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ABSTRACT 

Several characteristic parameters of randomly grown quadtrees of any dimension are 
analyzed. Additive parameters have expectations whose generating functions are express- 
ible in terms of generalized hypergeometric functions. A complex asymptotic process based 
on singularity analysis and integral representations akin to Mellin transforms leads to 
explicit values for various structure constants related to path length, retrieval costs, and 
storage occupation. @ 1995 John Wiley & Sons, Inc. 

INTRODUCTION 

Quadtrees, invented by Finkel and Bentley 171, constitute a convenient data 
structure for storing and retrieving data from multidimension~ data space 
(usually emb~dded in Rd)  that extends the familiar binary search tree structure. 
For instance, they allow for Q(1og n) retrieval time, they present a fair amount of 
flexibility with respect to partial match queries where only a subset of the 
coordinates are specified, and they may be used as an index to access multi- 
d im~~s iona l  data on secondary storage. The major applications are discussed in 
[16, Chap. 31 and reviewed extensively in Samet’s books [26, 271. 
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From an analyst’s standpoint, quadtrees lead to many challenging problems. 
The expectations of characteristic parameters satisfy probabilistic divide-and- 
conquer recurrences that are appreciably more complicated than the quicksort 
and binary search tree recurrences to which they reduce when the dimension d of 
the data space is equal to 1. 

Finkel and Bentley followed by Gonnet [15] conjectured, on the basis of 
extensive simulations, that the expected cost of a random search in a quadtree 
built from n random independent data of d-dimensional space grows like 

That conjecture, as regards the dominant term at least, was solved independently 
by Flajolet et al. [12] and Devroye and Laforest [4], who established that 

hd=2 /d .  

In dimension d = 2, it was found in [4, 121 that the expectation admits an explicit 
form involving the harmonic number H,, from which there results that E.L;! is also 
known. However, for higher dimensions (d 2 3), only first-order asymptotics have 
been obtained explicitly till now as the treatment of [4] had to rely on 
probabilistic methods while that of [12] had to be based on a somewhat qualitative 
asymptotic study of singularities of a differential system in the complex plane. 
Some of these basic results are surveyed in Mahmoud’s informative book [25]. 

The results of [4,12] have been extended in various ways, so that more 
probabilistic properties of random quadtrees are now known. This includes (i) 
statistics of node degrees for dimension 2, by Laforest and Labelle [22,23]; (ii) 
storage occupation constants in dimension 2, by Hoshi and Flajolet [18]; (iii) the 
limit distribution of search costs for all dimensions by Flajolet and Lafforgue [8]. 
In addition, probabilistic estimates for the height of quadtrees have been 
developed by Devroye [3]. These results are briefly reviewed at the end of the 
paper (Section 7). 

This paper proposes to show that the expectations of additive cost measures 
that are of interest in the analysis of quadtrees have explicit expressions. Thus, 
parameters hitherto only partly accessible via probabilistic methods or indirectly 
accessible through implicit generating function equations can be precisely quan- 
tified. From the methods developed in this work, an explicit form for the constant 
p d  of (1) is derived. (Theorem 3); the probability distribution of the search cost 
C, reduces to convolutions of Stirling numbers (Theorem 8); storage occupation 
constants for paged index trees of all dimensions can be computed (Theorems 6 ,  
7); finally, the main constant intervening in the search of extreme points is 
determined (Theorem 9). 

1. OUTLINE OF THE ANALYSIS 

We first recall the principle of the quadtree data structure for multidimensional 
data access [7,16,26,27]. In dimension d = 2 ,  a sequence of points P = 
( P I ,  P2 ,  . . , P n ) ,  each Pi E R2, is represented by a quaternary tree constructed 
inductively by the following rules: 
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- If n = 0 (P = a), then the tree is empty. 
- If n 1 1 ,  then the first point PI is made the root of the tree. The four root 

subtrees are then made recursively from the four disjoint sublists of points 

defined by restricting P\{P1} to the four quadrants (NW, N E ,  SW, S E )  that 
are determined by the root node PI. 

The construction generalizes to any dimension d by considering the 2d regions 
(octants) determined by the root node; for data in Rd, the quadtree is then a 
2d-ary tree. 

We analyze here randomly grown quadtrees built from n uniformly distributed 
random points of the unit hypercube [O,lld, of d-dimensional space. As is well 
known, this model is itself equivalent to a general model of data points with 
coordinates drawn independently from an arbitrary continuous distribution. 
Under this model, the probability that a tree of size n has a designated subtree 
(for instance the first root subtree) of size k is [12,23] 

1 1 
g n , k  =-E n 8 1 1 ” . 1 d - 1  ’ 

.Y= { ( i l ,  i , ,  . . . , i d - l )  I k < i ,  I i ,  I * * 5 i d - l  I n }  . 
Several equivalent forms are available (see Appendix) involving either binomial 
coefficients or generalized harmonic numbers. The g n , k  fully characterize the 
random quadtree process. 

After these preliminaries, we turn to a succint description of the main thread of 
the paper. 

1 .  Recurrences and generating functions. Consider an additive parameter of 
quadtrees like path length, or number of leaf nodes (see Section 2 for a 
definition). Its expectation f n  taken over randomly grown trees of size n satisfies a 
probabilistic divide-and-conquer recurrence of the form 

n-1 

There, t ,  represents a simple enough sequence, the ‘‘toll,’’ which is n for path 
length or 6, for the number of leaves; the “splitting probabilities” 7rn,k are as 
given in ( 2 ) :  

When going to the realm of generating functions, the divide-and-conquer 
recurrence (3) translates into an integral equation (itself reducible to a linear 
differential equation) for the ordinary generating function of the expectations. 
With 

m 

one finds by the form ( 2 )  of the splitting probabilities 
d 

(z(1 - ~ ) D ) ~ [ f ( z )  - t (z)]  - 2df(z) = 0 with D = x, 
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where t(z) is the ordinary generating function of the toll sequence {t,}. A direct 
analysis of these linear differential equations of order d is the approach 
underlying the treatment of [S, 12,181. 

