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This paper introduces a unified framework for the analysis of a class of random allocation processes 

thdt include: (i) the birthday paradox; (ii) the coupon collector problem* (iii) least-tecently-used (LRU) 

caching in memory management systems under the independent reference model; (iv) the move-to-front 

heuristic of self-organizing search. All analyses are relative to general nonuniform f robability distribu- 

tions. 

Our approach to these problems comprises two stages. First, the probabilistic phenozna ct’ interest 

are described by means of regular languages extended by addition of the shu!‘Re product. Next, system- 

atic translation mechanisms are used to derive integral representations for expectations and probability 

distributions. 

. 

1. Some random allocation problems 

We present in this paper a unified treatment for a number of related probabilistic 
allocation problems. The problems that we consider will be defined in detail in later 
sections, but we offer k xe an informal description. 
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( 1) Birth&y paradox [BP]: One needs on the average 24 people to discover two 
that have the same birthday, assuming all birth dates to be equally distributed over 
the days in the year. Generalizations of this problem concern nonuniform distribu- 
tions, and multiple “hits”. 

(2) Coupon collector problem [CCP]: A company issues coupons of different 
types, each type having a certain probability of being issued. The coupon collector 
problem asks for the expected number of coupons that need to be gathered before 
a full collection is obtained. 

(3) Least-recently-used caching [LRU]: Caching algorithms aim at maintaining 
fast access to a large number of items by keeping a small “‘cache” that may be ad- 
dressed quickly. The classi& problem of cache analysis consists in determining the 
steady state probability of a cache “fault” when items are accessed with a fixed, 
not necessarily uniform, distribution. The LRU caching strategy consists in applying 
replacement, when needed, to the oldest element in the cache (the “least-recently- 
used” element). 

(4) Self-organizing search, “move-to-front ” rule [MTF]: If a list of items is to 
be searched sequentially, the optimum arrangement is by decreasing order of access 
probabilities. Self-organizing strategies aim at minimizing the access time to items, 
when the underlying probability distribution of item accesses is unknown. A good 
heuristic is the so-called “move-to-front” heuristic, under which an element is moved 
to the front of the list when it is accessed. The problem is to determine the steady 
state cost of this method. 

It can be recognized that these four problems have a common flavor: /L sequence 
of elements from a finite universe is drawn at random, according to some probability 
distribution; when alI ~.~..____. -m arament arrives, a certain action is taken depending on the dif- 
ferent elements present in the system, and a corresponding cost function has to be 
analyzed. As we shall see, the four problems go by pairs: CCP is a specialization 
of BP, and MTF resembles a particular case of LRU. 

Our methodological approach to these analyses is related to symbolic methods in 
combinatorial analysis. It can be described as follows: (i) Determine a proper 
specification of the underlying combinatorial process in terms of formal languages. 
(ii) Use systematic translation mechanisms to derive generating function expressions 
for quantities of interest. The class of formal languages relevant to our analyses 
is the class of regular languages, and the “shuffle” product plays a particularly im- 
portant r61e in the formal descriptions that we encounter. In this way, we obtain 
expressions that are combinations of rational operations (corresponding to usual 
regular language operations) ard Laplace transform integrals (arising from shuffle 
products). 

We provide exact solutions to these four problems under a general probability 
distribution for items (birth dates, coupons, memory references, keys), onty assum- 
ing independence. Because of the occurrence of shuffle products, the solutions are 
naturally expressed as integrals, from which symmetric function expressions can be 
derived. 
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It can be s en that the problems considered here are of a Markovian nature. 
Though we make some occasional use of Markovian properties, this observation is 
of little help for explicit computations since the associated Markov chains tend to 
have an exponential number of states. Furthermore, our analyses lead to integral 
representations for quantities of interest that bear no resemblance to the expressions 
usually obtained by standard Markovian analysis [lo]. These integral representa- 
tions are computationally useful (see Section 7). For instance, a Markovian analysis 
of a typical cache problem would require roughly time lO’*O and space 1O6O, and 
the time complexity would only decrease to about 104’ using symmetric function 
expressions that resemble a summation over all possible cases. Instead our integral 
forms (Theorem 7.2) can be estimated using about 107/108 elementary function 
evaluations, wh:ch is achievable on a medium size computer. 

Section 2 introduces the necessary background regarding languages and prob- 
abilities. The succeeding sections (Sections 3-6) present the analyses of the four 
problems that we have described. Section 7 concludes with a brief discussion of 
potential applications of our integral representations. 

A preliminary version of this paper has been presented at the 15th ICALP Collo- 
quium [13]. 

2. Formal languages and probabilities 

In this section, we recall general tools for translating formal specifications by 
regular languages into counting and probability estimates. General references on 
this subject are [35,19,7,37,39]. 

Regu!a:r !anguages+ Let &= (a!, a2, . . . , a,,, } be a fixed set called the alphabet whose 
elements are the letters; d* represents the set of all finite sequences-called WOOS 

or strings- of &. A language is any subset of .&*. Let L, L I, L2 be languages. The 
union of L, and L2 is denoted by L1 +L,. The (catenation) product of Lr and Lz, 
denoted by L, l L2, is defined as 

L,*~2={W,W2lW,G, Q-521 

and the “star” operation L* is obtained by forming all possible sequences from 
elements of L, 

L*={&}+L+(L=L)+(L*L*L)+*** 

with E denoting the empty word. 
The class of regular languages is classically defined as the smallest class of 

languages containing the finite sets and closed under the three operations of union, 
product and star. Regular languages are also closed under a fourth operation, crucial 
to our analysis, the shuffle product [30]. If wr and w2 are words, their shuffle, 
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denoted’ by (w, rnw2) consists of the set of all words obtained by mixing in all 
possible ways letters of wi and w2 while preserving their order inside w1 and w2. It 
is defined recursively by 

(au1 ubv2) = a& m bvz) U b(av, u v2), 

with (vu~)=(EuLv)=(v). The shuffle of two languages Lr and L2 is 

For instance, (ab mcd) = (abed, acbd, acdb, cabd, cadb, cdab) . 

