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Tries are a data structure commonly used to represent sets of binary data. They also 
constitute a convenient way of modelling a number of algorithms to factorise polyncl 
mials, to  implement communication protocols or to access files on disk. We present 
here a systematic method for analysing, in the average case, trie parameters through 
generating functions and conclude with several applications. 

1 .  Introduction 

Digital Searching methods comprise a variety of techniques used for 
sorting or retrieving data by taking advantage of their binary represen- 
tations. In many cases, these techniques constitute an attractive alter- 
native to comparison-based methods that relie on the existence of an 
ordering on the universe of data to be processed. 

The trie structure is probably the most well-known amongst digital 
structures. It is a tree representation of sets of digital (e.g. binary) se- 
quences that has been introduced by de la Briandais and Fredkin [9] t  
and bears analogies to  binary search trees [ 11,  15, 17, 20, 1, 191 Ope- 
rations like insert, delete, query, union, intersection ... can be perfor- 
med efficiently on this representation of sets. Tries also appear as a 
structure underlying Radix Exchange Sort (a digital analogue of 
Quicksort, [ 1 1 1, p. 13 1). 

The name trie was coined by Fredkin apparently from a combination of tree and retrieval. 
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Tries have been proposed as an efficient way of maintaining indexes 
for externally stored files. When combined with hashing techniques 
(to ensure a uniform distribution of elements on which tries are built) 
they lead to dynamic hashing schemes like the Dynamic Hashing Me- 
thod of [ 121 or Extendible Hashing [21. 

Another use of tries is for multi-dimensional searching; the problem 
there is to retrieve records with several fields when only some of these 
fields are specified in a query. Under the form of k-d-tries (multi-di- 
mensional tries) they constitute an elegant solution to the problem of 
Partial Match or Secondary Key retrieval. This variety of tries has been 
described by Rivest [ 181 who assigns their origin to Mc Creight. Used 
in conjunction with ideas taken from dynamic hashing techniques 
they lead to  the so-called Grid-File algorithms [14I that have been 
proposed as a physical access method for files. 

As a representation of binary sequences, tries are also of frequent 
occurrence in several applications. As an example, Huffman’s algori- 
thm may be viewed as a progressive construction of a trie. Situations 
where they appear t o  be a convenient model are for instance polyno- 
mial factorisation [8], communication protocols [3  I or some simula- 
tion algorithms [6 ] .  In many such cases, rather intricate parameters 
of binary sequences have simple formulations when expressed in terms 
of tries. 

Our objective here is to describe a general set-up in which statistical 
analyses on tries can be conveniently performed. We show how to 
derive in a concise and synthetic way generating functions for average 
values of a large number of parameters of interest in the context of 
the analysis of algorithms. In this manner, we are able to present in 
a systematic manner (and sometimes extend) a number of analyses 
otherwise often obtained at some computational effort, and show 
that they can be reduced to a few simple paradigms. 

Our methodology consists in first establishing a few basic and easy 
to prove lemmas; these lemmas, given in Sections 2,3, relate under 
various probabilistic models some structural definitions of trie para- 
meters to  functional equations of some sort over generating functions 
of average values for which general resolution methods are also availa- 
ble. We thus have an algebra of parameters on tries which is mapped 
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on an algebra of generating functions. In this way, the process of ana- 
lysis is reduced to finding expressions for parameters of interest as 
combinations of a few building blocks for which mapping lemmas are 
available, and obtaining generating function expressions (whence ex- 
pressions for average values) becomes an almost mechanical process. 
Most notably, the recourse to recurrences on average values which 
constitutes the basic technique usually employed is completely elimi- 
nated. This permits to  analyze in a simple way rather complex parame- 
ters of tries. The usefulness of this approach is demonstrated on seve- 
ral examples in Sections 4,5. 

We do not address here the problem of the asymptotic evaluation of 
trie parameters (cf [ 11 1, p. 13 l), but occasionally mention some of 
the estimates to  make clear the implications of the analyses. The key 
method there consists in using Mellin transform techniques and some 
systematisation of its use is also possible [7]. 

1.1. Trie Representations of Sets 

Assume we want to represent data from a universe of binary strings, 
sometimes called records or keys, of a fixed length s 20:  

A subset WEB(') decomposes into two subsets o / O ,  w / l  of B('-l) de- 
fined by: 

The definition of a trie is based on this decomposition. 

Definition: 
lows: 

To a subset o c B(s), we associate a tree trie (w ) as fol- 
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( 1 )  If Iwl = 0, then trie (w) is the empty tree. 
(2) If /W I = 1, then trie ( w )  is a tree formed with a unique leaf label- 

led w .  

(3) If Iw I 2 2, then trie (w) is obtained by appending a root to the 
recursively defined subtrees trie (w/O) and trie (all). 

As an example, the trie associated to: 

with 

a = 01011, b = 01101 ,c=  10110 ,d=  11000,e= l l O l l , f =  11110 

is displayed in Figure 1. 

Fig. 1: A trie constructed on 6 binary sequences of length 5 .  

?We let Id denote the number of elements (cardinality) o f  
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The way of constructing the trie is clear form the definition: we re- 
cursively partition the set t o  be represented according to bits of hi- 
ghest weight until groups of cardinality at most one, represented by 
their remaining bits, have been individuated. 