2. The Euler transform and hypergeometric forms. A key step in this paper is 
to introduce on generating functions the Euler transformation 

which is well known from the calculus of finite differences' or convergence 
acceleration processes. Under this transformation, the differential equation 
satisfied by the generating function of expectations assumes a particularly simple 
form, 

( z l q d [ ( l  - z)( f *(Z) - t*(z))] + 2 5 f  *(Z) = 0 . (7) 

The transformed equation is in turn equivalent to an inhomogeneous linear 
recurrence of order 1 for the coefficients f ," = [ z" ] f* ( z ) ,  

f, * =u,+( l -$) f , " - l ,  

for some known sequence u, elementarily related to the tolls t,. 

so that the coefficients f :  admit an explicit form involving the products 
For basic parameters of interest, the numbers t, (hence also the u,) are simple, 

(1 -$)( 1 - f) . . . ( 1  -$) , (9) 

Thus, the f ,*  are closely related to d F d - 1  hypergeometric functions. The f ,  are 
recovered from the f ,"  by the Euler transformation again, as 8 is involutive, 
which at the level of coefficients yields 

From there explicit hypergeometric-like summations result for the expected 
values of search cost, number of leaves, and so on. These general algebraic 
manipulations are the subject of Section 2. A convenient notation for manip- 
ulating the special hypergeometric forms encountered is introduced in Section 3. 

3. Complex variables asymptotics. The alternating sum (10) does not lend 
itself to elementary asymptotics as it involves exponentially large cancellations: 
The binomial coefficients of (10) come close to 2" while the f, of interest are 
known a priori to be polynomially bounded. 

We approach the problem by means of the singularity analysis method [9]: the 
behavior of fn as n -+ 03 is dictated by the behavior of f(z) as z -+ 1 from the left, 

' The idea of introducing this transformation was first suggested empirically by numerical experiments 
with differences aimed at finding alternative representations for expectations of quadtree parameters. 
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which in turn relates via the Euler transformation of (6) to the behavior of f*(z) 
as z- -a. 

The first problem is thus to estimate asymptotically the alternating series 

as t+a , 
n 

where, broadly speaking, f ," is of hypergeometric type because of the occurrence 
of the products ( 9 ) .  We take a route based on contour integration and the integral 
representation 

There &) is an ''analytic extrapolation" off," in the sense that f ," = &z). Such 
representations, akin to Mellin transforms, are also familiar from complex 
variables versions of Euler-Maclaurin summation h la Abel-Plana, as well as from 
the classical theory of ordinary and basic hypergeometric functions h la Mellin- 
Barnes [14,28,29]. 

Shifting the line of integration to the right in (11) provides for the asymptotic 
expansion of f *( -t)  as t-+ a by the residue theorem. The expansion of f *(-t) 
translates into an asymptotic expansion of f(z) .as z 4 1 (the Euler transformation 
exchanges 1 and a). 

Eventually, precise asymptotics for the coefficients fn result by singularity 
analysis [9] (akin to Darboux's method) that, under conditions of analytic 
continuation, justify the general implication 

na-' 
r(4 [Z"]f(Z) - h - (log n)k . 

We are going to carry out this program in detail in the case of some of the most 
important parameters of quadtrees. The simplest situation is that of path length 
which is discussed in Section 4. Slightly more sophisticated analytic extrapolation 
techniques are needed in the case of the paging constants of Section 5. Section 6 
discusses further applications of the method to extreme points and the distribution 
of search costs. 

2. BASIC RECURRENCES A N D  THE EULER TRANSFORM 

A tree parameter [ [ a ]  is a function that maps trees (2d-ary trees for quadtrees in 
dimension d )  to real numbers. Parameters studied here are additive parameters 
that are specified recursively by 

(13) 
2d  (the ai are the root subtrees of a )  , 

(0 is the empty tree) , 
6 [ a ]  = t l a l  + 'j=1 [[ail 

L 0 1  = t o  

where {t,} is a fixed number sequence. The size la1 of a tree a is as usual the 
number of internal nodes it contains which for quadtrees coincides with the 
number of data points that compose it. Additive parameters are thus obtained by 
adding a "toll" t, depending only on the size n of the tree and the values of the 
parameter on the root subtrees. 
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The problem addressed here is to analyze the expectation f, of such a 
parameter under the probabilistic model where a quadtree is randomly grown by 
n successive insertions of independently and uniformly distributed points of the 
unit hypercube [0, lid. This is the standard model for such analyses (see 
[4,12,23,25]). Under the quadtree growth process the expectation f, obey the 
recurrence that reflects the inductive definition (13), 

n - 1  1 

and summarizes the already quoted relations (2) and (3). There, and throughout- 
the paper, d denotes the dimension: d = 1 for binary search trees and d = 2 for 
standard quadtrees; the 7 ~ ~ , ~  are the fundamental splitting probabilities already 
quoted in (2). 

Taking generating functions, formula (14) translates into a simple integral 
equation, 

where J and Z are the following integral operators: 

Equation (15) is readily translated into a linear differential equation of order d :  

Z-'J1-d[ f(Z) - t(z)]  = 2df(~) , 
which is equivalent to the form given in (5 ) .  

The Euler transformation 
z 

f "(2) =- %'f(z) = (1 - Z ) f ( Z )  with 2 = - 
2 - 1  

is an involutive transformation of series, f = g'f. When applied to the integral 
equations describing additive cost parameters of quadtrees, it appears to simplify 
the analysis in an essential way. 

Here, we have by involutivity f(z) = (1 - Z) f* (Z) .  Rewriting similarly t (z)  = 
(1 - Z ) t * ( Z )  transforms (15) into 

(16) " 
( l - Z ) f * ( Z ) = ( l - Z ) t * ( Z ) + 2  d J d - 1  Z [ ( l - Z ) f * ( Z ) ] .  

The integral operators I ,  J simplify under the substitution z 
function's argument: 

Z ( z )  inside their 

Thus, with these transformation rules, and with 2 taken as the independent 
variable, (16) becomes 

(1 - Z ) f * ( Z )  = ( 1  - Z)t"(Z) + 2 d j d - 1 @ * ( Z )  y (18) 
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where 

The form (18) is equivalent to 

r l j l - d [ ( l  - Z ) (  f * ( Z )  - t * ( z ) ) ]  = 2df "(2) , (19) 
itself a rephrasing of (7). 