Generating functions. The important property, as far as counting and estimating 
probabilities is concerned, is that these operations have direct translations into 
generating functions. If L is a language, we let Inlr.__r,l,s be the number of words in 
L that have nl occurrences of letter al, . . . , n,,, occurrences of a,,, . The multivariate 
generatirg function of L is 

Notation. Given a generating function 

f (x5 Y, z) = c fnl,“, px?Y “zP 
m n, p 

we use [x”‘ynzp]f(x, y, z) to denote the coefficient of x”‘y’$’ in f: 

~x”~n~PIf (X, Y9 2) =fttt n p l I , 

We now assume that a fixed “weight” distribution (which we shall specialize in 
a moment to be a probability distribution) p = (p,, p2, . . . , p,,,) over d is given, SO 
that pi is the weight of letter ai. The weight is extended multiplicatively to words, 
the weight of M’= aj,aj2 l *- aj,,, E &” being taken as 

7tEWl =PjlPj2 “‘Pj,,- 

The function 

l~Plz,P2z,...,P,,z~= c ln,,...,tt,,,P~‘.**Pt~~Zn’+“‘+nrrl 
4, . . ..n.., 

= c n[w]z”‘~ 
w E . d * 

(1) 

is called the ordinary generating function (OGF) of language L (with respect to 
weight p) and is denoted by l(z). The exponential generating function (EGF) is 
similarly defined, with z”/n! replacing z”: 

I This symbol is a Russian letter Sa, an abbreviation for shuff/e often used in combinatorics on words. 
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(2) 

and we denote it by f(z). 
When the weight function satisfies p = (I, 1, . . . , l), we have the classical ordinary 

and exponential generating functions from combinatorial analysis (see e.g. 
[7,19,37]), and [zn]I(z) is the number of words of length n in L. From now on, we 
specialize the weight distribution to be a probability distribution over &, so that 
I:, pi = 1. This defines in the usual way the product probability measures on & 
and cl&OD (the set of infinite sequences): n[w] is the probability of word w in ,J@ as 
well as the probability of w VP’ in &“. Accordingly, [z”]!(z) represents the prob- 
ability that a random word in d” be in L. It is also the probability that a random 
word of 4” belongs to (L n&) l d” when L is “prefix-free” (i.e., no prefix of 
a word of L is in L) in particular. 

As is well known, ordinary and exponential generating functions are related by 
the Laplace-Bore1 transform, 

00 

l(z) = ,^czt) e-' d t, (3) 
0 

as follows from the classical relation 

c 00 

t”e-‘dt =n!. 
LO 

In the sequel, we adhere to the notational convention of representing a language 
L, and its generating functions l(z), f(z) by the same letters. With this convention, 
we can state: 

Theorem 2.1. When they operate unambiguously on their arguments, the operations 
of union, product, star and shuffle product translate into generating functions: 

(a) L=L,+L, = 62) = l,(z) + l*(z), 

(W L=L,*Lz * l(z) = 1, (2) l l*(z), 

(c) L=LT * l(z) = (1 -l,(z))-‘, 

GO L=L,lllLz * 42) = ,;@I) l h(z). 

In essence, an operation on languages is unambiguous if every word of the 
resulting language is obtained only once. Thus, an unambiguous union is one that 
operates on disjoint languages; product L = L1 l L2 is unambiguous iff each w E L 
has a unique decomposition as w1 w2; a star operation is unambiguous if the defin- 
ing unions and products are. Finally, a shuffle product L = L, UI L2 is unambiguous 
when languages L, and L2 are subsets of A: and A! where Al,A2Cd satisfy 
A, nA2=a 
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The first three cases (a)-(c) are the basis of the classical Chomsky-Schiitzenberger 
(1963) theorem: Every regular language has a rational generating function. The 
result for the shuffle product is a clascical one in the context of word enumerations 
[30]; its proof is based on the observation that 

where the multinomial coefficient counts the number of possible shuffles on words 
of lengths nl and n2 and In = [z”]l(z) etc. 

Finally, in many cases, we not only need to determine probabilities of events but 
also analyze distributions or expected values of auxiliary parameters. This is achieved 
in the usual way by introducing a further variable in generating functions. Let 
(9 : d* --) iN be an integer valued parameter of tvords. Then the OGF and EGF of 
L. with variable v “marking” parameter @ are refined as 

II”! 
&z; V) = c x[w]z’~~v@(“‘), and 4~; v)= c ~[w] w1 DO(~). 

WE.F/* WE .d* I I . 

There is a direct extension of Theorem 2.1 to these bivariate generating functions. 
Let L and M be two languages related by L = M *, where the star operation is un- 
ambiguous; a parameter @ : M --) N can be extended additively to L by 

dWl w2 --- W = @(w, I+ @W2) + l a- + @(w,! where Wje M. 

if /(z; v) and m(z; v) are the generating functions of L and M with v marking @, then 

1 

= l-m(z;v)’ 

Probabilities. From Theorem 2.1, there is a general procedure to determine the 
generating function of a language defined by a combination of the four basic 
operatior_s. This makes it possible to analyze “mechanically” probability distribu- 
tions of combinatorial parameters described by regular languages. (See for instance 
[ 19,20,12] for other approaches.) The expressions obtained are a combination of 
rational operations and Laplace transform integrals’ wherevk.7 shuffle prodticts 
appear. 