There is accordingly a simple way to recover the original set from 
the tree: simply read off all branches from the root to leaves, inter- 
preting a left going edge as a 0 and a right going edge as a 1, appending 
for each branch the binary string stored at the leaf. For instance, in 
the above tree, going left-right-right (i.e. reading 01 l), we find leaf B 
that contains the information 01, and this corresponds to the key 
b = 01 101. 

1.2. Operations on Tries 

The recursive construction of a trie, usually represented in the form 
of a linked structure, closely mimics the definition given above. Once 
trie (0 )  has been constructed, we can perform various operations 
[ l l ,  151: 

query: to determine whether u is in o, follow a branch taking 
directions corresponding to  the successive letters of u until a leaf 
is encountered, then compare with the remaining bits. 

insert: same as query; when a leaf is encountered, split it to ob- 
tain the new trie. 

delete: a dual of the insertion procedure. 

union-intersection: when sets are represented as tries, these ope- 
rations can be implemented by means of the recursive defini- 
tions: 

with adequate initial conditions. 
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The costs of these operations are largely determined by the number 
of pointer chains followed (or bits inspected). They usually admit 
inductive definitions of a simple form over the tree structure. A proto- 
type is the size of the trie representation measured in the number of - 

its internal nodes, which satisfies: -t 

in ( w )  = if Iw I 5 1 then 0 else 1 +in (u /O) i - in(w/ l ) ,  

or equivalently 

together with the initial condition in ( w )  = 0 if 10 15 1. 

Our purpose in what follows is to  describe a method for obtaining 
estimates of average values of such parameters when the number of 
elements in the set is a fixed integer n. 

1.3. Trie Indexes 

In order to save storage (reduce the number of pointers used). Sus- 
senguth [211, followed by Knuth [ l l ,  ex. 6.3.201 proposed using a 
sequential storage discipline whenever reaching a subfile of b or less 
keys. The corresponding tree which we shall call a b-trie thus consists 
of: 

(i) a skeleton tree formed with the internal nodes 

(ii) leaves containing between 0 and b records. 

This idea may be used to access files on some secondary storage 
device. The skeleton tree then becomes the index or directory and 
small subfiles are stored in pages, with b being the page capacity deter- 
mined by physical characteristics of the device (in practice b ranges 

It is clear that such inductive definitions may be expressed either in terms of the left-sub- 
treelright-subtree decomposition of trees or in terms of the equivalent decomposition of sets 
W into 4 0  and ail. 
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- q, . .  '"\ 

i 
:%4tween a few tenths and a few hundreds). When used in conjunction 
:% th hashing, the resulting algorithm is exactly Larson's Dynamic Has- 
;fi$g method. 

. -s7 
d 

1 

Finally if the index is itself too large to fit in core, it may be paged 
as an array that represents its embedding into a perfect tree. This algo- 
rithm constitutes the Extendible Hashing method. 

Naturally, the operations described in Section 1.2 are easily adapted 
to  such representations of files. Notice, for instance, that a query with 
Dynamic Hashing requires only one disk probe, Extendible Hashing 
which can be used even for very large files requiring only two accesses. 
These strategies thus guarantee an almost direct access to external fi- 
les, whence their practical interest. 

I 

2. The Uniform Model 

I Our objective is to obtain estimates of expected values of a number 
of parameters on tries (size, path length, height, ...) as a function of 
the number n of elements on which the trie is built. In order to do so, 
we must first make precise what our probabilistic assumptions are. 
Following [ 1 1 , 151 we retain two models. 

1. The finite key model; Keys are to be of some fixed length s (s a 
non-negative integer). All sets of n elements are assumed to be 
equally likely. Since the number of these is: 

the probability of each set is thus (bn('))-'. 

2. The infinite key model: it is also occasionally called the Bernoul- 
li model. Keys are assumed to be infinitely long strings of zeros 
and ones i.e. from the universe: 

B(") = {O, l} - .  
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Alternatively, keys can be conceived for as real numbers over the 
real interval LO; 1 1 (the correspondence between B(m)and the real 
interval is bijective except for a set of measure 0). The infinite 
key model assumes that n keys are drawn uniformly and inde- 
pendently over the interval LO; 11. 

We consider parameters (also called valuations) on sets of strings. 
These are here usually parameters of the trie representation of sets. 

Notations: Let u (0) be a parameter of sets o cB(~) ,  s 5 m (or of trie 
(a)). We define the quantities: 

lo I=n 

In other words, u , ( ~ )  represents the cumulated value of parameter u 

over all n subsets of B@), and un(") is the expectation of random varia- 
ble u on a random n-subset of B("). (Notice that one can prove that 
any parameter that is polynomially bounded in the size of the trie has 
a finite expectation under the infinite key model). 

Notation: We define the ordinary generating function of the u n ( s )  as: 
2s 

and the exponential generating function of the as: 

Here E [XI denotes the expectation of the random variable X. 



Algebraic methods for trie statistics 153 

In the sequel, we adhere to the convention of denoting parameters, 
corresponding cumulated values, expectations and generating func- 
tions by the same group of letters, as we have done above. We also 
make_some use of the classical notation: 

t o  represent the coefficient of x n  in the Taylor expansion of f (x ) .  

2. I .  The Finite Model 

In the finite model, the universe of keys is the set B@). The universe 
of sets is thus 

and the finite model consists in assuming a uniform distribution on 
the elements of P(') of cardinality n. 