The action of these operators on the Taylor expansion off in the variable Z is 
thus particularly simple, and taking coefficients of 2" on both sides of (16) yields 
the linear recurrence of order I, which is basic to our treatment, 

* * -  * * -  2d f r-1 

nd ' f n -f n - 1 -  tn - tn -1  

or equivalently [this justifies (S)] 

f ," = (t  ," - tn * - 1 )  + ( 1 - $) f :- 1 

An explicit form for the coefficients f ," is then available: f ," = fo and f I' = fo - 
fl follow from the definition of 8, while iterating (20) yields for n 1 2  

where 

R n = f i ( l - $ )  j = 3  and R 2 = 1 .  (22) 

(R, is defined in accordance with the usual convention of empty products.) The 
R, are ubiquitous in the expectations of additive cost measures of quadtrees; 
motivated by the needs our analysis, we develop a special set of notations in 
Section 3, according to which we write R, as a pseudofactorial: R, = [n]!. 

Finally, the coefficients of the Euler transform obey the classical binomial 
convolution formula 

(23) 

By involutivity a similar formula, already stated in (lo), makes it possible to 
recover f, from f ," . The combination of (10) and (21) then yields an explicit form 
for the f,. 

Theorem 1. 
function t ,  satisfies 

The expectation fn of an additive parameter defined by the toll 

where 
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[n]! = fi (1 -$) , [2]! = 1,  and t ;  = 2 ( L ) ( - l ) k t t .  . 
j = 3  k=O 

One also has the useful equality 

The rest of this paper is devoted to algebraic and asymptotic studies of f ,  for 
various sequences t, . 

3. THE CALCULUS OF "d-ANALOGUES" 

In order to manipulate expressions occurring in the analysis of quadtrees, it 
proves convenient to introduce a special set of notations inspired by the classic 
framework of q-analogues in combinatorial theory (though there is no close 
relation to our convention). This simplifies appreciably computations since it 
avoids considering sums and products of the I? and + functions taken over sets of 
roots of unity. 

We fix an integral dimension d and define the d-analogue of a complex number 
s as 

2d 
[SI = 1 -- 

Sd e 

From this, the d-analogue of the factorial is introduced, first for integer n, as 

[n]!=[3] . [4] . . - [n]= ( l - - $ ) ( l - - $ ) - - ~ ( l - - ~ )  with [2 ] !=1 .  (24) 
n 

Clearly, the d-factorial of integral arguments satisfies the recurrence: [n]! = [n] - 
[n - I]!. 

The d-factorial can next be extended to complex values as the d-analogue of 
the gamma function 

and this expression is also related to the classical gamma function (see below). By 
construction, it satisfies the basic functional equation 

[SI! = [SI * [s - l]! . (26) 
By design, the function [SI! coincides at all integer points with the number 
sequence [ n ] ! ,  which is central in the analysis of quadtrees, as evidenced by 
Theorem 1. We also have 

[+m]! = [3] - [4] [5] - * 
= 

m = 3  

and [SI! has a simple pole at all integers {1,0, -1, . . .} since [2] = 0. More 
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generally, there are simple poles at all the roots of the equations (s + j ) d  = 2d, for 
j = 0, 1,2, etc. 

A role is also played in subsequent formulae by the logarithmic derivative of 
the d-factorial, called the d-analogue of the psi function, 

d " d  
[+](s + 1) = x log[s]! = - C log[j +SI 

j= 1 

m 4 

1 

= - d2d m = l  2 (m + s)((m + s)d - zd) ' (28) 

In particular, we shall need a d-analogue of Euler's constant written [r] (with a 
slight abuse of notation) 

as well as the d-harmonic numbers: 

+ ... + 1 

[ 3d'1[3] + 4d+1[4] 
[HI, = d2d 

This formula serves to express the values of [+,I at integer points (see Theorem 6 )  

functions. From the product formula for the gamma function [29], one has 
The quantities [s]! and [+](s) are clearly related to the classical gamma and psi 

since +(s) is defined as the logarithmic derivative of r(s). This entails in turn 

Thus the quantities appearing in the statements of our theorems can be expressed 
directly as infinite sums and products (25), (27), (28), and (29) as well as 
evaluated numerically by a reduction to common special functions (31) and (32). 

When d = 1, one has 
2 -- [SI ! - 

[+a]! s(s - 1) ' 

from which the analysis of binary search trees is recovered as a particular case of 
our general theorems. In the case of d = 2, the d-analogue again degenerates into 
a rational function since w 2  = 22 implies w = 22, and one finds 

[SI! (s + l)(s + 2) -- - 
[ + q !  s(s - 1) 
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In the perspective of this paper, this degeneracy "explains" that the analysis of 
standard quadtrees (d = 2) is easier and elementary expressions are encountered 
as exemplified by [4,8,12,18,23]. 

4. PATH LENGTH dt., = n  

Path length is defined as the additive parameter on trees corresponding to the toll 
function t ,  = n, or equivalently as the sum of the depths of all internal nodes in 
the tree, with the depth of a node v being counted as the number of nodes along 
the branch connecting Y to the root of the tree. (For instance, the root itself is at 
depth 1, and the path length of a tree of size 1 equals 1.) 

Let f ,  be the expectation of path length in a quadtree of size n. The cost of a 
random successful search in such a tree, as measured by the number of internal 
nodes traversed, is f,ln. 

We thus take t, = n in (14). From the definition of $5, the derived sequence 
ti* - tiVl is therefore ai,, - so that (21) reduces to * 

f t = o ,  f ; = - 1 ,  f,"=[n]! ( n 2 2 ) .  (33) 
The generalized hypergeometric series pFq is classically defined [6 ,  Vol. 1, Chap. 
VI by 

where (a) ,  = r ( a  + .)/I@) is the rising factorial, also known as Pochhammer's 
symbol. The form of (33) then corresponds to an explicit hypergeometric 
expression for generating function f * ( t ) :  

where the 0,. are the dth roots of 2d. Application of the Euler transformation to 
(33) and (34) leads to the following theorem. 

Theorem 2. 
d is 

The expected internal path length of a quadtree of size n in dimension 

The  generating function of the sequence f, is o f  hypergeometric type: 

with wi = 2e2ijw'd. 

Singularities of hypergeometric functions of type d +  ,Fd are isolated and of 
algebraic-logarithmic type, as results from the differential equations that they 
satisfy. We can thus a priori use singularity analysis in order to estimate the 
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asymptotic behavior off, as n tends to infinity. This implies studying the behavior 
of f ( z )  in the neighborhood of 1 which in turn is governed by the behavior of 
f * ( t )  at -a. 

Our goal is therefore to obtain a suitable analytic continuation for the 
hypergeometric series (34). While explicit formulae in terms of Meijer's G 
function are available by Slater's theorem [6,28], we describe here a more direct 
method of attack which is applicable to other parameters of quadtrees for which 
no such simple hypergeometric form is available. 