’ In the most general situation, direct and inverse transforms may occur when we go back and forth 
between ordinary and exponential generating functions. As pointec’ by a referee, for the applications 

discussed in the current paper, all shuffle products appear before all products, so that only direct L.aplace 

transform integrals of type (3) appear in our formulae. See ho-‘ever the two stack problem in [I l] that 

iri ~01x3 taking On inv9se Laplace transform. 
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3. Birthday paradox 

The alphabet c193’ represents here the dates in a year with m days, and pi is the 
probability of date a+._& We consider the following generalization of the birthday 
problem: 

BP. Determine the expectation of the number Bi of elements that need to be 
drawn from & (with replacement) till we first encounter j distinct ele- 
ments that are each repeated at least k times (i.e., the waiting time till 
the jth different letter occurrence of a k-hit). 

The case k = 2, j= 1 is the classical birthday problem. Klamkin and Newman [23] 
have given an integral formula for j= 1 (first hit) and general k in tile wtiform case 
where pi = 1 /m. 

Theorem 3.1. The expectation E(Bj ) of the time for obtaining j different letter oc- 
currences of a k-hit under a general probabiiity distribution (pi >;I, is given by 

where ek (t ) represen fs the truncated exponen fial 

ek(f) = 1 + 

Before going into the proof we mention an immediate corollary: 

Corsllary 3.2. The expected time of a first k-hit E( B, > is given by 

EIBd = 

In the equiprobable case (pi = I/m), we have 

E(B,Z = 1, @-,(;))‘ne-‘dt, 

60 

(W 

and more generally 

E{Bjl 

Equation (Sb) is Klam!.in and Newman’s original result and though they do not 
state it explicitly, their approach could readily provide the more general result @a). 

Equations (SC) and (4) are natural generalizations of Klamkin and Newman’s in- 
tegral formula. 



214 P. Flajojet et al. 

Proof. The proof decomposes into two stages: a preparatory probabilistic argument 
and a suitable regular language description of the problem. 

We start by the (classical and easy) probabilistic argument. The random variable 
(RV) 6;- is a first time of occurren, I c- of a certain event in an infinite sequence of 
trials. It is thus a RV defined on &” with the product measure. Let Y,, be the RV 
defined on &‘* representing the number of k-hits (on different ietters) in a sequence 
of n trials. Though the probability spaces are not the same, the two probability 
distributions are related by 

Pr{I+j) = Pr(BjSn). (6) 

To see this, introduce the language Gj consisting of words with at least j hits of 
multiplicity k. The first quantity in (6) is the probability that a random word of 
length n belongs to GJ, while the second one is the measure of (GLn~#‘)+8”. 
From this, the expectation of Bi is easily found: 

E{B,-) = 1 Pr{Bj>n) 
II 20 

The first equation in (7) is a classical form for expectations of discrete random 
variables, and the second follows from the equivalence principle (6). The third equa- 
tion only expresses the decomposition of Pr( Y,, < j} according to possible values of 

Y:I ’ 
The problem is now reduced to estimating the inner sum in equation (7). Let Hq 

be the language consisting of words with exactly q letters that occur at leas1 k times 
(the other r letters occurring at most k- 1 times), so that Hq= G,\G,_. 1. With 
CY <“=e+o+o”+...+a,“-’ and czLk = ok l a*, language Hq is specified by 

Hq = u (a,~5lla,~5ll..* ,Ular,~“)m(CzJ~kluarj;km . . . mc$k), (8) 
I.J 

where the summation is over all sets I, J of cardinality q and I’= I?? - CJ such that 

I= (i,, . . . , iq>, J= (.il, . . . . j,.> with InJ=f3, IUJ= (1,2, .,..,w). (9) 

If cy is a letter with probability 0, the EGFs of oCk and c?~ are 

ek_ ,(oz) and eaz - ek- @z). 

Thus by Theorem 2.1, the EGF of Hcl is (with I, J in the sum saMyin& (9)) 

~$e) = C ((el’jl” - ek _ ,(y;,z)) ... (eyi,’ - ek _ &I+$)) 

‘lJ n (e/;-,(pj,z).o.e~_,(Yj,~)) 

and noting the general expansion 
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we can express Kq(z) as 

fiq(z) = [uQI@(z, u) 

t11 

where @(z,u)= n (~~_~(Pit)+u(epf’-e~-~(Pit))). 

i=l 

NOW the OGF of :fq is given by the Laplace-Bore1 transform (3), 

so that we 

‘Q) 

h,(z) = I [uq ]@(zt, u)e-’ dt, 
*O 

have 

c Pr{ &=q) = h,(l) = ia [uq]@(t,u)e-‘dt, 
tl10 CO 

(10) 

(11) 

and a combination of (11) and (7) yields the statement of Theorem 3.1. Cl 

The estimates of Theorem 3.1 are clearly symmetric functions of the (pi > and 
can sometimes be expressed in a reasonably pleasant form. Expanding the products 
in (5b) and evaluating the integrals, we find: 

