
SIAM J. COMPUT.
Vol. 15, No. 3, August 1986

(C) 1986 Society for Industrial and Applied Mathematics
OO9

DIGITAL SEARCH TREES REVISITED*

PHILIPPE FLAJOLETt AND ROBERT SEDGEWICK

Abstract. Several algorithms have been proposed which build search trees using digital properties of
the search keys. A general approach to the study of the average case performance of such algorithms is

discussed, with particular attention to the analysis of the digital search tree structures of Coffman and Eve.
Specifically, the method leads to the solution of a problem left open by Knuth, finding the average number
of nodes in digital search trees with both sons null.

The paper may be of interest as a survey and tutorial treatment of the analysis of the three primary
digital tree search methods: digital search trees, radix search tries, and Patricia tries.

Key words, analysis of algorithms, search trees, path length, asymptotic analysis, partitions

1. Introduction. A fundamental problem in computer science is the so-called
dictionary problem, where various operations, chiefly search and insert, are to be
performed on a set of records possessing key values. To insert a record is to store it
away for later retrieval; to search is to find a previously stored record with a given
key value. The binary search tree is an elementary data structure for solving this
problem: records are stored in nodes which contain two distinguished values (left and
right) which point to other nodes or could be null. One node, called the root, is pointed
to by no other nodes, otherwise each node is referenced by exactly one other node.
To search for a record with value v, we set x to point to the root and perform the
following operations until termination:

If x is null then terminate (v not found).
If key(x)= v then terminate (v found).
Otherwise, if v < key(x) then set x to left(x);

if v > key(x) then set x to right(x).

To insert a new record with a new value v, we search, then replace the null pointer
that caused termination with a pointer to the new record. The analysis of the perform-
ance of this method is well-known: if records with keys from a random permutation
of N elements are successively inserted into an initially empty tree, then the expected
number of nodes examined in a successful search in the resulting tree is

2 1+ Hr-3=(21n2) lgN+2y-3+u N]"
See [9] for details. Throughout this paper we use the notations Hv--EI<_k<=N 1/k
In N+y+I/2N+O(1/N2), where y=.57721. is Euler’s constant; lg N--log2 N;
and In N--log, N. The approximate value of the coefficient of lg N in the leading
term is 1.38630.... For a perfectly balanced tree, the coefficient would be 1, but an
O(N) worst case is possible (for example if the keys are inserted in ascending order).
Several methods are available to make the worst case search time close to lg N. One
technique is to periodically perform structural modifications on the trees to keep them

* Received by the editors April 3, 1984, and in revised form April 24, 1985.
f INRIA, Rocquencourt, France.

* Department of Computer Science, Princeton University, Princeton, New Jersey 08544. The research
of this author was done primarily while visiting at INRIA, and was also supported in part by the National
Science Foundation under grant MCS-83-08806 and by DARPA under contract N00014-83-K-0146 while
the author was at Brown University, Providence, Rhode Island.

748

DIGITAL SEARCH TREES REVISITED 749

"well-balanced" (for example, see [16]). In this paper we consider in detail an
alternative class of methods.

The digital search tree 1 is a data structure which leads to much improved worst
case performance (and asymptotically optimal average case performance as well) by
making use of the digital properties of the keys, if that is appropriate. We simply
assume that the keys can be represented as binary numbers so that it makes sense to
refer to the bth bit of a key, where the bits are numbered, say, from left to right. Then,
to search for a record with value v, we set x to point to the root and b to 1, then
perform the following operations until termination:

If x is null then terminate (v not found).
If key(x)= v then terminate (v found).
Otherwise, if the bth bit of v is 0 then set x to left(x);

if the bth bit of v is 1 then set x to right(x)
Setbtob+l.

Insertion is done exactly as with binary search trees (i.e., the null pointer which caused
termination is replaced by a pointer to the new record).

0 1

FIG.

Figure 1 shows a digital search tree built by inserting the keys 010 (Q), 110 (R), 111
(S), 001 (T), and 000 (U) in that order. Note that the order in which the keys are
inserted is relevant. For example, the tree shown in Fig. 2 results from inserting the
same keys in reverse order: 000 (U), 001 (T), 111 (S), 110 (R), and 010 (Q).

FIG. 2

In some implementations, it may be convenient to assume that the keys are all of
the same length, as in the examples above. The method also is appropriate for varying
length keys, provided that no key is a prefix of another. The number of nodes examined
in a digital search tree of N keys is limited by the number of bits in the keys, which
is larger than lg N but is likely to be within a constant factor for many natural situations.
The average case performance of this method is also known (in the analysis we assume
that the keys are infinitely long): if N records with keys composed of random bit
streams are inserted into an initially empty tree, then the average number of nodes
examined during a successful search in the resulting digital search tree is

lgN+
y-1 3 (! VN)+--a+(N)+O

o

In 2 2

750 PHILIPPE FLAJOLET AND ROBERT SEDGEWICK

where a is a constant between 1 and 2, and 8(N) is a small (I(N)I < 10-6) oscillatory
term (8(2N)= 8(N)) which are defined in detail in the next section. This is about
38% less than for binary tree search, but note that the results are not necessarily
directly comparable because the input models differ. The above result is due to Konheim
and Newman [11]; the refinement including the periodic term is due to Knuth [9, Ex.
6.3-27]. In this paper we give an alternate derivation that generalizes to yield other
statistics about the trees, in particular solving a problem left open by Knuth [9, Ex.
6.3-29].