We first follow an idea originally developed by Mellin and Lindelof that 
provides a complex integral representation for analytic functions whose co- 
efficients admit analytic expressions. 

Lemma 1. 
ditions: 

Assume that an analytic function q(s)  satisfies the following con- 

( i )  q(s)  is analytic in the right half-plane %(s) L no - +, for some integer no; 
(ii) for some 8 < T ,  and some K > 0,  inside the closed half-plane %(s) L no - 

+, q(s)  satisfies the bound 

Iq(s)l < KeeISI . (35) 

Then, the function F with Taylor coeficients ( - l ) " q ( n )  admits the integral 
rep resen ta ti0 n : 

valid inside the sector l a rg ( t ) l~  T - 8 I ,  f o r  any 8 I > 8 and for It1 > 7' with T Some 
fixed positive number. 

Proof. (Sketch, see [24, pp. 108-1191 for details.) The validity of the expansion 
is proved by considering the integral of (36) taken along the contour formed with 
the line %(s) = no - 3 and a large semicircle extending to the right of %(s) = no - 

and centered at no - +. The integral along that composite contour is then 
estimated by residues, with the integrand having a simple pole at s = n  E 
{no, no + 1, . . .} with residue q(n)(-t)".  

The decay condition on q(s)  ensures convergence of both the integral and the 
sum in the stated region for t. Thus the integral equals the series. 

The integral representation of (36) is in fact an inverse Mellin integral, and, as 
such, it usually lends itself to asymptotic analysis of F(t),  as t+m, by shifting the 
line of integration to the left. Only a little more is needed to ensure the validity of 
the method. 

Lemma 2. Assume that q(s)  satisfies the conditions of lemma 1, and in addition: 
( i )  q(s)  is meromorphic for %(s) 1 a for some a < 0 ,  
( i i)  q ( s )  is analytic for %(s) = a. 

(iii) q(s)  is analytic in the domain defined by %(s) 2 a and [g(s)l 2 M for some 
M > O .  
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Assume further that condition (35) holds for the extended analyticity domain of 
cp(s). Then, the following expansion of F(t) holds: 

as t + m ,  larg(t)l< 7~ - 6’  , 

where the sum is taken over all poles in the strip a < %(s) < no.  

Proof. The statement derives directly from a residue computation of the integral 
of (36) taken along a large rectangle extending towards +im with vertical sides 
R(s) = a and %(s) = no - $. - 

Each residue contributes a term in the asymptotic expansion of F(t) towards 03, 
with a pole of order k for cp(s)lsin(rs) at s = c producing a term of the form 
ta( logt)k- l .  An intuitive statement of the chain formed with Lemmas 1 and 2 is 
then as follows: 

For an analytic function F(t) with coencients that admit a suitable 
analytic form ~ ( s ) ,  the asymptotic behavior of F(t) at infinity derives 
from the singularities of the coeficient function q ( s )  . 

This technique became classical a century ago. It is to be found in the books of 
Lindelof [24] and Ford [13], as well as in Hardy’s description [17, Chap. XI] of 
“Ramanujan’s heuristic’’ for definite integration. For instance, eventually, the 
function 

tn 
n 

00 

log(1 + t )  =-z (-1y - 
n = l  

is logarithmic as t-+ 03 ‘‘because’’ its coefficient function q ( s )  = + admits a simple 
pole at s = O ( ! ) .  Related representations are of use in the study of classical or 
basic hypergeometric functions (see [5,  Chap. 111, [14, Chap. 41, [19, Sec. 3.51). 

For path length, the function F(t) = t + f * ( - t )  satisfies the conditions of the 
lemmas as its coefficients that involve [ k ] !  are special cases of the d-analogue of 
the gamma function [SI! introduced in (26). This provides an asymptotic 
expansion that translates directly into a matching expansion for f(z) via the Euler 
transformation, and this in turn provides the sought asymptotic form of the 
coefficients f ,  = [z“] f(z) by singularity analysis. 

Since here cp(s) = [s]!, we first take no = 2 and a = 1 - E ,  where E is a small 
positive real number chosen in such a way that the equation sd - 2d = 0 has only 
the root s = 2 in %(s) > a. We have [SI! = O(1) in %(s) > a and I3(s)l> 1 as results 
from the expression of the d-analogue of the gamma function in terms of the 
classical gamma function (31), and from known growth properties of the gamma 
function [29]. Thus, Lemmas 1 and 2 apply with 6 = 0. 

For such an a = 1 - E, the only singularity encountered is a double pole at s = 1 
which induces a behavior of the form t log t :  The residue is computed elementarily 
by first rewriting [SI! = [s + l]!/[s + 11, and using 



COST STRUCTURE OF QUADTREES 129 

7r -1 
sin 7rs s - 1 + O(s - 1 )  , --- tS = t + t log t(s - 1) + O((s - 1)') , - 

so that 

1 5T 2 t 
[s+  11 tS -) s i n m  s=l  = -J t log t + (d + 1 - 4 [ y ] )  . 

The error term of O(t'-') can be improved. When shifting the contour further 
to the right, the next singularity which is encountered is either a double pole at 
the origin or two simple poles with real part 1 - 2 cos(27r/d), so that, adding these 
contributions to the residue at 1, we get 

2 t 
F(t)  E t  + f *( - t )  =-J t log t  + z ( d  + 1 - 4 [ y ] )  

) ,  t - m .  1-2 c o s ( 2 r l d )  + O(l0g t + t 
Applying the Euler transform again, we get the behavior off at 1: 

1 
2d with c = - ( 3 d + 1 - 4 [ 7 ] ) .  

