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The average height of a binary tree with n internal nodes is shown to be asymptotic to 
2 6. This represents the average stack height of the simplest recursive tree traversal 
algorithm. The method used in this estimation is also applicable to the analysis of traversal 
algorithms of unary-binary trees, unbalanced 2-3 trees, t-ary trees for any t ,  and other 
families of trees. It yields the two previously known estimates about average heights of trees, 
namely for labeled nonplanar trees (a result due to Renyi and Szekeres) and for planar trees 
(a result of De Bruijn, Knuth, and Rice). The method developed here, which relies on a 
singularity analysis of generating functions, is new and widely applicable. 

I ,. 

0. INTRODUCTION 

We consider the problem of the relation between height and size in trees, for 
various types of trees. Given a family F of trees with F,  the subset of those trees 
formed with n nodes, the problem is to determine the average height defined by 

1 R,(F) = height(t). 
card Fn t E F ,  

In this paper we solve this problem for the family B of binary trees. 

THEOREM B. The average height of binary trees with n internal nodes satisfies 

B n ( B ) - 2 f i  as n - t c o .  

SO far the only result available about average heights of planar trees dealt with the 
family G of general trees, i.e., planar trees with unrestricted node degrees [3]. 
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THEOREM G (De Bruijn et al.). The average height of general planar trees (0s 
arbitrary node specijkation) with n nodes satisfles 

fl, ,(G)- fi as n+ co. 

The similarities in the forms of Theorems G and B might induce the reader to 
believe that Theorem B is only a simple modification of Theorem G. The methods 
differ, however, in an essential way. 

Theorem G is proved by first giving exact enumerations for the number of trees of 
fixed height and fixed size; these are expressed as certain sums of binomial coef- 
ficients. The asymptotics are then performed by appealing to properties of the Mellin 
integral transform. This method is an important starting point of a number of 
analyses [ 121 amongst which we mention those of radix exchange sort, digital search, 
Patricia trees, sorting networks, and register allocation. Many other enumeration 
results, such as those in [ 11, also are obtained by starting with explicit formulae for 
generating functions. 

The problem we encounter with binary trees is that exact enumeration formulae are 
no longer available for the number of trees of fixed size and height and we only have 
recursive formulae. The path we follow relies on the principle that the coefficients of 
a generating function are largely determined by the location and nature of its 
singularities. It is also the only recourse we know of when one has at one’s disposal 
nothing but functional equations over generating functions. 

The power of the method is due to the fact that many enumeration problems have 
generating functions satisfying functional equations of some sort. Singularities are 
located by applying approximations and obtaining asymptotic expansions in the 
complex plane. Coefficients of generating functions are then estimated using contour 
integration. 

Despite its power this method has only rarely been used in algorithmic analyses. 
The work closest to ours is the determination by Odlyzko of the number of balanced 
2-3 trees [15]. We demonstrate the generality of our approach by showing 

THEOREM S. For each simple family of trees S there exists an effectively 
computable constant c ( S )  such that the average height of a tree in S with n nodes is 

A family of trees is said to be simple if, essentially, for each r there is a finite set of 
allowable labels for nodes of degree r. Theorem S contains as subcases the result by 
De Bruijn et al. on the average height of planar trees, and (though it does not 
immediately fit into our framework) a result by Renyi and Szekeres about nonplanar 
labeled trees. 

Since the height of a tree represents the stack size needed in recursively traversing 
the tree, Theorem S also yields the analysis of the simplest recursive tree traversal 
algorithm in a diversity of contexts. The reader should, however, be warned that 
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statistics on binary search trees represent a different problem 
later. 
TO conclude this introduction, we should like to emphasize 

baper is largely methodological. Almost all classical analyses 

to be briefly discussed 

that the interest of this 
of algorithms follow a 

;hain starting with exact enumeration formulae derived by direct counting arguments 
continued by real approximations (usually approximating discrete sums by integrals). 
There is a very clear stage at which this approach fails to apply: either the nature of 
h e  problem leads to a combinatorial expression whose estimation proves intractable, 
or even more plainly-as in the case here-no combinatorial expression is available 
at all. In both cases, studying the analytical properties of the corresponding 
generating functions-especially their singularities-leads to solution of problems not 
tractable by more elementary methods. 

The plan of the paper is as follows: In the binary case, a certain generating 
function of the Gh, H(z) ,  is shown to be the sum of quantities defined by a quadratic 
recurrence (Section 2). Recovering the H ,  from H ( z )  requires a detailed analytical 
investigation of the behavior of H(z) .  A detailed outline of the method is given at the 
beginning of Section 3. This method is then developed fully in Sections 3-5. 

We shall indicate how to extend the method to any simple family of trees 
(Section 6). This includes all previously known results about the heights of trees and 
provides the very general result stated in Thereom S .  Last (Section 7), we shall 
discuss the limits of the present approach and some of its extensions to estimates of 
higher moments and limit distributions. 

A priliminary version of this paper [ 5 ]  was presented at the 21st Symposium on 
Foundation of Computer Science, Syracuse, New York, October 13-1 5, 1980. 
Similar results have been obtained by a somewhat different analytic method by G. B. 
Brown and B. 0. Shubert, ‘‘On Random Binary Trees” (preprint). 

1. TREE TRAVERSAL 

We shall limit ourselves here to a short algorithmic discussion of tree traversal, 
referring the reader to [ 111 for more details. 

Perhaps one of the simplest recursive algorithms is the algorithm for visitirzg-one 
also says traversing or exploring-nodes of a planar tree. The algorithm occurs in a 
number of contexts in compiling, program transformation, term rewriting systems, 
optimization, and related areas. Loosely described, this simple algorithm looks like 

procedure VISIT( T: tree) 
do-something-with(root (0); 
for U subtree-ofroot-of T do 

rof 
erudecorp. 

VISIT( U )  
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In specific applications, the trees input to the algorithm usually obey Some 
particular format. For instance, one may encounter: expression trees involving 
nullary symbols (variables), unary symbols (log, sin, d)  and binary symbols 
(+, -, X, t); syntax trees of various types with nodes of possibly unbounded degrees 
(as in list-of-instruction nodes); trees to represent terms in formal manipulation 
systems; and others. 

We are interested here in the behavior of the tree exploration procedures in such 
contexts. The running time analysis of the VISIT procedure is not difficult since the 
complexity is clearly linear in the size of the input tree. The main problem is to 
evaluate storage utilization, i.e., to determine the average stack size (equivalently 
recursion depth) required for exploring a tree, as a function of the size of the tree. For 
a given tree, the stack size required by the visit is equal to the height of the tree. 
Average case analysis of the algorithm applied to a family F of input trees thus 
reduces to determining average heights of trees in F. 

The results of this paper completely solve the average cases analysis of tree 
traversal applied to any simple family of inputs. In particular, Theorem B can be 
rephrased as 

THEOREM B. The recursive traversal procedure applied to binary trees of size n 
has average storage complexity 

It should be mentioned here that the result by De Bruijn et al. relative to the family 
S of general planar trees, namely, that 

as 

gives some information on the height of binary trees, as well as on binary tree 
traversal. Indeed the rotation correspondence ([ 1 1 3, Sect. 2.3.2) transforms a general 
tree with n nodes into a binary tree containing (n  - 1) internal (binary) nodes, hence 
n external (nullary) nodes. Let p be this correspondence exemplified by Fig. 1. The 
reader can convince himself easily that 

height(t) = height*@(t)) + 1, 
where height* denotes the one-sided height of binary trees, defined as the maximum 
number of (internal) left branching nodes on any branch of the tree. Since for any 
binary tree 

height(u) height*(u) + 1 ,  

it follows for the family B of binary trees that 
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FIG. 1. The Rotation Correspondence transforms a general tree 
relation becomes the left-son relation and the right-brother relation 

into a binary tree: the leftmost-son 
becomes the right-son relation; the 

root of the general tree is dropped. External nodes of the binary tree are not represented. 