Corollary 3.3. For the classical birthday paradox (k = 2 and j = 1), the expectation 
of waiting time is 

where the S, are elementary symmetric functions of the pj, 

s, = C PjlPj7 “‘Pjr* 
jl<j2<-..cj, - 

(12) 

For instance, with m = 3 and (p,, ~2, ~3) = (a, 6, CL we have 

E(B,} = l+ l!(a+b+c)+2!(ab+bc+ca)+3!abc, 

and for general m and a uniform distribution (pi = l/m), 

m-l 
EIB,)-l=l+m+ (m 

- 
l)(m ,111 

- 
2) (In- 

1 
+ l ‘* + 1)(/11-2).** 111 - 1 , 

i71 

a sum that was studied by Ramanujan and shows in several analyses of algorithms. 
Hashing with linear probing [26, p. 5291 was Knuth’s first analysis of an algorithm, 
on an afternoon of 1962. Following Ramanujan’s treatment, Knuth [24, p. 1121 uses 
it as an introduction to asymptotics by the Laplace method; it next appears [25, 
p. 4541 in the analysis of random mappings (related to randor. number generators). 
It is from this analysis that Pollard conceived his integer factorization algorithm (the 
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“rho method”, see p. 608 of the second edition in 1981 of [25], and is]). The 
Ramanujan function finally arises in optimal caching [27], the study of memory 
conflicts [28] and Union-Find algorithms [29]. 

On another register, Mase [31] has carried out an exact analysis of the birthday 
problem with unequal occurrence probabilities from which he deduces an approx- 
imation model. His paper is also of interest since it is accompanied by numerical 
fitting on statistical data (based on Japanese surnames). 

It may be of interest to conclude this section by noting that the Markov chain 
which corresponds to Corollary 3.2 has 2’” states. 

4. Coupon collector problem 

The alphabet .d now represents the set of coupons, with pi being the probability 
that coupon i is issued. The general coupon collector problem is the following: 

CCP. Determine the expectation of the number Cj of elements that need to 
be drawn from & (with replacement), till one first obtains a collection 
with j different coupons. 

Quantity E(C,,) is of particular interest since it represents the expected time to ob- 
tain a full collection. The solution of this problem in the equiprobable case is a 
classical exercise: One needs to draw one element to gather a collection of cardinality 
1; then m/(m - 1) draws are necessary on the average to gather a new element etc. 
In this way, one finds 

where & is the mth harmonic number. In the same vein, E(Cj) =m(&-&-j). 
In the general case of a nonuniform probability distribution, we have: 

Theorem 4.1. The expectation E(Cj ) of the time necessary to gather a collection of 
j different items under a general probability distribution is given by 

111 

fl (1 +u(ePrr- 1)) e-‘dt, 
i=l 

and for a full collection, 

tn 
I- n (1 -eFplt) dt. 

i= 1 

(W 

WW 

Proof. Form (13a) is just a specialization of formula (4) to the case k= 1, and 
requires no further proof. To obtain (13b) from (13a) when j = m, introduce the 
function @(t, u) = #l, (1 + u(ePlr - 1)) which is the special case for k = 1 of the @ 
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function of equation (10). If we expand it as @(I,@ = Cy._, (p,(t)@, we get 

P&) + PlW + ‘** +(P,n- ,U) = w9 WP,,,(O 

111 
= e’- n (epl’- 1). cl 

i=l 

Again symmetric function expressions are available in this case. 

Corollary 4.2. The expected tirve for a partial collection satisfies 

j-l 

E(Cj} = C (-l)j-‘-4 
q=o 

with PJ= C ii)j, 

jEJ 

and for a full collection 

111 - I 

wt,,1 = c (-1)“+q ,J;q A. 
q=o J 

WW 

WW 

For instance, when m = 3 and (pt , ~2, ~3) = (a, b9 c), we find 

1 1 1 
E(C,,)=l------ 

1 1 1 

l-a l-b l-c+ l-a-b+ l-b-c+ l-c-a’ 

Mean and variance estimates expressed as symmetric functions were obtained by 
Nath [33]. 

For general m and a uniform distribution, the symmetric function expression 
reduces to 

1 tt1 
;E{Ct,I} = c (-L)q-’ 

q=l 

a quantity otherwise well known to be equal to H,,,. 

5. Least-recenily-used caching algorithms 

Caching algorithms are general purpose methods used to speed up access to a 
large collection of items stored on a slow device, by maintaining a small “cache” 
on a high speed device. An infinite sequence w = w1 w2 w3.. . of elements of 4 also 
called references, represents the items to be accessed at times 1,2,3, . . . . At any given 
time t, the cache contains a subset of size k of .A where k is a fixed design parameter. 
L.et KI be the state of the cache at time t, assuming we are given an initial state Ko 
of the cache at time 0. A cache algorithm, or page replacement algorithm, specifies 
the transition from KI_ , to KI when reference w, arrives: 
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JG-I* if W,EKi_I, (1QO 
K*= 

K,_,-(x,}+{q), if w&K,+ WW 

ln zase (b), the selected item x, E K, is specified by the cache policy and we say that 
a f&dt occurred: Since the element to be accessed w, is not in the cache, an element 
x, is renloved from the cache and w, is inserted. In the other case (a), the element 
is found in the cache and we say that a hif occurred. 

The independent reference model is the probabilistic model under which the 
references are independent random variables with a common distribution {pi):‘, 
unknown to the algorithm. The cache analysis problem consists in determining the 
steady state probability of a page fault under this model. We consider here a well- 
known and important cache algorithm, the least-recently-used (LRU) algorithm: 

LRU. In the replacement rule (15), select as x, E K,_ 1 the element that is the oldest 
to have been last referenced. 