1 1 

The basic method of singularity analysis [9] finally permits a termwise transfer 
from asymptotics of the generating function f(z) to the asymptotics of its 

analysis- [9] ,  given that the asymptotic e x p a n s i o m  f(z) hold in 
extended regions of the complex plane. We have 

coefficients, fn. The translation is justified by the e nfsinnularity - 

so that 
2 

[z"]f(z)  - 2 nH, + ( c  - $) n . 
Theorem 3. 
d is asymptotically 

The expected internal path length of a quadtree of size n in dimension 

>,  -1+2 c o s ( 2 r l d )  2 fn =dn logn + pdn + O(1ogn + n - 
where p d  depends only on the dimension: 

Theorem 3 is an improvement over the results of [4,12] by which only 
dominant asymptotics could be derived explicitly. By shifting further the contour 
of integration in (36 ) ,  one would even obtain in principle a full asymptotic 
expansion. 
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For binary search trees (d = l), we have 

which implies the known result [20, p. 4271: 

For standard quadtrees (d = 2), we find 

and recover the asymptotic expansion of the exact form fn = (n + 1/3)H, - (n + 
1)/6 already obtained in [4,12]: 

f, = n log n + (y - 6). + O(l0g n) . 
For d = 2, 3, 4, 5 ,  6, the numerical form of the asymptotic approximation of 

f , / n  is then: 

d = 1: 

d =2: 

d = 3 :  

2 lo&) - 2.42278 43350 98467, 

log@) + 0.41054 89982 34866, 

2 
-log(n) + 0.97303 71351 30062, 3 
1 
-log(n) + 1.19708 16793 92943 , 

2 
-log(n) + 1.30706 24971 52704 , 5 

d = 4 :  

d = 5 :  

1 
-log(n) + 1.36793 35007 97805 . 3 d = 6 :  

These figures are in good agreement with the empirical formulae inferred from 
simulations or numerical computations in [15, p. 1141 ( ~ ~ ~ 0 . 9 9 7 )  and [16, p. 
1451 ( p3 = 0.973036). (We also have pd + 3 as d + m.) 

5. PAGED QUADTREES 

A quadtree may be used as an index for accessing data of d-dimensional space. In 
that case, all maximal subtrees of size less than a fixed threshold b (the page or 
‘‘bucket’’ capacity) are stored separately into pages. The internal nodes of the 
original quadtree that do not belong to pages then constitute the internal nodes of 
the index. 

The index tree corresponding to a quadtree a is thus a 2d-ary tree with a 
number of internal nodes x defined in terms of a itself by the recursion: 

if 1.1 I b , 
if la1 > b . (~~~~ 1; + C i  x [ a i ]  



COST STRUCTURE OF QUADTREES 131 

By the conservation law for 2'-ary tree, the number of pages is linearly related to 
x, being 

1 + (2d - l)x[a] . 

Thus the analysis of page occupancy (the mean number of pages) in paged 
quadtrees reduces to the study of a particular additive parameter on quadtrees 
defined by the toll sequence 

1 .  - - t 0 1  = t  = . . . = , / ) ,  tb+l - tb+2 - ' ' * = 

So far this parameter has only been analyzed in dimension d = 2 by Hoshi and 
Flajolet [HI ,  to which we also refer for a more thorough algorithmic discussion. 

In the particular case when b = 1 ,  the parameter x[a] counts the number of 
nonleaf nodes of tree a. Then Ala] = la1 - x[a] is the number of leaves of tree a. 
The parameter h can also be analysed directly by means of the recurrence 

if 1.1 = 1 , { ~ [ a ]  = C i  h[ai] if la1 > 1 . 
We shall carry out the analysis of the number of leaves h first as computations 

reveal the spirit of the method while avoiding the complications of the general 
case. 

A[O] = 0 7 

h[a] = 1 

Leaf statistics. Let fn denote the expected number of leaves in a randomly grown 
quadtree of size n. The basic recurrence is the quadtree recurrence with toll 
function t = 8, and initial conditions fo = 0, f l  = 1 .  Thus, Theorem 1 applies 
with the Euler transform of the toll function satisfying 

LzL 
L - - 1 .  * * -  

t" - tn-1 - [ Z " l  z-1- 
Theorem 4. 
n is given by 

The expected number of leaves of a randomly grown quadtree of size 

k = 2  j = 2  
f n  = n  

Laforest [23] first derived an equivalent explicit form when d = 2: 

f, = 8Hy)(3n + 1 )  + 11 - 39n - 4/n , 

with 

requires an analytic extrapolation of the sequence 

= C" j =  1 l / j 2 .  
The asymptotic evaluation according to the methods of the previous section 

that is to say, an analytic function [(s) satisfying [ ( k )  = vk for k any integer 1 2 .  
The basic technique here, which is familiar from the theory of infinite sums (or 

products) , is that of ''convergence terms" (or ''convergence factors") already 
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illustrated by the construction of the d-gamma function. Its spirit is summarized 
by the following lemma. 

Lemma 3. Let {p,},a=,,, be a number sequence with analytic extrapolation o(s), so 
that o( j )  = pi for 2 no. Assume that o(s) admits an asymptotic expansion 

o(s) = a(s) + o(1) as s+ +a 

for some polynomial a(s). Consider the summatory sequence vk = C j X n o  k pj. 
Then, provided the sum below converges in some region of the complex s-plane, 

an analytic extrapolation [(s) of the sequence { vk) is given by 

[(s) = A(s) - A(no - 1) + 

+ a(s + j  + 1 -no)]  , 

[o( j )  - a ( j )  - o(s + j + 1 - no)  
j = n o  

where A(s)  is a polynomial satisfying A(s)  - A(s  - 1) = a(s). 

The proof is a simple verification as the finite sums ‘‘telescope.’’ The difficulty 
comes from the fact that it is no longer assumed that pn+O. For instance, if pn 
tends to a constant p, one should take a(s) = p and A(s) = ps. 

For leaves, by (37), we thus need to extrapolate a sum vk whose general term, 
pj = l /[j]!  tends to l/[+a]! as j-, +a. Thus, by Lemma 3, an analytic extrapola- 
tion of vk is provided by 

The rightmost pole encountered is at s = 1. There, [ ( l )  = 0 as the sum telescopes 
and 

‘ 1  + 2 [Mi + 1)  
[+a]! j = 2  [jl! [(s) - [‘( l)(s - 1)  with 6 ’( 1)  = - 

The function extrapolating [k]! - vk is then [SI! - [(s). 

thus at s = 1, near which we have 
The rightmost pole of interest (we have no = 2 in the notations of Lemma 3) is 

Thus, one finds for the mean number of nonleaf nodes 

2 
f * ( - t >  -7 [’(W (t+ +a) 9 
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by the residue computation of Lemma 2, by application of the Euler transform, 
and finally by singularity analysis. 

Theorem 5. 
asymptotic to 

The mean number of leaves of a random quadtree of size n is 

C - n ,  where 

where [SI! and [$](s) are defined in (25)-(32). 

In dimension 1, the constant is known to be C = 1/3. In dimension 2, the 
proportion of leaf nodes simplifies to C = 47r2 - 39 = 0.47841, a result of [18,23]. 
In higher dimensions, the constants are expressed by infinite sums that do not 
seem to reduce to known quantities. 