- .  

Thus the estimation of the average height of general planar trees shows J?,(B) to be 
at least of order fi. Theorem B shows that fin@) is essentially twice as large; i.e., 
we obtain the surprising result that the average height of binary trees is practically 
the sum of the average right and left heights. 

The result about heights of general trees is also of interest in another context. It is 
possible [ 11, 121 to optimize the recursive visit procedure in the case of binary trees 
by eliminating endrecursion. The resulting iterative algorithm keeps at each stage a 
list of right subtrees that still remain to be explored; the storage complexity of this 
optimized iterative algorithm is easily seen to correspond exactly to one-sided height. 
Hence, Theorem G can be expressed as 

THEOREM G'. The iterative traversal procedure for binary trees of size n has 
average storage complexity 

as n-, co. 

Thus the expected memory complexity of the optimized iterative exploration 
algorithm is asymptotically (for large sizes of trees) half the expected complexity of 
recursive exploration. 

To conclude this brief algorithmic discussion, let us mention that if the left-ro-right 
order in the exploration need not be kept, then exploration can be reduced to a 
pebbling game on trees which" is equivalent to register allocation. The analysis of 
optimal register allocation applies there, and rephrasing results of [6, 8, 141 one gets 
the following result: 

THEOREM 0 (Optimal exploration of binary trees). The minimal stack size fo r  
exploring binary trees with n internal nodes when the left-to-right order is irrelevant 
has average value 

6, = log4 n +  log, n )  + o( 1 ), 

where P is a continuous function with period 1. 
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This estimation applies, e.g., in the context of preprocessing (allowing one bit per 
node). 

Some comments are now in order about the relevance of our statistics: we perform 
analyses of tree traversal by averaging over all possible trees. The results are thus 
significant only when inputs do not satisfy any further conditions. Basically our 
analyses apply to input trees with an independent labelling of nodes; such is the case 
at least for expression trees in compiling, or term trees in formal manipulation 
systems. 

As a first approximation, our treatment can also be applied to term trees in 
heterogeneous algebra. In this context several types of objects are present and 
operators have type restrictions. This involves syntax trees of various sorts. Counting 
of such trees then leads to similar -statistics with generating functions that are still 
algebraic, and an exact treatment along our lines should be feasible (for the particular 
case of syntax trees of linear grammars, see [9]). 

An analysis of our type does not apply when trees occur as components of more 
complex structures, as appears in binary search trees or tournament trees. For 
instance, binary search trees have monotonic labellings, and the probability 
distribution induced on shapes of trees by random insertion is known [ 121 and far 
from uniform. Indeed for binary search trees, the average height for size n is U(log n )  
corresponding to a logarithmic search, and Robson [19] has obtained the following 
bounds : 

THEOREM BST. Let E,, be the average height of binary search trees generated by 
n independent random insertions. Then 

c ,  log n + o(log n )  Q 17, < c, log n + o(1og n), 

with c,  > 3.6 and c2 = 4.3 1170 ... . 
The precise asymptotic behavior of K,/log n is not yet known, although it is 

known to tend to a limit [20]. 
To conclude this presentation of alternative statistics, let us mention the result of 

Flajolet [4 ]  relative to the height of index trees in dynamic hashing, which also 
applies to digital search trees (tries): 

THEOREM D. Let E,, be the average height of a digital search tree constructed 
over n keys uniformly drawn on [0, 11. Then 

En-210g,(n) as n-, co. 

Some considerations about heights in combinatorial structures are developed in our 
final section. We have not addressed in this paper the somewhat different problem of 
path lengths in trees, (see [ 11, 121) and the related question of levels of nodes in trees 
(which can be used to derive upper bounds on heights). For this last problem the 
reader is referred to the excellent paper of Meir and Moon [ 131. 
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2. THE HEIGHT OF BINARY TREES: BASIC RECURRENCES 

We consider the set B of binary trees in the sense of Knuth [ 11 1:  every node has 
either 0 or 2 Successors and left and right successors are distinguished. The size of a 
tree in B is the number of its internal binary nodes, Le., the number of nodes with two 
successors. We let It1 denote the size of t. We also define 

B,  = card{ t E B:  I tl = n}. 

The height of a binary tree is the number of nodes along the longest branch from 
the root and is given inductively by 

. . .  

height(0) = 1 

height(t) = 1 + max{height(t,), height(t,)}, 
where t,  = left(t) and t, = right(t). 

Figure 2 shows the distribution of height on trees of size 4. 
We introduce the quantities 

BLhl = card{t E B: It1 = n and height(t) < h } ,  

and f in,  the average height of all trees of size n, is 

From the definition, we clearly have that Bihl = B ,  if h > n. Rearranging the sum 
in (la), we thus get 

H ,  = C (B, -BLhl). 
h>O 

The first values of these quantities are displayed in Table I. 

FIG. 2. Amongst the 14 trees of size 4, there are 8 trees of height 5(a), and 6 trees of height W ) .  
Here 0 denotes internal nodes. 



178 FLAJOLET AND ODLYZKO 

TABLE I 

The Distribution of Height in Trees of Size < 7  with = Bj,h' - B:;-'l 

- 
1 1 1 2.0 
2 2 0 2 3.0 
3 5 0 1 4 3.8 
4 14 0 0 6 8 4.57 
5 42 0 0 6 20 16 5.24 
6 132 0 0 4 40 56 32 5.88 
7 429 0 0 1 68 152 144 64 6.47 

- 

We now introduce the generating functions relative to the B,, BLhl, and H ,  : 

H(z )  = c H,z". 

The inductive definition of binary trees shows that the B ,  satisfy the recurrence 

whence 

B(2)  = 1 + Z ( B ( Z ) ) *  

and 

B(z )=  (1 - d=)/22; B,= (n + l)- '  (:). 
The B,'s are the Catalan numbers. The Stirling formula implies the classical approx- 
imation 

B,  = (4"/@)( 1 + O( lln)). (2c) 

The same decomposition principle that gives the equation for B applies to the B f h l  
yielding the recurrence 

B [ h + l l ( ~ )  = 1 + z ( B [ ~ ' ( z ) ) * ;  BIO1(z) = 0. (3 1 
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NO simple expression is available for the BLhl coefficients. The first values of the 
B [ ~ ] ( z )  are 

B["(z )  = 0; B [ " ( z )  = 1; B"] ( z )  = 1 + Z ;  

B r 4 ] ( z )  = 1 + z + 2z2 + 5z3 + 6z4 + 6z5 + 4z6 + z' .  

B13'(z) = 1 + z + 2z2  + z 3 ;  

Obviously, degree ( B [ h l ( z ) )  = 2 h - 1  - 1, and BLhl = B ,  for n < h. Summarizing the 
recurrences, we can state 

PROPOSITION 1. In the ring of formal power seires, 

H ( z )  = -C - (B(z)  - B [ h l ( ~ ) ) ,  
h > o  

where B and the B [ h l  satisfy 

( z )  = 1 + ~ ( B [ ~ l ( z ) ) '  with B t o l ( z )  = 0. B ( z )  = 1 + z ( B ( z ) ) ~ ;  Bth+ 11 

3. OUTLINE OF THE METHOD AND THE 

FIRST ANALYTICAL CONTINUATION OF H ( z )  

Our task is to estimate the coefficients H ,  of H(z).  The difficulty we face is that we 
possess neither a closed form expression for H ( z )  nor even a functional equation 
satisfied by H(z).  This difficulty is due to the nonlinear nature of recurrence (3). 