Digital search trees are easily confused with radix search tries, a different applica-
tion of essentially the same idea. A binary trie has two types of nodes: internal nodes,
which consist of left and right pointers only; and external nodes, which consist of keys
only. To search for a record with value v in a binary trie, we set x to the root and b
to 1, then perform the following operations until termination:

If x is external, then terminate
(if key(x)= v then v found, otherwise v not found).
Otherwise, if the bth bit of v is 0 then set x to left(x);

if the bth bit of v is 1 then set x to right(x).
Setbtob+l.

Insertion is more complicated in tries than in binary or digital search trees. On
termination of an unsuccessful search for a key v to be inserted, we have two keys
which belong in the same external node. If the bth bits of those keys differ, we replace
that external node by an internal node which points to two external nodes containing
the keys; otherwise we have to also include an internal node corresponding to each
bit beyond the bth for which the two keys match. Figure 3 shows the trie for our
example set of keys {010 (Q), 110 (R), 111 (S), 001 (T), and 000 (U)}.

0 1

0 1

FIG. 3

In contrast to digital search trees, the same trie is constructed no matter in what
order the keys are inserted. Tries can have more than N internal nodes to store N
keys; also handling multiple node types is inconvenient in many programming environ-
ments. It is possible to eliminate both of these problems (see below). Most interesting
statistics for tries have been fully analyzed; for example, if N records with keys from
random bit streams are inserted into an initially empty trie, then the average number
of nodes examined during a successful search in the resulting trie is

lg N+i-+ + 8(N) + O

even though the average number of internal nodes in the trie is about N/ln2
1.44269... N.

DIGITAL SEARCH TREES REVISITED 751

It is possible to ensure that a trie constructed with N keys has just (N- 1) internal
nodes by collapsing one-way branches on internal nodes. Figure 4 shows the result of
this on our example.

FIG. 4

Equal bits in keys do not affect the structure of such tries. The programming
details of how to accomplish this are not relevant to this paper. We refer to these
structures as Patricia tries [9] because they are the basis of an alogrithm called Patricia
which also manages to store the keys in internal nodes and thus avoid the multiple-node-
type problem referred to above. Patricia is somewhat more complicated than digital
tree searching, but it has applications beyond searching which make it of independent
interest. From an analytic standpoint, direct comparisons between Patricia and digital
searching are suggested because they both build search keys into (the same class of)
binary tree structures, using digital properties of the keys. Knuth has probed many
aspects of Patricia in depth: for example, the number of nodes examined in an average
successful search is one less than for standard tries.

Many more details on the use and application of these methods may be found in
[9] and [16]. In this paper we present new results on the analysis of digital search
trees. The above introductory description is intended to motivate this analysis and to
provide a context within which we can discuss the relationship of the methods we use
to previous analyses of the various algorithms. In the next section, we give an analysis
of the average internal path length of a digital search tree which illustrates our basic
method and provides an alternate derivation to the one provided by Knuth for this
problem. Following that, we use the same general method to find the average number
of nodes in a digital search tree with both links null, a somewhat more complicated
problem left open by Knuth. In 4 we consider M-way branching. Section 5 is a
discussion of various generalizations.

2. Path length. The internal path length of a tree is the sum of the number of
nodes on the path from the root to each node in the tree. The average number of nodes
examined during a successful search in a search tree with N nodes is one plus the
internal path length divided by N.

Let AN be the average internal path length of a digital search tree built from N
(sufficiently long) keys comprised of random bits. Then we have the fundamental
recurrence relation

(1) Av N- 1+ 2N_1k
N=>I

with Ao defined to be 0. This follows from three easily established facts. First, the
internal path length of any tree of N nodes is N-1 plus the internal path length of
the two subtrees of the root. Second, the probability that the left subtree of the root
has k nodes (and the right subtree has N- 1 k nodes) is (k-1)/2N-l, the probability

752 PHILIPPE FLAJOLET AND ROBERT SEDGEWICK

that exactly k of the N-1 nodes that are inserted after the first node start with a 0
bit. Third, the subtrees themselves are randomly built according to the same model.
Recurrence relations of this type are used to describe the performance of many
tree-searching methods. As discussed further below, slight differences in the equations
can make the analysis somewhat more intricate.

By symmetry (change k to N- 1 k in the second part of the sum), the recurrence
(1) is equivalent to

AN=N-I+2’21"-i(N-I) N>-I

with Ao defined to be 0. This recurrence is transformed into a functional equation on
the exponential generating function A(z)= N>o Avzn/N! by multiplying both sides
by zV-1/(N 1) and summing for N >- 1"

+2 E 2-1(u-1) (n-2) u-1)N2 OkN-1

ak () -1 1

k0 N= +1

Ak(Z/2)k (z/E)n
=ze+2 E E ,

kO k no N!

A’(z) z e + 2A(z/2) ez/2.

This difference-differential equation can be transformed into a somewhat more manage-
able form by introducing the generating function B(z) >_o BNz!N! with

B(z)=-e-ZA(z).

That is, A(z)=eZB(z) and A’(z)=eZB’(z)+eZB(z). In terms of B(z), the above
difference-differential equation becomes

B’(z)+ B(z)= z+B(z/:Z).

This corresponds to a simple recurrence on the coefficients

1
Bv + Bv-1 2v_2 Bv_,,

or

(1)Bn 1 2N_’"2 BN-1, N >- 3,

with B2-- 1, which telescopes to give an explicit formula for Bn"

j--- N-2

Similar quantities arise in the theory of partitions, and we shall have occasion later to
use classical identities from that theory. We have Bv (-1)NQ_2, where

Ij<--N

As N, this approaches the limit Q .288788.... Now, expanding the formula

DIGITAL SEARCH TREES REVISITED 753

A(z)=eZB(z) shows that AN=k ()Bk, SO (after handling initial conditions) we
obtain an explicit formula for AN"

k>=2 k
(--1)kQk_2.