Paging. The analysis of paging generalizes the expressions found in theorems 4 
and 5. It follows once more the paradigm of our earlier analyses that we have 
encapsulated in Figure 1. Given this schema, we can limit ourselves to stating only 
the main steps in the proofs of Theorems 6-9. 

Theorem 6. 
page size b in dimension d is 

(i) The expected number of pages in a paged quadtree of size n and 

-l)k+b+l [ i ( j - 2  ) [kl ; I .  
k = b  j = b + l  6 - 1  [il 

( i i )  Furthermore, there exists a computable constant such that 

f r1 - ~ [ b ]  lim -- 
n++m tl 

Proof. (i). We use the toll sequence tn = 1 if n > b,  and t ,  = 0 otherwise] Thus fn 

counts the number of nodes that are n z e d  and (2' - l)fn + 1 is the number of 
pages (external nodes in a tree of arity 2d). Theorem 1 applies directly with the 
Euler transform of the toll sequence satisfying 

n - 2  Z b + l  

1 - 2  , t;: - t;-l = [z"](-l)"" (1 - z)b = (-l)b+l(b - 1) ' 
Z b + l  

t (z)  =- 

(ii). The asymptotic analysis follows the lines of Theorem 5 as summarized in 
Figure 1. As evidenced by the figure, the process can be turned into a computer 
algebra programme to determine the constants C [ b l .  We illustrate the computa- 
tions with the particular case of d = 3 and b = 2, 3, 4. 

The sequence to be extrapolated now involves 

(j-2)>'  
b - 1 [ j ] !  ' Vk = 

j = b + l  

so that an asymptotic analysis of the general term uj = (G)/[j]! is called for. 
The analytic extrapolation of uj is simply the function o(s) given by 
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Problem.  Given the lol l  sequence f , , ,  find the asymptotic forni OJ the expected cost f , .  

Step 2 .  A nalyf ic eztrnlwltition. 

n. 
0 Find w ( s )  t1ia.t extrapola.tes analytically u, in the sense that u, = w(n) for integral values of 

Find [(s) that extrapolates 

by the basic formula 
03 

[ j ] !  [j+s-1]! ' 
w(i + - "I 

j =? 

with the possible a.ddition of convergence terms whenever uj does not tend to 0. The convergence 
terms are produced by an asymptotic analysis of individual terms in  accordance with Lemma 3. 
Thus, fi is extrapolated by [SI ! [(s). 

Step 3.  Local antilysis of f(i) near z = 1. 

constant A in the singular expansion: 
0 Determine so, the pole of largest real part of [s]!((s)~F/s~II(Ks) sa.tisfying %(so) < 2, and the 

0 Apply Lemmas 1 and 2 to deduce 

x 
( r  - l)! f * ( - t )  - -.-~'ylog~)r-~ a s t + + o o  

a52+1. 
1 (1 - z)-Q-ylog -)?-I f ( Z )  - -- x 

( r  - l)! 1 - 2  

Step 4. Singularity analysis of coefficients. 
0 Transfer to coefficients by singularity analysis: 

11'0 
(log n)?-' a s n - t o o .  

x 
f n  - -~ 

( r  - l)! r(so + 1) 

Fig. 1. The general schema for the asymptotic analysis of quadtree parameters. 

The binomial coefficient is a polynomial of degree b - 1 while the ratio 
[ + m ] ! / [ j ] !  can be evaluated by means of Stirling's formula applied to the gamma 
function form (31). For instance, with d = 3, one finds 

[+a]! 1 1 1 112 1 -- 1 - 4 7  + 4 2  + 6 7 - p ~  + . * .  
[ I ] !  1 I J 5 J  

What is needed next is the (easily computable) polynomial a(s) such that 
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pi - a( j )  tends to 0 as j -  m. This permits to produce the extrapolating function 
t(s) in accordance with Lemma 3. 

As for leaves, the function [s]!5(s)~/sin(~s) has a simple pole at s = 1: S(1) = 0 
as the sum telescopes while r/sin(.rrs) and [s]! are singular there. We have 

This gives the value for the constant Cfbl as 
2d+l- 2 

d S ' W  * 

[There is again an extra factor of 2 d - 1  because the number of pages is 
asymptotic to (2d - l)f, by the conservation law for trees.] 

Finally, the value of S'(1) obtains by termwise differentiation of the expression 
provided by Lemma 3. Here no = 2 and 

m 

['(s) = A'(s) + C, a'(s + j  - 1) - o'(s + j  - 1) , 
j = 2  

so that 
m 

S'(1) = A'(1) + C, a ' ( j )  - o ' ( j )  , 
j = 2  

with A(s) the summatory function of a@). 
For instance, in dimension d = 3, one finds 

When d = 1, we obtain the exact representation 
n 

a result equivalent to the analysis of Quicksort with halting on small subfiles [20, 
p. 1221. 

When d = 2, the explicit form of CIbl was found in [18], 
2 6  1 

- Cfbl = 6b2 + 9b + 1 - 6b(b + 1)2 (5- :) , 
3 j = 1  ] 



136 FLAJOLET ET AL. 

a result that can also be derived from Theorem 6 thanks to the degeneracy of the 
d-gamma function in this particular case. 

When d 2 3 however, the expression of CIb] does not lend itself to an easy 
interpretation, so that it becomes of interest to find simpler numerical approxi- 
mations. Such approximate forms are suggested by the cases d = 1, for which 
CIbl - 2 / b  and d = 2, where C[bl  - 3 /b ,  see [18]. When d = 2 for instance, the 
formula C[b l  - 3 / b  may be interpreted as representing an equivalent 33% page 
filling ratio: The size of the index tree behaves on average as though pages were 
33% of their actual capacity. 

Theorem 7. The paging constant C[b l  satisfies 

2d+1-d  1 
= d * -  b (1 + b(+)). 

In addition, a full expansion in descending powers of b holds as b --j a: 

2d 1 2 d ( 2 d - 2 * 3 d + 4 d )  1 
2d+l- 2 b 3d -2d  b2 (3d - 2d)(4d - 2 d )  b 

-+ 3+-. 
1 C[bl - - - d 

Thus, the equivalent filling ratio is d / (2  d + l  - 2 )  which, for d = 1, 2, 3 ,  4, 5 ,  6 ,  
gives 

3 
14 2 0.214 , -- 1 1 

3 7 f 0.500 , 0.333 , 
3 C 1 
L J I -- -- 1-0.080, -- 21 '0.047. 

