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SINGULARITY ANALYSIS OF GENERATING FUNCTIONS*

PHILIPPE FLAJOLETf AND ANDREW ODLYZKO

Abstract. This work presents a class of methods by which one can translate, on a term-by-term basis, an
asymptotic expansion of a function around a dominant singularity into a corresponding asymptotic expansion
for the Taylor coefficients ofthe function. This approach is based on contour integration using Cauchy’s formula
and Hankel-like contours. It constitutes an alternative to either Darboux’s method or Tauberian theorems that
appears to be well suited to combinatorial enumerations, and a few applications in this area are outlined.
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1. Introduction. Several applications in analysis, especially combinatorics, neces-
sitate determining the asymptotic order of growth of coefficients of a function that is
analytic at the origin. It has been recognized for a long time that the function’s dominant
singularities (the ones of smallest modulus) contain a great deal of information on the
coefficients. This paper describes a very general method based on earlier works of ours
(Odlyzko [1982], Flajolet and Odlyzko [1982 ]) that applies to functions of "moderate"
variation. We restrict our attention to functions with a unique dominant singularity.
(Functions with a finite number of singularities on their circle of convergence can also
be treated by a direct extension of our methods, using composite integration contours.)
By normalization, we may always assume that the dominant singularity occurs at z l,
and we consider functions that satisfy, for some arbitrary real number a,

f(z),(l-z) (z-- 1).

Letf be a sequence of numbers, with a generating function f(z) Zn_0 fz that
is analytic at the origin. In nonelementary cases that we encounter in combinatorial
analysis, thef are only accessible via f(z), and f(z) itself is either explicitly defined by
a closed-form expression or implicitly specified as the solution to a functional equation.
(See, for instance, Comtet [1974], Goulden and Jackson [1983 ], Stanley [1986 ].) The
problem is thus to obtain estimates forf from whatever analytic information is available
onf(z).

For example, the generating function of 2-regular graphs (Comtet [1974 ]) is

f(z)
c--z/2 z2/4

and the expansion off(z) at z 1,

(1.1a) f(z)=e-3/4[ f_z+ l--z+ ],
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SINGULARITY ANALYSIS OF GENERATING FUNCTIONS 217

has a matching expansion for coefficients fn as n -- oe,

fn’ e-3/4[(n-1/2)+(n
--e ---n+n3+....

Darboux’s method is one way of achieving the term-by-term transition from 1. a) to
1.1 b). (It is succinctly described, along with Tauberian methods, in 5.) The smoothness

condition ensuring its validity is that the expansion 1. a) can be pushed until an error
term, sufficiently differentiable on the circle z 1, is obtained (Henrici 1977 ], Bender
[1974], Comtet [1974], Olver [1974]). We present here a general method that ensures
the validity of an expansion like 1.1 b), using only order-of-growth information on the
remainder terms in the asymptotic expansion off(z) in a suitable domain ofthe complex
plane. For instance, under suitable analytic conditions, an expansion

(1.2a)
1( c0f(z)’"

/i -z /log(1 -z)- 1
log( z) -1

c2 )-t-
}/log3(1 _z)_i

+’" (z-- 1)

"transfers" to coefficients as

( c0 cl + c +...) (n--oe)(1.2b) fn ---n lof+
log n /i0g 3. n

(where c, c, depend only on Co, c, ...), but there is no way of achieving this by
Darboux’s method, since a remainder term introduced in 1.2a) cannot be differentiable
at z unless the expansion is trivial.

More generally, we provide sufficient conditions for the validity of the implications

(TI) f(z)= O(g(z)) f= O(gn)

(T2) f(z)= o(g(z)) = f= o(g,)

(T3) f(z) g(z) f gn.

The conditions are that g(z) should belong to a well-defined asymptotic scale O, and
that the asymptotic form for f should be valid in a suitable domain of the complex
plane, which usually requires analytic continuation off(z) outside its circle ofconvergence.
The asymptotic scale S we consider here contains functions of z of the form

g(z)=A ’Z-z with A(u)’-" u(log u)(log log u) as (u-- )

whose coefficients will be later proved to satisfy

A(n)
r(fl) n
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We observe from this last equation that larger singular functions at z have larger
Taylor coefficients. Thus, again under suitable conditions on f(z), we are justified in
applying the transfer principle from the first equation to the second equation in the pair

(TO)

f(z)=ho(z)+hl(z)+’" +h(z)+O(g(z))

with h0(z) ))... )) h(z) )) g(z)

fn=ho,n+hl,n +’’’ +hk,n+O(gn)

with ho,n >>" >> hg, >> gn

(zl)

when the hi(z) and g(z) are in 5’. Asymptotic expansions in a large class translate term-
by-term in a direct way.

From now on, we shall call transfer theorems of types (TI), (T2), (T3), and (T0)
by the more suggestive names of O-transfers, o-transfers, -transfers, and Z-transfers
(read as "big O," "little o," "sim" and "sigma" transfers! ). The most basic transfers are
O-transfers. A refinement of the proof of a O-transfer will usually lead to a o-transfer.
As a direct consequence of o-transfers, we obtain ---transfers since

f(z) g(z) is equivalent to f(z) g(z) + o(g(z) ).

As indicated in the previous paragraph, 2-transfers follow directly from O-transfers for
expansions with an O(.) remainder term as in (TO) and there is an obvious analogue
for o-transfers where we have an o(. remainder term. A side issue to be considered is
the determination of coefficients of standard singular functions (here, the scale 9).
Fortunately, that task can itself be carried out by methods rather similar to the proofs
of transfer theorems.

Several of our statements are inspired by Tauberian theorems, most notably the
Hardy-Littlewood theorem (Hardy and Littlewood [1914]), though our analysis is quite
different since it is based on contour integration. It is clearly less deep, but it has.the
advantage ofgreat technical simplicity. Tauberian theorems impose no condition on the
function, but they require a priori "side conditions" on the coefficients (positivity, mono-
tonicity, etc.). (See Titchmarsh 1939 ], Hardy 1949 ], Postnikov 1980 ].) Our method
imposes conditions on the function in the complex domain, but no a priori condition
on the coefficients. That approach is therefore quite adequate for obtaining expansions
of the Z-type, for which Tauberian methods tend to be of little help (side conditions are
hard to establish on error terms). Furthermore, in the context of combinatorial enu-
merations, large classes of generating functions are expected to be analytically continuable
since they are obtained as combinations of analytic functionals applied to entire functions.
In that context, our conditions are seldom a limitation.