Other important caching algorithms have been known for a long time, and the 
reader can refer to Smith’s paper 1361 for an extensive survey of practical issues in- 
volved in cache design. 

RAND. In the random replacement algorithm, x, is chosen randomly to be any of 
the k elements present in the cache with probability l/k. (The algorithm is nondeter- 
ministic.) 

FIFO. The first-in-first-out algorithm chooses as x, the element that is the oldest to 
have entered the cache. This differs from LRU, where an e!ement that is frequently 
accessed is very likely to remain in the cache for a long period of time. 

OPT. The “optimal algorithm” has the peculiarity of depending on the future: The 
element _Y, to be replaced is the one whose next access is the most remote in the 
future. The optimality of this strategy has been discovered by Relady 131. Surprising 
as it may seem, OPT can turn out to be a practical algorithm in certain contexts 
where a machine is driving another device’s cache, as shown by Fuchs and Knuth 

WI. 

Several analytic results are known under the independent reference model, and 
a good discussion is given in [6, Chapter 61. Algorithm RAND has long been 
recognized to behave poorly since it does not discriminate between frequently ac- 
cessed items and others. FIFO has been analyzed by King [22], and Gelenbe [17] 
later showed that the page fault probability of RAND is the same as that of FIFO. 
LRU is known to perform fairly well in many practical situations since it tends to 
keep frequently accessed elements in the cache. King also presents symmetric func- 
tion expressions for its page fault probabilities (see our Coroilary 5.2 below). Both 
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FIFO and LRU are analyzed in [I], while Fagin and Price [9] discuss the complexity 
of evaluating the analytic formulae in both cases and propose an interesting simula- 
tion scheme of low complexity for LRU. (Fagin [8] also derived asymptotic approx- 
imations to LRU miss ratio.) OPT provides an upper bound on the efficiency of any 
general purpose caching algorithm. Little is known yet about its performances under 
nonuniform models: Knuth [27] gave . partial analysis under a uniform probability 
distribution (pi = l/m) and showed that the page fault probability is 1 - O(@$. 

There is an alternative description of LRU caching by a move-to-front rule. 
Assume at each time the cache is kept as a sequence of’ elements arranged in order 
of latest reference time, so that K, = (c:‘), c;~), . . . , cI(B)). Element c)” is the last 
referenced, so that ci”= w, etc. Then the replacement rule (15) at time t is simply: 

- In case of a page fault, eliminate element c, _ I (M from the cache, shift all other 
elements down one position and prepend w,, 

K, = (w,,c,‘~),,c,(~_),, . . . ,c/f; ‘I). WW 

- If there is no page fault and the referenced element w, is in jth position in the 
cache, shift down by one position the first j- I elements and put w, in the first 
position, 

K,=(w,,c;” ,,..., cl’i;‘!c,!f;” ,..., c;“_‘,). (1W 

For instance, if d = {a, 6, c, d, e> and w = badacedead... , with k = 3 and the cache 
initialized as KO = (a, b,c), we have the sequence of transitions 

abc 5 bat + abc =$ dab 5 adb =$ cad =$ eta + dec 4 edc 

-*, aed $ dae 
a 

where + and s represent transitions with and without page faults, x being the 
element referenced. 

This presentation of LRU caching has also the merit of showing that LRU caching 
under the independent reference model is a Markov chain with k!(y) states, each 
state being an ordered combination of k elements amongst m. It is also clear that 
this Markov chain is irreducible and aperiodic. Thus, by standard Markov chain 
theory, the long run (stationary) probability of a cache fault is well defined and is 
independent of the initial state of the cache. 

Tslzeorem 5.1. The long run probability D of a cache fault in the LRU algorithm is 
given by 

k-l 1'00 

l-D= c [u”] @(t, u)V(t, u)e-’ dt, (17) 
q=o I .O 

where funciions @ and Y are 
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Proof. The long run probability of a page fault due to a reference to ai is well 
defined as the joint probability of events “a fauft occurs” and ‘*the referenced item 
is ai”; the page fault probability D fohows then by summation of these quantities 
for i= 1, . . . . m. By symmetry, we only need to consider the case i= m, and to 
simplify notations, we write a = a,, p =pm . 

Our line of proof to determine these probabilities is to use suitable shuffle decom- 
positions for languages representative of LRU caching, compute corresponding 
generating functions by means of ‘Theorem 2.1, and perform an asymptotic evalua- 
tion of those probabilities over jkite reference sequences. 

Shuffle decomposition. Let S? = d \ {a}. Any word of & * can be decomposed 
according to its occurrences of letter a: 

d* = (5l?*a)*.B*. (19) 

This equation only expresses the fact that a word is formed by an alternation of &!I- 
blocks (3 *) and of a-letters, so that any w E &‘* can be written as 

w =&a&a& . . . a&+ 1 with p’e S”. 

Let us assume that the cache initially contains letter a (we know already that this 
assumption does not affect long run probabilities). Then, the combinatorial condi- 
tion that determines faults on a-references takes an extremely simple form: 

An a-letter gives rise to a fault if and only if the preceding Sbiock pi 
contains more than k - 1 different elements. 

