γ∈C

z|γ|.

Generating functions (gfs) are the central objects
of the theory, rather than a mere artefact to solve
recurrences, as it is still often believed. Conceptually, by
the second form in (2.2), the gf of a class is nothing but
the combinatorial class itself, after internal structural
details are “forgotten”:

atom (letter, node) •, ◦, a, b, . . . 7→ z
object (word, tree) γ 7→ z|γ| = zn

class (language, tree class) C 7→ C(z) ≡
∑
γ∈C

z|γ|.

(This vision originates in pioneering works of
Schützenberger, Foata, Rota, Stanley, Joyal, Goulden,
Jackson, and a few others.) Constructions are found
to admit of systematic translations as operators over
generating functions according to rules summarized by
the symbolic dictionary sketched in Fig. 1.

Theorem 2.1. (Symbolic method) For specifiable
classes, generating functions are automatically com-
putable from specifications by the symbolic dictionary
of Fig. 1.

Proof. By simple algebra and the fact that gfs are a reduced
form of the combinatorial classes themselves. For instance,
if C = A× B,

C(z) ≡
X

(α,β)∈C

z|α|+|β| =
X
α∈A

z|α| ·
X
β∈B

z|β| ≡ A(z) ·B(z),

which yields the cartesian product rule. �

The symbolic method summarizes the basic laws of
counting in a way that parallels Wilf’s Generatingfunc-
tionology [55]. It permits us to derive a large number of
explicit counting results. Typically, for plane trees, we
find

G = Z × Seq(G) =⇒ G(z) =
z

1−G(z)

 G(z) =
1−

√
1− 4z

2
 Gn =

1
n

(
2n− 2
n− 1

)
.

Construction Operation on gfs
+ +
×, ? ×

Seq
1

1− ·
Set,MSet,PSet exp,Exp,Exp

Cyc log,Log

Figure 1: A table summarizing the translation of
constructions as operations over generating functions
(gfs): Exp,Exp,Log known as Pólya operators are
variants of the usual exp, log.

Theorem 2.2. (Counting & Random Generation)
Consider a combinatorial class C, which is specifiable by
the constructions of (2.1). Then, the counts {Cj}n

j=0

can be computed in O(n1+ε) arithmetic operations. In
addition, it is possible to draw an element of size n uni-
formly at random in O(n log n) arithmetic operations
in the worst case.

Proof. The equations deriving from Theorem 2.1 and Fig. 1
are normalized as a quadratic differential (Riccati) system.
Induced convolutions then provide an elementary algorithm
that determines the first n terms of the counting sequence
(Cn) in O(n2) arithmetic operations [20, 24], the improve-
ment in complexity being due to van der Hoeven [52].
Random generation uses a recursive method that extends
those of [39], combined with a so-called boustrophedonic
search based on properties of Friedman-Knuth recurrences.
(Note: for anything specifiable in (2.1), a bound of the form
Cn < K · Ln holds, see below, so that the corresponding
boolean complexities are O(n2+ε).) �

Labelled classes. There is a parallel universe
where atoms composing objects are now taken to be
all different, say they bear distinct integer labels. For
instance, a permutation 4 1 3 5 2 is a labelled object of
size 5 and the class P of all permutations is a labelled
class. One defines classically a labelled product, where
labels are distributed in an order-preserving fashion
on components, and, from there, labelled sequences,
sets, and cycles. Labelled trees, permutations with
cycle constraints, allocations of (distinguishable) balls
into urns, and mappings of a finite set to itself are
examples of labelled classes that are specifiable. One
then operates with the exponential generating function
(egf), which for a class C with counting sequence (Cn)
is defined by

(2.3) Ĉ(z) =
∞∑

n=0

Cn
zn

n!
.

The dictionary is then analogous to the plain (unla-
belled) case, with the standard exponential replacing
the pseudo-exponentials Exp,Exp, etc. Analogues of
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Theorems 2.1 and 2.2 hold. This framework is imple-
mented in the library Combstruct of the computer al-
gebra package Maple. The core language of construc-
tions (2.1) can be enriched so as to include pointing
operations, substitutions, and order constraints [21]. In
summary, what we have done at this stage is embed a
fragment of combinatorics into the algebraic domain of
power series.