To estimate H,, we will use Cauchy's theorem which states that 

1 dz 
H,=- 

2in 

where T is any simple closed curve in the region of analyticity of H ( z )  that encircles 
the origin. We shall adopt here for r a contour far away from the origin; this has the 
advantage that even partial information on the growth of H ( z )  can be used to 
estimate the Cauchy integral giving H,. 

In the present case, it is easy to show (Proposition 2) that H ( z )  is analytic in the 
disk IzI < i but in no larger disk. Since H ( z )  has positive coefficients, this implies 
that H ( z )  has a singularity at i. This singularity, however, turns out to be the only 
one on the circle IzI = i. We show in effect that H ( z )  is analytic in a region of the 
form 

for some constants A > and o E (O,n/2). The proof uses both a continuity 
argument (Proposition 3)  and a local study of the recurrence around f 
(Proposition 4). 
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The expansion of H ( z )  which leads to our estimates of H ,  is obtained in Section 4. 
It is shown that in a neighborhood of z = { in D, H ( z )  is the sum of a logarithmic 
term and a remainder term of smaller order. Most of the complexity of our solution 
lies in this derivation. This expansion of H ( z )  is obtained by an extensive analysis of 
the recurrence of Proposition 1. 

The estimates of the coefficients H ,  are obtained from the expansion of H ( z )  in 
Section 5 with the help of an appropriate contour of integration. This contour, which 
follows the boundary of a region similar to D (see Fig. 4) has the property that the 
integral depends almost exclusively on the behavior of H ( z )  near z = $. A crucial role 
is played here by the fact that the contour can essentially include line segements of 
the form 

{re*i@: O < r < E ]  

for some E > 0 and some fixed 4 E (0, n/2). (If it were not for this fact, we would 
need a better expansion of H(z) . )  Proposition 6 gives a general result that applies in 
many similar situations, and which concludes our proof of Theorem B. 

We shall now proceed by proving that the expression for H ( z )  derived in Section 2 
(Proposition 1) is also valid analytically in some domain and is a way of continuing 
H ( z )  analytically outside its circle of convergence. 

PROPOSITION 2. H ( z )  has radius of convergence 4 and the equality 

H ( z )  = (B(z)  - B ' " ( Z ) )  
h>O 

is valid analytically inside the domain 

co = ( 2 :  121 < $, z # $}, 

the determination of d m  in B ( z )  being positive for  real z < 
for  H ( z )  converges absolutely for  z in C,. 

Moreover, the sum 

Proof. For each nonempty tree t ,  we have the obvious inequalities 

1 < height(t) < I t I, 
which shows that 

B ,  < H ,  < nB,. 

From estimate (2c) of B ,  it follows that H ( z )  has radius of convergence equal to $. 
Notice first that the Taylor series of B ( z )  is absolutely convergent when ( z  I < $ . 

Indeed, it converges as C n - 3 / 2  for all z with IzI = $. Let R,(z) denote zn>,,, B,z". 
Then from simple majorizations we have 

JB(z) - B[hl(z) l  < R h ( l z ( )  when ' IzI < $, 
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and B'h ' ( z ) -+B(z )  for any z such that IzI < $. The nature of' the convergence is 
&tained by writing 

B ( z )  - BIh+ " ( z )  = z (B( z )  - B'h'(z))(B(z)  + B[h'(z)) .  

Dividing by 2B(z)  and setting 

this recurrence is transformed into 

We shall also set E = e(z )  = (1 - 4z)'l2, the determination of the square root being as 
above. In this notation, 

eh+ l ( z )  = (1 - ~ ( z ) )  e,(z)( 1 - e,(z)) with eo(z) = 4. (4) 

Assuming z to be in Co, we have I 1 - E I  < 1 and the convergence of the e,,(z) to 0 
is geometric with 

I e,(z)l < c(z )  I 1 - &(z)lh for some c(z);  

thus C h > O e h ( z )  is also convergent and the same holds true for the sum 

As will appear from later considerations, e,({) - l /n  and thus e,({) -+ 0 as n -+ co, 

In the sequel we shall mostly work with the functions e,(z). We shall thus replace 

C h ) O  ( B ( 4  - B["l(z>>. I 

but at the point z = $ the series 

Eqs. (3)  and ( 4 )  by the set 

e,  diverges as the harmonic series. 

where e(z )  = (1 - 4z)' /*.  
We proceed to show that H(z) ,  as given by the previous recurrence equations (5) 

and (6),  is analytic in a domain larger than the circle of convergence. TO that 
purpose, we use an argument which is essentially topological and whose principle is 
based on some continuity properties of a convergence criterion. 

We take the complex plane cut along the ray z > $, E ( Z )  being as before that 
branch of (1 - 4z)'I2 which is positive for z real, z < a.  For fixed z ,  consider the 
function o f y  

f ( Y )  = ( 1  - e ( z ) )u ( l  - u), 
in which z enters as a parameter. 
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- 
FIG. 3 .  A diagram representing the relative positions of the boundaries of C, (circle a), of D,, 

(curve c )  and of a convergence region guaranteed by Propositions 3 and 4 (curve b). 

From what we have seen e,(z) = f ‘“’(i), where f (,) is the nth iterate of$ We are 
interested in the area in which e,(z) -+ 0 in a nondegenerate way. This can only occur 
if 0 is an attractivefixed point off(y), i.e., iff’(0) = (1 - E )  has modulus less than 1. 
In this case any sequence u,+ = f (u,) converges provided its initial value is close 
enough to the fixed point. 

We thus restrict attention to values of z in the domain 

Do = { z :  11 - E(+ < l}. 

Domain Do is the inside of a cardioid-shaped contour that properly contains C, (see 
Fig. 3). The domain of values of z for which e&) -+ 0 as n -+ co thus lies somewhere 
between C, and Do.  

The following lemma is a useful convergence criterion for the sequence {em(z)},,,>,. 

LEMMA 1 [Convergence criterion for e,&)]. A necessary and sufficient condition 
for  the sequence {e,(z)},>, to converge to 0 for  z E Do is that f o r  some m 

Furthermore, if this condition is satisfied, then the convergence of the le,(z)l for 
n m is monotonic. 

The condition of the lemma is trivially necessary. To obtain its sufficiency, ProoJ: 
note that applying the triangular inequality to the recurrence of the e,  leads to 

hence 
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It remains to prove that len/ -+ 0 in this case. Assume a contrario 

)e,I-+L+O as n-+m. 
- r  

Then, from the basic recurrence 

it follows by continuity that 

11 -e , ) - -+ 1 / 1 1  - & I .  
The conditions 

~ e , ~ - - + ~ < ~ l - - E ~ - ' - l  and ~ l - e , ~ - + l / ~ l - & ~  

entail that the only possible accumulation points of the sequence {e,,} are points a 
satisfying 

but these two conditions are clearly contradictory. We must therefore have L = 0, 
which completes the proof. 

Using ( 5 ) ,  the first few values of the e,(z) can be expressed in terms of ~ ( z ) :  

e,@) = 4, e&) = 4 ( 1  - E ) ,  e,(z) = %( 1 + ~ / 3 ) (  1 - E ) ~ .  

We see, e.g., that e, already satisfies the convergence criterion for z E [ -4,  $1. 

LEMMA 2 (The open set property for the convergence domain of H(z)) .  The 
domain K of values of z in Do f o r  which the sequence {e,(z)},>, converges is an open 
set. Furthermore the series x,,.+, e,(z) is analytic in K. 

The proof is based on the continuity of the convergence criterion of 
Lemma 1. If z E K,  then for some rn, 

ProoJ 

# ( z )  = 11 - E(z)[ - '  - le,(z)l> 1. 
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Now, clearly, d(z)  is a continuous function of z inside Do ; thus there exists a Positive 
real h, such that for all z’ satisfying 

we have $(z ’ )  > 1. Hence, e,(z’) also satisfies the convergence criterion and 
e,(z‘) -+ 0 as n -+ co. 