The definitions of additive and multiplicative valuations on tries can 
be translated directly into recurrence equations over generating func- 
tions as the following lemma shows: 

Lemma 1 [The additive-multiplicative translation lemma; finite mo- 
del]: To  the following schemas defining valuations on tries 

a ( o )  = Xb(w) 

a ( o )  = b ( w )  +c(o )  

a ( w )  = b(w/O). c(w/l), 

there correspond the following relations on generating functions: 
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Proof: Relations (i) and (ii) follow from the linearity of generating 
functions and expectations. Relation (iii) can be established without 
using recurrences by writing: 

Note that the transition from (2.2) to  (2.3) results from the standard 
isomorphisms: 

Lemma 2: 
del] : The valuations: 

[The translation, lemma for  initial valuations; finite mo- 

(6 denotes the Kronecker symbol) have corresponding generating fun- 
c t io ns: 
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S 
a(x)  = (1 + x ) ~  

155 

( i )  

The above correspondences have a number of direct implications. 
For instance, if: 

a(w)  = b(w/O) 

which we may rewrite (using 
equal to 1) as 

a ( u )  = b(w/O). lu,l 

we get: 

(2.5) 

to denote the valuation identically U 

An important pattern in analyses is relative to parameters that are 
recursively defined over the tree structure. By (2.6), if a parameter u 
satisfies the inductive definition: 

then: 

Equations of the form (2.7) are solved by iterating (or unwinding) 
the recurrence, and one has trivially: 

Lemma 3: [The iteration lemma for the finite model] The solution to 
the recurrence: 
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where a, p are known and v(O)(x) =: Po (x) has the explicit solution: 
S S 

Application of this lemma to the special case of (2.8) results in the 
S solution: 

2.2. The Infinite Model 

Our treatment of the infinite model closeIy follows what we have 
done in the preceding section. The universe of keys is now the set: 

and the universe of sets is: 

The basic property here is that for a random set w of n elements, 
the probability that the size of w/O be equal to k and the size of w / l  
be equal to n-k is simply the Bernoulli probability: 

We have: 

Lemma 4: [The additive-multiplicative translation lemma; in finite 
model]: If valuations on tries satisfy the relations: 
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a ( w )  = b(w)+c(u) 

a ( w )  = b(w/O).c(w/l), 
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(i i)  

(iii) 

then the corresponding generating functions are related by: 

a(")(x) = hb(")(x) ( i )  

a(")(x) = b(")(x)+ c(")(x) (ii) 
X X a q x )  = b(")( - ).c(")( -). 
2 2 ( iii) 

Proof: Again (i) and (ii) are trivial. Relation (iii) is proven by: 

The product form comes from the fact that when o is a random 
n-subset of B("), then if w/O is conditioned to be of cardinality k, it is a 
random k-subset of B("). 

Lemma 5 [The translation lemma for initial valuations; infinite mo- 
del] : The valuations: 

have corresponding generating functions: 

I 
I ! 
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C ( " ) ( X )  = x 8 .  

We again have the important special cases corresponding to  (2.5),  
(2.7). If 

a ( w )  = b(o /O)  

then 

(2.9) 

similarly, if u ( o )  is a recursively defined parameter: 

u ( 0 )  = u(0/0) - t -u(0 /1)  + w ( 0 )  

then 

Equations of the form (2.10) may be solved by iteration, and we 
have in analogy to Lemma 3: 

Lemma 6 [The iteration lemma; infinite case 1 : Let a(x) and P(x) be 
two entire functions such that a(0) = c and P(x) = O(xd) as x -+ 0. The 
d i f f  erenc e equation : 

where f is the unknown fknction and a, 0 satisfy the "contraction 
con dit ion ": 

c2-d < 1 ,  

with the initial conditions on f (XI: 
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f ( 0 )  = f’ (0 )  = f ”  (0) = . . . = f (d-1) (0 )  = 0 

has a unique entire solution given by: ~ 

Proof: Iterating the basic equation, one gets: 

The initial conditions together with the contraction condition ensu- 
re the convergence of the infinite sum that one obtains in the limit. 

We have again an importan special case corresponding to (2.10) 
where two equivalent expressions can be derived. 

Lemma 7 [Iteration Lemma for  the infinite model; special case] The 
difference equation: 

admits provided the initial condition and the contraction conditions 
of Lemma 6 are satisfied the solution: 

Alternatively, the Taylor expansion o f f  (x ) :  

I I 
I. - 
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can be obtained as: 
* 

* k -X 
pk 

, where flk = k! [x ]e p(x). 
1-c 2-k 

(ii) 

Proof: Part (i) is a direct application of Lemma 6. For part (ii), we set 
f*(x) = e-x f (x); f* (x) satisfies: 

f *(x) = c f* ( ;) -t P*(X). (2.1 1) 

Identifying coefficients of xn in (2.1 I )  gives the relation fi= c 2-n 
fn*+ on*. Relation (ii) then follows since the coefficients of f (x)are 
convolutions of those off*(x) by 3. m 

Notice that in applications, the initial condition on f (x) can be by- 
passed by subtracting from f adequate combinations of functions of 
the form: xm epx. 

The reader may compare this approach to the treatment of recur- 
rences occurring in the analysis of trie parameters via the use of bino- 
mial transforms in [ I  1, ex. 5.2.2.36-381. 

Notice, as a final remark in this section, the following relation bet- 
ween the finite and the infinite models [71: 

which is clear on the coefficients and explains many of the analogies 
between the two models. 