It remains to evaluate this sum.
At this point, it might be worth noting the relationship between this derivative

and the corresponding derivation for binary tries. The fundamental recurrence for tries
is

(3) A]= N+k- (Akr]+A!k), N>-2,

with Aor and Ar both defined to be 0. This is the number of nodes examined during
all successful searches, but it is the average external path length of the trie. Note that
since no key is stored at the root, the subtrees have a total of N keys. The resulting
functional equation on the exponential generating function is not a ditterence-ditteren-
tial equation but simply a difference equation:

A[r](z)= z(e 1)+2A[r](z/2) ez-2.

It is still convenient to transform the equation with A(z) e B(z) to get the equation

Btr](z) z(1 e-z) + 2Btr(z/2).
This yields directly

and

A]= (N) k(-1)k

k2 k 1-1/2k-1

which is somewhat simpler than (2) and can be handled directly the Mellin transform
techniques [2], as described in full detail in [6] and [9, 5.2.2].

The fundamental recurrence for the average external path length of Patricia tries
is trickier:

(4) A N 1 2_ + + N> 1N-k

with AoP defined to be 0. The external path length of a Patricia trie is the sum of the
external path lengths of the subtries of the root, plus the number of nodes in the
subtries (N) unless one of the subtries is empty (probability 1/2N-1). The functional
equation on the exponential generating function is similar to that for tries"

A[P](z)= z(eZ-e/2)+2A[P](z/2) e/2

with transformed version

BtP](z) z(1 e-z/2) + 2B[P](z2)

which yields directly

754 PHILIPPE FLAJOLET AND ROBERT SEDGEWICK

so that

A= E 2k-1 i N
k_2

as mentioned above.
The method used above is equivalent to the "binomial transform" method

described by Knuth, but it is perhaps more transparent.
For the average internal path length of digital search trees, Knuth uses an approach

suggested by Konheim and Newman Ill] to transform (2) into a form which has
essentially the same asymptotics as the above trie sum. This derivation is somewhat
indirect, and does not provide a way to analyze other properties of digital search trees.
But Knuth gives an alternate method for evaluating the trie sum, which he attributes
to S. O. Rice [9, Ex. 5.2.2-53]. We next show how this method applies directly to (2).

Rice’s method is based on a classical formula from the calculus of finite
differences [12]"

LEMMA 1. Let C be a closed curve encircling the points O, 1,.... N, and let f(z)
be a function which is analytic within C Then

(-f(=- (+,-/(a
2’i c

is the classical Beta function defined by B(x, y) F(x)F(y)/where B x, y)
r(x+y).

Proof. Noting that

-B(N-1,-z)=(-1)Nz(z-1) (z-n)
N!

we can write an equivalent version (which has amusing similarities between the left-
and right-hand sides) of the equation in the statement of the lemma:

YN(N-1)’’’(N-k+l)(-1)kf(k)=ikk! cZ(Z 1) (z N)
(- 1)f(z) dz.

To verify this is a straightforward application of Cauchy’s theorem: the integral is the
sum of the residues inside C, and the residue at z= k is ()(-1)kf(k) for each k in
the range 0-<_ k =< N.]

This general identity arises in the study of finite differences, since the sum
Y.k()(--1)kf(k) is precisely vNf(0), were Vf(k)=f(k-1)-f(k) (see, for
example, [12]).

To use Lemma 1 for asymptotic analysis, we change C to a large curve around
which the integral is small, and take into account residues at poles in the larger enclosed
area. This method actually plays a rather fundamental role in the analysis of the class
of problems considered here.

Note that the function B(N+ 1,-z) has poles at the integers 0, 1,. ., N. Thus,
using Rice’s method with Lemma 1 as stated would involve examining only the
singularities of f(z). However, the lemma also clearly holds if the sum is taken over
any subset of the integers 0, 1,..., N (and C is taken to enclose just those points)"
then application of Rice’s method might have to take into account the singularities of
B(N+ 1, -z) outside C. In particular, in the cases of interest in this paper, the points
0 and 1 are not included in C. In fact, we have to cope with double poles at these
points (as well as many singularities for the function f(z)).

DIGITAL SEARCH TREES REVISITED 755

To apply Rice’s method to the evaluation of (2), we need to define an appropriate
meromorphic function to extend Qk, which is defined only on the integers. To this
end, we introduce the function

Note that Q(1)= Qoo and that QN= Q(1)/Q(2-r), so that the’analytic expression
f(z) Q(1)/Q(2-z), which is defined when z is a positive integer, gives the appropriate
extension. Actually, this extension can be derived in a rather mechanical fashion,
because Qv is defined by the recurrence relationship

(1)Qv+l= 1 2v+ Q, N=>I,

with Qo 1, which simplifies to the expression

1
Q l_(1/2)v+l Qv+,"

We simply extend this recurrence relation and telescope it:

1
f(z)= l_(1/2)z+,f(z+ 1)

1 1

1_(1/21z+ 1-(1/2)z+2f(z+2)

1

Q(2_z) !irnf(z)
provided the limit exists. But f(0)= Qo 1 implies that limz_.oof(z)= Q(1), so f(z)=
Q(1)/Q(2-z) is a proper analytic extension. We point out this "mechanical" derivation
because we use essentially the same method for a more difficult problem in the next
section.