We decompose 83 *as a union of two sets, 33 * = R + S where R is the language formed 
with words in .W* having at most k- 1 different letters, and S= S?* \R. Thus, S is 
formed of words with at least k different letters and at most m - 1 different letters, 
and decomposition (19) can be refined as 

d* = ((R + S)a)*W. (20) 

Generating functions. Theorem 2.1 enables us to determine generating functions 
of the various languages appearing in (20). For a and S*, we find respectively 

1 
PG 

1 -(l--p)2 - 
(21) 

Let r(z) and s(z) be the OGFs of R and S, with P(z) and g(z) the corresponding EGFs. 
Employing the notation a+ = a= a*, we have 

(22) 

the union being over all sets J = ( j,,jz ,..=,j,} such that mcfJ and IS= IJI <k. 
With @,Jz, u) defined by 

)?I - 1 
Qj,&G U) = fl (1 + u(eptz - I)), 

i=l 
(23) 
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we find from Theorem 2.1 and an argument similar te t e one developed for equa- 
tions (8)-( 10): 

k-l 
i(z) = c lu”l@,,,k uh CW 

9=0 

From there, we obtain the OGF of R by d Laplace- 

k-l ‘00 

r(z) = c \ [u9](@,,,(zt, u))e-’ dt and s(z) = ’ 
1 -(l -p)z 

- r(z). (24b) 
9=0.0 

Probabilities. We now consider the bivariate gener 

A(z; v) - l 1 - @r(z) + s(z))pz >( 1 -(ll-P)zi* 
(25) 

which is constructed as follows: When v = 1, form ( is obtained directly from 
decomposition (20) by basic translation principles of orem 2.1, so that A(z; 1) = 
(1 - z)-‘. More generally, variable v in A@: v) “marks” occurrences of R-blocks in 
decomposition (20), and the reader should have no difficulty in convincing herself 
that the coefficient [z”v’]A(z; v) represents the prob lity of having t R-blocks 
(i.e. a-hits) in a random word of length n. Thus the 

an = [z”] 
a 
#z; v) I u=l 

(26) 

is the expected number of R-blocks in a random wor 
Equation (25) and the fact that A(:; 1) = (I- z)-’ permit us to complete the com- 

putation of the derivative in (26), 

def a 
&z) =%A(z; v) = 

(1 - (1 - PMP~~(Z) 

fJ=l (l-z)2 l 

(27) 

From the fact that RC LB*, we know that r(z) is analytic for lzl< (1 -p)-‘. Thus, 
the asymptotic behavior of the coefficient ~5~ is fully determined by the behavior of 
its generating function at the (double) pole z= 1: If 6(z) -c(l - z)-~ as z+ 1, then 
a,,-cn as n-,oo. We thus get 

S,Ef lim 4 - = lim (1 -z)2S(z) =p’r(l). 

Quantity 6, in (29) is the long run probability of the event: “the referenced 
item is .=a$’ and “a hit occurs”. From (23), (24) and the relation @(z,u)= 
(1 + u(ePnrz - l))@,(a u), we find 

6,=;Y@ 1; Iu’l(@(t,u) ] +u($ml_ &-‘df (29) 
I 

The statement of the theorem now follows by summing quantities obtained from 
(29) replacing m with i = 1,2, . . . , m, which corresponds to taking into account all 
possible references al, a,, . . . , a,. U 
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A symmetric expression that closely resembles (14a) is obtained by expanding the 
integrand and evaluating resulting integrals. 

Corollary 5.2. The cache fault probability D satisfies 

M k-l 

l-D= c p; c (--If-‘- 
i=l 9~0 

with PJ= C Jlj* 

jcJ 

ieJ 

(30) 

King [223 gave another form of this probability, but with the same order of com- 
plexity, namely (n&k!). Due to this complexity, King’s numerical data are limited 
to m = 9 and kc 7. In Section 7, Theorem 7.2 we shall give brief indications on the 
possibility of exploiting the result of Theorem 5.1 instead of these huge com- 
binatorial formulae. 

Formulae (17) and (30) can be checked against special cases. If k= 0 the sum in 
(17) is empty so that D= 1 and there is a page fault at each reference. If k= 1, ex- 
pression (30) gives 

m 

D = 1 - c pi’, 

which is the probability that a reference differs from the immediately preceding one. 
If k = m, then D = 0 and there is no page fault. 

If the probability distribution is uniform, pi= l/m, then we should have 
1 -D= k/m. To see this, it suffices to check that 6, in (29) is equal to k/m2. This 
fact comes from the identity 

(e 
t/W _ ,)ttt - te-t dt = 1. 

Setting e-““” w u reduces the integral to an Eulerian Beta integral and the identity 
follows. 

Cold start analysis and transient behavior. We show here how a simple modification 
of our previous argument yields the transient behavior of LRU caching. Our earlier 
analysis has concerned itself with a steady state analysis, and to simplify computa- 
tions, we have assumed that element Q was initially in the cache. This has the effect 
that the first a-reference behaves like all other references; globally this is equivalent 
to assuming the cache to be initially in an idealized state that contains all the 
elements. 

A realistic assumption is that the cache is initially empty when the system is 
started. A corresponding analysis is sometimes called a cold start analysis and is of 
practical relevance [36]. ‘We let D, be the page fault probability in n steps of LRU 
caching, and (fixing again a = a,,,, p =p,,,) S, be the expected number of a-hits (non- 
faults) under a sequence of n random references, when the cache is initially empty. 
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(Thus D,, is a sum of the t&,/n corresponding to a-references for a = al, . . . , a, .) 
To determine a,, we use a slight modification of decomposition (20), namely 

d*=((e+ 8B*a((R+S)a)*)B*. 