To prove analyticity we observe that the convergence of e+) to 0 is geometric and 
uniform. Indeed, since 1 1 - E ( z ) I  (1 + 1 e,(z)l) < d < 1 for Some d, there exists a real 6 
such that for all z’ satisfying Iz’ - zI < 6, 

I 1 - E ( z ’ ) I  (1 + le,(z’)l) < d < 1. 
- .  

Since for n rn the quantities le,(z’)l decrease with n, we thus have 

hence le,(z’)l< cd” for some real c, uniformly in Iz’ - zI < 6. This shows 
En>, e&’) to be uniformly convergent in Iz’ - z I < 6, and so the sum is analytic in 

We can apply Lemma 2 to the points in the disk 1 z J  \< { with z # { . For each such 

12’ -zI < 6. 

z ,  there exists a 6(z )  > 0 such that H ( z )  is analytic inside the domain 

D ( z )  = {z ’ :  1.2’ - ZI  < 6(z)}. 

The domain 

is open, properly contains C,, and H ( z )  is analytic inside it. 
The point z = 4 is on the boundary of D,, but we do not know yet the exact 

configuration of this boundary at 4 . From simple topological considerations (essen- 
tially the Borel-Lebesgue lemma), however we have 

PROPOSITION 3 .  For each r, there exists a I I  > 4 such that H ( z )  is analytic in the 
indented crown 

4. CONTINUATION OF H ( z )  AROUND THE SINGULARITY 

We now study the behavior of the sequence {e,(z)}  when z lies in a sector around 
s situated inside Do.  We first show that, in part of the domain, the initial values of 1 



HEIGHTS OF BINARY TREES I85 

decrease steadily; we then prove that, at some stage, they satisfy the conditions e&) 
of the convergence criterion (Lemma 1). 

We start with the following lemma: 

LEMMA 3. Let g(Z) = y (  1 - y ) .  If y satis'es 

I y I < 4 and 0 < Arg( y )  < Arccos d ,  

1 - r cos t 
g( y )  = r( 1 + r2  - 2r cost)lL2 exp 

The hypothesis implies that 2r cos t > r2 ,  whence the bound for I g(y)l. On the 
other hand, as is easy to see, 

r sin t 
1 - r c o s t  

0 < Arctan \< Arctan sin t < t, 

whence the bound for Arg g(y ) .  

LEMMA 4 (Initial decrease of Ie,(z)l). Suppose that z E Do, Im z > 0, and let 
N(z)  = 1 + [Arccos $/Arg(l - ~ ( z ) ) ] .  Then for all n < N(z ) ,  

and 0 \< Arg(e,+ 1) < ( n  + 1) Arg( 1 - ~ ( z ) ) .  

ProoJ The proof follows immediately by iterative use of Lemma 4. 

The restriction that Im z > 0 in Lemma 4 and in the sequel is made for notational 
convenience since 

e n ( f )  = en(z),  H ( f )  = H(z ) ,  ... . 

We are now left with the task of proving that for z in a certain sector around a,  
Our treatment heavily relies on a trick used by De Bruijn [2, p. 1571 in the context 

e,&) satisfies the conditions of Lemma 1. 

of nonlinear recurrences of a similar type. We shall express it as follows: 

LEMMA 5 (Alternative recurrence for the e,(z)). 
- 1 are different from 1, then the following relation holds: 

r f  all the e j ( z )  f o r  j = 0, l,..., 

e j  (1 - & ) j .  
(1 -e)" 1 - ( 1  - E ) "  

- - +2+c 
en & j < n  (1 -e j )  

(7) 
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ProoJ: We start again from the recurrence 

e j+ ,  = (1 - e )  ej(l - ej), 

and we take out the )1 - e)J factor present in ej, 

ej+ ,/( I - & ) j +  = (ej/(l - e) j ) (  I - ej). 

The essential trick now is to take reciprocals, 

and use the expansion 

(1 - u) - ’ -=  1 + u + u2/(1 - u), 

valid provided u # 1. Here we get 

When we sum these identities for j =  0, ..., n - 1, terms like (1 - &)j/ej cancel out 
and using the intial value l/eo = 2, we get 

from which the lemma follows. 

The relation of Lemma 5 suggests ~ ( 1  - ~ ) “ / ( 1  - (1 - e),) as a good approx- 
imation to e, and we are going to justify this view in the next few pages. Notice also 
that this relation between e;:l and e, has the character that an upper bound on the 
ej’s for j < n is turned into a lower bound on the e , ,  ,’s and vice versa. As an 
application, we study the sequence f, = e,(+) whose asymptotic behavior will be 
needed later. 

The f, satisfy the recurrence 

Hence, from Lemma 5 ,  

Thef,’s being positive, it follows that 

llf, > n + 2 or f, < l/(n + 2). 
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Using this more precise etimate again in (8), we get 

Continuing this procedure, we see that 

and. more precise estimates can be derived by iteration of this process. 

LEMMA 6 (Convergence in sector around 4). There exist positive constants po , Bo 
such that the sequence {e,(z)} converges to 0 when z is such that 

z E Do ; I < po and -((n/4) + e,) < Arg E ( Z )  < -((7r/4) - So). 

Proof. We only have to show that eN(z ) ( z )  is small enough to satisfy the 
conditions of Lemma 1. For this purpose we use Lemma 5 to provide an upper 
bound on I eN(&)1. 

We set E ( Z )  = pele and expand ( 1  - e(z))'"(') in terms of p for small p when 8 lies in 
some interval around - 4 4  not containing 0. The following expansions are valid for p 
small enough and Arg(e(z)) # 0. They furthermore hold uniformly when 0 is in any 
interval of the form [-(71/4) -A, -(7r/4) + A ]  with 0 < A < n/4: 

11 - &(Z)I = 1 - p  cos 8 + Ob'), 
Arg(1 - e ( z ) )  = -p sin 8 + Ob2), 

-a 
p sin 8 

N ( z )  = + O( 1 )  with a = arccos 4, 

In order to get an upper bound on e,,,, .we shall derive an asymptotic lower bound 
on the right-hand side of the relation giving (1 - &)"/e, in Lemma 5 ,  which we take 
as 

( 1  - E ) "  1 - ( 1  - E ) "  8 1 - - +-+3+ c - e j  (1 - & ) j .  
e n  e 3 I ( j < n  1 - e ,  

Since for 1 < j Q N(z) ,  lej(.)/ < 4, we have le j / ( l  - ej)l Q 4 and 

< f ( l  - 11 - &l") / ( l -  11 - E ( )  

< 3 ( 1  - eaco te ) /@ COS e)  + O(1). 
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Thus for p small enough 

an inequality satisfied provided cos 0 > 4 + 6 for some 6 > 0, which we shall now 
assume. - .  

We have thus shown 

I 1 - E I N / 1  eNJ  > (1 - eacot e)@ COS e )  - (COS e - +)( 1 + ob)), 
or equivalently 

[e,[ < p [  1 -&IN(cos8)(1 -eacote) - '  (cose-?j)- ' (1  +ob)>. 
This estimate is to be compared to [ 1 - E [ - - 1 which is 

11 - E y -  i = p c o s e + o @ 2 ) .  

ea~ote( l  - eacote  1 - 1  (cos e -  + ) - I  < 1. 

Thus the convergence criterion is satisfied for p small enough provided 

Equality is achieved for -0 = 0.819168 ... > 71/4 and inequality is ensured for all 
smaller values of 181, which completes the proof of the lemma. 