Thus, by Lemma 1 (see also the comments following the lemma), we know that

Q(1)1
B(N+ 1, -z) 2_z+2) dz(5/ a 27r---- c Q(

where C encloses the points 2, 3,..., N. To complete the analysis, we expand C to
a larger curve and study the behavior of the integrand at newly enclosed singularities.
These residue computations are simplified somewhat because the functions involved
have a simple product form; the following lemma, which is elementary, will prove
useful for most of the series expansions done in this paper.

LEMMA 2. If F(z)= I-IjR (1-f(z))- for some index set R, then the Taylor series

expansion of F at a, if it exists, is given by

(R 1 fj(a)_f(a) (z-a)+O(z-a)2)F(z) F(a) 1 + .,
Proof Elementary from the use of the "logarithmic derivative": if G(z)=

I-IkR gk(Z) then G’(z)/G(z)=,k

756 PHILIPPE FLAJOLET AND ROBERT SEDGEWICK

For example, at a 1, we have the following expansion for the Beta function

z I-[1--B(N-1, z)
1’’Zz

1
N(1 + (HN-I 1)(z-- 1)+ O((z’ 1)2)

1--z

N
N(HN_I-1)+O(z-1).

z-1

Similarly, for the Q function, we have

)()/)(-z/l) O(.) I-I (_-z/s)-i
j<l

2s-
l-In2 E (z-1)+O(z-1):

s< 1 2s-I

1-a ln2(z-1)+O(z-1)

where a 1 + + + +. .. This is a fundamental constant which arises in the analysis
of several algorithms, for example Heapsoa [9, p. 156] and approximate counting [3].

We are now ready to complete the analysis of the average intenal path length of
digital search trees using ce’s method for the asymptotic analysis:

THEOREM 1. (Konheim-Newman, uth). e average internal path length of a
digital search tree built from N records with keys from random bit streams is

(N+I)lgN+ 12 +-+(N) N+O(N/)

where =.577216. i uler’s constant, 1 ++++ 1.606695 ., and
(N) is a periodic function in lg N, with I(N)I < 10-. e approximate value of the
coecient of the linear term is 1.7155 ..
oo Following the discussion above, the value sought is given by the integral

(5). If we change C to a large rectangle Rx with corners at the four points (iY, X
iY), then we know by Cauchy’s theorem that the integral around Rx (which we shall
show to be small) is equal to A minus the sum of the residues of

(
(+,-

at poles within Rx but not within C.
Rewriting B(N+ 1, -) as F(N+ 1)F(-)/F(N+ 1), we can make use of

standard asymptotic expansions of the F function to bound the value of the integral
around Rx. We have the approximations

r(l N-- + o(N---1)
r(N+a)

and

F(x + iY) O(I YI’-/ e-lvl/2)
(see, for example, 17, Chap. XII]). Thus, a bound for our integral along the top and
bottom lines of Rxv is given by

o(f N+ 1)x+iY[y[x-1/2 e-rY/2 dx).

DIGITAL SEARCH TREES REVISITED 757

This bound is valid only if Q(2-z+2) does not get too close to zero; we can insure this
by taking Y to be of the form (r/ln 2)(2 Y’ + 1), with Y’ an integer. Thus, the integral
is exponentially small in Y and vanishes on the top and bottom of Rxy as Y-+ m. A
similar argument shows that the integral vanishes on the right of Rxy as X-+ oo. On
the left, we have the bound

O(I_c F(N+ 1)
gF(N+l/2-iy) dy) O(N/’).

This proves that Av plus the sum of the residues in the halfplane to the right of the
line x 1/2 (but not within C) is O(N’/2). We now proceed to calculate these residues.

The integrand has poles at z =j + (2rrik)/ln 2 forj 1, 0, -1, -2,..., and all k -> 0,
since at these points 2-z+s= 1 which causes one of the factors of Q(2-z+2) to vanish.
The poles at 0 and 1 are double poles because B(N+ 1,-z) is also singular at 0 and
1. Of these, only the poles for j 1 are within the region of interest; thus we have to
compute residues at the double pole 1 and at the points 1 + (2rrik)/ln 2 for k # 0.

At z 1, we use the series expansions derived from Lemma 2 above"

Q(1)
Q(2-z+2)-B(N+I,-z)

1 Q(1)
=-B(N+I,-z)

1 2-z+’ Q(2-z+’)

-(- -z-lN N(Hv_I 1)+O(z 1))
x (-l)ln2++0(-1)
x(1-a ln2(z-1)+O(z-1)2).

The residue at z 1 (the coefficient of 1/(z- 1) in this product) is

N
In 2

(HN-1 1)+N(a) N lgN N T-1)(-i--’- a + + 0(1).

The poles at 1 +/- 2rrik/ln 2 add a small contribution to the linear term: the total residue
at these points is

ln2 o B N+ 1,-1--i-].
As above, we can write B(N+ 1,-z) as F(N+ 1)F(-z)/F(N+ l-z) and use

Lemma 2 to develop an asymptotic expansion. We have

758 PHILIPPE FLAJOLET AND ROBERT SEDGEWICK

This estimate is valid just for fixed k as N grows" the calculation of the uniform bound
necessary for the calculation of the error term can be derived from more detailed
asymptotics on the Beta function (see [17, pp. 277-8]). The sum of the residues at the
points 1 +2,n-ik/ln 2 is found to be

-N6(N)+ O(1)

where

1 (2’ik e2,k lg N6(N)]-oF -1- in2/
This and related functions arise in the study ofmany algorithms, for example: evaluating
arithmetic expressions [5], parallel addition 10], extendible hashing 13], approximate
counting [3], and Batcher’s merging networks [15]. The properties of 6(N) cited in
Theorem 1 are discussed in Knuth [9, p. 134].

