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This paper introduces a rather general technique for computing the average-case 
performance of dynamic data structures, subjected to arbitrary sequences of insert, 
delete, and search operations. The method allows us effectively to evaluate the 
integrated cost of various interesting data structure implementations, for stacks, 
dictionaries, symbol tables, priority queues, and linear lists; it can thus be used as a 
basis for measuring the efficiency of each proposed implementation. For each data 
type, a specific continued fraction and a family of orthogonal polynomials are 
associated with sequences of operations: Tchebycheff for stacks, Laguerre for 
dictionaries, Charlier for symbol tables, Hermite for priority queues, and Meixner 
for linear lists. Our main result is an explicit expression, for each of the above data 
types, of the generating function for integrated costs, as a linear integral transform 
of the generating functions for individual operation costs. We use the result 
to compute explicitly integrated costs of various implementations of dictionaries 
and priority queues. 

1 .I~R~DUCTION 

The purpose of this paper is to describe a rather general technique for 
computing the average cost of a sequence of operations, which is applica- 
ble to many of the interesting known implementations of data structures in 
computer science. 

*A preliminary version of this paper was presented at the 20th IEEE Symposium on 
Foundations of Computer Science, at Puerto Rico, October 1979. 
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We provide both a methodological framework and the corresponding 
computational techniques, allowing one to perform quantitative compari- 
sons among various data organizations, i.e., classes of data structures 
together with associated algorithms for operating on these structures. 

In comparing the costs (with respect to some measure such as time, 
space, OS charge, . . . ) of two data organizations A and B for the same 
operations, we cannot merely compare the costs of individual operations 
for data of given sizes: A may be better than B on some data, and 
conversely on others; operation 1 may be more efficient in A whereas 
operation 2 is more efficient in B; etc. 

A reasonable way to measure the efficiency of a data organization is to 
consider sequences of operations on the structure; the cost of each such 
sequence is the sum of the costs of individual operations. Given a finite set 
of sequences of fixed length, we can define the maximal, minimal, and 
average costs over the set in an obvious way. 

This general problem has already generated interesting work pertaining 
to the cost of sequences of operations for partition structures (disjoint set 
union); both maximal cost (see Tarjan [29]) and average cost (Doyle and 
Kivest [6]; Yao [33]; Knuth and Shonhage [26]) have been studied. 

For dictionary structures, where insertion, deletions, and searches are 
allowed, the “Knott phenomenon” (Knott [22]) for binary search trees 
(Knuth [24]; Hibbard [ 191) has stimulated a general methodological reflec- 
tion by Knuth [25], and a difficult mathematical analysis by Jonassen and 
Knuth [21]. Interesting results for maximal cost have been obtained by 
Snyder [35] under hypotheses very similar to ours. 

Our work is a continuation of that of Flajolet et al. [ll], in which 
dictionaries are analyzed under sequences of operations. It also extends 
previous results by Francon [13] based on the combinatorial methods of 
Francon and Viennot [15]. Some of the techniques relative to the use of 
continued fractions appear in Flajolet [7, 81. 

We provide here both a methodological framework and the correspond- 
ing computational techniques allowing one to perform quantitative com- 
parisons between data structures belonging to the same type. The method 
applies to structures having a “randomness preservation property,” which 
includes many of the classical implementations used in computer science; 
lists, search trees, tournament trees, binomial queues, and position trees are 
a sample of those amenable to our methods. 

The plan of the paper is as follows: Section 2 provides the set of 
necessary definitions for data types, data structures, and integrated costs. 
Sections 3 and 4 describe the use of continued fractions and orthogonal 
polynomials to derive enumeration results relative to sequences of opera- 
tions. Section 5 presents the integral transforms associated with each of the 
basic data types: these transforms map generating functions for individual 
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costs of operations to generating functions for integrated costs of 
sequences of operations. The results are then applied in Section 6 to 
provide explicit evaluations and comparisons of classical data structures. 
Finally, Section 7 discusses some of the implications of our work and 
outlines possible extensions. 