3 Complexification

Assigning complex values to the variable z that figures
in a generating function turns out to have serendipi-
tous consequences. When we do so, a generating func-
tion becomes a geometric transformation of the com-
plex plane. This transformation is very regular near the
origin—it is analytic. In other words, near 0, it only
effects a smooth distortion of the complex plane. Far-
ther away from the origin, some cracks start appearing
in the picture. These cracks—the dignified name is sin-
gularities—correspond to the disappearance of smooth-
ness (Fig. 2). It turns out that a function’s singulari-
ties provide a wealth of information regarding the func-
tion’s coefficients, and especially their asymptotic rate
of growth. Adopting a geometric point of view has a
large pay-off.

First, we recall:

Definition 3.1. A function f(z) is analytic (or holo-
morphic) at z0 if the limit, lim f(z)−f(z0)

z−z0
=: f ′(z0), ex-

ists as z − z0 → 0 in the complex domain C. Equiva-
lently, f(z) is analytic if, near z0 it admits a convergent
series representation in powers of (z − z0).

For instance, all generating functions of classes having

at most exponential growth (Cn ≤ K · Ln) are analytic
at the origin.

Integral calculus in the complex domain is apprecia-
bly easier2 than on the real line, since the integral of an
analytic function along a path only depends on the end
points of the path. As a consequence (via the “residue
theorem”): Coefficients of an analytic function at the
origin can be recovered from values of the function away
from the origin, by means of Cauchy’s integral formula:

(3.4) coeff. [zn]f(z) =
1

2iπ

∫
γ

f(z)
dz

zn+1
.

(There, the contour γ can be chosen freely, provided
it encircles the origin and stays within the domain
of analyticity of f .) The relevance of these notions
to combinatorial counting is due to the fact that the
gfs of all specifiable classes (in the sense of (2.1)),
whether labelled or unlabelled, are analytic at 0, so that
Cauchy’s formula (3.4) is a priori appplicable to them.

Like in analytic number theory (see the classical
proofs of the Prime Number Theorem), it turns out that
singularities of generating functions play a crucial rôle
in estimating coefficients. In essence, a singularity is
a point on the boundary of the region of analyticity,
beyond which the function cannot be continued analyt-
ically. (E.g., it ceases to be differentiable). The tech-
nology of singularity analysis developed by Flajolet and
Odlyzko [21, 40], is a central ingredient of analytic com-
binatorics.

Theorem 3.1. (Singularity Analysis) Let f(z) be
analytic at 0, have an isolated singularity at σ, and be
suitably continuable in a “∆–domain”. If f(z) can be
expanded as z → σ in the scale of functions of the
form (1 − z/σ)−α, with α ∈ C, then an asymptotic
expansion of its coefficient [zn]f(z) results from a formal
translation:

function : C·(1− z

σ
)−α •——I coeff. : C·n

α−1

Γ(α)
σ−n.

(Proof: Start from (3.4) and deform the contour so as to
pass at distance 1/n of the singularity, then steer away
from it.)

The singularity analysis theorem has many avatars
allowing for logarithms, iterated logarithms in asymp-
totic expansions, as well as O(·) and o(·) error terms:
see [12] for extensions. For “low-complexity” combina-
torial classes like the specifiable ones, its effect is the
following: Asymptotic counting is reduced to a purely
local analysis of generating functions at a few points,
their singularities. This principle brings much clarity

2Cf Jacques Hadamard’s aphorism: “The shortest path be-
tween two truths in the real domain passes through the complex
plane.”
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in the task of estimating the growth of combinatorial
classes and, to a large extent, it reduces it to a system-
atic process. As a consequence, it makes possible a jump
in generality: instead of solving isolated combinatorial
counting problems, we can consider solving whole fam-
ilies of related problems. We call schema a collection
of combinatorial conditions, possibly supplemented by
side analytic assumptions, which imply a common set
of asymptotic properties.