Thus, subtracting the sum of the residues at z 1 and at z 1 + 2-[rik/ln 2 for k 0
from the estimate of the value of the contour integral around Rxy in the limit, we
have shown that

y-1 1) N1/2A N Ig N+ N ,,ln 2 a +-+ 6(N) + o(

as desired. The same method of analysis can be used to expand Av to any desired
asymptotic accuracy, by using a contour Rxy which includes more poles. The double
pole at z 0 and the poles at z +2,n’ik/ln 2 for k 0 contribute a constant term like
the coefficient of the linear term, and the poles at z =j + 2,n’ik/ln 2 for j =-1,-2,
contribute more complicated (but very small) oscillatory terms. [3

Our interest in this derivation is that it illustrates a general method of evaluating
sums of the form -,k ()(--1)kf(k) even when f(k) is a relatively complicated function.
(As mentioned above, the proof of Theorem 1 is quite specific to Qk-2.) Essentially,
the asymptotic analysis is reduced to a singularity analysis of a meromorphic function
satisfying the same recurrence as f(k). Next, we show how this method applies for a
function satisfying an inhomogeneous recurrence. This problem arises naturally in the
study of other properties of digital search trees.

3. External internal nodes. A property of trees of some interest is the number of
internal nodes which have both links null. An alternate storage representation could
be used for such nodes. The question left open by Knuth (see [9, Ex. 6.3-29]) is to
determine exactly how much storage can be saved. This is of more practical importance
when M-ary trees (not binary) are considered (see the next section). In this paper we
are interested in the problem chiefly because it illustrates the power of Rice’s method,
as contrasted with standard Mellin techniques, which seem difficult to apply directly
to this problem. (Another application of Rice’s method may be found in [7].)

In a fully balanced binary tree of N nodes the number of nodes with both links
null is IN/2]; in a completely unbalanced tree the number is 1. It is a simple exercise
to show that the average number of such nodes for a random binary search tree is
(N+ 1)/3. We expect digital search trees to be somewhat more balanced than binary
search trees; thus the result should be that somewhere between one-third and one-half
of the nodes have both links null. It is mildly surpising that the answer is somewhat
closer to the former than the latter.

DIGITAL SEARCH TREES REVISITED 759

THEOREM 2. The average number of nodes with both links null in a digital search
tree built from N records with keys from random bit streams is

N /3 + 1 Q--- a + 8*(N) + O(N1/2)

where the constants involved have the values

1 1 1
a 1 +_+_+m+ 1.606695 ,

3 7 15

137
Q=2 4 8

.=.288788

and

/3=1.22[__] 2.23[__] .24 [- 1]+.. + + 3 1+_ + 7.74313’’’.
1 1"3 i’3"’ +3 7

Thefunction *(N) is a periodicfunction in lg N, with 16*(N)I < 10-6. The approximate
value of the coefficient of the leading term is 0.372046812....

Proof As before, we use a simple transform with generating functions to derive
an explicit sum, then use Rice’s method to evaluate the sum.

If CN is the quantity sought, then we have the recurrence

with C1 1 and Co=0. This follows from the same argument as for (1), with the
additional observation that the number of nodes with both links null in a tree is exactly
the sum of the numbers of such nodes in the two subtrees of the root, unless the tree
has just one node.

In terms of the exponential generating function C(z) vo Cuzu/N !, this leads
to the equation

C’(z) 1 + 2C(z/2) ez/2

which becomes, in terms of the transform generating function D(z) vo DuzN/N !,
with D(z) defined to be e-ZC(z):

D’(z)+ D(z)= e + 2D(z/2).

This gives a recurrence on the coefficients as before:

1
Dv + Dv-1 (-1)u-1 + 2v:2 Dv-1,

ON (- 1)/v-1 (1 2N1’_’2) D/v_I, N_>-2,

with Do 0 and D 1. But this recurrence is inhomogeneous, so the telescoped solution
is somewhat more complicated than before:

li_N-1 i<--_j<=N-2

760 PHILIPPE FLAJOLET AND ROBERT SEDGEWICK

Rewriting this in terms of

,-= 0, ++""" +

and transforming by C() eD(), we have the following explicit sum for the desired
quantity:

This sum is more dicult to evaluate than (2) because R is more complicated than 0.
We might begin by mimicking the mechanical" derivation of Q(), turning the

recurrence defining R around to define a meromorphic function satisfying the same
recurrence. We have

R+=I+ 1-2+ R
or, solving for R and substituting q 1/2"

1 1
(8) R

1 qN+l + 1 qN+l Rs+.

(From this point on, we will use q for 1/2. Not only is this a notational convenience,
but we will see in the next section that this is the only change necessary to solve the
same problem for M-ary digital search trees.) Using this recurrence to extent to a
function on the complex plane would give

1 1
R(Zl=l-qZ+’ 1-q

z+’R(z+l)

1
z+ +) +,+o(-q ’)(-q (-q)"

Unfounately, this sum does not converge when z is a positive integer, so it ceainly
does not extend R. The reason is clear: R itself is not bounded as N increases, so
extending a recurrence to increasing N is doomed to failure. Founately, it is not
dicult to avoid this problem" by studying the asymptotic performance of R we can
find a closely related function which can be extended by the above technique.

This asymptotic development is elementary from Lemma 2 because the generating
function for R/Qs is closely related to a classical identity in the theory of paitions"

LEMMA 3 (Euler).
u 1

(1 q)(1 q2)..(1 q")=(1 u)(1-qu)(1 q2u)’’’"n=0

Proo The coecient of u"q on both sides is the number of ways to write n as
the sum of m nonnegative integers. (See Hardy and Wright [8] for related identities
and many more details.)