2. DATA TYPES, HISTORIES, AND INTEGRATED COSTS 

2.1. Data Types, Data Organizations 

We consider here data structures subject to the following operations: 

A for adjunction, i.e., insertion; 
S for suppression, i.e., deletion; 
Q + for positiiw query, i.e., successful search 
Q - for negative query, i.e., negative search. 

Keys are accessed either by value or by position, and additional con- 
straints may be imposed on the set of keys accessible at each stage. 

A data type is a specification of the basic operations allowed together 
with its set of possible restrictions. The five data types to be studied here 
are 

Dictionary Keys belonging to a totally ordered set are 
accessed by value; all four operations A, S, 
Q +, Q - are allowed without any restriction. 
Keys belonging to a totally ordered set are 
accessed by value; the basic operations are A and 
S; deletion (S) is performed only on the key of 
minimal value (of “highest priority”). 
Keys are accessed by position; operations are A 
and S without access restrictions (linear lists make 
it possible to maintain dynamically changing 
arrays). 
Keys are accessed by position; operations are 
insertion (A) and deletion (S) but are restricted to 
operate on the key positioned first in the structure 
(the “top” of the stack). 
This type is a particular case of dictionary, where 
deletion always operates on the key last inserted 
in the structure; only positive queries are per- 
formed (think of the management of the symbol 
table of an Algol-like language, where insert is 

priority queue 

Linear list 

Stack 

Symbol table 
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performed upon entering a block, while the corre- 
sponding delete occurs upon exit from that block). 

A data organization is a machine implementation of a data type. It 
consists of a data structure, which specifies the way objects are internally 
represented in the machine, together with a co!lection of algorithms imple- 
menting the operations of the data type. 

Stacks 

Dictionaries 

Priority queues 

Linear lists 

Symbol tables 

They are almost universally represented by arrays, 
or linked lists. 
The most straightforward implementation is by 
sorted or unsorted lists; binary search trees have a 
faster execution time and several balancing schemes 
have been proposed: AVL and 2-3 trees; bichro- 
matic trees by Guibas and Sedgewick 1181. Other 
alternatives are h-tables and digital trees (see Knuth 
[24] for many interesting implementations). 
They can be represented by any of the search trees 
used for dictionaries; more interesting are heaps (see 
Knuth [24]), P-tournaments (Jonassen and Dahl 
[20]), leftist tournaments (Crane [34], binomial tournu- 
ments (Vuillemin [30]), binary tournaments and 
pagodas (Francon et al. [ 161). One can also use 
sorted lists, and any of the balanced tree structures 
(used as a tournament rather than a search tree) for 
implementing priority queues (see Ah0 et al. [l]). 
The most straightforward implementation is by 
linked lists and arrays. Position tournaments 
(Vuillemin [3 11) are a more efficient implementation 
to which balancing schemes can be applied (Brown 
and Tarjan [3]). 
These are special cases of dictionaries. All the 
known implementations of dictionaries are applica- 
ble here, and the authors are not aware of interest- 
ing specific implementations for symbol tables, 
although a rather nice deletion algorithm can be 
programmed for binary search trees, if the keys 
arrival times are (implicitly) present in the structure. 

Of course there are other interesting data types: queues and dequeues 
(see Knuth [23]) are closely related to stacks; partition structures (also 
called disjoint set union) involve the operation of union, which is not 
considered here. One could also allow for more operations: split and merge 
for dictionaries; extract and union for priority queues; search, cut, con- 
catenate. and reverse for linear lists. 
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2.2 Sequences of Operations 

Before proceeding further, we need to state precise definitions concern- 
ing sequences of operations for each of our basic data types. 

A data type can be formally described by the universe of keys, the set of 
files, and the specification of the way operations perform on files. 

(a) The universe X from which keys are drawn is the set of real numbers 
(in practice X is more likely to be some very large but finite set). 

(b) A file status, or simply file, for a given data type is a structured finite 
set of keys: for dictionaries and priority queues, the set of files is the set of 
all finite subsets of X (i.e., a file can be any finite set of keys); for linear 
lists, stacks and symbol tables, the set of files is the set of all sequences 
on X. 