3. Alternative Models 

The way taken in Section 2 which allows for a systematic transla- 
tion mechanism from parameter definitions to generating functions 
may be extended to a diversity of models. Since the proof techniques 
in each case differ only little from what we have encountered, we only 
briefly sketch here the kind of results that can be attained. 
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3. I .  Multiway Tries 

In many applications, one may wish to take advantage of the de- 
composition of records into characters or bytes instead of bits. The re- 
sulting trees have then a branching degree corresponding to the cardi- 
nality of the alphabet which is an integer m, m 2 2 .  

The definition of multiway tries mimics closely that of binary tries; 
if the alphabet is assimilated to the integer interval [ l . .  m ] ,  we consi- 
der the sets: 

and tries are now defined recursively via the decomposition: 

for any w c M('), with w /jc M("l). Sum and product rules remain va- 
'lid as before (with m-ary products if a valuation is a product of m va- 
luations on subtrees). 

In the finite case, the generating function describing the universe of 
all subsets of ha(') becomes: 

In particular, if 

we have: 

In the infinite case, for instance, (3.2) leads to 
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m (3.4) 

3.2. Biased Bits 

To model more closely some applications, as for instance when 
tries are built out of textual data, one also consider non uniform pro- 
bability distributions on bits or characters of strings. We shall study 
here the infinite model only. Starting with the binary case, the model 
assumes that bits of keys are taken independently from some'discrete 
distribution: 

Pr(O-bit) = p; Pr( 1-bit) = q E 1-p. (3.5) 

In other terms, for uEB("), we have: 

(lulo denotes the number of zeros in u). . 

Additive properties of generating functions still hold. The main dif- 
ference lies in multiplicative valuations, for which: 

u ( 0 )  = w(w/O) t (o / l )  (3.6) 

translates into: 

This biased model also extends easily to rn-ary tries, as we have 
been considering in Section 3.1. If the probability distribution on an 
m-ary alphabet is (pl, p29 * , p m )  with pi = 1, then 
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U(O) = W I  ( ~ / l ) .  W Z  (012)- * * wm(w/m)  

translates into: 

u(")(x) = w 1 IX). w2 (m)(pzx) * * , w $ % j J m x ) .  

163 

(3.8) 

(3.9) 

3.3. Allowing Repetitions 

The definition of tries associated to sets of binary-or other-se- 
quences can also be extended to multisets where elements may appear 
repeated several times. In order to do SO, we only need to allow leaves to 
contain several elements that are identical. In practice the situation 
occurs for instance when constructing tries on a single field of compo- 
site records. Although records are usually all distinct, some values of a 
specified field are likely to occur several times (many people live in 
New-York City!). 

Our universe of "files" has now become in the binary case the fami- 
ly Q(') of all multisets over B(') which, using notations from formal 
language theory may be rewritten as: 

Q ( s ) =  n a* (3.10) 
a€M(S) 

with: 
a* = ,@+a+a2 +a3 + * * . (3.1 1) 

Taking as a measure of the size I . I of a multiset the number of its 
elements counted with their multiplicities, the generating function 
that describes the universe of multisets Q(') is found to be: 

(3.12) 

Notice in passing the formal analogy between definitions (3.1 O), 
(3.1 1) and equation (3.12). 
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Equation (3.12) is also consistent with the obvious counting result: 

(3.13) 

Sum and product rules again apply and it is only in subtree valuations 
that the form (3.12) of the "universal" polynomial has to be taken in- 
to account. 

For instance, if 

then under this model: 

v(s I (x )  = JS-1 1-x)-(2s- ) *  

3.4. Several Sets 

Set-theoretic operations like union, intersection, ... take as argu- 
ments several sets. In order to analyse them in the average case, we 
should therefore enter the sizes of the arguments as parameters. Re- 
stricting here the discussion to the case of two sets, we consider valua- 

' tions of the form: 

The cumulated values of u : 

can be attained through the bivariate generating functions: 
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As we shall see in Section 4.2, a relation like: 

translates into: 

u q x ,  y )  = (1 + x f -  (1 + y f '  w(S-1 )(x,  y ) .  

Proof techniques are highly simplified if one uses the way taken in 
Section 2.1. This permits us in particular to give a detailed analysis of 
trie union and trie intersection. 

3.5. The Poisson Model 

The Poisson model has been used to obtain expressions that are so- 
metimes easier to handle than corresponding expressions under the 
Bernoulli (infinite key) model. A typical example is the treatment of 
directory size in Extendible Hashing [21 that will be discussed in Sec- 
tion 4.3. 