The paper is organized as follows. In 2, we start with a restricted scale 59o that
contains only functions of the form z) ", where c is any (positive or negative) real
number. The O-transfer theorem (Theorem that covers all values of c requires analytic
continuation off(z) in an angular domain outside its circle of convergence and validity
of the asymptotic expansions there. It is proved--as are all other results in this paper--
by choosing a suitable contour (reminiscent of Hankel contours)in Cauchy’s integral
formula for coefficients of analytic functions, and "integral splitting." A modification of
the proof gives us o-transfers (Corollary ), from which we deduce -transfers (Corollary
2) and a variety of N-transfers of which Corollary 3 is only a typical example. These
results, though later generalized, are treated in some detail, as they serve to introduce
basic techniques without unnecessary complications.
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Our next objective, in 3, is to extend theorems to the larger class 5 that has
logarithms and iterated logarithms. We first establish (Theorem 2 and Corollary 4) general
O- and o-transfer results for that class. More precise asymptotic estimates require us to
characterize the growth of Taylor coefficients of functions that belong to the scale 5
(Theorem 3). This is done by using Hankel contours and modifications of the integral
splitting techniques employed in our earlier proofs. Of the variety of conceivable
-transfers and Z-transfers, we state only Corollaries 5 and 6, which correspond to
functions with a descending expansion involving powers of logarithms or iterated loga-
rithms.

Section 4 discusses various possible extensions. When a <-1, so that f(z)
z) is "large" at its singularity, the conditions on the function to be analyzed can

be weakened somewhat (Theorem 4). Also, a superset of 9 that includes functions of
"slow variation" towards infinity is shown to be amenable to transfer methods.

Section 5 is a brief discussion of the relation to Darboux’s method and Tauberian
theorems. We finally conclude, in 6, by sketching the transfer part ofa few applications
to combinatorial enumerations and the analysis of algorithms.

Relation to other works. The Hankel contours are classical tools in the study of the
gamma and zeta functions (Whittaker and Watson [1927]). They appear to be well
suited to extract asymptotic information on coefficients of analytic functions. They have
been used in combinatorial applications in Odlyzko 1982] and Flajolet and Odlyzko
[1982 ], and in another context (enumeration of polynomials over finite fields) by Car
1982 ], 1984 ]. Some results similar to ours, but requiting different analytic conditions,
have been derived by Wong and Wyman [1974].

In analytic number theory, Hankel contours are useful in the study of Dirichlet
series with algebraic singularities by means of Perron’s formula, a typical example being
the study of the coefficient of[n -s] in (’(s)) 1/2 (Selberg [1954], Hardy [1940, p. 62]).
They are also useful in the inversion of Laplace or Mellin transforms with algebraic or
logarithmic singularities (Doetsch [1955, p. 158]). Techniques of 2 and 3 also bear
some resemblance to the Watson-Doetsch lemma for Laplace transforms (Henrici [1977,
p. 389 l).

2. A basic transfer theorem. We let 00 be the class of functions g(z)=
K( z) for a a real number and K a constant. The Taylor coefficients ofany member
of ,9o are known both exactly

(2.1)
n-a- 1) r(n-a)

[znl(1-z)=
n r(- )r(n +

and asymptotically from Stirling’s formula (a q { O, 1, 2, } ):

(2.2)

rt --I [ a(a-t- 1) a(a+ 1)(a+2)(3a+ 1)
[z"l(1--z)_--[l++F( 2n 24n 2

ae(a+ 1)e(a+2)(a+ 3)
48n

a(a+ 1)(a + 2)(a + 3)(a +4)(15a3 + 30a2 + 5a-- 2)
5760n4 + "1"

We let, as usual, [z"]f(z) denote the coefficient of z in the Taylor expansion off(z): Iff(z) En LZn,
then z"]f( z) f.
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Thus the binomial coefficients (2.1), as well as their main asymptotic equivalents in
(2.2), form an asymptotic scale. There is in fact a general form of (2.2).

PROPOSITION 1. The binomial coefficients expressing [zn]( z) have an asymp-
totic expansion as n -- ,
(2.3) [Znl(1--Z)a’" 1+ a{0,1,2, "’’},

Ia(--a kl

where
2k

(2.4) e)= (-1)lXk,t(a+ 1)(a+ 2)-" .(c+l)
l=k

with
k,l_ 0

Proposition 1, although it would probably follow by close inspection of Stirling’s
formula, is most easily proved by techniques introduced in 3, so that we delay the proof
until then. We also observe, incidentally, that in (2.1)-(2.3 a may be complex: If c
+ it, we have

[Znl(1--Z)
I’( -r it)

cos (t log n) sin (t log n) ].

In that case, the main term in (2.2), (2.3) is of order n and it is multiplied by a
periodic function of log n.

We now propose to prove a transfer condition of the O-type. We give the proof in
some detail for two reasons: first, the implied constant in the O’s are "constructive" and
tight, a fact ofindependent interest; second, it serves as a guiding pattern for later deriving
a variety of transfer conditions. We let A 4(, n) denote the closed domain

(2.5) A(,n)--{z/Izl _--< +r/, IArg (z-1)1

where we take r/> 0 and 0 < < (r/2). This domain has the form of an indented disk
depicted on Fig. (a).

THEOREM 1. Assume that, with the sole exception ofthe singularity z 1, f(z) is
analytic in the domain A A(49, r ), where > 0 and 0 < 49 < (r/2 ). Assume further
that as z tends to in A,

(2.6a) f(z)--O(ll--zl),

(a) (b)

FIG. 1. (a) The domain A(49, ). (b The contour , used in the proofofTheorem 1.
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for some real number a. Then the nth Taylor coefficient off(z) satisfies
(2.6b) f= [zn]f(z) O(n ).