(c) For each input k, operation 0, and file 5, we need to describe in 
each case the way 4 is transformed when operation 0 E {A, S, Q +, Q - } 
is performed on key k: 

Stack 

Dictionary 

If 5 = (k,, k,, . . . , k,), performing A(k) leads to 
(k,, k,, . . . , k,, k) ; performing S leads to 
(k,, k,, . . . , k,- , ) with output k,, provided s 2 1. 
If ‘3 = {k,, k,, . . . , k,,}, performing O(k) leads to a 
new file 5’ with 

9” = 9 ifO=Q+andkE% 
orO= Q-andke ‘3; 

5’ = 9 u {k} ifO=Aandk@T; 
9’ = ‘3\ {k} ifO=SandkET 

(other cases undefined). 

Priority queue With 5 = {k,, k,, . . . , k,}, A(k) with k @ 4 leads 
to ‘3’ = ‘3 u {k} ; suppression S leads to ‘3’ = 5 \ 
{a>, where a = min,,i<p{ki}, and is meaningless if -- 

Linear list &yh 
0. 
3 a sequence of keys (k,, k,, . . . , k,), A(P; k) 

is defined iff 1 I p I 1 + 1 and the resulting file is 
B’=(k ,,..., kP-,,k,kp ,..., k,); on the other 
hand, S(p) leads to 9’ = (k,, . . . , kp-,, $,+I, 
. . . ) k,). 

Symbol tables With 5 = (k,, k,, . . . , km), performing O(k) leads 
to a new file 9’ such that 

5’ = 5 ifO=Q+andkE%; 

‘3’ = (k,, . . . , k,,,, k) ifO=AandkE%; 
‘3” = (k,, . . , , k,,,-,) ifO= S. 
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A sequence of operations is a sequence of the form O,(k,); O,(k& . . . ; 
O,(k,), where for 1 I i I n, ki E K is a key and Oi E 0 = 

{A, S, Q + , Q - } is an operation. 
For each of the data types considered above, we define the content 4 of 

the file at stage i by the rules: 

F, =0 

4 is the result of performing O,(k,) on &-, for 1 I i I n. 

With each data organization and sequence of operations O,(k,); . . , ; 
O,(k,,) there is naturally associated a cost (execution time, number of 

comparisons, storage utilisation, etc.) which is the sum, for 1 I i I n, of 
the cost of executing the algorithm implementing Oi, with input key ki, on 
the data structure representing E;;- ,. 

2.3. Histories 

In the remaining part of this section, we introduce a notion of equiva- 
lence between sequences of operations, serving two purposes: first, in a 
wide class of data organizations implementing each given data type, the 
sequences of operations physically performed within the machine are the 
same, for two equivalent sequences of operations (if we think in terms of 
machine language implementations, the sequences of contents of the 
ordinal counter are the same); second, the number of equivalence classes of 
operation sequences is finite, and thus we can define a notion of average 
cost over such sequences. 

Of course, we have to define equivalence of operation sequences for 
each of our five data types. We shall proceed by defining canonical 
representations-called histories-for sequences of operations, with two 
sequences equivalent if they share the same underlying history. Canonical 
sequences for linear lists and stacks, where access to keys is by position 
only, are obtained by retaining only the information relative to the position 
of keys (forgetting about key values): canonical sequences for dictionaries, 
priority queues, and symbol tables are obtained by retaining at each stage 
only the relative rank (w.r.t. to the order relation on %) of the key which is 
operated upon; in other words, two sequences of operations are equivalent 
iff they are order-isomorphic. 

We can unify all cases by providing the following general definition of a 
rank function: 

DEFINITION. Let ‘3 be a nonempty file content, for any of our five data 
types, and let k be an arbitrary key. We define rank(k, 9) as follows: 

(1) For stacks, rank(k, 9) = 0; 
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(2) For dictionaries, 9 = {k,, . . . , kd} with k, < k, < . . . < kd 
and we let rank(k, 9) = i - 1 if k E 9 and k = ki, and rank(k, 5) = i if 
k6!9andki<k<ki+,, with the convention k,, < k < kd+,. 