The regular-language schema. This is the eas-
iest instance. It is determined by the combinatorial
condition that a class belonging to it is specifiable
non-recursively from finite sets by the constructions
of {+,×,Seq} alone (this is equivalent to the regular ex-
pression framework) or by a linear set of combinatorial
equations (this is equivalent to a deterministic automa-
ton). The corresponding generating functions are ratio-
nal (a well known fact that also derives from Th. 2.1),
hence their singularities are poles only. Then, a simpli-
fied form of singularity analysis applies (with α ∈ Z≥1

in the notations of Th. 3.1). Thus, the enumeration
sequence is described by a finite linear combination of
elements of the form

κσ−nn`, ` ∈ Z≥0.

For the subclass satisfying the stronger condition that
the defining automaton is strongly connected, one has
the irreducible regular-language schema, and the expo-
nent ` is bound to satisfy ` = 0, the proof being a con-
sequence of Perron-Frobenius theory.

The simple-tree schema. A class of rooted
unlabelled trees is said to be simple if it is determined
by a finite or cofinite set Ω of allowable node degrees.
Any such class admits a specification of the form either
Y = Z × SeqΩ(Y) (planar case) or Y = Z × SetΩ(Y)
(nonplane case). The implicit function theorem then
guarantees a locally linear relation between z and the
ogf Y (z), as long as the latter remains analytic. Then,

it fails to apply, in which case the relation between z and
Y (z) becomes quadratic. This means that the ogf Y (z)
has a singularity that is “universally” of the square root
type, which can be exploited by singularity analysis:

(3.5) Y (z) ∼ κ0 − κ1

√
1− z/ρ •—I Yn ∼ κ1

ρ−n

2
√

πn3
,

for a computable number ρ. We express (3.5) as fol-
lows: For any class of trees resorting to the simple-tree
schema, asymptotic counts involve an exponential term
(ρ−n) modulated by a universal n−3/2 subexponential
factor. This notion of universality of properties, inde-
pendently of details of a model, has its origin in sta-
tistical physics. Here, universality of the square-root
singularity and its companion n−3/2 term is related to
such trees invariably having height and width O(

√
n),

both on average and in probability. See Fig. 3 for an
illustration (the similarities of shape in the apex on the
right of each diagram correspond to a square-root sin-
gularity).

The general context-free schema. This schema
comprises all specifications, possibly recursive, that
make use of the constructions {+,×,Seq} only (Seq
is redundant). By the symbolic method, the corre-
sponding generating functions are algebraic (this is
the Chomsky-Schützenberger theorem). Now algebraic
functions have expansions at singularities character-
ized by the Newton-Puiseux theorem, to the effect that
the exponents at singularities are rational numbers.
Singularity analysis is then systematically applicable,
which yields the property that coefficients are described
asymptotically as finite linear combination of elements
of the form

(3.6) κσ−nnγ , γ =
p

q
∈ Q \ Z<0.

This last property constitutes a generalized density
theorem for unambiguous context-free languages.

The irreducible context-free schema. This
is a subschema defined by the fact that the depen-
dency graph between classes entering the specification
is strongly connected. The important Drmota-Lalley-
Woods (DLW) theorem (see [21] and references) asserts
the universality of the square-root singularity, so that
for such a class C:
(3.7) Cn ∼ Kσ−nn−3/2,

a vast generalization of the simple tree case. For
instance, given the n vertices of a convex polygon,
consider noncrossing graphs defined by the fact that
no two edges cross. An explicit construction shows
that the class N of these geometric graphs belongs to
the irreducible context-free schema (Fig. 4). The DLW
theorem then leads to precise asymptotic counts as
well as probabilistic estimates (number of components,
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Figure 4: A random non-crossing graph of size 50 [left]
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revealing a square-root singularity, in accordance with
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number of edges) that, in a sense, quantify percolation
on the non-crossing graph.

Many more schemas are developed in [21]. Singular-
ity analysis and related complex asymptotic methods—
the saddle-point method and the Mellin transform3,
principally—are widely applicable to combinatorial
structures amenable to the symbolic method, as well
as to many other structures for which one has a handle
on the corresponding gfs.

4 Real Numbers and Boltzmann models

In the previous section we have gone directly from
the formal to the complex domain of z–values. As
a matter of fact, regarding asymptotic enumeration,
the real domain is usually not sufficient to derive
interesting properties: classical Tauberian theory, which
deals with such questions, necessitates too strong side
conditions and usually provides too weak estimates.
There is however a benefit in introducing probabilistic
models based on positive real values of z as regards
efficient algorithms for random generation, a classical
area of combinatorial mathematics [39], which makes
the simulation of discrete models effective.