Under this model , the number N of elements on which a trie is con- 
structed is a Poisson distributed random variable with average n (n 
being a parameter). The keys themselves are uniformly distributed 
over the real interval [O; 11. We have: 

Lemma 8: If a parameter v has under the Bernoulli model for n keys 
an expected value u ~ ( ~ ) ,  then under a Poisson model of parameter v, 
its expectation satisfies: 

Lemma 8 is a trivial consequence of the form of the Poisson probabi- 
lity distribution. It shows that the values at positive real points of ge- 
nerating functions under the Bernoulli model are directly related to 
the Poisson expectations. Thus Lemmas 4,5 translate verbatim into 
schemes that permit to determine from the shape of valuations the 
expected values of trie parameters under the Poisson model. 
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4. Applications to Digital Search 

4. I .  Simple Operations on Tries 

We analyse here the storage efficiency of tries (and of some of their 
variants), as well as the time cost of a basic search. Our aim in this sec- 
tion is to provide a uniform framework for a number of results that 
are to  be found in [ 1 1 I. (See in particular Sect. 5.2.2 and ex. 5.2.2.36- 
38; Sect. 6.3 and ex. 6.3.20.3 1-34) 

Multiway Tries 

Our first analysis is relative to the storage occupation of rnultiway 
tries. In the case of an alphabet of cardinality m, assimilated to the 
integer interval [ l..m], the determinant parameter is the number of in- 
ternal nodes of the trie. This parameter admits, as we have seen, the 
inductive definition: 

for O C  B(‘), with s 2 l  or s=-. For o cB(’), we have in(u)  = 0. 

In the finite case, we find from Section 3.1 the recurrence relation: 

for s 2 1, with in(’)(x)=O. In the infinite case, we get a difference 
equation: 

(4.3) 

Equation (4.2) is readily solved by unwinding the recurrence, and we 
obtain : S 

Taking Taylor coefficients of formula (4.4), we obtain the explicit 
form of the total number of nodes in all tries formed with n distinct 
keys of length s over an m-ary alphabet: 
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Solving under the infinite model is even simpler. By the methods of 
Section 2, we find for the exponential generating function of expected 
values of the number of internal nodes of tries the relation: 

1 1 
x ( 1 - 7 )  x(1--) 

-- mk I .  rn 
k e  

in(w)(x) = C rnklex-e 
k2o  m 

(4.5) 

Taking again Taylor coefficients in (4.5), we find for the expectation 
of in under the infinite key model the form: 

(4.6) 

Path length in multiway tries can be analysed in very similar terms. 
From the definition: 

we find the equations corresponding to the finite and infinite models: 

Solutions may be obtained as before, and summarising these analyses, 
wefind[111: 

Theorem A: The expectation of the number of nodes in an rn-ary trie 
constructed with n keys is: 
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S 

The expected value of path length is: 

pln(w) = n c [l-(l--) 1 n-i 1. 
j 2 0  ml 

In particular, the expected cost, measured in the number of bit inspec- 
tions, of a positive search is 

Bieary Representations of Multiway Tries 

In the case of multiway tries, the asymptotic analysis of the number 
of nodes reveals that storing a file of n elements necessitates about 

n pointers, which may be quite expensive when rn is large (many m 
l o w  
such pointers toward the low levels in the tree are likely to be null). 
For that reason, it may prove necessary to  use a binary representation 
of tries, where each node is linked to its leftmost son and its immedia- 
te right brother. The price to  be paid is an increased time cost, since 
access to subtrees is now done in a sequential way. Such a representa- 
tion is displayed in Figure 2. 
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Figure 2: The binary tree encoding of a trie associated to the file HAVE, HEAR, HZRS, 
HILL, HITS, KILL, K I T S ) .  

There are several conceivable implementations of this structure. In 
the one shown in Figure 2, an internal node of the original trie neces- 
sitates two pointers while external nodes only use one pointer. The pro- 
blem of the storage occupation of this structure is thus solved by our 
previous analyses. We propose here to analyse the cost of a positive 
search under the infinite model. 

Let bp(w)  be the total number of pointers traversed when searching 
all keys in the binary tree representation of trie (a). An inductive de- 
finition of this quantity is obtained by observing that the cost of ac- 
cessing the subtree corresponding to w / k  is equal to 1 plus the number 
of non-empty subsets a/j, for O<j <k. Hence: t 

k- 1 

j=  o 
2 [bp(a /k)+lw/k l  
k= 1 

b p ( 4  = I 4  -+ 

From there, the translation to generating functions is immediate, and, 
for the infinite model, we have: 
t We let X(P) denote the function whose value is 0 if P is false and I i f P  is true. 

I 
-. 
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1 1 
m + l  m- 1 X(l--) x(1- -) m b p ( m ) ( ~ ) .  (4.1 1) 

m e m - l l +  me 2 
3 -  

2 

Solving, we obtain: 

Theorem B: The average number of pointers of a binary tree represen- 
tation of a multiway trie of n elements is: 

The average number of pointers followed in a positive search is 
1 
- bpn(m), where: 
n 

Patricia Trees 

Patricia Trees are a compact representation of tries due to R. Morri- 
son in which one-way branching is avoided by means of skip fields. 
Our description follows [ I  1, pp. 497-4981. We propose here to analyse 
under the infinite model the cost of both positive and negative que- 
ries. 

The access cost of a leaf in a Patricia tree is therefore exactly the 
number of binary nodes traversed in the corresponding trie. Thus the 

cost of a positive query in a tree of n elements is - times the “path 

length through binary nodes” in the underlying trie. This modified 
path length is defined by the recursion: 

1 
n 



Algebraic methods for trie statistics 171 

This definition can be trivially rephrased as an additive-multiplicative 
combination of standard valuations. From there, we obtain the equa- 
tion (terms correspond to those of the above definition): 

which, after simplification gives: 

(4.1 2) 

(4 .13)  

The case of a negative search leads to a difference equation of a new 
type. Let p n s ( o )  denote the expected cost of a random (Le. negative 
with probability 1 )  search in the Patricia tree built on w .  This cost, 
again measured in the number of pointers followed, has the definition: 