(3) Forpriorityqueues,9={k ,,..., kp}withk,<k,< . . . <$ 
and we let rank(k, $) = i if ki < k I ki+ r with the convention k, I k < 
k p+l* 

(4) For linear lists, ‘5 = (k,, . . . , k,) and rank(k, 3) = k - 1 for 
llklZ+l. 

(5) For symbol tables, rank(k, 9) is defined as in case 2, for diction- 
aries. 

With each legal sequence of operations I, = O,(k,); . . . ; O,,(k,,), we 
associate its history, which is a pair (S, V), where S = (O,, O,, . . . , 0, > 
is the schema of L and V = (rank(k,, F,), . . . , rank(ki, Fi-,), . . . , 
rank(k,,, F,-,)) is the valuation of L; the number n is the Zength of the 
history. 

Two sequences of operations are said to be equivalent if they have the 
same underlying history. 

Figure 1 gives for each data type an instance of a sequence of operations 
together with its corresponding history. 

Histories can be defined independently as combinatorial objects. For 
s= o,o,... 0, a schema, the height of i at stage hi is defined by 
hi = IO,. . . OilA - IO,. . . Oil,, the excess of adjunctions over suppres- 
sions. Quantity hi is also the size of the file resulting from any sequence 

Dictionary 

-40.7) A(3.1) A(0.57) Q -(0.69) S(3.1) Q +(2.7) S(O.57) 
AD Al Ao Ql- s2 Ql+ so 

priority queue 
A(2.7) A(3.1) A(0.57) S,, A(0.69) S,, S,, 

Ao Al --‘o so Ao so so 
Stack 

42.7) A(3.1) A(O.57) s, A(0.69) SW Stop 

-40 Ao -40 so Ao so so 
Linear list 

A(l; 2.7) A(l; 3.1) A(3; 0.57) w A(2; 0.69) S(3) SW 

Ao Ao A2 Sl Al s2 so 
Symbol table 

42.7) A(3.1) A(0.57) %,t Q +(3.1) A(0.69) S, 

Ao Al Ao so Q: Ao so 

FIG. 1. !kquences of operations with corresponding histories; ranks are indicated as 
subscripts to the operators. 
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Stack Dictionary Priority queues Linear lists Symbol table 

postA 9 4 1 k+l k+l k+l k+l 
INS k) 1 k 1 k 1 
pos(Q+, k) 0 k 0 0 k 
podQ-,k) 0 k+l 0 0 0 

FIN. 2. The five possibility functions considered here. 

of operations with schema O,O, . . . Oi. A pair (S; V) where S = 
o,o,... O,E{A,S,Q+,Q-}*andV= V,V,...V,,EE*represents 
a history for a data type Z iff 

-each of the heights in 0, . . . 0, is nonnegative, 
-each of the Vi satisfies 0 I Vi < pos”(O,, hi-r) where posx : 

(GCQ+,Q-} x A’ + N is the possibility function relative to each data 
type (see Fig. 2). 

Histories are thus combinatorial objects, and there are finite& many 
histories of a given length. Figure 3 enumerates all histories of length 2 for 
each data type. 

2.4. Integrated Costs for Stationary Structures 

Restricting attention to histories is justified for data structures satisfy- 
ing: 

Relevance of histories hypothesis [RHH]: The costs of two equivalent 
sequences of operations are identical. 

All of the data organizations mentioned in Section 2.1 satisfy RHH 
except h-code and digital search structures that perform arithmetic on their 
keys; roughly speaking, structures satisfying RHH access their keys by a 
decision tree, whose only primitive operation is comparison between keys. 

Data type Histories of length 2 

Stack AS 

Dictionary Q-z- 
oo 

A Q- 
00 

Priority queues AS 
00 

Linear lists AS 
00 

Symbol table AS 
00 

AA 
00 
AS Q-A AQ’ 
00 00 00 

AQ- AA AA 
01 00 01 
AA AA 
00 01 
AA AA 
00 01 

AQ’ AA AA 
00 01 IO 

FIGURE 3 
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Other data organizations which violate RHH are garbage collection 
structures, where deletion S is performed by marking a node rather than by 
physically removing it from the structure. 