In the notation that we have been using, this identity says that so u/Q
1/(1- u)Q(u). This gives a convenient way to write the generating function T(u)=
o(R/Q)u in product form:

1 u 1
T(u)-

1 u oQ (1- u):Q(u)

DIGITAL SEARCH TREES REVISITED 761

Now we can expand Q(u)-1 by Lemma 2"

1 1 .__a)2.Q(u--Q+Qoo u-1)+O(u-1

Thus T(u) 1/ Qoo(1 u)2) a/ Qoo(1 u)) plus a function which is analytic for]u] <= 2
except for a simple pole at u 2, which implies that

+ O(2-).
Q

Since QN/Q= 1 + O(2-) this simplifies to

RN=N+I-a+O(N2-N).

Now, the function R RN-(N+ 1- a) not only satisfies a simple recurrence
but also converges very quickly, so we can apply the recurrence for increasing N to
extend the function. From (8) we have

(9) R*
(N+l-a)q+ 1

N N+I + N+I R+I1-q 1-q

which is extended by the meromorphic function

(z + 1 a)q :’+x 1

l_qz+lR(z)=
1-q

z+lR(z+l)

(z + 1 a)qz+l (z + 2- a)qz+2 1
(10)

1 qZ+l (1 qZ+l)(1 qZ+2) + z+2R(z+2)
1-q

(z + l +j- a)qz+l+j

jo(1-q)(1-q ...(1-qz++j)"

This function is meromorphic except for simple poles at the points z =j+/-2"rrik/ln 2
for j_-<-2 and all k-> 0, and for j =-1 and k > 0. Note carefully that R(-1) exists
(why?).

Substituting in (7), we have

k2 k
(--1)k(R*k-2+k--l--a)"

After applying the elementary identities k ()(--1)k =k ()k(-1)k=0 wc have the
simplified result

(11) CN=(N-1)(a+I)- ()(--1)kR*k-2"
k2

Now, by Lemma 1 we know that

1 f B(N+I,-z)R(z-2)(12) CN-(N- 1)(a / 1)= 2r-- 3c dz.

The same argument as for Theorem 1 shows that the right-hand side of this equation
is equal to the sum of the residues of the integrand at singularities to the right of the
line x 1/2, to within O(NI/2). In this case, the poles at 1 +/- 2rik/ln 2 are all single poles.
The main term is given by N lim_ R(z- 2); the poles for k 0 add a small oscillatory
term.

762 PHILIPPE FLAJOLET AND ROBERT SEDGEWICK

The method of calculating R(-1) is to express R(z) in terms of a generating
function which generalizes the function of Lemma 3, then to expand that function and
exploit certain properties of its derivatives. Specifically, we define

qJuj
F(u,v)=

j>_ (1 qv) (1 qJv)"

This is the generating function for restricted partitions (the coefficient of unvmqk is
the number of ways to partition k into m parts not exceeding n). Note that, by
Lemma 3,

1
F(u, 1)+1 (1-qu)(1-qEu)(1-qau)...

so that F(1, 1)--QI_ 1. Also, from Lemma 2 we have

1 + + -q +...F(u’l)=(1-qu)(1-qu)(1-qu) qu 1-qu 1 u

so that F(1, 1)= /Q. Furthermore, we have

q
F(1, qZ+,)=,v (1-q+2) (1-qZ++J)

F(1 q+l)=> (1-q+2)
JqJ

(1 qZ+i+j)

which gives, from (10), the following expansion:
z+lq

R(z)
1 qZ+, ((z + 1 a)(F(1, qZ+,) + 1)+ F(1, qZ+)).

From this formulation, a Taylor expansion around z =-1 is straightforward:

and

so that

qZ+l 1 1 + O(z+l),
1-qz+ (z+l) In q 2

F(1, qZ+,) F(1, 1)+(z + 1) In qF(1, 1)+ O(z+ 1)2

F(1, qZ+l)= F(1, 1)+ (z+ 1)In qF[2(1, 1)+ O(z + 1)2

F(1, 1)+1
R(z) + aF(1, 1)-F’2(1, 1)+ O(z+ 1).

In q

Note carefully the cancellation of-a(F(1, 1)+ 1)+ F(1, 1); this is also implied by
the fact that R(z) exists at z =-1. Thus, to complete the calculation of the main term,
we need only calculate F(1, 1) and F2(1, 1). These are constants which can easily
be calculated from the series representations

qj (q +
q2 qj)(13) F(1,1)=.

(1)(1 q- (1 q)1 q 1-q2+’" 1j_ -q

(14) F(1,1)=
JqJ q + +" "+

j,(1-q)(1-q-) ...(1-q) | q 1-q 1-

DIGITAL SEARCH TREES REVISITED 763

Actually, we can relate F(1, 1) to a and Qo, for the function F(u, v) has a symmetry
property which seems remarkable from an analytic standpoint (though it is more
intuitive from the combinatorial interpretation). We have

qkuk(1-- qkt)
F(u, v)-vF(qu, v)= k_l(1--qo)’’’(1--qko) qu(l+F(u,o)).