Definition 4.1. Given a combinatorial class C, the
(ordinary) Boltzmann model assigns to an element γ ∈
C a probability proportional to an exponential of its size:
P(γ) ∝ x|γ|, or equivalently,

P(γ) =
x|γ|

C(x)
,

where x is a positive control parameter.

3The saddle-point method consists in choosing in (3.4) a
contour that crosses saddle-points of the integrand. The Mellin
transform of a function f(x) is f?(s) =

R∞
0 f(x)xs−1 dx; it maps

asymptotic properties of f(x) to singularities of f?(s) and enjoys
properties analogous to Th. 3.1.

Figure 5: A random plane partition and a random
series-parallel graph obtained by Boltzmann sampling.

A parallel notion exists for labelled classes. By def-
inition, two objects of the same size are assigned equal
probabilities, so that a Boltzmann sampler conditioned
upon the size of the object it produces is a bona fide
random generator. It turns out that, for classes that
are specifiable in the core constructions of (2.1), ran-
dom generators according to this distribution can be
systematically built [10, 15].

Theorem 4.1. (Boltzmann Samplers) Given a
specification for a class C, there exists a direct transla-
tion, which produces a Boltzmann sampler ΓC(x) for C.
That sampler has an expected linear-time complexity
(under a real-arithmetic model) in the size of the object
it produces.

Under a Boltzmann model, the size of the object
produced is a random variable S (depending on x) such
that

(4.8) P(S = n) =
Cnxn

C(x)
.

Let ρ ≤ +∞ be the radius of convergence of C(x): larger
structures can only be obtained by letting x → ρ. The
distribution (4.8) can then be studied by precisely the
same complex methods that give information on the
sequence (Cn). In particular, for each of the major
schema, one can tune the Boltzmann sampler so that
it will tend to produce objects near a target size n: the
resulting samplers (based on tuning, rejection, and pos-
sibly specification transformations based on pointing)
then produce in expected linear time an object whose
size belongs to any prescribed interval [(1−ε)n, (1+ε)n].
If exact size n is imposed, then the generator so obtained
has quadratic or subquadratic time complexity. Fig. 5
displays a random plane partition of size about 15,000
and a random series-parallel graph of size about 500 as
drawn by Boltzmann samplers (courtesy of Ms Carine
Pivoteau).



5 Random Structures

So far we have been discussing purely enumerative
results. The study of parameters of large discrete
structures can also be conducted within the framework
of analytic combinatorics.

(i) Moments of simple parameters can be subjected
to the symbolic and analytic methods already dis-
cussed. For instance, in order to estimate the mean
number of leaves of trees in a family it suffices
to enumerate both the basic tree family T and a
derived family T ? which is comprised of all trees
with a single leaf pointed. The expected num-
ber of leaves is then the ratio [zn]T (z)/([zn]T ?(z)).
This extends to higher moments. Limit distribu-
tions can then often be identified thanks to moment
convergence theorems of classical probability theory
(these provide conditions under which convergence
of moments implies convergence in law).

(ii) Extremal parameters can be investigated by intro-
ducing a collection of combinatorial classes corre-
sponding to fixed values of the parameter. For in-
stance, binary trees and height are characterized by
the collection of specifications,

(5.9) B = Z+(B×B), B[h+1] = Z+(B[h]×B[h]),

where B[h] is the class of trees of height bounded
by h. The corresponding ogfs satisfy the recur-
rence yh+1 = z+y2

h, which is none other than what
gives rise to the Mandelbrot set: the limit distri-
bution of height4, an elliptic theta function, is ac-
tually encoded by the behaviour of the recurrence
near the singularity z = 1

4 of the fixed point B(z).

(iii) Complete distributional information on simple pa-
rameters can be obtained by means of a multivari-
ate extension of the univariate paradigm, as we ex-
plain below.