Proof. Since the modulus of z)" is bounded below by a constant > 0 in any
compact set in A that does not contain 1, and f(z) is analytic in such a set, the local
condition (2.6a) of the theorem is equivalent to assuming that for some constant
K > 0, we have in the whole of A with the possible exception of z 1,

(2.7) If(z)[ <KI 1-zl .
In the derivation, we assume that n >- 21c1 / 4. This technical constraint is sufficient
to ensure the validity of estimate (2.9) as well as the existence of the integrals appearing
in (2.12), (2.13). We start from Cauchy’s formula

lfo dz
(2.8) f 2- /f(Z)zn+l’
where O/ is any positively oriented contour in A that encloses the origin, and we choose
the (positively oriented) contour ’l U "2 U 3 U 4 depicted in Fig. (b), with

{ =-1 ,Arg(z-1)l>=b)"r,= z/ ]z- n’

{ l<=lz II Izl<l+n, Arg(z 1) 42 Z/n

3’3={z/lz-ll=l+r/, [Arg(z-1)[>=)
I 1, ,z,4 Z n

We proceed to evaluate the contributions to fn due to each of the 3’j separately. So,
we define

fj.)= f, dz
2r

If(z)l izl+,

and we have ILl --< f) + f2) + fn3) + f4).
1. Smaller circle. From (2.7), using trivial bounds on Cauchy’s integral, we find

as soon as n >= 4,

(,_
(2.9)

<_ 5.(Kn--- ).
2. Rectilinear part. We next turn to the evaluation of f(n2). By obvious symmetry

considerations, the same bound will hold for f(n4). We set w ei and perform the change
of variable: z + (wt/n). The definition of f(n2 gives

f(n2) <=2rlflEnK( t)"n 1+ tl-"-ldtn n
(2.10)

<_ Kn-. -1) "-- + --n dt.
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Here E is defined so that "Y2 and "Y3 join: E is the positive root of 11 + Eei4’[ + r.
We need to prove that the last integral in (2.10) is bounded above independently of n.
First observe that

(2.11) + >_- +N +- cos 4.

Thus, from (2.10) and (2.11 ), we find

(2.12) f<--(Kn--) where J= + n- dr.

It is now easy to see that as n ,
Jn te-t co, dt

and hence all the J, are bounded above by some constant which depends only on a and. In fact, for positive , function + X/n)- is a monotone decreasing function of n.
In summaff, we have proved that

J(’...)(Kn--1) where J(,4)= dt(2.13) f< 2

and u=2lcl +4.

The fact that 4 is strictly less than r/2, whence cos > 0, is obviously crucial to this
part of the analysis.

3. Larger circle. The majorization of f(n3) gives an exponentially decreasing term:

f(n3) <--. Kr/ .( + r/)-n- .(27r(1 +r/))
(2.14)

<K
(1+)n"

4. Collecting the results of (2.9), (2.13), and (2.14), we have proved, for all
n >= 21al + 4:

(2.15) fn<(Kn-’-l)[5+J(a’qb---)+ rl’ +]r (1 +r/)"n

There is an effectively computable constant n (only depending on a and r/), such that,
for all n >= n,

n+ < 1.(2.16)
.k_ r/) n

Thus, from (2.15 ), (2.16 ), we obtain our main bound,

(2.17) f,< (Kn--1 .[6+ J(c,b______)]Tr for all n>= no,

where no max (n, 211 + 4). Equation (2.17) is a stronger form of the statement of
the theorem.
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The idea of a contour that "goes away" from the singularity at an angle has the
essential feature of introducing, in Cauchy’s integral, a "kernel" (z -n or (1 + tn)-n)
that decreases very fast along the contour, so that it captures the dominant contribution
from an immediate vicinity of the singularity.

The proof techniques of Theorem 1, slightly modified, will give us a transfer result
of o-type, from which we immediately deduce and Z-transfers. The results that fol-
low are not strictly speaking corollaries of Theorem 1, but rather of the line of proof
taken there.

COROLLARY 1. Assume thatf(z) is analytic in A\ { }, and that as z -- in A,

f(z)=o((-z)).

Then, as n -- , f o(n-"- 1).

Proof. The proof is an "e-6 exercise." We use the same contour cg as in The-
orem 1. Observe again that there exists a K > 0 such that in the whole of A, If(z)l <
KI zl ". By the o hypothesis onf(z), for each e > 0, there exists a 6 6(e) > 0 such
that for z in A,

Iz-ll< If(z)l<ll-zl .
We need to prove, with some fixed constant K’ > 0, that for any e > 0, there exists an
no n0(e) such that

ILl < eK’n whenever n >- n0(e).

In the following derivations, the constants also depend on a, 4, and rt, but we shall only
indicate the dependence on e. We choose a fixed (but arbitrary) e, with its associated

().
1. Smaller circle. For the part 3/1 of the contour, we first choose nl nl(e) such

that 1/n _-< 6(e). This choice ensures that part 3’1 of the contour is inside a domain
where If(z)l < ell zl ", and thus for n > nl, as in (2.9),

(2.18) fnl)<5(en--l).
2. Rectilinear part. Following the lines of (2.10), (2.11 ), with z + wt/n,

we have

(2.19) f2) <

_
f 1+-- +

cos ch )-n dtn n

We now decompose the integral in (2.19), and set fn2) fn2) + f(n22), where

f(n21) 1f1Og2n

27ral
and f(n22)__ 12- g2n

We can choose rt21 r/2(e) such that for all n >= r/2, we have log2 n/n < di(e), and then
+ wt/n is in the "epsilon region" off. Thus

(2.20)

f21) <-,1 n n

cos 4 -n

<(en-,-1) ._ + dt.
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From the argument used for (2.13), we find

(2.21) fn2)<(en__) J(a,).
2r

By similar devices, we get for f(n22) the bound

1+ dt.--22)<(Kn-"-’)2r g2n n

The integrand in (2.22) is already exponentially small at log n. Without loss of
generality, we may assume (by taking small enough) that E < 1/(4 cos ). This
guarantees u cos / n < , so that, in the given range of values of t, log + u) >
u/2 and

< exp log n
n 2

Thus the integral in (2.22) is, say, <n- for n n, and so

(2.23) f<(Kn ).

3. Larger circle. Finally, for f, we just use the previously established bound
(2.14), which we repeat here,

(2.24) f(n3) <K
(1 q- 7/) n"

4. Collecting the results of (2.18 ), (2.21 ), (2.23), and (2.24), we find that, for all
n >_- n4(e), where n4 max (n, n21, n22),

(2.25) n+f<e 5+ J(,a’,4) + + ),n
"+

(l+n

We can obviously choose an n5 ns(e) such that for all n

g +(+n)n <.