These are the only data organizations violating our hypothesis, since 
RHH can be established, in a rather general setting, under the following 
hypotheses: 

(1) Decision Tree Hypothesis. The only way in which the data organi- 
zation can access the keys is by performing comparisons between keys. 

(2) Oblivion Hypothesis. Only keys which are present in the structure 
(i.e., have not been deleted) can be compared. 

Given a data organization satisfying RHH and a history h, we define the 
cost of h as the cost of any operation sequence having h for history. 

DEFINITION. Let ‘Jc, be a finite set of histories of length n; the in- 
tegrated cost K, over X, is defined as 

In most of our applications, we choose for X,, the set of all possible 
histories of length n, starting and finishing with an empty file. Comparing 
data organizations over this set of histories is analogous to what we do 
when we reduce the analysis of sorting algorithms over unbounded sets of 
keys, to an analysis over the n! permutations of [n] = { 1,2, . . . , n}. 

Given a possibility function associated with a data type, a set of histories 
is complete if, for each schema 0,; . . . ; 0, associated with a history in X, 
any history g made of the same schema and of any valuation Vi; . . . ; V, 
(compatible with the schema by the possibility rule) is also in X. 

Thus, in a complete set of histories, the number of histories with a given 
schema 0,; . . * ; 0, is IIi<i<npos(Oi, hi-r). -- 

To define a complete set of histories, we thus need only describe the 
schemata of this set. 

For example, the complete set of histories of length 2 contains six 
schemata Q -Q -, Q -A, AS, AQ -, A Q +, AA corresponding to two stack 
histories, eight dictionary histories, etc. (cf. Fig. 3). 

We denote by: 

(1) %,, the complete set of histories of length n, and of initial and 
final height h, = h, = 0; our main interest lies in these histories. 

(2) %I,n the complete set of histories of length n, of initial height 
h, = k and final height h, = 1. 

Of course, ‘Jc, = %&, O,n and we denote the cardinalities of these sets by 
H” = I&l andHk,,,n = Wk,,,.I. 
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Our goal in this paper is to compute explicitly integrated costs of data 
organizations over X. This proves possible for data organizations which, 
in addition to satisfying RHH, have a “randomness” or “stationarity” 
property, which we now define. 

For each data organization satisfying RHH, we call the state of the 
structure at a given time the state of a machine implementing it. Thus, 
algorithms representing the various operations A, S, and Q map states into 
states; we assume that the cost of such an algorithm depends only upon 
input and output states (it is time independent). The size of a state is the 
number of keys present in memory. 

DEFINITION. Two states are equiualent, if they are attainable from the 
empty state (size 0) through two equivalent sequences of operations. 

From now on, we use the word state instead of equivalence class of 
states; we let Ek denote the set of states of size k. 

For binary search trees, Ek can be identified by the set of binary trees 
with k nodes; for sorted lists, Ek can be identified by the unique sequence 
(1, 2, * * * 7 k) while, for unsorted lists, the k! states Ek correspond to 
permutations of 1, 2, . . . , k. Figure 4 describes the number of states of 
size k, for various data organizations. 

DEFINITION. The probability distribution induced on the set Ek by all 
the possible histories consisting of k insertions (i.e., with schema 

Ak = AA . . . A), 

is called the standard probability distribution on Ek. 
We let p,(e) denote the standard probability of state e. 

DEFINITION. A data organization is stationary if for all k the three 
probability distributions induced over Ek by all possible histories of 
schemata A k+‘S, A kQ -, and A kQ + coincide with the standard probabil- 
ity distribution (defined by histories of schema A k). This stationary condi- 
tion coincides with the notion of randomness under hypothesis (I,, DO) in 
Knuth [25]. 

As shown by Knott’s phenomenon, randomness under our hypotheses is 
not equivalent for binary search trees to randomness under the condition 
that keys be independently drawn from a uniform distribution, Among the 
data organizations mentioned in Fig. 4, only balanced tree structures are 
not stationary: 

PROPOSITION 1. The implementation of stacks by lists, dictionaries by 
unsorted lists, sorted lists, binary search tree, priority queues by sorted lists, 
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binary search trees, binary tournaments, pagodas, binomial queues, and Iinear 
lists by unsorted lists and position tournaments are all stationary data 
organizations. Except for binary search tree, the standard frequencies of states 
e E Ek are all equal; such structures are called uniform. 