Consider a class F on which a parameter χ : F 7→
Z≥0 is defined. The bivariate generating function (bgf)
of F , χ is in the ordinary (unlabelled) case:

F (z, u) =
∑
n,k

Fn,kznuk =
∑
ϕ∈F

z|ϕ|uχ[ϕ].

Naturally, the bgf becomes a classical counting gf
when one sets u = 1, namely, F (z, 1) = F (z), For

4Since order constraints correspond symbolicly to integral
operators, the height problem of binary search trees and the
recursion depth of Quicksort translate into an integral quadratic
recurrence of the form yh+1 = 1 +

R
y2

h. The difficult problem
of quantifying these parameters has been recently advanced
by Drmota [8], whose analytic estimates refine the ingenious
probabilistic approach of Devroye [6].

“inherited” parameters, the symbolic calculus of Fig. 1
can be extended. (Conceptually, the bgf is a refined
reduction, which keeps track of atoms as well as another
characteristic of combinatorial objects.) For instance,
for the class G of plane trees with χ being the number
of leaves, one has available the enriched specification
(5.10)

G = Ẑ + Z × Seq≥1(G) =⇒ G = zu + z
G

1−G
,

where G ≡ G(z, u) is the corresponding bgf. The prob-
lem of extracting asymptotic distributional information
is a priori one of extracting coefficients of a function of
several variables.

The road to distributional information regarding
parameters goes as follows. Parameters of combina-
torial structures induce, via the auxiliary variable u
considered near 1, local deformations of the univariate
(counting) generating functions. Under fairly general
conditions, such deformations are amenable to pertur-
bation theory and admit of uniform expansions near sin-
gularities. In this way the deep and difficult theory of
functions of several variables is bypassed. (See how-
ever the work by Pemantle and Wilson for exciting uses
of this theory in combinatorics [41].) In the perturba-
tive approach, two frequently occurring scenarios then
emerge.

MS: Movable singularity. In this case, the perturba-
tion by u ≈ 1 induces a smooth (i.e., analytic)
displacement of the dominant singularity of the
bgf, viewed as a function of z alone. One has
F (z, u) ≈ (1 − z/ρ(u))−α0 , where the singular ex-
ponent remains constant.

V E: Variable exponent. In this case, the singularity
remains fixed at some value ρ, for u in a small
neighbourhood of 1, but the singular exponent is
allowed to vary smoothly. One has F (z, u) ≈
(1− z/ρ)−α(u).

One has:

Theorem 5.1. (Gaussian Limits) In the movable
singularity case, the mean and variance of the param-
eter χ are asymptotically linear in the value n of size.
In the variable exponent case, the mean and variance
are asymptotically logarithmic in n. In both cases, the
distribution of χ is asymptotically normal.

Proof. We only sketch it in case MS. The usual probability
generating function (pgf) of χ over Fn is exactly given by
coefficient extraction as

φn(u) =
[zn]F (z, u)

[zn]F (z, 1)
.
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Figure 6: The bgf of trees G(z, u) of (5.10), for z real as
u varies around 1, has a constant singular exponent ( 1

2 )
and a movable singularity at ρ(u) [left], corresponding
to a limit normal distribution of the number of leaves
in trees[right].

By the moving singularity hypothesis, and since singularity
analysis preserves uniformity, we obtain an estimate

(5.11) φn(u) ≈
„

ρ(1)

ρ(u)

«n

.

The pgfs of sums of independent identically distributed
random variables are exact power representations of a form
comparable to (5.11), whose precise form is known as a quasi-
powers approximation. An important theorem5 due to H. K.
Hwang [31] then implies the normal approximation. �

This theorem applied to (5.10) implies that the
number of leaves in a random plane tree is asymptoti-
cally normal; see Fig. 6. The property extends to the
simple-tree schema, as well as to several other important
schemas, as shown by Drmota [7].

6 Applications and Extensions

The analytic combinatorial theory provides a powerful
conceptual framework that could be summarized (op-
timistically) by the motto: “If you can specify it, you
can analyse it!”. It makes it possible to organize dis-
crete models and algorithms into broad categories and
discuss the functional equations that arise in a highly
synthetic fashion. (This is a bit like physics with its
wave equations, heat equation, laws of optics and elec-
trostatics, etc.) An important economy of technical de-
tail then results from a moderate use of mathematical
abstraction. We illustrate this point by some examples
from algorithmic theory and practice.