Then for n n0 where n0 n0(e) max (n4, n), we obtain

and (2.26) yields our corollaw.
We can now conclude this section by stating a -transfer and a 2-transfer.
COrOLLarY 2. Assume thatf(z) is analytic in { }, and that as z

f(z ( z.
Then, as n m: (i) If { O, l, 2, },

K
r(-l

(ii) Ifa is a nonnegative integer, then

fn o(n-- ).
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Proof. It suffices to apply Corollary to the expansion

f(z)=K(1-z)"+o((1-z)).

COROLLARY 3. Assume thatf(z) is analytic in A\ { }, and that as z ---, in A,
m

(2.27a) f(z)= , cj(1-z)J+O((1-z)A)
j=0

where t o <= t C <= <= Cm < A Then as n ---,

m(n--aJ-1 ) -A-1(2.27b) fn , cs + O(n ).
j--0 n

Proof. The proof is a direct consequence of Theorem 1.
By Proposition 1, expansion (2.27b) can in turn be converted into another asymp-

totic expansion

(2.27c) fn ] cfin- + O( n-A
j=0

where the c) belong to {c0,"’, Cm} + {0, 1, 2, 3,’"} and satisfy t(c3)-<-..
(Otm,) < A. Obviously, the method applies to a large class of asymptotic expansions by

"subtracting singularities." For instance, from

(2.28a) f(z) log +Co+CI(1--Z)I/4+Cz(1--Z)I/2+O((1--Z)I/2),
1--Z

we observe thatf(z) log z) -1 Co + c( z) 1/4 + and derive

lll+ C1 -1/4 C2 -1/2 -112)](2.28b) f n I’(
n +

I’( 1/2
n + o(n

3. A general asymptotic scale. The approach that gave us transfer results for func-
tions of type z) (the asymptotic scale O0) can be easily extended to cover a larger
class O of singular functions, which we take to be of the form

( ) whereL(u)=(logu)’(loglogu)(3.1) g(z)=K(1-z)"’L
1-z

Essentially, our previous results hold true provided we add an extra factor of L(n) in
asymptotic formulae for coefficients. It should be clear from the derivations that our
results depend on the fact that functions L(u) "vary slowly" towards infinity, so that
they behave almost like constants in our proofs: The key property is that L(u)
should satisfy

L(,eiu)
----1, u--- +c ),
L(u)

in a suitably uniform way for any fixed ) > 0 and 101 --< (see 4 for a more
complete discussion).

THEOREM 2. Assume that, with the sole exception ofthe singularity z 1, f(z) is
analytic in the domain A A(cb, n ), where n > 0 and 0 < 4 < (Tr/ 2 ). Assumefurther
that as z tends to in A,

( ( )) whereL(u)=(lgu)’(lglgu)’’(3.2a) f(z)=O (1-z)L
1-z
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for some real numbers c, 3’, 6. Then the nth Taylor coefficient off(z) satisfies

(3.2b) f z?1]f(z)= O(n--L(n)).

Proof. Logarithms are taken with their principal determination. Without loss of
generality, we may assume that r/is small enough. Evaluation ofthe various contributions
to Cauchy’s integral proceeds very much like the evaluation in the proof of Corollary 1.

1. Smaller circle. Using trivial bounds, we find with z ei/n, and 0 varying
in [-(Tr- qS), 7r 4],

f)=O(n--M(n)) where M(n)=sup [L(ne-i)[.

It is easy to see that L(u) does not vary much along any arc of a large circle centered at
the origin, so that M (n) L(n) as n -+ , and

(3.3) f)=O(n-"-L(n)).

2. Rectilinear contour. We set z + wt/n, and use the same splitting as in
Corollary 2: f2)= f(n21) qt_ f(nZ2). First, we have

(3.4)

fn2)=O n-"-M2(n) 1+ dt
dl n

where M2(n) sup
1, log n]

Again, the "slow variation" of L(u) towards infinity entails that M2(n) L(n). The
integral in (3.4) is O( ), hence

(3.5) (2)=O(n-O-L(n))

"(22) for which we haveWe now turn to jn

Kn-.
(3.6) Jlo,,22)

271" g2n
+

cos )- dt.
n

When z is on 3"2, quantity u(t) -n/wt goes from an area (for En) where it is O(
to a neighbourhood of infinity as e-i(-*) (for log2 n). Over u(3"2), function L(u)
is upperbounded by a linear function of u]. (Actually, it cannot grow faster than u ).
We thus have L(u)[ < KI u + K2, and

f(n22) < 27I" g2
tc K1

If we use the crude bound K n/ + K2 O(n), we find,

3.7 f(n22 n---
27r

.O(n). + dr.
g2 n

By an argument already encountered in (2.22), (2.23), the integral in (3.7) is O( /n2),
so that finally

(3.8) f22)=O(n-"-2).
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3. Larger circle. Again, we only need to use

(3.9) fn3) O(( + r/)-n).

4. Collecting the bounds from (3.3), (3.5), (3.8), and (3.9), we find

(3.10)
f=O(L(n)n-"-l)+O(n-"-2)+O((1 +r) -n)

=O(L(n)n-"-),

since /n is always o(L(n)) as n -- .A slight modification of the proof of Theorem 2 (see also Corollary 2) yields the
following corollary.

COROLLARY 4. Assume that f(z) is analytic in A(4, l)\ {1} and that as z --in A

(3.11a) where L(u) (log u)(log log u),
Then the nth Taylor coefficient off(z) satisfies

(3.11b) f= [znlf(z)= o(n L(n)).

In order to proceed further, we need to find detailed asymptotic expansions for
coefficients of a set of functions of the form (3.1), thereby generalizing the classical
expansion of z)" that was stated in Proposition 1. There is only a minor technical
difficulty, namely that the functions in (3.1) are not in general analytic at the origin, so
that we operate with slightly modified functions. It will be recognized that this modification
is of no consequence for asymptotic expansions of coefficients. (See the remarks following
Corollary 5 ).

Our proof technique is based on the use of contours of Hankel type for the Gamma
function.