Again the convergence under the conditions of Lemma 6 is geometric except at 
z = d and we can restate this lemma as 

I 

PROPOSITION 4. The function H ( z )  is analytic in a sector around 4 deflned by 

{ z #  d ;  [ z - a l  < a, and ( n / 2 ) - P 0  < [Arg(z --+)I} 
for some a,, Po > 0. 

There does not seem to be any more straightforward argument to prove 
convergence of e,(z) to 0 in the domain described in Propositions 3 and 4. Actually, 
numerical computations indicate that the convergence of e&) is not monotonic in the 
whole of the convergence region, and the en's display fairly erratic behavior away 
from the point z = ';i. 1 
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5 .  ESTIMATES OF H(Z)  AND THE AVERAGE HEIGHT OF BINARY TREES 

From the results of Sections 3 and 4 as summarized by Propositions 3 and 4, we 
now know that H ( z )  is analytic in an indented crown-shaped region depicted in 
Fig. 3. We proceed to evaluate the Taylor coefficient H ,  of H ( z )  by means of 
Cauchy's integral formula 

selecting a contour inside that region which gives predominance to the behavior of 
the function around the singularity a. To do so, further information is required on the 
growth order of H ( z )  around a .  After some preparation (Lemmas 7 and 8), we show 
that H ( z )  behaves there like a logarithm (Proposition 5). Once this is done, we are 
able to conclude the proof of Theorem B. 

LEMMA 7 (Uniform bounds for I e,@)[ around $). There exist constants a ] ,  p, , 
and c ,  such that 

when ) z  - 4 I < a ,  and (71/2) - p1 < I Arg(z - ;)I < (n /2 )  + P I .  M o r e o w ,  if n 2 N(z ) ,  
where N ( z )  is defined as in Lemma 4, then 

ProoJ We may suppose without loss of generality that Imz>O.  Suppose first 
that 1 < n < N(z) .  Let ~ ( z )  =peie. Proceeding as in the proof of Lemma 6, we find 
that 

e.i 8 1 1 - I l - E l "  -+ 7+c-- 3 1 - I l - E j  3 j = o  1 - e j  

1 I - I l - E l "  
3 p c o s e  < -  + 0(1) ,  

I 
" - - l  

Hence if n > c 2 ,  then 

ei 
13+ j = o  5'- 1 - e j  E 



190 FLAJOLET AND ODLYZKO 

and so 

We are considering n ,< N(z ) ,  so 

I 1 - E / "  = exp(-np cos e + ~ ( n p * ) )  > I - 6np 

for some 6 > 0, and so 

l e i <  2 / ( W  . . .  

Since le,,] = O ( n - ' )  for n < c,, we find that 

len/  < c3n- '  for n < ~ ( z ) .  

Let us next suppose that n > N(z).  Since we already know that Jejl is monotone 
decreasing for j > N ( z )  (Lemmas 1 and 6), 

On the other hand, I 1 - E 1 "  < 4 for n > N ( z )  and p small enough, so 

Since (2p)-' > 2c, log p -  ' for p small enough, 

for n 2 N ( z )  if we make a ,  small enough. This proves the last part of Lemma 7. To  
complete the proof of the first part, we note that for &=peie ,  (n/2)-,8, < 
A d z  - 4 )  < (n/2) + P I  9 

and the maximum of p(1 - $I)" as a function of p occurs at p = 2(n + l ) - '  and is 
< 2(n + 1)-1. 



19 1 HEIGHTS OF BINARY TREES 

LEMMA 8 (Uniform bound for the convergence of e,,(z) to e,,(+)). There exist 
constants a,, p,, and c, such that 

when Iz - 4 I < a2 and 

yields 

- P 2  < I Arg(z - $11 < (n/2) + p,. 
proof Applying the estimate of Lemma 7 to the expansion given by Lemma 5 

= (1 - (1 -E)")/& + O(log(1 - 11 - E l ) - 1 )  

= (1 - (1 - E ) " ) / &  + o(lOg [ & I - ' ) ,  
as well as the already known result 

Hence for n < N ( z )  

( 1  - E)" {e,(+) - e n }  e;'e,(+)-l = ( I  - &)"/e, - (1 - &)"/e,($)  

= (1 - (1 - E)" - ne( 1 - & ) " ) / E  + O(Iog I E I - ') 
= O(n2 I & I). 

Therefore 

which proves the lemma for n < N(z) .  
On the other hand, if n > N(z) ,  then 

SO the lemma is trivial in this case. 

With these lemmas, we proceed to determine the behavior of H ( z )  around 4 .  Our 
previous developments suggest approximating Cn e&) by 

in an appropriate region. To do this, we study the difference 
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Using the expression for e,(z) given in Lemma 5, we see that 

where 

We notice that D(4) exists since the defining series converges as 2 (log n)/n2. We 
will show that D ( z )  = D(d) + o( 1) as z -+ $ and will obtain an estimate of this o( 1) 
term. 

LEMMA 9 (First approximation lemma). For z in a neighborhood of f ,  with 
Iz - + I  < a 3 ,  (+) - P 3  < Arg(z - +) < (+) + P 3 ,  

D(z )  = D($) + O(l1 - 42) ' 1 4 - 7  f o r  any 7 > 0. 

ProoJ As in Lemma 8, 

n- 1 

j= 1 j =  1 

We also have for n > 3, however, 

j = l  1 -ej j= 1 

Therefore 

(1 - &)"/e, = (1 - (1 - e),)/& + t,, 
where 

t ,  = tn (z )  = O(Iog(min(n, I E 1 - '))). 

Hence, if n exceeds some fixed constant, 

eJ(1 -E)"  = &/(I  - (1 - + O(Ie2t , ( / )  1 - (1 - e)"\'), 

d, = e, - e( 1 - ~ ) " / ( 1  - (1 - E)") = O(\ E 2 t , l  I 1 - E \ " / \  1 - (1 - E ) "  1 2 ) .  
If < n < I E I - ' ,  then 

n 2  - d ,  = O ( / E ' \  log(n)/ll - (1 - E )  1 ) - 0(log(n)/n2)- 
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Therefore 

= O(l E I log I & I - I ) .  

Since for all n 2 2 

we find 

E(1 - e) . / (  1 - (1 - c y )  = n - + O((& I). 
Therefore 

which was to be shown. I 
The constant D(b) in Lemma 9 can be evaluated numerically as 

and we find D($) = -1.602... . 

that 
To get the final expansion of H(z) ,  we only need to estimate L(z) .  The observation 

E / (  1 - (1 - E ) n )  -P l /n  

for fixed n, when E + O ,  suggests that L ( z )  behaves like 

which we are now going to justify rigorously. 
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Notice also that expanding in powers of (1 - e), we obtain 

L ( z )  = ~ ( z )  I d(rn)( 1 - ~ ( z ) ) " ,  
m >  I 

with d(m)  the divisor function of rn: d (m)  = Edlm 1. 

PROPOSITION 5 (Main approximation lemma for H(z) ) .  For z in a sector around $ : 

the following expansion holds for H(z ) :  
- .  

H(z)=-21og(l  - 4 z ) + K + O ( ) 1  -42)") for  any v < f ,  

with K z -4.1, a constant. 

Proof. It only remains to approximate the function 

E ( l  - E ) "  -s 
n >  1 1 - ( I  - E ) " '  

where z is in the specified region. Setting 1 - E = e-", this amounts to approximating 

when u is close to 0 and Arg u is close to n/4. To approximate this sum, we consider 
it as a Riemann sum relative to the integral 

Since the integral from 0 to oc, is divergent, we split the sum according to whether 
n I uI < 1 or n I u1 > 1, and compute the error terms separately. 