The first a is always a fault. Thus the bivariate generating function A(z; u) of &* 
with u marking hits becomes 

i 

PZ I 
A(z;v)= 1+ 

l-(1-& l I PZ 

1 -(I -p)z 
(or(z)+ s(z)) 

I 

1 
. 

l-(l-p)z’ 

Let S(z) = @/&I)\A(z; V) 1” = 1. Function 6(z) is the OGF of 6,,, and a simple corn-- 
putation shows that 

6(z) P*z*r(z) 
= 77 l 

To extract 6,) we expand the integral expressing 3(z), next compute r(z) as a Laplace 
transform (eaZ w (1 - ccz)-‘). By partial fraction expansions, the coefficients of 6(z) 
can be found. 

Corollary 5.3. The transient page fault probabilities of LRU caching in n steps, 
assuming a “cold start ” are given by 

E 
D,,=D+n+F(n) 

where D is the long run probability of a page fault, and E, F(n) are 

tn m-q-2 2-kPJ E=i~,pf~~~(-1’ke1T9( m k 1) 1.1:~ (1 -PJ)*’ - - 
i@J 

with Pi= Cj,J pj. 

The term E/n represents the amortized effect of a cold start. Quantity F(n) is 

(X(1- Pmin)n ) with Pmin the smallest of the probabilities; it represents a standard 
Markovian convergence term with exponential decay. 

Note on the independent reference model. The independent reference model has 
been often criticized since actual program paging exhibits localities not captured by 
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the model. Thus if one uses simulation traces to determine both actual page accesses 
and page faults, one finds that the model based on observed access frequencies pro- 
vides rather pessimistic estimates. However, Baskett and Rafii [2] show that, by in- 
troducing in the model virtual probabilities that are computed in an appropriate 
way, one can obtain excellent agreement between observed and predicted perfor- 
mance. (The computation scheme constitutes their so-called A0 inversion model.) 
Therefore, an actual paging system with dependent references can be modeled ac- 
curately by the independent reference model with modified access probabilities. 

6. Self-organizing search 

The standard sequential search procedure is well summarized by Knuth [26, Sec- 
tion 6.11: “Begin at the beginning and go on till you find the right key: then stop”. 
In the context where keys, represented by set &, have fixed access probabilities, the 
optimal arrangement of elements is in order of decreasing probability. Various 
heuristics have been proposed to handle the situation where access probabilities are 
not known in advance. Two classical rules are “transposition” and “move-to- 
front” (MTF): 

MTF. When an element in position j is accessed, it is moved to the front of the file. 
Elements in position 1,2, . . . , j- 1 are shifted back by one position. 

Formally, the MTF rule is exactly an LRU caching algorithm in which the cache 
size k is equal to the file size m = card(d). Page faults disappear and the transition 
from state Kl_ 1 to state K, is given by rule (16b), where w1 w2 w3 . . . is the sequence 
of accessed elements. If at time t - 1, the file state is K, = (c,“), . . . b c,““‘), and the ac- 
cessed element w, is in position j, w, =cI (j), then the corresponding access cost is 
taken here to be j - 1. Thus an element on top of the list has access cost 0. This con- 
vention is adopted to simplify computations.) 

Our purpose is only to show that the analysis of MTF can be cast in the frame- 
work of shuffles of languages. The theorem that follows is due to McCabe [32], 
useful references on the subject being [26,34,4,18], 

Theorem 6.1 [32]. The expected cost of a search with the move-to-front heuristic 
applied to a file with access probabilities (pi 1:: 1 is 

1 E7_z+ c pipi. 
Isi,jsm Pi+Pj 

Proof. We decompose the cost as E=f, +f2 + l + fmy where 4 is the (long run) 
cost of an aj-reference. We evaluate the contribution f,, and set a = a,, p =p,,, and 
f = f,,l. Our starting point is decomposition (19). We let B(z; o) and &z; o) be the 
OGF and EGF of $8” with o marking the number of distinct letters, 
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B(z; “)Sf c ~[W]“d(w)pl, 
WE l * 

l&z; “jEf c nlw]id’“‘~, 
WE *rB* . 

where d(w) is the number of distinct letters in w. By an argument that should now 
be fanGliar, we have 

m- 1 
B(z; 0) = n (1 + u(eplz - 1)). 

i=l 
(31) 

Decomposition (19) suggests to define (compare with equation (25)) 

1 1 
A(z; v) = 

1 - B(z; v)pz l 1 -(I -p)z 
(32) 

and the reader can again convince herself that the coefficient [z”v’]A(z; v) is the 
probability that the total cost of a-references equals c in a random sequence of 
length n. Thus 

(33) 

The derivative is easily computed, 

A;(t; 1) = 
PZU - (1 -PM 

(1 -z)2 
B;(z; 1). 

It can be checked that B(z; v) is analytic for 1~1 I 1 (see also the remarks following 
this theorem). Considering the double pole z = 1, we find 

f= lim (1 -z)~AI(z; 1)=p2Bi(1; 1). (34) 
Z+l 

But from (31) via the Laplace-Bore1 transform and differentiation, we obtain 

m-l 00 
B;(l; l)= 1 

s 
(e(i -PN _ e(’ -P-P,N)e- dt = 

j=l 0 

From there, we find f=f, under the form 

fm =t*’ py;;m m PjPm _++ c - 
j=l Pj+Pm l 

(36) 

The statement of the theorem follows by summing expression (36) with m being 
replaced by 1,2, . . . , m. q 

Our line of proof, admittedly not the simplest possible, “explains” the derivation 
of Theorem 6.1 that appears in [26, p. 4031. In essence Knuth’s derivation amounts 
to operating with an ordinary generating function equivalent to B(z; v) and com- 
puted directly by summing over all possible cases. Our proof also yields information 
regarding the transient behavior of the system. The coefficient [z”]A&; 1) is the 

a-cost ir. n steps, and from observation of the smallest pole, we can deduce Bitner’s 
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result: The error term in the con-:ergence to the stationary cost is of the form 

O((1 -Prnin -Phi”)“), where Pmin and PA” are the two smallest probabilities. 