THEOREM 3A. Let a and 3/be real or complex numbers, a, 3/ {0, 1, 2, }.
Define thefunction f(z) by

(llog )f(z)=( 1-z)"

Then, the Taylor coefficients off(z) satisfy

with

f:[znlf(z)
r(-a)

e(,.))(log n) +
k>__ logk n

e(’): (-1)k 3,
F(-a)

k s r(-s)

Proof. Observe that f(z) is analytic in the plane slit along [1, +]. We evaluate
the Cauchy integral giving coefficients fn along a contour (see Fig. 2 (a)) 3’ tO 3"2 to
3"3 tO 3’4, where 73 is an arc of the circle with radius 2, the rest of the contour being an
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(a) (b)

FIG. 2. Various Hankel contours: (a) Contour for the proofof Theorem 3. (b) Contour H.

open loop around [1, 2] at distance /n. In symbols,

0e +

T2={z=l +t+i/t[O’n]}--n
3,3 z Izl 4+-7 (z) --<2

3,4={z=l+t-i/te[O, nl}
We immediately dispose of the contribution to Cauchy’s integral due to 3’3. It satisfies

(3.12) f(n3)=O(2-n),

and is thus exponentially small. Let f(n 1:24) denote the contribution from the rest of the
contour, hi 3’1 U ’’2 [--J ’)’4. We perform the change of variable z + t/n, and let H1
be the contour on which varies: H is an open loop at distance from the segment
[0, n] of the positive real axis. We have

(3 13) n+ If(hi24)--1 (-t) log - +- dr.
2i7r n

Most of the contribution is expected to come from the area where , n because of the
fast decreasing + t/n)-n factor. Let H’l be the part of the contour H1 such that tl <
log2 n. Along H \H’l, the integrand contains an exponentially small factor of the form
e-cgzn, and is thus negligible. Along H’l, by devices that should now be familiar, we
may use in (3.13 the approximation + (t/n))-n e-t. In this way, we get

(3.14) n + f(n124)=
2i--- ft (-t)" (log ( --in)) "e- dt+O ( lgnV n )
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Still along H’, we have log , log n, hence we can expand the logarithmic part of
the integrand:

(3.15)

_n log n( log (-t)) "
log n

k=O k (--1)k\ 0; +O [log(--t))m

We substitute expansion (3.15) inside the integral of (3.14), and get

(3.16)
log" n k=0 k

(-1)
logk n logm n

fn (_t)(log (_t))ke_ dt.Ik=l

where

We can now extend the rectilinear parts of contour H’ towards + (see Fig. 2 (b)).
This gives us a new contour H, and the process introduces only exponentially small
terms in the integral. In this way, we find from (3.16), which is valid for any m >= 1,

(3.17)

Z G
lgn k=0 k (--1)klogk n

( ke_where Gk=2- (--t) log (--t)) dt.

From the bound (3.12) for f(n3), we see that the same expansion (3.17) holds forfn. All
that remains is to compute the Gk. But, by a familiar integral (Whittaker and Watson
[1927, p. 245]), we have

G=l (-t)e-t dt=
r(-a)

and obviously Gk is the kth derivative of Go with respect to a. Our proof is now
complete. []

THEOREM 3B. Let a, 3/, and 6 be complex numbers not in { O, 1, 2, }. Define
thefunction f( z)

f(z) z) log
z

Then, the Taylor coefficients off(z) satisfy

(log n)(log log n)( + k_l (log n log log n)k]’
(,,,,)where ek(X) k (X) is a polynomial ofdegree k,

ek(X) r(-a)
dsk r(-s) s=,

"Ek(X) with

(, Ek(X)Uk xu) log xu)
k=0 X
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Sketch ofproof. The proof starts with the analogue of (3.14),

(3.18)

z, lf. ( ( (n))-7 ( (lg n)y(lg lgn + fn -. (-t) log log log e-tdt+O

and uses 3.15 together with

(3.19 log log (log log n) +
log log------- log n

The fight-hand side of (3.19) can then be expanded in descending powers of log n and
log log n, etc. []

The same line of proof now enables us to prove the basic asymptotic estimate for
the binomial coefficients already announced in Proposition 1.

ProofofProposition 1. Using again a variant of (3.13), (3.14), we find that

n-- fH ( t)-n-(3.20) [zn](l-z)’ i---)’’ ,(-t) +-n dt

and it is the expansion

=e- 1+ 2n + +""
n 48n

in descending powers of /n that provides an explicit form of the e
There are obvious and Z-transfer results that follow from these equations. We

only cite two simple analogues of Corollary 3.
COROLLARY 5. Assume thatf(z) is analytic in A\ { }, and that as z in A,

+ O log(3.22a) f(z) (1 z) log c log
l_ z

for some , "r q! O, 1, 2, }. Then as n

(3.22b) f r(- a)
log n c} log- n + O(log-m n)

j=0

Proof. We only need to check that in expansion (3.22a), replacing

log z

introduces error terms that are of order z)-(log z)), using the expansion
of 1/z at z 1. We then conclude by an application of Theorem 3A and Theorem 2.
The c are computable from the cj by the expansion of Theorem 3A.

COROLLARY 6. Assume thatf(z) is analytic in A\ { }, and that as z - in A,

(3.23a)

log logf(z) (1 z) lOgl_z 1-z
cj loglog LzJ
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for some a, 3’ { 0, 1, 2, }. Then as n -- oo,

(3.23b) fn r(-)
(logn)(loglogn) , cj(loglogn)-J+O((loglogn) -m)

j=0

(The coefficients cj are the same in both expansions.)
A few historical remarks on the ancestry of Theorem 3 and particular cases not yet

explicitly covered are due here. We assumed in the statement ofTheorem 3A that neither
c nor 3" are integers. This leaves three cases to be discussed that can also be treated by
our methods.

1. The case where 3" is an integer and c not an integer was studied by Jungen 1931 ].
That important paper 2 was partly motivated by Hadamard products and singular differ-
ential systems with regular singular points. There Jungen makes use of a method intro-
duced by Fr6benius (and classical in the study of differential systems) that consists in
starting from the binomial expansion (2.1) of z)" and differentiating with respect
to the parameter c to deduce, with 3" k an integer,

n-a-1 El(log n) Ez(log n)[z"](1-z)lgk 1---F(--c)
E0(log n)+

n -" /,/2

where the Ej are polynomials of degree at most j. In other words, the expansion of our
Theorem 3A terminates, and more terms in descending powers of n can be obtained.
Another derivation, on which we partly based our proof ofTheorem 3, is given by Flajolet
and Puech 1986 ].