1/2 pns (w/O)+ 1/2 p n s ( w / l ) +  1 if lo/Ol.lo/l I#O 

pns ( 4 1 )  
if Iw/ll = 0 
if Iw/Ol = 0 

This definition can be translated as before into: 

I 

(4 .14)  
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This equation can be solved by the iteration method described in 
Section 2: 

which using the identity: 

yields the explicit form: 

(4.15) 
k 

1 +e2 

To extract the Taylor coefficients of pns(-)(x> from (4.15), our route 
now follows that of Knuth [11, ex. 6.3.34.al. We notice that for a 
Taylor series: 

one obtains by expanding then aggregating the coefficients of x n :  

Thus, from the standard definition of the Bernoulli numbers: 

we can expand the factor of (1 -dc) in (4.15). The coefficients of the 
function pns are finally obtained by multiplying the expansion so ob- 
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tained by the expansion of ( 1 - 8 ) .  We have thus proved [ 1 1 I: 

Theorem C: The expected costs of a positive and a negative search in 
a Patricia tree with n keys are: 

1 
n 
- pZn(")-1, 

4.2. Set Theoretic Operations on Tries 

Union and intersection can be efficiently perfonned on trie repre- 
sentations of sets. As we saw in section 1.2, the algorithms are based 
on a simultaneous traversal of tries. We propose here to give a precise 
analysis of trie intersection. Our results improve on Trabb Pardo's 
[ 151 who only had an approximate analysis. 

The parameters of the analysis are the cardinalities m, n of both 
sets whose intersection is to be computed and the cardinality of their 
intersection k. This way of proceeding follows Trabb Pardo's approach 
and is motivated by the fact that random sets tend to have very small 
intersections. Thus taking also the size of the intersection into account 
yields more informative results. 

Our statistical model thus assumes all pairs of sets: 

i.e. summing to be equally likely. By considering Im,n = 

our expressions over k, our results give the analysis of trie intersection 
performed on random sets of cardinalities m,n. 

(SI u (SI 
k Im,n,k 

The intersection algorithm is obtained from the recursive definition 
of intersection: 
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with the initial conditions: 

if = 0 or 171 = 0 then report the empty set as intersection; 

if = 1 then search for 5 in 9 ;  

if 19 I = 1 then search for 9 in (. 

The cost of the intersection will be taken here to  be the number of no- 
des traversed simultaneously in both tries. Extension to more 'complex 
cost measures is also possible by our methods. This cost admits an in- 
ductive definition that closely reflects the structure of the procedure: 

The first problem we encounter is to determine the number of in- 
put configurations, i e. the quantity 

Let us define the function: 

we have: 

To determine the quantity f S ) ( x ,  y ,  t) ,  we apply the techniques of 
Sections 2,3. 

We write: 

X I E O  I+ I t 1  $190 I+ I 9 1  l t I t o m J 0  I+ It1 n 7 7 1  I 
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Since we have the initial value: 

f O ) ( X ,  y , t ) =  ( l+x+y+txy)  , 

we get: 

I(S)(x, y ,  t )  = ( 1 +x +y + txy)2'. (4.16) 

The same process can be applied to  multiplicative valuations over sub- 
trees. If 

4 t 7  77) = W W ,  77/01 

we find 

5- 1 
U(S)(X, y ,  t )  = (1+X+y+txy)2 w(S-l)(x, y ,  t) .  

(4.17) 

(4.18) 

Applying this paradigm (4.17)-(4.18) to the equation c2fining ti, we 
have: 

ti(~)(x, y ,  t )  = (1 +x+y+txy)2'-  ti(S-1 )(x, y ,  t )  

i- ( 1 +x +y + txy)ZS - X ( S ) ( X ,  y ,  t) ,  (4.19) 

Determining X(')(x, y,  t )  is routinely obtained by considering all pos- 
sible cases, and we find: 

x%, y ,  t )  = 2S( 1 +X +y + t xy)  [( 1 +x)2'-' +( 1 +y)2'-1 - 1 1 

-(2'-- 1) [( 1 +x)~ '+(  1 +y)2s--1-2SxyI. (4.21) 

Whence solving by means of Lemma 3 the explicit form: 

I 

i 
I 

~ 

, ~. 
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There now remains the task of extracting coefficients of the polyno- 
mials that appear in equation (4.22). To that purpose, we define: 

Jm,n, k [p, y 1 = [xmyntkl(  1 +y)P( 1 +x +y +txy)Y * 

Expanding first in t then in x and y the polynomials of (4.23), we im- 
mediately find: 

(4.24) 

The quantities Im,n,k [ a, y ]  generalise the Irn, (SI n, k.  In particular, from 

(4.24), we have: 

(SI 
'm, n, k = Im, n, k[o,2s = Jrn,n, k 

a fact which could have been deducted by direct reasoning. 

Using (4.23), (4.24) in (4.221, we finally obtain: 

Theorem D: The cumulated cost of the trie intersection algorithm 
applied to two sets of cardinalities m and n whose intersection has 
cardinality k is: 

S 

-2s ('m,n,k [ 2j- 1,2'-2j+ 1 I + Jrn, n, k [ 2 i -  1,2S-2jf 11 



Algebraic methods for trie statistics 177 

The expected cost, assuming a uniform distribution over Im,n,k (s) is: 

One could analyse in a similar way the cost of trie union as well as 
take into account the cost of other operations (pointer traversal, bit 
insp e c tion s, tests . . . ), 

4.3. Trie Indexes 

We propose to analyse here the main parameters of trie indexes, 
when the keys are infinite. 