62 15 ' 0.133 , 

The filling ratio decreases steadily as the dimension d-hence the branching 
factor-increases, as for other classes of trees (see [25]). As discussed in [MI, this 
can, however, be compensated by a proper fragmentation of index pages into 
physical pages of a smaller size, albeit at the expense of increased access time. 

Proof. The main idea is to analyse simultaneously all the paging constants CIbl 
by taking a generating function with respect to b using a generating variable w. A 
similar step was taken in [18]. Let t y l  be the toll function of Theorem 6 when the 

variable w restricted, for convergence reasons, to be a parameter that lies in the 
interval (0 , l ) .  The generating function of this toll sequence (with w a parameter) 
is 

page size is b .  We consider the toll function t,(w) = C, t ,  [bl w b , with the generating 

and its Euler transform satisfies 

t," - t,"-l = w(1- w y 2 .  

The analytic extrapolation of the sequence t,* is then simply 

w(s) = w(1- w)s-2. 

For the asymptotic analysis, we need next to extrapolate 
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k w(1- w y 2  
[k]! ' vk = [k]! ' 

1-  j + s - 3  - w(1- w) 
[ j + s - l ] !  [SI! - [(s) = [SI! 

j = 2  

The dominating singularity of [s]![(s)/sin 7 ~ s  is at s = 1. There, we have 

As before, the asymptotic form of f ,  (which also involves w as a parameter) 
satisfies 

This quantity is none other than the generating function (with w the generating 
variable) of the quantities C[b1/(2d - 1): 

The expression of ['( 1) in (38) gives a representation of C(w) converging not 
only for w E (0 , l )  but even for all Iw - 11 < 1. In other words, the expansion of 
['(l) furnishes the singular expansion of C(w) near w = 1. The first sum in (38) 
has a logarithmic factor. The second sum is analytic at w = 1. Thus, C(w) has a 
logarithmic singularity at w = 1 whose behavior is described by the first of the two 
sums. 

Now, by the principles of singularity analysis, a termwise translation from the 
singular expansion of C(w) to its coefficients is permitted. Taking care of the extra 
factor of 2d - 1 and translating (38) by the rule 

one finds 

(- l)rr! 1 m 

C[bl- 2 d 
2 d + '  - 2 r=O (b - l)(b - 2) - * * (b - r - 1) [ r  + 2]! * 

This expansion can in turn be converted into a standard expansion into descend- 
ing powers of b. 

In particular, for d = 1,2,3,4,  one gets 
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+... d = 3 :  7 
3 1 8  2 226 562 
_. CPI --_--- 
14 b 19b2 133b3+ 1729b4+ 22477b5 

2 2 1 16 2 2822 
15 b 65b2 25b3+ 65975b4 296 

+,+.*a. 
d = 4:- Clb1 -- - - - - 

For d = 1, we recover the expansion of l /(b +2). For d = 2 ,  this series co- 
incides-as expected-with the one obtained in [18]. These expressions give 
excellent numerical approximations, even for small values of b, and they thus 
effectively complement the exact representations of Theorem 6. Already with 
d = 2, the relative error provided by the expansions of (40) truncated after their 
b-5 terms is 

7 . 1 0 - ~  , 2 - 1 0 - ~  , 3 - , 8.10-* , 
for b = 2, 4, 8, 16, respectively. 

6. NODE LEVELS AND EXTREME POINTS 

In this section, we examine two computationally related problems: the dis- 
tribution of node depths in randomly grown quadtrees and the analysis of the 
algorithm that finds extreme points in quadtrees. 

Node levels. Let Tn,k denote the mean number of internal nodes at depth k + 1 in 
a randomly grown quadtree of size.n (by convention the root is taken to be at 
depth 1). The probability that the search of a random element stored in the tree 
(Le., a positive search) requires k node comparisons is T n , k - l / n .  Thus, by 
computing these averages parameterized by k, we are analyzing the probability 

cost of a random positive search. 
polynomial 

distribution of the 
The generating 

is a solution to the recurrence 
n - 1  

k=O 

In dimension 1, the T,(u) are closely related to the Stirling polynomials of the first 
kind, a result of Lynch, (see [20, Ex. 6.2.61)- In dimension 2, the Tn,k have been 
expressed in [8] as convolutions of Stirling numbers, but no exact expression was 
previously known for d I 3. We have: 

Theorem 8. The level polynomials are given by 

.&) =nu - u(1- u) k - 2  2 (;) ( - l ) k [ k ;  u] !  , 

where 
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[k; u] ! = (1 - u $) . . . (1 - u 5) , [2; u ] !  = 1 . 

Proof. The proof mimics the derivation of the algebraic solution of the quadtree 
recurrence based on the Euler transformation of Section 2. We find 

The Stirling polynomials of the first kind are classically defined by [l] 

s,(u) = u(u + l)(u + 2) - - - (u + n - 1) . 

By factoring the general term of [k; ud]!, one finds 

d s, + 1w 
[k; ud] !  = (k) u d = 2 d  s^ R (-uo) where s ,̂(u) = u(u + l)(u + 2) 

Thus the level polynomials are expressible in terms of Stirling polynomials in all 
dimensions. Their coefficients are in turn expressible as complicated convolutions 
of Stirling numbers. As the Stirling numbers admit an elementary expression by 
Schomilch’s formula [ 13, the probability distribution of search costs is in principle 
even reducible to a (multiple!) summation of entirely elementary functions. 

Flajolet and Lafforgue [8] have proved that the variance is asymptotic to 
$ log n (it would be possible to derive a complicated expression by taking double 
derivatives), from which follows that the depth of a random node D, satisfies 
~;;ef;;+$ in probability, an earlier result of Devroye and Laforest proved by 
probabilistic arguments in [4]. The fact that the distribution of D, is Gaussian in 
the asymptotic limit [8] could probably be derived by the asvmptotic techniques of 
the nresent Daper via an analysis of the s,(u) for u in a complex neighborhood of 
1 see Theorem for the particular case of u = 1/2), combined with continuity 
theorems for characteristic functions. 

D 

Extreme points. The recurrence for the mean number of node comparisons in the 
search for points with smallest x-coordinate is [12] 

“ - 1  

f, = 1 + 2d-1 ‘E- T, ,k  fk , fo = 0 * 
k=O 

This happens to be a particular case of the recurrence for level polynomials, so 
that f, = T, (+) ,  with previous notations. The asyrnptotics derives from the schema 
described in Figure 1. 