Proof. Stationarity of binary search trees resides in Hibbard’s theorem 
for deletions (Hibbard [ 191; Knuth [24]; Knott [22]). 

The other cases are treated by the following result, due to Knuth [25] 
and Franqon [14]: 

PROPOSITION 2. A data organization is uniform iff V k, V 0 E 
{A, S, Q+, Q-}, V e’ E Ek,: 

IEJ * l{e E E,lO(e) = e’}l = pos(0, k). lE,J 

wherek’=kforOE{Q+,Q-},k’=k+lforO=Aandk’=k-1 
for 0 = S. 

Data Number of states Standard 
organization Data structure ofsizek probability stationary 

Stack Lists 

Dictionary Unsorted lists 
and UL 
symbol table Sorted lists SL 

Binary search 
tree BST 

FViOl-ity 

queue 

Linear 
IidS 

Binomial list 
BL 

Balanced Tree 
BT 

Sorted list 
Heaps 

Leftists and 
balanced 
tournaments 

Binary search 
tree 

Binary 
tournaments 

Pagodas 
Binomial queues 

Unsorted lists 
Position 

tournaments 
Balanced tree 

1 

k! 

1 

uniform 

uniform 

uniform 
cf. Knuth [24, 

p. 6711 
k 

bp2’, . . . , b$O ? 

? 

1 
cf. Knuth, [24, 

P. 191 

? 

k! 

k! 
k!/2k-‘W 

k! 

k! 

? 

? 

uniform 

? 

? 

cf. Knuth [24, 
p. 6711 

uniform 

uniform 
uniform 

uniform 

uniform 

? 

Yes 

Yes 

YeS 

YeS 

No 

No 

Ye.5 

No 

No 

Yes 

Yes 

YeS 
YeS 

Yes 

Ye.3 

No 

FIG. 4. Data structures and their standard probabilities; here k = (4 . . . b& and v(k) = 
&<i<pbi. 
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Proposition 1 follows by inspection, the nontrivial case of binomial 
queues being treated by Brown [2]. 0 

DEFINITION. For a stationary data organization, we define the indiuid- 
ual cost CO, of operation 0 on a file of size k by the formula CO, = ZeEE, 
p,(e) (cost of 0 on state e), wherep,(e) is the standard frequency of e. 

Knuth [24] likes to express such costs, measured in time units on a MIX 
implementation of the algorithm realizing the operation. Simpler measures 
are also realistic, and Fig. 5 provides an expression of the average number 
of key comparisons for each of the stationary data structures of Fig. 4, in 
the author’s implementations. 

Starting from the average costs CO, of operations on files of size k in 
stationary structures, we can express the integrated cost K, over X,, as a 
linear combination of the CO,, whose coefficients, the level crossing num- 
bers, depend only upon X,,. 

DEFINITION. The level crossing number NO,, n is the number of opera- 
tions of type 0 performed on a file of size k in the course of all histories in 
xl* 

Our interest in stationary data organizations is now justified by the 
following formula for computing integral costs: 

PROPOSITION 3. For stationary data organizations, the indiuidual costs 
CO, of operations and the integrated cost K,, = (1 /H,) * Z,, E %cost(h) are 
related by K,, = (1 /H,,) * Z o, kNOk, n * CO,, where the NO, are the level 
crossing numbers associated with X,. 

ProoJ: Apply the definitions and one inversion of summation. 0 

Data type Data organization CA* WI CQ,+ CQic- 

Dictionary Sorted list (k + V/2 (k + I)/2 (k + I)/2 (k + W2 
unsolicd lid (k + I)/2 (k + O/2 k 
Binary search tree WkP, - 1) 2(l + I/k)& - 3 2(1 + l/k)Hk - 3 Y&+I - 1) 

Priority Sorted list (k + 2)/z 0 
qucuc Binary search tree zfHk+I - I) 0 

Binary toutnammt Hk+I - 1/2 2(Hk - 2 + I/k) 
Pagodas W - I/(& + 1)) Z(H, - 2 + I/k) 
Binomial queues 1 + v(k) - r(k + 1) o(k) + u(k) - 1 - u(k - I) 

Linear lists List (k + P/2 (k + 1)/z 
Position tournament z(Hk+, - 1) 2(1 + I/k)H, - 3 

FIG. 5. Average number of comparisons for operations in various stationary data organi- 
zations. Here, Hk = 1 + f + . . . + l/k, k = Xi,,,bi2’, v(k) = Xir& and u(k) = 

(l/k)Ziz$bi2’. 