We shall first evaluate the number of pages necessary to store re- 
cords of the file; this quantity satisfies the recurrence: 

with the initial conditions: page (a) = 1 if 10 I i b. This is an additive 
valuation on tries. I t  is amenable to  the techniques previously descri- 
bed, and we find for the corresponding generating function the diffe- 
rence equation: 

(4.26) 

where 
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b 

Equation (4.26) does not satisfy the contraction condition of Lemma 
6. However, the auxiliary function $ (x) = page(")(x)-$c does. Func- 
tion $ is defined by a variant of equation (4.26): 

which can be solved by iteration leading to an explicit  form^ of pa- 
ge(w): 

from which Taylor coefficients can be extracted. 

The distribution of page occupation may be analysed in a similar 
manner. Let page (0) denote the number of pages containingp ele- 
ments. This quantity can be defined by: 

P 

Under this form, equation (4.28) does not fit directly into the sche- 
mes we have previously introduced. It can however be brought under 
the standard form of an additive-multiplicative valuation if we rewrite 
it as: 

From (4.29) follows the equation: 
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This equation can be solved as before and one finds: 

Theorem E: 
when the page capacity is b is given by: 

The expected number of pages in a binary trie index, 

n- b 1 

The expected number of pages containing p elements is: 

(4.3 1) 

(4.32) 

We now proceed with the evaluation of the depth of b-tries wich 
is related to the size of the implementation of the index in extendi- 
ble hashing. To that purpose, we introduce the characteristic varia- 
bles pk(m)(W), defined by: 
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1 if the height of w is at most k 
pk(")(w) = { 

0 otherwise. 

These quantities are purely multiplicative valuations that satisfy: 

(4.33) (-1 (-9 pk(=)(w) =pk-1 (w /o )pk -1  (w/1). 

(-1 Furthermore, the expectation Pk,,, of pk(-)(W) over all w of cardina- 

lity n is exactly the probability for an n-set of strings to have an asso- 
ciated trie of heigth at most k.  

Thus these probabilities, under the Bernoulli model, have generating 
functions that satisfy: 

(4.34) 

= P o ( = )  ( x  2-kyk  = eb(x2- k ) 2 k  . 

With the general relations between the Bernoulli and Poisson models 
that have been given in Lemma 7 ,  we thus find the values of these 
probabilities under the Poisson model to be: 

From (4.34), (4.35), we have access to the expected height of b-tries, 
and we find: 

Theorem IF: 
model: 

The average depth of a b-trie is under the Bernoulli 

and under the Poisson model of parameter n: 

de; = F (l-e'n eb(n2 -k ) ' tk ). 
k-o 
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The asymptotic analysis of the results of Theorems E,F 
the expected number of pages fluctuates around 

181 

weals that 

b. log2 

which corresponds to a load factor of the pages close to log2 [ 11,  12, 
21. The depth of a b-trie under either the Bernoulli or the Poisson mo- 
del satisfies: 

1 
b 

de, = ( I +  -) log,n +0(1) .  

In Extendible Hashing, the trie is embedded in a perfect tree, and re- 
presented as an array; the size of this array is exactly 2 raised to a po- 
wer which is the height of the trie. I t  has been analysed under both 
models by [8, 161 who show that it has a non-lineargrowth and fluc- 
tuates around: 

1 
1 + -  

1 b [(b+l)!]  

log2 b 
r(l- - )n  

5. Miscellaneous Applications 

5. I .  Multidimensional Search 

Multidimensional tries or k-d-tries (in dimension k) are used to  sto- 
re and retrieve records from a k-dimensional universe. Throughout this 
section, we assume that each field is an infinitely long binary string. 
The universe of records is then simply: 

There is a very natural mapping from (B ("1 ) k to B("). To an element 

u'c(B("))k, u"= ( u [ ~  I, u [ ~ ] ,  * * ; u [ ~ ] ) ,  we associate the string: 
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+ 
In other words, u is obtained from u by regularly shuffling the bits of 
the components of r. 

Given a finite set wE(B (-9 ) k , the trie built on sh(w)  is by definition 
the k-d-trie associated to w . 

The use of k-d-tries should be clear. To retrieve a record when all 
its fields are known, follow a path in the tree guided by the bits of 
fields in a m.anner consistent with the definition of the shuffle func- 
tion. 

The interest of k-d-tries is to allow partial match retrieval to be 
performed often with reasonable efficiency. To retrieve a record with 
some of its fields specified, again follow a path in the tree guided by 
the bits specified in the query. For bits corresponding to unspecjfied 
fields, proceed with a search in both subtrees. This method is descri- 
bed in [18]. A partial match search is thus a succession of one-way 
and two-way branching dependent upon the specification pattern of 
the query. 

Definition: A speciflcation pattern is a word of length k over the al- 
phabet { S, *). To any partial match query there corresponds a unique 
specification pattern obtained by associating an ‘S” to a specified 
field, and a “*” to an unspecified field in the query. 