5The proof bases itself on the continuity theorem for charac-
teristic functions (like in the classical Central Limit Theorem),
on the Berry-Esseen inequalities, and on strong differentiability
properties of analytic functions.

Patterns in random strings. We are here in
a direct case of application of the standard paradigm.
Let Ω represent the total number of occurrences of
a fixed finite set of patterns in a random string over
some finite alphabet. For either the Bernoulli model
(letters are independent and identically distributed) or
the Markov model, the corresponding bgf is rational
as it corresponds to an effectively constructible finite-
state device, which belongs to the irreducible regular-
language schema. Perturbation methods imply that
the bgf viewed as a function of z has a simple dominant
pole at some ρ(u) that depends in an analytic manner
on u. Hence the limit law of Ω in random strings of large
size n is Gaussian. Many extensions are possible [22, 38],
and the book [48] offers a systematic discussion. Such
results are of relevance to the analysis of biological
sequences, where it is needed to separate signal (a
meaningful observation of occurrences) from noise (a
statistically unavoidable phenomenon).

Polynomials over finite fields. This example
illustrates best the synthetic reasoning afforded by the
analytic combinatorics calculus. It is relative to the
class P of all polynomials with coefficients in a finite
field Fq, which are of interest in coding theory, com-
putational number theory, cryptography, and symbolic
manipulation systems [54].

A polynomial being determined by its sequence
of coefficients, the gf P (z) of all polynomials has a
polar singularity. By the unique factorization property,
P is also isomorphic to the class of all multisets of
irreducible polynomials I: P ' MSet{I}. Since
the multiset construction corresponds to exponentiation
of gfs, one has P ≈ eI , that is, the singularity of
the ogf I(z) is logarithmic. By singularity analysis,
the number of irreducible polynomials is thus found
to be asymptotic to qn/n: this is an analogue for
polynomials of the Prime Number Theorem (known to
Gauß). By multivariate symbolic methods, the bgf
of the number of irreducible factors in polynomials is
of the singular type (1 − qz)−u, showing a smoothly
variable exponent. Then, Th. 5.1 gives: the number
of irreducible factors of a random polynomial over Fq

is asymptotically Gaussian. (The integer version is
the celebrated Erdős-Kac theorem.) Refinements of
this method lead to a complete analysis of a major
polynomial factorization chain [18].

Hashing. Hashing techniques are archetypes of
randomized algorithms. They depend on properties of
random allocations and at the same time lead to nice
combinatorial developments. For instance, the forma-
tion of “islands” in linear probing hashing represents a
generic type of coalescence, which can be approached
in a variety of fashions. A combinatorial decomposition



∂F (z, u)
∂z

= F (pz, u)F (qz, u)

Figure 7: A random trie of size 500 and the Jacquet-
Szpankowski equation that models Lempel-Ziv compres-
sion.

leads to a nonlinear difference-differential equation,
∂F

∂z
= F ·∆q[F ], ∆q[f(z)] :=

f(qz)− f(z)
z(q − 1)

,

out of which moments can be “pumped”. There result
fascinating connections with path length in trees, area
under the Brownian excursion, depth-first search traver-
sal of graphs, and the formation of the giant component
in the Erdős-Rényi graph [19].

Digital trees (tries). Digital trees are an efficient
and highly versatile data structure [3, 34, 36, 47, 48, 53]
and an abstract process on which many algorithms
are based (Fig. 7). A finite set of words ω can be
decomposed according to the leading letter of each word
in ω, giving rise to a tree structure, the trie, where
common prefixes are factored and stored only once. In
the abstract, we have a recursive Bernoulli splitting
process. The first average-case analysis, due to Knuth
and de Bruijn around 1965, was based on what was
later to be recognized as a Mellin transform technology.
It revealed the existence of periodic fluctuations6 in
the expected cost of the algorithm, which are of a
tiny amplitude (about 10−5), seemingly a theoretician’s
curiosity, but ones without which are understanding of
the trie model proves severely incomplete. Recently,
Fill and Janson [13] have shown by these techniques the
bit-complexity of binary tree search to be ∼ C · (log n)2.