For n such that n I u 1 > 1, we use the, Taylor expansion 

and summing, we see that 
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For yt such that yt IuI < 1, on the other hand, we expand e-"/(l - e-x)  - x - I  
which is differentiable and of bounded derivative over [0, 11, so that 

Approximating the harmonic series by the logarithm and changing the bounds of the 
integrals with only O(lu1) correctingterms, we see that (with y the Euler constant): 

e-"" = - l o g I u l + y + J  

0 
C u l - - - n u  

n >  1 

co e-" + dx + O(l u I). 

Using the Cauchy residue theorem we can change the path of integration to the real 
axis, and we have 

=-1ogIu / - iArg (u )+6+O(Iu l )  

=-log + 6 + O(lul), 

with 

e-" 
dx + y. - l ) d x + / :  X 1 -e-x 

In fact, the two integrals cancel each other and we have 6 = y. 
Since E = u + O(lu1') and ( 1  - e- ' ) /u = 1 + O(lul), we get 

&(l - 
= -log E + y + O(lE1). 

Combining this with the approximation in Lemma 9 yields the result, with the 
constant K given by 

K = 40,({) + 4y. 
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To estimate the coefficients of H(z), we next translate the approximation of N ( z )  
to an approximation of its coefficients. Since the result is of independent interest, 
2 state it in a slightly more general form than strictly necessary here. The lemma is 
spired by [ 1.51 and may be compared to the classical Darboux method although the 
mditions of validity differ appreciably. 

PROPOSITION 6 (Translation lemma). Let G(z) be analytic in a domain 

D = {z: z fp, I z I  < P I 7  IArg(z - p ) (  > 8 with p ,  > p, 8 < n/2}.  

ssume G(z) has the asymptotic expansion 
- .  

ith 0 < a ,  < a2 < ... < a,,, < v ,  valid inside D. Then the nth Taylor coefficient Gn of 
'(z) admits the asymptotic expansion 

ProoJ 
ieorem as 

The nth Taylor coefficient can be computed using Cauchy's residue 

rhere the contour simply encircles the origin and is inside the domain of analyticity 
f the function. For small LL, > 0 we take here the specific contour 

T(LL,) = rO, w '1, w r2 7 

efine for some fixed 8, and rl satisfying 

Y 

'he contour is depicted on Fig. 4. 
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FIG. 4. A diagram showing the contour T(w). 

We first show that we can let w shrink to zero. As w --f 0, the integral 

as can be seen from the inequality 

From the local expansion it follows that the upper bound vanishes as (I) -+ 0. Letting 
r= T(0) and T, = we thus see that G, can be computed as 

The same argument applies to the functions in the local expansion of 
G: log( 1 - z/p) and the (1 - z/p)", showing that 

1 dz jr log .( 1 - 5) Zn+19 

P-" 
--=---L 

n 2in 

1 a dz 
( - - 1 ~ ~ - ~  (; =% jr (1 -;) Zn+l. 

Hence, 

with 
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Now R ( z )  is analytic along rz and is O(l 1 - z /p l " )  in D. Consider first the integral 
of R ( z )  along r2 ; we have the obvious upper bound 

R(z) being analytic along rz is bounded, and this integral is exponentially small' 
compared to p - " ,  since rl > p. We are thus left with estimating integrals of the form 

. I  

We set z = p(1 + te i@) with 4 = 
we have for some CT 

and t real. Using the symmetry of the contour, 

Now I 1 + te'* I = (1 + tZ  + 2 cos 4)'" and since cos 4 > 0, we have 
(1 + t 2  + 2t cos 4)'/2 > 1 + dt for some d > 0, so that 

To conclude with the bound we only need to show that I," x" d x / ( l  + x)"" is 
O( l / n  '' "). Indeed, 

For x E [0, 11, (1 + x )  > ex/*, so that 

Hence, 

I&) = O@-"n+"). 

Putting everything together, we have thus shown that 
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T~ conclude the proof of the proposition, it only remains to examine the 
totics of coefficients of the form SYmP 

Known properties of the gamma function show the existence of an asymptotic 
expansion 

with, in particular, 

c,(a) = T(-a)-'.  

Inserting these expansions into the estimate for G, thus completes the proof of 
proposition 6 with 

cij = /Zicj(ai). I 

We have thus seen that adequate local information on a function G around its 
singularity leads to corresponding asymptotic information on its Taylor coefficients. 
The better the local approximation, the more terms the asymptotic expansion 
contains. 

We can now complete the proof of Theorem B. Proposition 3 shows H ( z )  to be 
analytic outside the circle of convergence. Hence, 

TABLE I1 

The Average Height of Binary Trees: 
Comparison of the Exact Values to the Asymptotic Estimates 

- 
n Hn 11,(2 +>-' 

10 7.07 0.63 1 
11.29 0.712 
19.97 0.797 

20 
50 

100 29.98 0.846 
200 44.29 0.883 
500 72.94 0.920 

1000 105.42 0.940 
2000 151.50 0.956 
5000 243.17 0.970 

10000 346.64 0.978 
16000 440.3 1 0.982 
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THEOREM B. The average height of binary trees with n internal nodes satisfies 

i7, = 2 \/.. + o ( ~ / ~ + v )  f o r  any q > 0. 

Proposition 6 also shows that any improvement in the expansion of H ( z )  will lead 
to a better error term. 

Numerical results corresponding to Theorem B are displayed in Table 11. We 
notice that the convergence of fin to 2 @ is initially quite slow; however, for sizes 
of trees about 16,000, the gap appears to be less than 2%. 

6. HEIGHTS IN SIMPLE FAMILIES OF TREES 

Following Meir and Moon [ 131, we now consider planar trees with labels attached 
to nodes. All labels are taken from a fixed label set L 

L = L 0 U L , U L 2 U . . .  , 

with L,  the set of labels that may be attached to a node of degree r. We assume that 
each of the L ,  is finite and we let c, denote lLrl; we can also assume without loss of 
generality that all the Lr)s are disjoint. A family defined in this way is said to be 
simple (or simply generated [ 131). This definition obviously includes all families of 
unlabeled trees defined by restrictions on the set of allowed node degrees (in which 
case c, = 0 or 1). It also covers all families of term trees, i.e., tree representations of 
expressions over an arbitrary set of operators. As examples, we mention 

(a) 

(p) 

(7) 

the family of binary trees for which c, = c, = 1 and c,= 0 for r #  0,2; 
these have been considered in the previous sections; 

the family of general planar trees for which c,= 1 for all r 2 0: the 
analysis in [3 ]  deals with these trees; 

the family of unary-binary trees for which co = c ,  = c, = 1 and c, = 0 for 
r > 2; they appear as shapes of expression trees when unary as well as binary 
operations are allowed; the trees are counted by the Motzkin numbers; 

the family of 2-3 trees (unbalanced) for which co = c, = c3 = 1 and c, = 0 
otherwise; their blanced counterparts are a useful data structure and have been 
counted by Odlyzko [ 151; 

the family of t-ary trees (which also appear in digital search); for these 
trees c, = 1 if r = 0 or t and c, = 0, otherwise. 

As in the above examples, we shall restrict attention to those simple families for 
which there exists an absolute constant M such that 

, 

(6) 

( E )  

Yr,  c, < M ,  
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although our treatment also generalizes to sequences {c,.} with a growth rate limited 
by an exponential. 

UP to isomorphism, a simple family of trees is described by the sequence {cr} , .>".  
Given a simple family E, we let y n  denote the number of trees of total size n;  Le., the 
number of trees formed with a total of IZ nodes. The generating function 

satisfies an equation of the form 

Also, if we define 

ykhl = number of trees of size n and height < h, 

with height measured by the number of nodes along the longest branch, then the 
generating functions 

n 

are given by 

y [ o ~ ( z )  = 0, y [ h + l ] ( z )  = z$(y["(z)) .  

The functions $ corresponding to cases (a)-(&) are thus respectively, 

1 + y 2 ;  (1 - y1-I; 1 + y + y 2 ;  1 + y 2  + y 3 ;  1 + y t .  