2. When c is a positive integer, / F( c) 0, so that the first term in the coefficient
expansion of Theorem 3A vanishes and the expansion "jumps" to the next term in
descending powers of log n. For instance, we have

C
[zn]

log -z) -1 n log2 n

P61ya cites without proof an example of this case in P61ya [1954, p. 9]. P61ya was also
Jungen’s advisor so that several of our theorems were probably known (or obvious)
to him!

3. When both a and 3" are positive integers, coefficients fn are cth order differences
of integral powers of a logarithm and explicit forms are directly available by the calculus
of finite differences. For instance, with c k (a positive integer) and 3" 1, we have

=(-)[z ](l-z)klog
-z n(n- 1)...(n-k)"

In this context, we may refer to a short note by Zave 1976 that discusses the case where
3" is an integer and c a negative integer. This is directly covered by our Theorem 3A, but
Zave gives an interesting direct derivation using Bell polynomials and generalized har-
monic numbers.

In other words, the results of Theorem 3A remain valid when any of c, 3" may be
a positive integer provided we interpret 1/F(-a) as O, for a a nonnegative integer, and

Jungen proves the classical theorem: The Hadamard product of a rational function and an algebraic
function is an algebraic function. It may be of interest to combinatorialists to note that this theorem has a
multivariate noncommutative "lifting" due to Schtitzenberger, a special form of which is: The intersection ofa
regular language and a context-free language is a context-free language.
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terminate descending expansions appropriately when terms become identically zero. We
leave to the reader the pleasure of working out the degeneracy cases for Theorem 3B.

The first few terms of expansions in Theorems 3A and 3B are given below:

[zn](l_z),(llogl)Sn-’-I [ C "y +C27(7-1)
i-z F(-o)(lgn)s 1-

1! logn 2! (logn) 2 +

zn z) log log log
Z Z i--Z

r(-a)
(log n) (log log n)- [ C,

(6 + 7 log log n)
log n log log n_

Cz6(6-1)+6(2-l)lglgn+7(-l)(loglogn) ]-- (log n log log n) 2 +

There C C(c) represents

r(-)d r(-s) s--o"
4. Extensions: Large functions and slowly varying functions. We briefly give here

indications on possible extensions of our methods, first to "large" functions, then to a
set of slowly varying functions.

4.1. Large functions. For functions in class 59 that become "large" enough at their
singularity, their dominant singular term being of the type z) with a < -1, the
analyticity conditions of our previous theorems can be weakened. A corresponding form
of Theorem was given in Flajolet and Odlyzko [1982] (but we erroneously stated that
form with the condition a < 0 instead ofthe more restrictive c < ). For completeness,
we state the corrected form and briefly sketch the proof.

THEOREM 4. Assume that f(z) is analytic in zl < 1, Assume further that as
z in this domain,

(4.1a) f(z)--O(ll-zl"),

for some real number c < -1. Then the nth Taylor coefficient off(z) satisfies
(4. lb) fn [z"]f(z)= O(n 1).

Proof. As our contour , we now choose

:{z/lz[ =1 -1 }n

For z e cf, set z /n))ei, where -r < 0 _-< r. Note that zl _-< 2e for n >_- 2,
and so

L--O I-zl=dO

Now, for 7r/2 =< 0 =< 7r, I1 z] > c for some constant c > 0, so that this region
contributes a bounded quantity to f. We also have

(1-z)=l-(1-) cos 0>=
n
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and, since sin 0 >= 20/7r for 0 =< 0 -< r/2,

I,(1-z)l=(1-1)sin0 >0n 10"

Therefore, we get z] >= 1/2 (( / n) + (0 / 10)), and

-zl" dO- O -/ dO
dO dO n

O(n-- 1),

which gives our estimate.
Appropriate transfer results of all types will follow under the conditions of

Theorem 4.

4.2. Slowly varying functions. We notice that, in the general proofs of 3, it is
possible to use, for all c, a contour whose outer circle is of radius Rn + loga n
n, so that Rn here plays the role of r/. We could have used the same contour as in the
proofs of 3, but it is also instructive to introduce yet another contour.

It then becomes possible to extend the range of asymptotic scales leading to O-, o-
and .-transfers to a scale that includes functions of the form (1 z)L(( z)-),
provided L(u) is of slow variation towards infinity. Such functions capture the features
of functions like log, log log, etc. Function L(u) is said to be of slow variation at oe if it
satisfies the following conditions:

V 1. There exists a positive real number u0, and an angle with 0 < < (r/2)
such that L(u) is 4:0 and analytic in the domain

(4.2) { u/-(r- 4) =< Arg (u- Uo) =< (r 4)) }.
V2. There exists a function e(x), defined for x >_- 0 with limx_+ e(x) 0, such

that for all 0 e [-(r ), r 4] and u >_- Uo, we have

(4.3)
L(uei)
L(u)

<e(u) and
L(u log2 u)

L(u)
-1 <(u).

THEOREM 5. Assume that L( u) is ofslow variation at , then the conditions

f(z)=O((
f(z)=o (1-z)L

1-z (1)f(z)’(1-z)"L
1-z

as z - in A\ { }, transfer into the corresponding estimatesfor coefficients:
n

fn=O(n--lL(n)), f=o(n-"-L(n)), f.-L(n).
r(-)

Proof. (A simple adaptation of the proof of Corollary 1.) Inequalities (4.]) permit
us to estimate the contributions to Cauchy’s integral "near" the singularity z 1, as
though the L(( z) -1 terms were not present. D

This gives us a still wider range of functions such as

exp /log u), log log log u, ....
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For instance, we have the transfer

f(z)=O exp ogl_z fn O( n-1/2efi-g n ).

The slow variation conditions will just exclude a few functions that are very nearly a
power of z), such as

(log(l-z)
-1

)exp
log log (1 -i-1

5. A comparison with alternative methods. It is interesting to note first that Dar-
boux’s method and Tauberian theorems are in a sense complementary. The former
applies to functions of the form z)" where a is a sufficiently large positive number,
while the latter necessitates c _-< 0. Transfer methods, which require somewhat different
validity conditions, cover all values of a.

1..Darboux’s method. There is a restricted form of Darboux’s method which is
most commonly encountered in combinatorial analysis. It applies to Taylor coefficients
of functions of the form

(5.1) f(z)=h(z)(1-z) c {0, 1,2, ...},
where h(z) is analytic in zl < + for some > 0. This is for instance the form given
in Henrici 1977 ]. That form is directly covered by Corollary 4 and (2.27c).