The abstract trie model is the one that underlies
a communication protocol, the Capetanakis-Tsybakov-
Mikhailov tree protocol that is a competitor to the
Ethernet. The latter was proved to be strongly
unstable in the long term by Aldous [1], whereas the

6Similar fluctuations, often of a fractal nature, are otherwise
known to be systematically present in the behaviour of determin-
istic divide-and-conquer algorithms [16].

tree protocol remains stable till arrival rates of λmax
.=

0.36, corresponding to an efficiency that is about 70%
of the information-theoretic optimum. The stability
result of the tree protocol strongly depends on the
analytic methodology: for instance the variance of
collision resolution intervals can be quantified thanks
to identities of Ramanujan, as noted by Kirschenhofer
and Prodinger [33].

The trie model also underlies data compression
schemes like the Lempel-Ziv algorithms. Jacquet,
Louchard, and Szpankowski (see, e.g., [32, 35]) could
make a deep use of analytic methods so as to quan-
tify precisely the redundancy rate of such algorithms.
(The problem is one of second-order asymptotics, not
easily attacked by probabilistic methods, with fluctua-
tions that are in the way!) In the course of their in-
vestigations, they were led to developing a powerful de-
Poissonization technique of great generality, based on
generating functions and the saddle-point method [48].

Search trees and the holonomic framework.
Splitting a file according to a random pivot or its
largest element or its first element leads to generating
functions that satisfy differential equations and systems.
To these, singularity analysis is applicable under broad
conditions. A typical instance is the quadtree data
structure of Finkel and Bentley, for which the most
important parameters are now well understood: for
example, the expected cost of a partial match query
in a random quadtree is found to satisfy [17]

(6.12) Qn ∼ κ · nβ , β =
−3 +

√
17

2
.= 0.56155,

with a curious occurrence of a “critical exponent” that
is an algebraic number. Such analytic considerations
are closely intertwined with algorithmic design: see for
instance the randomized k-dimensional tree of Mart́ınez
et al. [9].

Asymptotic phenomena like (6.12) are typically at-
tached to recursive combinatorial structures that in-
volve order constraints. The generating functions resort
to what Zeilberger [56] has named the holonomic frame-
work7, which lies at the crossroads of differential alge-
bra, combinatorics, special function theory, and com-
plex analysis, and has great descriptive powers [26].

Arithmetic algorithms. Methods akin to the
ones presented here have provided some deep results
in the analysis of Euclidean algorithms and continued
fractions [29, 49, 51]. They depend on the introduction
of transfer operators from dynamical systems theory,

7A function is holonomic or ∂-finite if the vector space (over
the field of rational functions) of all its partial derivatives is finite-
dimensional.



which, for a transformation T , are defined by

Gs[f ](x) =
∑

h∈T−1

h(x)sf ◦ h(x).

This has led to a discovery of the fact that “Euclid’s
algorithm is Gaussian” and to the solution of the long-
standing open problem of analysing the binary GCD al-
gorithm. Such analyses are also of practical relevance,
since it is estimated that many dedicated systems in
cryptography and symbolic computation spend a large
fraction of their time in gcd computations (e.g., each
time two rational numbers are added). There are also
surprising connections with classical mathematics. For
instance, it is established in [23] that the average com-
plexity of sorting real numbers by means of continued
fractions involves fluctuations whose order of growth is
dictated by the Riemann hypothesis.

Planar maps and graphs. Planar maps are (pla-
nar) graphs embedded in the plane. In the 1960’s, Tutte
showed many varieties of maps to have an algebraic gf,
whose analysis a priori resorts to the estimates (3.6),
with a universal exponent γ = 5

2 . Recently, Schaef-
fer [45] has given simplified constructions for maps, lead-
ing to fast random generation algorithms and opening
access to new combinatorial parameters like distances
and embedding characteristics. Such results are of in-
terest in the areas of graph drawing, computational ge-
ometry (the information content of discretized surfaces),
and the design of implicit data structures. Gimenez and
Noy [27] succeeded recently in solving the long-standing
open problem of enumerating planar graphs: the growth
is of the form κKnn−7/2 (the exponential rate K was
unknown), and the methods involve a difficult blend
of combinatorial decompositions (building on works of
Bender et al. [2]) and complex-analytic methods. Based
on Boltzmann models, Fusy [25] could then derive a
random generation algorithm for planar graphs that is
of linear time complexity for approximate size and of
quadratic complexity for exact size sampling.