In the case of general planar trees, the y r h l ( z )  appear as convergents of a continued 
fraction, and additional algebraic information is available leading to explicit 
expressions for the Y [ ~ ] ( z ) ;  this is the basis of the treatment in [3].  

In the binary case, there is a slight difference between the equation we obtain here, 
namely, 

and the equation for B ( z )  which is 

B(z)= 1 + zB(z )* .  

The two functions are related by 
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which reflects the fact that in this section we consider total size measured by the total 
number of nodes (both nullary and binary). 

The case of nonplanar labeled trees (with distinct labels) does not fall into our 
category of simple trees. It can, however, be subjected to the same analytical 
treatment since the exponential generating function 

Z n  
Y”(z> = C Y n  7 with y ,  = number of trees of size n, 

satisfies the equation 

with similar expressions relative to trees of bounded height. We shall thus obtain the 
Renyi and Szekeres result [ 171 as a consequence of our Theorem S. 

We now indicate the lines along which the method employed for binary trees can 
be extended to these simple families of trees. Let 

denote the total height of trees of size n, with the generating function 

H ( z ) =  C H,z”. 
n > O  

We are interested in the average heights defined by 

fln = Hn/yn 3 

provided y, # 0. We proceed by proving that y ( z )  has algebraic singularities on its 
circle of convergence [ 131, and that H ( z )  has corresponding logarithmic singularities. 

We have to distinguish two cases based on the value of 

d = GCD{r: C, # 0 ) .  

The situation where d =  1 (planar trees, unary-binary trees, ...) is the simplest one 
since then y has only one singularity on its circle of convergence; in this case, y ,  # 0 
for all n > no. The situation where d # 1 (binary trees, t-ary trees, ...) requires 
combining results relative to each of the d singularities of y on its circle of 
convergence; in that case, y, = 0 if n & 1 (mod d). 

Case 1 (Unicity of singularity). We start again with the equation 
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and look for the point where the implicit function theorem ceases to apply. This 
occurs 

Let z be the value of smallest modulus such that $(z> = z$’(t) .  The GCD condition 
implies that z is unique and real: let p = z/$(z) be the corresponding value of z. For 
(z, v) in a neighborhood of @, z) satisfying y = z$(y>,  a local expansion shows that 

2 I’ z - P = - ( y  - 4 (7) r / (2$2( r ) )  + o(iy - Ti3)>.  

Hence, around z = p ,  y behaves as 
- I  

z - (2$(r)/$yz))1/2 (1 - z/p>’/* 

and its nth Taylor coefficient is asymptotic to 

c , P - ” ~ - ~ / ~  with c ,  = ( $ ( z ) / 2 7 + ” ( ~ ) ) ’ / ~ .  

This is essentially the Darboux-Polya theorem applied to tree enumerations (see 
1131). 

Starting from the two equations 

Using the Taylor expansion of the right-hand side of this equation around y ( z ) ,  we 
see that 

Thus setting e,(z) = y ( z )  - y[h l (z) ,  and 1 - z$’(y) = s(z), we see that 

where 

&(Z) = (1 - z /p) ’ /2  r (24yr ) /# ( r ) )1 /2  + O(( y - TI’). 
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The situation is now quite similar to what we had before. Taking reciprocals and 
applying the old trick leads to the approximate expression 

with c, = 24'(2)/4"(2). Hence H ( z )  = 
like c2 log e ( z )  and 

e,(z) behaves around its singularity z = p 

H ,  - +c,p-"n- I ,  

or equivalently 

Case 2 (Multiple singularities). We now assume that d =  GCD{n:  c, # 0 )  is 
nontrivial ( d #  1). The equation 

can then be put in the form 

with ~ ( u )  = # ( u ' / ~ )  a power series in u. The previous computations apply here: if z is 
the smallest positive root of the equation 

m = @'(r>, 

then y ( z )  has an algebraic singularity at 2. Now, since $ ( y )  depends only on yd, we 
see that y ( z )  also has singularities at the points 

z j=.oJz  for j =  0, 1 ,..., d -  1, 

where o is a primitive dth root of unity. Setting as before 

P = w z > ,  

these singularities correspond to values of z 

Local expansions for y can also be carried out around the pj showing that 

2 I1 
z - p j = - o j ( ~ - - j )  4 ( ~ ) 2 / ( 2 4 ' ( ~ ) )  + O ( ~ Y - T ~ \ ' ) *  

z, - W j ( 2 4 ( 4 / 4 " ( Z ) ) (  1 - Z / p j y 2 .  

Hence, around z = p j ,  the approximation of y is 
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The nth Taylor coefficient of this expansion is approximated by 

c , p  -nu - j ( n -  ' I n  - 312 with c ,  = ($(T)/(~~T$~~(T)))'~~, 

and provided n = 1 (mod d)-which is to be assumed since y ,  = 0 if n f 1 (mod d>- 
these terms add up to 

dc, p - "n - 3 1 2 .  

The same phenomenon occurs for H ( z )  which also has d singularities on its circle 
of convergence. Around z = p j ,  H ( z )  behaves as 

ic, wj log( 1 - Z/Pj) ,  
- .  

SO that for n 1 (mod d )  

H ,  - (d /2)  c2p-"n- ' .  

Hence again 
- 

H ,  - i ( c z / c l )  n'12. 

We can thus state: 

THEOREM S. For simple families of trees corresponding to the equation 
y=z$(y ) ,  and for n = 1 (mod d )  with d =  GCD{r: c,.# 0 } ,  the average heights 
satisfv 

- 
H ,  - ;ln'l2, 

where 

and z is the smallest positive root of the .equation 

$(z) - z$'(z) = 0. 

COROLLARY. 

(i) The average height of a unary-binary tree with n nodes is asymptotic to 

fi. 
(ii) The average height of an unbalanced 2-3 tree with n nodes is asymptotic 

to 

d n n ( 2  + 3t)/(l + 3t), 

where z is the positive root of the equation 2z3 + z2 - 1 = 0. 
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(iii) 
asymptotic to 

The average height of a t-ary tree with n internal (t-ary) nodes is 

(iv) The average height of a (planar rooted) tree with n nodes [3]  is 
asymptotic to 

(v) 
asymptotic to 

The average height of a labeled nonplanar tree with n nodes [ 111 is 

-~ e. 
7. DISTRIBUTION RESULTS 

In this section, we shall show that our methods can be extended to derive infor- 
mation about the distribution of heights in simple families of trees. We shall deal with 
the binary case giving asymptotic equivalents for moments of higher order (variance, 
etc.). The distribution of heights in trees appears to obey a limiting theta distribution. 
A similar result has been proved by Renyi and Szekeres [ 171 in the case of labeled 
nonplanar trees using a rather different method, and in the case of general planar 
trees by Kemp [ 101 using the explicit enumeration results available in that particular 
case. We prove 

THEOREM MB (Moments of the distribution of height in binary trees). The nth 
moment of the distribution of heights in binary trees of size n satisfies, f o r  r >, 2, 

- 
M ~ , ~  - Z+(r - 1) ~ ( $ 2 )  [ ( r )  nrI2 as n -+ co. 

ProoJ The rth moment of the distribution of heights intrees of size n is giving by 

The quantities Mran are estimated from their generating functions : 

with 
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We only need to consider here the case where r > 1 .  Expressing M ,  in terms of the 
en's and E ,  we get 

using summation by parts. Hence setting 

we see that 

The problem thus reduces (for each r )  to estimating the order of S,(z )  around the 
singularity i. From this information, the asymptotic behavior of the M,,, is recovered 
by methods similar to Proposition 6 .  