This recurrence can be telescoped as follows:

F(u,)-
qu

F(qu, o)
1 qu 1 qu

q2U 2q + q2 F(qEu,
1-qu (1-qu)(1-qEu) (1-qu)(1 u)

=uF(v,u)/v

or vF(u, v)= uF(v, u). (See [14] for some related identities and techniques.)
Differentiating both sides of this symmetric identity with respect to u, we find that

F(1, 1) F(1, 1) + F(1, 1), so F(1, 1) (a 1)Q+ 1. Note that differentiating
again with respect to v produces a trivial identity: there does not seem to be an easy
way to express F’(1, 1) in terms of a and Q, so we denote that constant (defined
in (14)) simply by ft. Collecting terms, we have shown that the residue of the integrand
in (12) at z 1 is N times

fl + l Q +

It remains to calculate the residues of the integrand in (12) at the other singularities.
This calculation is straightforward: the residue of (1-q+)- at z=

-1 (2ik)/ln q is -1/ln q, and the other terms in R(z) contribute a factor of
2ik/Qln q. factor from B(N+ 1,-z) is expanded exactly as for eorem 1;
thus we have the oscillato term

1 2ikF(2ik e2iklg N*(N) Qlno In q k-l-]
This completes the calculation of the coecient of the linear term.

For purposes of comparison, it is of some interest to compute the average number
of internal nodes with both sons external in Patrieia tries. This is a relatively straightfor-
ward derivation similar to the path length calculations given above, so we only sketch
it here. We sta with the recurrence

(15) C= +Ck), N3
k

with C"= C[" =0 and C[P= 1. This corresponds to the functional equation

Ct’(z) (z/2)2 + 2ctP(z/2) e/2

which transforms to

Dte(z) (z/2)2 e + 2D(z/2)
and eventually gives the sum

CI- () k(k-1)(-1)k
-42 1-1/2k-

764 PHILIPPE FLAJOLET AND ROBERT SEDGEWICK

Knuth [9, Ex. 6.3-19] gives specific evaluations of such sums. The eventual result is
that the proportion of nodes in Patricia tries with both sons external is 1/(4 In 2)=
.3606. plus a small oscillating term. Thus, according to this measure, digital search
trees are (slightly) more balanced than Patricia tries.

4. Multiway Iranehilag. A natural generalization of the digital tree search (and
trie search) algorithm studied above is to allow M-way branching (not just left and
right), each node containing M links to other nodes. If M 2" and the keys are in
binary, this is conveniently implemented as follows. To search for a record with value
v, set x to point to the root and b to 1, and perform the following operations until
termination:

If x is null then terminate (v not found).
If key(x)= v then terminate (v found).
Otherwise, if the m(b-1)+ 1 through mbth bits of v represent k then set x to
the kth link of x.
Setbtob+l.

Here each node is assumed to have M links, numbered from 0 to M-1. A similar
implementation of tries (with 0 keys and M links per node) is straightforward. (The
generalization of binary search trees is quite different: M-ary search trees have M- 1
keys and M links per node.)

It turns out that the analysis given above survives largely intact for the M-ary
case. For example, to find the average number of nodes in a M-ary digital search tree
with all links null, we begin with the fundamental recurrence"

1 (N-1) C’tMl+rtMl+...+rtM, N>2,(16) Ct= E MN-1 ’-kM/
g+g:+...+k kl, k2, ", kM

(’" k, k2

with C3= 1 and Cto3= 0. This is proven in the same manner as (1) and (6). First,
the number of nodes with all links null in a tree is exactly the number of such nodes
in all the subtrees of the root, unless the tree has just one node. Second, the probability
that the first subtree has k nodes, the second has k2 nodes, etc. with kl d- k2 d-. d- k
N- 1 is exactly

M- k,k,’".kI

Third, all the subtrees are randomly built according to the same model.
By symmetry, (16) is equivalent to

E+kl+k2+-" km=N kl, k2, kM "kl

with CM= 1 and Cto3= 0. Now, by manipulations generalizing those leading to (2),
we define the exponential generating function Ct(z)=vo ctzV/N! and derive
the following difference-differential equation:

d
d-Ct(z) 1 / MCt(z/M)(eZ/M)-1

(17)
1 + MCt(z/M) e(1-1/M)z.

For M =2, this is exactly the equation derived from (6); moreover, none of the
manipulations used for solving (6) depend in an essential way on the value of that

DIGITAL SEARCH TREES REVISITED 765

constant. In fact, we defined q- 1/2 for notational convenience in that derivation: if
we take q 1/M in the solution, we get the solution for M-ary digital trees.

COROLLARY. The average number of nodes with all links null in an M-ary search
tree (for M >-_ 2) built from N records with keys from random bit streams is

(t2-
}’" (1 EM](CM]))lnM+a aN fl[M]+ 1- .-.,M3 1) + 6 Z](N) + O(N1/2)

where the constants involved are given by

1c=
Mk>_l 1

kMk+l 1

k_->I(M-1)(M2-1)...(Mk-1) k Mj-1

and the oscillatory term is

ln---l inM2rik6[4](N)
Qo kO F 1 +

Proof Immediate from the discussion above.

2
| e2,rrik lg N

In M/

Table 1 below gives the approximate value of C[ul and the various constants for
small values of M.

TABLE

M QM] aiM] filial C[]/N

2 .28879 1.60670 7.74313 .37205
3 .56013 .68215 .71399 .47602
4 .68854 .42110 .22414 .53054
8 .85941 .16097 .02748 .62506
16 .93359 .07085 .00510 .68928

Note carefully that, in a perfectly balanced M-ary tree, about (M- 1)/M of the
nodes have all links null. Measured against this standard, the constants in the last
column of the table show that digital search trees are about 70%-75% balanced for
small M. That is, the ratio between the constants given and (M-1)/M is between .70
and .75. Of course, as M--> oo, this ratio approaches 1.