Theorem 9. 
points is 

The expected number of node comparisons in the search of extreme 

where 
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2d-’ 2d-1 
[k;;]!=(1-7)...(1-7), [ 2 ; ; ] ! = 1 .  

Asymptotically, as n -+ + 03, 

f ,  En2(d-1)id-l 

where the constant E is rationally expressible in terms of gamma functions of 
algebraic arguments ; 

There coo = 2(d-1)’d , I’I, represents a product over all roots of od = 2d-’ and ll: 
represents the product over all such roots o with o # 0,. 

For d = 2,  3 ,  4, the growth rate is thus 

The general asymptotic pattern was found in [12], though no explicit form was 
known for the constant E as soon as d > 2. The reader is invited to correct two 
typographical errors in the statement of Theorem 6 of [12]: for d r 2 ,  the 
exponent should read a = 2(d-1)’d - 1 (in accordance with Theorem 9 above) and 
for d = 2, the value of the constant E is 

7. CONCLUSIONS 

First, a few words about methodology. It came somewhat as a surprise that the 
Euler transform would drastically simplify the analysis of quadtrees by reducing 
recurrences to order 1 .  It is a coincidence that the analysis of digital search trees 
and their generalizations also simplifies under this transformation [ 101. 

The method of integral representations h la Mellin-Lindelof is probably the 
one of widest potential scope. We have applied it here in the context of 
alternating binomial sums. As noted by Gourdon and Prodinger, such sums also 
fall into the range of “Rice’s integrals” commonly used for the analysis of digital 
search trees (see [20] and 1121 for a survey). The “Mellin-Lindelof” method is, 
however, in no way restricted to the asymptotic analysis of Euler transforms. 

Next, we briefly summarize what is known at present about quadtree parame- 
ters. 

The mean search cost is asymptotic to (21d) log n + p d ,  with ,ud given by 
Theorem 3; the variance grows like ( 2 / d 2 )  log n as shown in [4] for d = 2 and in 
[SI for all d ;  this implies the convergence-in-probability result of [4]; in addition, 
the distribution of search costs is asymptotically normal with exponential tails [8]. 

The height presents a different problem solved in [ 2 , 3 ]  and reviewed in [25].  
The expected height is still logarithmic and asymptotic to 9 log n,  where c = 
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4.31107. As far as we know, the problems of estimating the variance and the limit 
distribution of height are still open. 

Partial match queries with s out of d coordinates specified have expected cost 
where a is a well-characterized algebraic number of degree d (see [12]). 

The constant c is only known in closed form when d = 2 (and s = l), thanks to 
explicit ,F,-hypergeometric forms available in this particular case. It is not clear 
whether methods of the present paper might give access to the constants involved 
when d 2 3. However, the search for extreme points is completely solved by 
Theorem 9. 

Theorems 4 and 5 provide a precise description of the number of leaves in 
quadtrees. Statistics of other node types for d = 2 are discussed by Labelle and 
Laforest in [22,21,23], where it is proved that the proportion of nodes with 0, 1, 
2, 3, 4 nonempty children is respectively 

A, = 4 r 2  - 39 , A, = 245(3) - 2 6 ~ ‘  + 228 , 

67 
A, = -1325(3) + 24rz log(2) + 2 T‘ - 336, 

A, = 1 - 84[(3) + 2 4 ~ ’  log(2) - 2 T’ . 

A, = 1925(3) - 4 8 ~ ’  log(2) -  IT' + 147, 

13 

It would be of interest to extend the analysis to higher dimensions. 
A fairly complete discussion of paging for dimension d = 2 appears in [18] 

where the approximate formula 3nlb was first obtained. Theorems 6 and 7 
demonstrate that higher dimensions can be treated by our methods. In this 
context, the most significant result derives from a combination of Theorem 6 and 
Theorem 7 which provide an approximate formula for the number of pages in a 
quadtree formed with n points when the page capacity equals b :  

2d+i 
n(n, b )  = ( d - 2 )  (f) . 

(This is obtained by first taking the limit for large n in Theorem 6 and then using 
the approximate form of the paging constants of Theorem 7.) The approximation 
is excellent, as evidenced by Figure 2, which displays the ratio between values 
observed from simulations and the approximation n(n, b) :  in each of the 273 
simulations, the ratio between observed values and predicted values always lies 
between 0.85 and 1.16. As explained in [HI, this may be used to configure 
algorithms with well-quantified page filling versus page access trade-offs. 

APPENDIX 

In this section, we recall various forms of the splitting probabilities for the 
quadtree process taken from [12,22,23]. 

Lemma 4. 
size k admits the following expressions: 

The probability that the first root subtree of a quadtree of size n has 

( i )  Multiple sums: 
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Fig. 2. Paged quadtrees. A display of the ratio between the number of pages observed by 
simulation and the approximate formula II(n,b) of (41). The value of II is fixed to 
n = 10,000. The page capacity varies from b = 10 to b = 100. Each dot represents one 
simulation in dimension d = 2 (rectangles), d = 3 (circles) and d = 4 (crosses). 

1 

c i 1 -  ' d - 1  k < i l  s i 2 = .  . * = i d -  I n  

1 -- 
Tn,k  - 

( i i )  Expressions in terms of generalized harmonic numbers HL) = Cpl j - r :  

( i i i )  Alternating binomial sums : 

(-l)i -(",I) n - 1 - k  ( n - 1 - k )  

1 (k  + i + ' 
Tn,k  - 

i =  1 

Proof. 
integrals. From this form, it is also apparent that 

1 1 

The basic form (i) is proved in [12] by a direct reduction to Eulerian beta 

n 

Tn,k  = ['"-'I 1 - z / i  9 
i = k + l  

and the product can be expanded as 

whence the occurrence of generalized harmonic numbers in (ii). 
The last form (iii) results from 
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1 
k 

=n,k = (" 1) 1,1* *.I, (u,  * - u,) (1 - u1 - * U , ) n - l - k  du, - * * dud , 

which estimates the probability by first conditioning upon the fact that the root 
has its ith coordinate in the interval [ui, ui + dui] .  Form (iii) derives by expanding 
the integrand and integrating termwise. A form equivalent to (iii) is 

(-log t )d - l  
dt 9 ) l,i t"1- t)"- (d - l)! 

n - 1  
nta,k - - ( 

which may be checked again by direct integration. 
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