We first compare S,(z) with the simpler function 

E ( l  - E ) "  
T,(z )=  2 nr 

,a ,  1 - (1 - E ) " '  

To do so, we study the difference S , -  T,  using the tools of Lemma 9. The 
summation giving S, - T, is split into 

d, = e,, - ~ ( 1  - ~ ) " / ( 1  - (1 - E ) " ) .  

With the estimates for d, previously derived, we find: 

n-' + O ( E )  and t ,  = O(1og min(n, lei-')). 
\ (ii) U2 = O(CIEl - 1/2G 

Hence, U ,  + U, = O ( ] E ~ - ~ + '  log [el- ').  

(i) u1= O ( X n < , e / -  nr  log((n)/n'), using I E ( ~  - & ) " / ( I  - (1 - E ) " ) [  = 

n' log(n)/n'), using d, = O(log(n)/n2) in this range. 

(iii) U ,  = o ( I E / *  log [ E [ - '  ~ n , l E , - I  nrl 1 - E [ " )  = O(lel-'+' log l ~ l - ' ) ,  using 
= O(IE1' 1 1  - E l "  log 1 & 1 - ' ) .  

We have thus shown 

IS, - T,I = O(lel-'+' log l e l - l ) ,  

a difference of a smaller order than T,, as we now prove. 
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Notice first in expanding T ,  that 

(1 - E ) "  
T , = E  nr  = E  C a,(n)(l - E ) "  

n >  1 1 - (1 - E ) "  n> 1 

where a,.(n) is the sum of the kth powers of the divisors of n 

with corresponding Dirichlet generating function [(s) [(s - r).  
A function like 

can be evaluated asymptotically, for real u-+O by appealing to properties of the 
Mellin transform as in [3]. The Mellin transform is readily found to be 

whose rightmost pole is at s = r + 1. Residue computation now shows that 

F,(u)=C(r+ l)T(r+ l )u - r - l+o( lu~- l ) ,  

from which T,(z) can be estimated when E is real. 

We set again e-' = 1 - E ,  and 
To extend this evaluation to complex z and E,  we use the method of Lemma 10 

The sum is a Riemann sum relative to the integral 

the integrand being of bounded derivative over the interval. We thus have 

T ,  = c,.Eu-'-'( 1 + O(l u I)), 
and translating back in terms of E ,  we get 

T,(Z) = Cr&-'  + o( l&I - r+ l ) .  

To compute c,, it suffices to expand (1 - 
integral. One finds 

and determine separately each 
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Returning to M,., we have thus obtained the local expansion 

M , . ( z ) = 4 r r ( r ) ~ ( r ) & - ' + '  + O(Jc(-'+* log I&(). 
TO conclude with the asymptotic growth of the M,,,, we again need a translation 
lemma analogous to Proposition 6. In Proposition 6, the remainder term in the 
expansion of the function is small near the singularity. This is no longer the case 
now, and so we use a different contour to obtain the following result: 

PROPOSITION 7. Suppose that g(z) is analytic in 

E =  { z : I z I<p ,  Z Z P }  

g(z) = O(l 1 - Z/P I") 

- I  

for  some p > 0, and that for  z E E, 

for  some a < 0. Then, the nth Taylor series coefficient g, of g(z) satis-es 

g, = O@-nn-a- ' ) .  

We use Cauchy's theorem with the contour I-'= I-', u TI,  where ProoJ 

and so 

Let 8, be determined by 0 < 8, < n/2, 

p ( 1  - eieol = I/n. 

Then 

Now I 1 - eie]  > c 101 for some fixed c > 0 if 18) \< 71, so the term on the right side 
above is 
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Since Bo - c'n-'  as n -+ a for some c' > 0, we obtain the claim of the 
proposition. 

Applying this proposition to the error term in the expansion of Mr(z) ,  and using 
the explicit expressions for the coefficients of c P r ,  we obtain 

for any q > 0. Since for fixed nonintegral a 

we find 

Dividing by B,, we finally get 

which using the duplication formula for the gamma function yields 
- 

 AI^," - 2'r(r - 1 )  ~ ( r / 2 )  [ ( r )  nrI2. 

For n = lo4, the asymptotic estimates of the 2nd, 3rd, and 4th moment are within 

Now we consider the normalized height defined for a binary tree of size n by 
10% of the actual values. 

%(t) = height(t)/(2 fi). 
The rth moment pr," of 6 on trees of size n satisfies 

p r , n  + r(r - 1 )  r ( r / 2 )  [ ( r )  as n + a, 

with error terms essentially O(l /n ) . '  (The formula is seen to be still valid for r = 1 ,  if 
we take limits.) We thus see that normalized height converges to a distribution whose 
rth moment is given by 

The limit distribution is identified by comparing these quantities with the moments of 
the theta distribution [ 171, whose cumulative distribution function is 
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with corresponding density 

21 1 

h ( x )  = 4x k2 (2k2x2  - 3 )  e -k2X2.  
k >  1 

The rth moment of this distribution is precisely 

COROLLARY. ’The normalized height 

h( t )  = height(t)/(2 fi) 
on trees of size n admits a limiting theta distribution with density function 

h ( x )  = 4x  k2 (2k2x2  - 3 )  e-k2x2 

The same principle applies to simple families of trees, and one finds for the rth 
moment relative to trees of size n an asymptotic expression of the form 

which again shows that, suitably normalized, the distributions of heights tend to a 
theta distribution. 

THEOREM MS (Moments of the distribution of height in simple trees). For simple 
families of trees corresponding to the equation y = z$( y ) ,  the rth moment of height in 
trees of size n is asymptotic to 

The distribution of the normalized height in trees of size n 

E(t)  = height(t)/& 

tends to the limiting theta distribution of density h(x). 

8. CONCLUSIONS 

To conclude, we observe that many combinatorial problems-especially tree 
enumerations-have generating functions associated to functional equations of the 
form 

f ( z )  = @(z, f ( Z N 9  
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where @ is a functional reflecting the structural definition of the objects. The approx- 
imations provided by the iterative scheme 

f ' O ' ( 2 )  = 0 ;  f l h +  " ( z )  = @(z, f [ h ' ( z ) )  

are often of combinatorial significance, representing a partition of the objects 
according to some form of height. In this paper we dealt with equations of the form 

f(4 = Z W ( 4 )  

corresponding to simple families of trees. 
The enumeration of nonplanar unlabeled rooted trees corresponds to functional 

equations of the form - .  

as appears from developments in Polya theory. The present approach is applicable 
since the occurrence of f ( z ' ) ;  f ( z 3 ) ,  ... is known not to affect singularities too much 
and f ( z )  still has an algebraic singularity on its circle of convergence (see 
Polya [ 161). 

On the other hand, the statistics about binary search trees and tournament trees 
represent equations of a different nature with probable singularities of the type of 
(1/( 1 - z ) )  log( 1/( 1 - 2)). We mention here the two equations 

.L .I 

T(z)  = 1 + J T*(z) dz and T(z)  = exp J T(z)  dz, 
0 0 

whose approximations provided by the iterative scheme are associated with, respec- 
tively, height and one-sided height. The methods developed here do not seem to apply 
to these problems. 

Another line of extension of our methods is to look at different limit distributions. 
In another work, the authors have shown that the limit distribution of binary trees of 
given height by size is Gaussian. The proof there is achieved by applying the saddle 
point method and investigating the analytical properties of the Brh"(z) outside the 
circle of convergence where they display a doubly exponential growth. 

Finally we mention that other methods applicable to large classes of trees have 
already received some attention: Meir and Moon [ 131 have shown that path length in 
simple families of trees is essentially -an fi; Odlyzko [ 15) has dealt with functional 
equations of a general nature relative to balanced trees; Flajolet and Steyaert [ 7 ]  
have shown that the simple backtracking algorithm for tree matching has linear 
average time when inputs are taken from any simple family of trees. 
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