5. General framework. The methods that we have used in the previous sections
can be applied to study many other properties of digital search trees. If X(T) and
x(T) are parameters of trees satisfying

(18) X(T)= Y’. X(T)+x(T)
subtrees Tj

of the root of T

then the exponential generating functions for the expectations Xv and xN for an
M-ary digital search tree built from N records with keys from random bit streams satisfy

X’(z) MX(z/M) e(1-1/M)z -t- x(z).

766 PHILIPPE FLAJOLET AND ROBERT SEDGEWICK

This is derived in exactly the same manner as (17). Now, in terms of the transform
generating functions Y(z)= e-ZX(z) and y(z)= e-Zx(z) this becomes

(19) Y’(z)+ Y(z)= MY(z/M)+y’(z)+ y(z).

This leads to a nonlinear recurrence like (8) satisfied by YN, with the solution sought
given by XN k () Yk. If the quantity (-1)kyk is sufficiently well behaved, we can
study its asymptotics and find a function Yk* which:

(i) is simply related to Yk SO that -,k ()(Yk--(--1)k(Y’)) is easily evaluated,
(ii) satisfies a recurrence of the form Y*+I=(1-g(M,N))Y*+f(M,N),
(iii) goes to zero quickly as N o.

Depending on the nature of g(M, N), f(M, N) and the speed of convergence, condi-
tions (ii) and (iii) may allow the recurrence to be turned around to extend Y* to the
complex plane and so allow the desired expectation to be computed by evaluating the
sum Yk ()(Yk--(--1)k(y*k)) as detailed in the previous sections.

For example, this method could be used to find the distribution of occupancy of
nodes in M-ary digital seai’ch trees, and many other problems.

The same type of generalization applies to the study of tries (and Patricia tries),
and the simpler nature of the recurrences follows through the generalization. For
example, the exponential generating functions for the expectations X and x of
parameters of trees satisfying (18) for a random trie built from N records from random
bit streams is

(20) X(z)= MX(z/M) ez/l +x(z)

which is considerably easier to deal with.
These methods allow quite full analysis of the types of trees considered, and they

clearly expose the fundamental differences and similarities among the analyses.
A final note: the reader who is still awake may have noticed that the "transforms"

that are essential to these computations are not at all arbitrary functions. Indeed, if
x(z) Y v>-o xz:v/N! is the exponential generating function for the expectation of a
parameter X, then Y(z)= e-Zx(z) is the expectation of X if the number of keys is
Poisson with parameter z.

For digital search trees, tries, and Patricia tries, this function satisfies a simple
functional equation like (20) which makes it amenable to direct solution by Mellin
transform techniques. (See [6] for details of the application of this method to the
analysis of tries" essentially the Mellin transform is trivially computed by taking the
transform of both sides of the functional equation, and then a singularity analysis is
done for the reverse transform. Another example of this technique may be found in
[4].) The relationships among the Bernoulli and Poisson models and Mellin transform
and Rice’s method of asymptotic analysis are a fruitful area for further study. More
details will be reported in a future paper.

Acknowledgments. The authors would like to express their gratitude to Janet
Incerpi, who is still awake. Also, thanks are due to our Viennese friends, especially
Helmut Prodinger, for helping us find several bugs in the manuscript.

REFERENCES

E. G. COFFMAN, JR. AND J. EvE, File structures using hashing functions, Comm. ACM, 13, 7 (1970),
pp. 427-436.

[2] E. DAVIES, Integral Transforms and Their Applications, Spdnger-Verlag, 1978.
[3] P. FLAJoLET, Approximate counting: a detailed analysis, BIT, to appear.

DIGITAL SEARCH TREES REVISITED 767

[4] P. FLAJOLET AND C. PUECH, Partial match retrieval ofmultidimensional data, INRIA Research Report,
1983.

[5] P. FLAJOLET, J. C. RAOULT, AND J. VUILLEMIN, On the average number of registers required for
evaluating arithmetic expression, Theoret. Comput. Sci., 9 (1979), pp. 99-125.

[6] P. FLAJOLET, M. REGNIER, AND R. SEDGEWICK, Mellin transform techniques for the analysis of
algorithms, in preparation.

[7] P. FLAJOLET AND R. SEDGEWICK, The asymptotic evaluation of some alternating sums involving
binomial coefficients, INRIA Research Report, 1983.

[8] G. HARDY AND E. WRIGHT, An Introduction to the Theory ofNumbers, Clarendon Press, Oxford, 1960.
[9] D. E. KNUTH, The Art of Computer Programming. Volume 3: Sorting and Searching, Addison-Wesley,

Reading, MA, 1973.
10] The average time for carry propagation, P. Kon Ned A, 81 (1978), pp. 238-242.

[11] A. G. KONHEIM AND D. J. NEWMAN, A note on growing binary trees, Discrete Math., 4 (1973), pp.
57-63.

[12] N. E. NRLUND, Vorlesungen iiber Differenzenrechnung, Chelsea, New York, 1954.
13] M. REGNIER, Evaluation des performances du hachage dynamique, Thse de 3me cycle, Universit6 de

Paris-Sud, 1983.
[14] G. P(LYA AND G. SZEGO, Problems and Theorems in Analysis I, Springer-Verlag, Berlin, 1976.
[15] R. SEDGEWICK, Data movement in odd-even merging, this Journal, 7 (1978), pp. 239-273.
[16], Algorithms, Addison-Wesley, Reading, MA, 1983.
17] E. WHITTAKER AND G. WATSON, A Course ofModern Analysis, Cambridge Univ. Press, Cambridge,

1927.