The most general form is based on Darboux’s lemma (a combination of integration
by parts and the Riemann-Lebesgue lemma), also a classical result in Fourier analysis:
Ifg(z) is analytic in ]z] < and k times continuously differentiable on ]z] 1, then

(5.2) z"]g( z) o -A typical application of the method to a function f(x) therefore consists in finding
a form

f(z) r(z) + g(z)

where r(z) is a simple singular function whose coefficients are known, and g(z) is a
remainder term that is amenable to treatment by Darboux’s lemma.

We have already seen situations where the transfer approach applies while Darboux’s
method does not; this may owe to the very nature ofthe expansion for example, 2.1 a) ),
or to the fact that not enough terms can be obtained until a smooth enough error term
(an instance is (2.28a)). Some further examples arising in applications are discussed in
6 below. Conversely, it may be that a function is smooth on its circle of convergence,

so that Darboux’s method applies, but the circle is a natural boundary and no transfer
like Theorem is applicable. An artificial example is

(5.3) g(z) sin (z), El5’ Zn"

In this case, g(z) is three times continuously differentiable on ]z] and by Darboux,
gn o( n -3).

The natural boundary property for f(z) follows from the classical P61ya-Carlson theorem: Ifa function
is represented by a Taylor series that has integer coefficients and radius ofconvergence 1, either it is rational or
it admits the unit circle as a natural boundary.
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In cases where both Darboux and transfer methods are applicable, transfer methods
tend to give better estimates. For instance, if we determine the expansion of a function
until a term of the form g(z) O((1 z) k+ 1/2) which is also k times continuously
differentiable, we get gn o(n -k) by Darboux, but a better bound of O(n -k-3/2) by
transfer.

2. Tauberian theorems. We already gave some indication in the introduction on
this subject. In our terminology, a real Tauberian theorem asserts conditions under which
an expansion

f(x)
(1-x)e’ (x--

(with/3 >= 0) that needs to be valid only along the real line, translates into an estimate
for coefficients in the sense of a Cesar6 average:

n n-i
n;=

A typical sufficient validity condition is > 0. IL fuhermore, the are monotonic,
then, we can infer that

n-

Application of Taubean theorems therefore equies some a po conditionscalled
Taubean side conditionslike positivity, monotonicity, to be established on the coef-
ficients.

Taubean theorems ae useful mostly fo main terms in asymptotic expansions,
and they may turn out to be the only applicable tool when the circle of convergence of
the function is a natural bounda. Geene and Knuth 198 have an interesting example
of using a Taubean theorem (complemented by "bootstrapping"), which gives the
asymptotic fom of coecients of the function

(5.4 H l+v
kl

Function f has the unit circle as a natural boundary and does not seem amenable to
transfer methods.

Conversely, a function with somewhat erratic coefficients such as

sinzcos lOgl_z

is easily treated by transfer methods (using transfers z)+--i), but the coefficients are
not smooth enough to allow application of a Tauberian theorem.

On all those classical questions the reader is encouraged to refer to many excellent
books like De Bruijn 1981 ], Olver 1974 ], Henrici 1977 ], and, for Tauberian theory,
Hardy [1949] or Postnikov [1980].

6. Aplflieations. In this section, we propose to review a few applications of transfer
methods in combinatorial analysis and analysis of algorithms.

2-3 trees. The problem dealt with in Odlyzko 1982 was at the origin ofour interest
in transfer methods. It consisted of determining the number of balanced 2-3 trees with
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n external nodes. This reduces to the determination of the coefficients of a generating
function f(z) that satisfies the functional equation

(6.1) f(z)= z +f(z2 + z3).

It can be recognized that f(z) is analytic for ]zl < - where (1 + /)/2 is the
golden ratio - is a fixed point ofz2 + z3). A detailed study ofthe iteration ofpolynomial
(z) z + z shows that there is a singular expansion at z - which is of the form

k=+o

f(z) c log+ _, ftk( 1--z)2ik/X+O((
qSz k

(6.2a)

c log (1 )+f log(1-qSz) +O((1-qSz)).

There log (4 ) and the infinite sum ft(x) in (6.2a) is a fast converging Fourier
series with period 1. That singular expansion can be established in an angular sector
around the singularity -1, so that expansion (6.2a) transfers to coefficients,

ch-"L=c+ , okn -ik’/X+O -(6.2b)

-w logn +O
n n

where w(x) is a Fourier series (with period and mean value 0) that "corresponds" to
fl(x). Form (6.2b) gives the asymptotic number of 2-3 trees with n external nodes.

This example illustrates a direct extension of Corollary 3 to the situation where the
singular expansion (6.2a) contains infinitely many terms whose complex exponents have
a common real part.

Height of trees. The problem of estimating the expected height of a binary tree
with n internal nodes (Flajolet and Odlyzko 1982 ]) reduces easily to finding an asymptotic
expansion for the coefficients of function f(z) given by

(6.3)

f(z): E [y(z)-yh(z)]
h_0

where y0(z) 0; yh+ (z) +zy,(z); y(z)=yo(z)
1-Vl-4z

2Z

There is a somewhat delicate analysis to determine the behaviour of the quadratic re-
currence at z , from which we obtain

(6.4a) f(z)=c log "Z
for any e > 0. By a direct application of Corollary 3, we derive

(6.4b) 4_nf _.C + O(17-5/4 +).
n

From (6.4b), we find after normalization that the expected height of a binary tree with
n internal nodes is 2/Trn + O(rt/4+). Here transfer lemmas are useful since it seems
difficult to obtain more terms in expansion (6.4a), and application ofDarboux’s method
(if at all feasible) would have required an expansion until terms of a higher order like
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O(( 42)3/2). Computation of higher moments led us to develop the contour used in
Theorem 4.

Multidimensional search. The analysis of partial match retrieval (Flajolet and Puech
[1986 ]) in so-called k-d-trees requires expanding a functionf(z) that is a component of
the solution to a linear differential system with regular singular points. Using the standard
theory of regular singular points, we find a singular expansion

(6.5a) f(z) c( z)- + O
z)

valid at an angle outside the circle of convergence zl 1, where 2 < < 3. (For a 2-d
search, ( + )/2. It would have been possible (though a little more lengthy) to
push expansion (6.5a) further, but Theorem or Theorem 4 provide all that is needed
to deduce directly

c
ne-l+O(n).(6.5b) fn i,(/)

For instance, a partial match search in a 2-d tree will have expected cost
Kn7-(- 3)/2.