1. Some conchs 

It is cltc - that 3ur derivations are not “unique”, and alternative combinatorial 
or probabilistic arguments could be (or have been) given for some of our results. 
Our goal has been to show how addition of the shuffle product to regular languages 
leads to direct analysis of a natural class of random allocation problems. That ap- 
proach is of value in more complex situations. For instance, problems around multi- 
level caching are natural candidates and they are discussed in [ 161. 

Furthermore, with the single exception of self-organizing search, the integral ex- 
pressions that constitute the natural outcome of these analyses are normally easier 
to evaluate than the symmetric expressions that we encountered after expanding in- 
tegrals. Our purpose is not to develop a full theory of numerical evaluation of those 
integrals, a question which requires further study and is somewhat outside the scope 
of this paper. However, in order to illustrate the usefulness of integral representa- 
tions, we offer a brief and informal discussion of two problems, CCP under Zipf’s 
law and LRU caching. Notice that accurate numerical integration algorithms are 
known, for instance Ron_‘-let-g’s acceleration of convergence method [2f 3; On a well- 
conditioned function, a few hundred function evahrations will typicaiiy guarantee 
a relative accuracy between 10V6 and lo-*. 

Zipf’s law, a surprising law of nature, is the probability distribution that assigns 
to item i the probability c/i. Over a set d with cardinality m, the normalization con- 
stant c= t/H,,I, with H,,, a harmonic number. The starting point for CCP is equa- 
tion (13b), which we repeat here 

t?I 

E(C,,,} = (1 - o(t)) dt, where o(t) = n (1 - e-p,‘). 
;r 1 

(37) 

It can be proved that o(t) has a sharp transiti.nt from 0 to 1 for t around m log2 m. 
More precisely, quantity FtJx) = -log O(xm log mH,,) is such that for fixed x as 
m --) 00, we have: F,N(~) --) 00 if x< 1 and F&x) --) 0 if x1 1. Hence: 

Corollary ‘7.1. Under a Zipf distribution of parameter m, the expected time of a full 
coupon collection satisfies 

E{C,,,} -m log’m. 

For instance, the values of E{C,, > when tiz = 10,20,50,~00,2OO, 5041000 are 
(numbers in brackets represent the corresponding figures for a uniform distribu- 
tion): 

56 (2% 170 (72), 683 (229, 1857 (519), 4873 (1176), 16702 (3396), 

41289 (7485). 
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LRU caching, as well as several other problems discussed in this paper, has solu- 
tions expressed as integrals of coefficients of bivariate functions. If g(u) is analytic 
in 1 MI 5 1, its Taylor coefficients can be estimated by Cauchy’s formula, 

Sums of coefl’icients can be simuiarly determined since 

1 +e-i9,ke-2ie+ . . . +e-(k-l)i~= 
1 _e-kiO 

1 _e-il3 l 

(38) 

(39) 

This device can be applied to the various sums that we hav6 encountered (integrating 
over a smaller circle when necessary). The integrand in the LRU analysis, equation 
(17), being analytic for 1 uI < l/( 1 -Pmin) with Pmin the smallest of the pi, formulae 
(38), (39) can be safely applied. 

Theorem 1.2. The page fault probability q f LR U caching is expressible as the double 
integral 

1 2n ‘am 

1-D=2., s 1 

1 _ e-kie 

@(t, eie)Y(t,eie)e-’ 1 e_ie d0 dt (40) 
0 0 

where @(t, u) = l-j:!, (1 + u(epf’ -_ 1)) and !P(t, u) = I:!, pI!/(l + u(epl’ - 1)). 

At an abstract level, we roughly estimate that formula (40) provides an analysis 
of LR”U caching that has complexity O(mk): Each evaluation of @ and Yin the in- 
tegral has cost O(m). In order to estimate the kth Taylor coefficient of a function 
g(u) (or kth Fourier coefficient of g(e”)), we expect to perform O(k) evaluations 
of g(u) since a numerical integration routine should sample enough points on each 
of the k “waves” of e kie This comparatively low complexity is to be constrasted . 

with a cost of about (7) for the combinatorial sums of Corollary 5.2, and an even 
higher cost for a direct Markovian analysis on a chain with k!(T) states. For in- 
stance, ,ealistic values of m = 1000 and It- = 20 lead to a Markov chain with about 
10” states, which could (in theory!) be solved using time of the order of lo’*’ and 
space 106’ . The cost of evaluating the combinatorial sums is still about 104’. In 
contrast, about lO%O* elementary function evaluations should suffice to evaluate 
the cache fault probabilities in this case. 

As a final notes shuffles of regular languages have been found useful in a few 
other places in the analysis of algorithms. Thimonier’s dissertation [38] provides a 
review with several other applications. The problem of analyzing the evolution of 
two stacks in a common memory area [24, Exercise 2.2.2.131 has been solved by-bne 
of us, using shuffles of one-dimensional random walk languages [ 111. An interesting 
approach to the evaluation of concurrency control algorithms and mutual exclusion 
is developed by Francon in [ 141. 
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