Probabilistic stream algorithms. This is an
area of intense activity in the data mining and network-
ing communities. Due to space limitations, we only dis-
cuss cardinality estimators. Given a stream of data (of
several gigabytes), it is required to determine its car-
dinality (the number of distinct elements). No a priori
probabilistic model is available to account for replica-
tions and permutations amongst the data items. The
basic idea consists in hashing elements (so as to ran-
domize values) and examine “observables” which are
simple functions of the hashed values, independent of
replications. (For instance, observing the initial pattern
01010101 is a likely indication that a file’s cardinality is
> 28.) The design of an algorithm then consists in the

following steps: (i) choose an observable; (ii) analyse its
behaviour under the random binary string model; (iii)
invert the expected value of the observable to deduce
a plausible estimate of the (unknown) cardinality n;
(iv) perform another combinatorial-probabilistic analy-
sis in order to derive an unbiased estimator. Random al-
locations and their egfs, de-Poissonization, and Mellin
transforms are central ingredients of this programme.
This has led to the best currently known algorithm [11]
for estimating cardinalities: m log2 log n bits of infor-
mation suffice to estimate cardinalities till n, with a
typical accuracy of ≈ 1√

m
. The equivalent of four lines

of printed text is enough to estimate, to a few percents,
the size of the vocabulary of all of Shakespeare’s works!

7 Perspective

Stochastic versus analytic approaches. The
differences between the two approaches can largely be
summarized by the following diagram:

Mn −→ M∞
↓ ↓

M(z) −→ asymp(Mn).

Roughly, the probabilistic approach (East, then South)
aims at coming up with a continuous stochastic process
(M∞) that describes the limit behaviour of the whole
family of models (Mn), then return to finite models of
large index. (For instance, discrete random walks are
approximated by Brownian motion.) By contrast, the
analytic approach (South, then East) encapsulates exact
information into a function (M(z)), from which asymp-
totic information is extracted by means of complex-
analytic methods. In the current state of our knowledge,
analytic methods mostly apply to objects of low struc-
tural complexity, the ones that are often relevant for
basic algorithms and data structures. As summarized
by Odlyzko in [40]: “Analytic methods are extremely
powerful and when they apply they often yield estimates
of unparalleled precision.”

Complexity lower bounds. There is a limited
but perhaps interesting intersection between analytic
methods and complexity lower bounds. Roughly, we
associate to a combinatorial class a characteristic ana-
lytic object (its gf, viewed as a transformation of the
complex plane). If it can be recognized that a given
class C has a gf that does not belong to a family Ξ of
functions corresponding to a formal specification mech-
anism M, then, there results a structural complexity
lower bound : the class C cannot be specified (described)
within M. For instance, trees cannot be encoded by
any regular language nor recognized by any finite au-
tomaton since their gf is an algebraic irrational func-



tion. (The classical proof is based on combinatorial
“pumping lemmas”.) It has proved possible to obtain
purely language-theoretic results in this way [14]. What
however currently limits the efficacy of this method is
the fact that usual complexity classes have gfs, which
are hard to characterize. Perhaps, Vallée’s methodol-
ogy [50, 51] that interprets atoms as transfer operators
of dynamical system theory has a richer potential as it
is less “reductionistic” and can better take into account
noncommutativity of letters in words. The intermedi-
ate approach of replacing z by complex matrices would
deserve investigation in this perspective.

A calculus of discrete structures. A final
conclusion to this brief guided tour is the possibility of
building a synthetic theory of metric properties of large
discrete structures, based on a dedicated operational
calculus. The central chain of analytic combinatorics
based on

constructions → complexification → perturbation theory

proves effective in describing combinatorial classes that
“decompose well”. This fact in turn implies that many
fundamental algorithms and data structures can be pre-
cisely analysed and tuned for optimal performance. The
corresponding calculus, largely motivated by consider-
ations of algorithmic efficiency, is also of some mathe-
matical interest per se.
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