Common subexlression lroblem. The analysis of the representation of trees by
compact directed acyclic graphs (dags) in Flajolet, Sippala, and Steyaert [1987 requires
finding the coefficient of zn in

(6.6) f(z)1, (2;)=2ZpaoB[/1-4z+4zP+’-/1-4z] where B=p--
A singularity analysis of (6.6) around z shows that

(6.7a) f(z)= /( -4z) log -4z) -1 log -4z)-
By Theorem 3A and a trivially amended form of Corollary 5, we get

c
1+0 iogn(6.7b) 4-"f /rn log n

This example (see also the discussion of (1.2a), (1.2b)) is interesting since it could not
be attacked by Darboux’s method. As we have already indicated, even by pushing the
expansion further, there is no way of obtaining a differentiable error term in a more
extensive form of (6.7a). Tauberian methods would be possible candidates for attacking
(6.7a), but it seems to be quite difficult to establish Tauberian side conditions on the
error term in (6.7a), and the situation would get even worse if higher order terms were
to be found. By transfer methods, we are able to conclude easily that the expected size
of the maximally compacted dag representation of a tree of size n is cn//iog n.

Longest cycle in lermutations. This problem, solved by Shepp and Lloyd 1966 ],
is equivalent to finding the asymptotic form of the coefficients of

(6.8)

-exp(z/l+z/2+... +z/k) 1-exp ---f(z)=k_0 i-z 1-z _0 j_J
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Function f(z) is singular at z 1, and it is natural to set z e-t SO that -- 0 as z --and z t. Two successive applications of the Euler-Maclaurin summation to
(6.8) provide the approximation

G
(6.9a) z)f(z)

Thus F(z) G( z) -2, and by transfer (Corollary 3), the longest cycle in a random
permutation of n elements has expected length

(6.9b) f Gn.

We observe that Shepp and Lloyd’s original derivation (see also Knuth [1973a, p. 181])
proceeds along quite different lines. They first prove a Poisson approximation and then
use a Tauberian theorem. But Tauberian side conditions, though expected combinato-
rially, are not obvious to establish.

In Flajolet and Odlyzko [1990], we apply an analysis of this type to study random
mappings and find the expected diameter of a random mapping of size n.

Odd-even merge. The problem of analyzing odd-even merge sorting networks was
posed by Knuth 1973b, Ex. 5.2.2.16 ]. Knuth reduces it to finding the Taylor coefficients
of a function closely related to

y 9;2 y4 /1 4z
(6.10) f(z)- +y2+l _}_y4 + 1---y8 + where y=

+ /1-4z"

The problem was solved by Sedgewick in 1977 by expanding, then using real approxi-
mations on coefficients and finally applying Mellin transform techniques (Sedgewick
[1977 ]). We present here the outline of an alternative approach based on Flajolet and
Prodinger 1986 ]. Following our general strategy, we try to determine a singular expansion
off(z) around the singularity z . We can set y(z) e-t, so that -- 0 as z -- , and
the problem is to analyze

e-t e-2t e-4t
(6.11 F(t)= + e-2t+ + e-4t+ + e-St+ as (t-*0).

We assume, to simplify the discussion, that real and positive (general theorems guarantee
that the expansion can be "continued" for complex with (t) > 0, hence for complex
z at an angle from ). The Mellin transform of F(t) is easily found from (6.11 ),

deff(6.12) F*(s) F(t) ts-ldt=I’(s)L(s) where L(s)= ---=o 1-2-s -5-’-- + +""

From the familiar Mellin inversion formula and a computation by residues (Doetsch
1955]), we obtain an asymptotic expansion ofF(t) as -- 0,

(6.13) F(t)’ E Res [F*(s)t-s],

where the sum is extended to all poles s of F*(s) satisfying (s) =< 0: There is a double
pole at s 0, simple imaginary poles at s 2ikr/log 2, and simple real poles at s -2,
-4,-6, .... Thus,

(6.14a) E2k 2k

F( - log2 + Co + ft( log2 + 2
l_2-k((2k)v)2"kl
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There 2(x) is a Fourier series in x and E2n is the Euler number,

E2n=(2n)![z2n]( 1/cos z).

Expansion (6.14a) is afull expansion in increasing powers of which, by transformation
-log y(z), yields a full asymptotic expansion of F(t). From there, we can find a full

expansion for the coefficients off(z) (by transfer) and, in particular, get a complete
asymptotic expansion offn. The same method gives Sedgewick’s result (and an infinite
expansion): The expected number ofexchanges in odd-even merge applied to two sequences
oflength n is n log n + .... We refer the reader to Flajolet and Prodinger [1986] for
a similar example treated in detail.

This "synthetic" method differs from the usual approach of De Bruijn, Knuth, and
Rice 1972 ]: In accordance with our general principles, we operated only at the level of
the generating function (using complex Mellin transforms to derive a singular expansion),
and concluded directly by a transfer theorem.

Limit distributions in eombinatories. Consider a bivariate generating function of
the form

P(z,u)=exp (uG(z)).

Such functions arise naturally in counting combinatorial structures that are decom-
posable as sets ofbasic building blocks (components) enumerated by G(z). In this context,
the polynomials Pn(u) zn]P(z, u) are the generating polynomials giving the distribution
of the number of components in a random structure of size n. Under the condition
that G(z) has a dominant singularity of a logarithmic type, methods of this paper may
be used to estimate asymptotically the characteristic function p( eit) which, once suitably
normalised, tends to e-t/2. From the continuity theorem for characteristic functions,
we deduce that the number of components in a "large" (n -- random structure
tends to a limiting Gaussian distribution. A typical application is to cycles in permutations.
There are extensions to Prlya’s theory ofcounting, with the corresponding analytic scheme

P(z,u)=exp G(z)+-G(z2)+--G(z3)+--G(z4)+
We obtain, for instance: The number ofirreduciblefactors in a random polynomial with
coefficients in GF(q) is asymptotically Gaussian.

Under different analytic conditions on the "generator" G(z), Bender [1973] and
Canfield [1977] have established similar asymptotic normality results. Detailed proofs
of results cited here are presented in Flajolet and Sofia [1988].
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