Our purpose here is only to illustrate by means of an example 
extracted from [ 5 ]  how previously discussed methods may be used 
to analyse the cost of partial match queries in k-d-tries. One has: 

Theorem G: The expected cost, measured in the number of internal 
nodes traversed, of a partial match query on a file of size n, represen- 
ted as a k-d-trie with specification pattern 71 is: 
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k- I 

183 

where 6 j  = 1 if nj  = 'S': Si = 2 if nj = "*", and: 

( n )  = 1-(1- )n- -  n (1- - 1 In-1 
2kj+l 2 kj+l 2kj+ 1 'j, I 9 

for j, I not both 0; r ,o ( n )  = 0. 

Proof: Let c n ( o )  denote the expected cost of a random search (i.e. 
specified fields according to n in the query are drawn uniformly) in 
the fixed tree trie (0). Letting n , T < ~ > ,  - - denote the successive 

t k >  = t o >  = nTT, left circular shifts of the word n ;  in particular n 
n t k +  I>= <I> , - - e .  From the structure of the recursive search proce- 
dure, we find the recurrence: 

t l >  

+ --& lo I,o -6 lo I ,I , (5.1) 

which is a direct reflection of the cyclical changes of the discrimina- 
ting fields in a k-d-trie. 

Equations (5.1) translate into a set of difference equations for cor- 
responding generating functions: 

The system of k equations (5.2) reduces by successive elimination of 
C n ' P  cn<2>9 - + with c ,<k,(.x) = C,(x) to: 

?T 
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where s is the number of specified attributes in the query and a,(x) is 
a combination of exponential functions. 

System (5.3) is then solved by iteration as explained in Section 2, 
and Theorem G is then proved. 

The result of the asymptotic analysis of our previous estimates is 
that the average cost of a partial match query with s out of k attribu- 
tes specified in a file of size n is 

S 
1-- 

a n  kh 

This result is to be compared to the corresponding cost of a search in 
a k-d-tree (the multidimensional analogue of binary search trees) 
which is: 

S S 
1 - -  +9(-) 

O(n k k ,  

for a non-zero function 9( 5 ). These analyses are presented in detail 

in [SI. They give support to  Nievergelt’s claim [ 131 that in many situa- 
tions digital structures tend to be more efficient than comparison ba- 
sed structures. 

k 

5.2. Biased Tries and Polynomial Factorisation 

Tries constructed from a biased distribution may be analysed by the 
methods of Section 3.2. Additive parameters are no difficulty, espe- 
cially if one uses methods of Lemma 7 (ii). See e.g. [ l l ,  ex. 5.5.2.531. 

I 

A generating function of a rather surprising form occurs in the ana- 
lysis of the expected height of biased tries. Defining as in Section 4.3 
the quantities p n , k  to be the probability that a simple trie built on a 
binary alphabet has height at most k ,  we readily find from Section 3.2 
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and decomposition (4.33) the relation on the exponential generating 
function of the pn, k :  

which, combined to the initial condition: 

p,(x)= l + x  

shows that 

Whence: 

Theorem H: The probability for a biased trie formed with n strings to 
have height a t  most k is: 

I 

In [SI, the authors use a saddle point argument to show that the cor- 
responding expected height is of order: 

2logn 

This result is useful in the analysis of some refinements of Berle- 
kamp's polynomial factorisation algorithms based on the construc- 
tion of idempotents. 

6 .  Conclusions 

It  should be clear by now that a large number of statistics on binary 
sequences can be analysed rather simply by the methods which we 
have previously developed. Other applications that we do not have 
space to describe here include the Probabilistic Counting algorithm of 
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[4] or the analysis by [61 of the von Neumann-Knuth-Yao algorithm 
for generating an exponentially distributed variate. 

More generally, consideration of general relationships between 
structural definitions of algorithms or combinatorial parameters and 
the corresponding equations satisfied by generating functions seems 
worthy of attention in the field of analysis of algorithms. I t  extends 
the approach of some recent works in combinatorial analysis by Foata 
and Schutzenberger, Rota, Jackson and Goulden [ 101. That it is not 
restricted to tries will only be illustrated by means of a few simple 
examples. 

Assume two valuations on binary trees are related by: 

v( T> = w(Zeft( T)).  

We can then set up various translation lemmas for corresponding gene- 
rating functions of average values under several statistical models of 
tree formation. We cite: 

(i): in the case of binary tries (as we have been considering), for 
exponential generating functions: 

z .  
2 

v ( z )  = e212 W (  - ) , 

(ii): in the case of binary search trees, for ordinary generating func- 
tions: 

dt  . u ( 2 )  = J w(t)-, 
z 

0 1-t 

(iii): in the case of digital 
functions: 

trees '[Kn73]:, for exponential generating 

t 
0 2 
z 

U ( Z )  = J et12 w ( -  ) d t  ; 

(iv): in the case of planar binary trees, for generating functions of cu- 
mulated values: 

I 
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Thus, for entire classes of valuations we can characterise the sy- 
stems of functional equations that arise. This characterisation calls 
for: 

-exact resolution methods; this is provided by iteration mecha- 
nism in case (i), by the resolution of differential systems in (ii) 
and by the resolution of algebraic systems in case (iv); 

-methods for pulling out (if possible directly from equations 
satisfied by generating functions) the asymptotic behaviour of 
coefficients; the available tools are: (i) Mellin transform tech- 
niques, (ii) contour integration in conjunction with the study 
of singular differential systems, (iii) Newton series and correspon- 
ding integral formulae, (iv) the Darboux method for relating 
singularities of functions to  asymp totics of their Taylor coef- 
ficien ts. 
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