DYNAMIC DATA STRUCTURES 123 

At this stage, the problem of estimating integrated costs has been 
reduced to: 

(1) evaluating individual costs, which itself combines a counting of 
instructions (or simply comparisons) with the weighting that comes from 
the standard probability distribution; 

(2) evaluating the level crossing numbers NO,, n and plugging them into 
the formula for integrated costs. 

The second aspect is to be discussed in the next two sections. 

3. HISTORIES AND CONTINUED FRACTIONS 

In Section 2, we reduced the computation of integrated costs to the 
evaluation of certain combinatorial sums in which there appear the quanti- 
ties H,,, Hk, I, my NO,, ,,, etc. In this section we express the generating func- 
tions relative to these quantities in terms of continued fractions. 

3.1. The Continued Fraction Theorem 

We consider schemata as defined in Section 2 and we introduce an 
arbitrary possibility set r : pos(A ; k) = a,; pos(Q + ; k) = 4: ; 
pos(Q -; k) = qk ; pos(S; k) = s,. We also let qk = qz + &. Diction- 
aries thus correspond to the particular case: ak = k + 1; qk = 2k + 1; 

‘k = k. The following result is from Flajolet [7, 81: 

THEOREM F (the continued fraction expansion theorem). Let H,, be the 
number of histories ending at zero, relative to the possibility set II, and let 
H(z) = Z n,OHnzn be the corresponding generating function. Then H(z) has 
the following continued fraction expansion : 

H(z) = 
1 

l- 
a,sZz2 

1 - qr.2 - - 
. . . 

Proof: (sketch). Define the alphabet X = {A,, A ,, . . . , Q,,, Q,, 
* , s,, s,, * . * }, where Oi (0 = A, Q, or S) denotes operation 0 on a 

file of sizej. Let St”] denote the set of schemata represented by words over 
X having height I h. The S thl have the following regular expression 
descriptions: 

SLol = (Qo)*; S I” = (Qo + Ao(Q,)*S,)*; 

s12’ = (Qo + &(Q, + A,(Q,)*S,)*S,)* . . . , 
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and in general Slh+ ‘1 is obtained by substituting (Q,, + A,,( Q,, + ,)* S,, + ,) for 
Q,, in the expression for S . lhl If we let HI”1 denote the number of histories 
of height I h length n and Hrhl(z) = Zt,cH,(“]. z”, we have: Hlol(z) = 1 
+ qoz + q&2’+ . . . =‘l/(l - q@z), - 

Hqz) = 1 

1 - 4d - WlZ2/ (1 - w) ’ 

etc.; in general, Hlh+‘l(z) is obtained by substituting 

qh + 
ahsh + lz 

’ - qh+l’ 

for qh in HIhI( The theorem follows by letting h go to infinity. 0 

Using the more economical notation 

l/l - q($ - aos,zZ/. . . /l - q*z - Uh.Yh,,Z2/. . . 

for H(z), we apply Theorem F to our five data types and obtain continued 
fraction expressions for the corresponding generating functions H(z) = 

L2OHS 

Stacks ‘H(z) =1/l - z2/1 - z’/ . . . /l - z”/. . . ; 
Dictionary DH(z) = l/l - lz - 12z2/1 - 3z - 22z2 

/ . . . /l - (2k - 1)z - k2z2/ . . . ; 
Priority queue wH(z)=l/l - 1z2/1 - 2z2/. . . /l - kz2/. . . ; 
Linear list LLH(z)=l/l - 12z2/1 - 22z2/. . . /l - k2z2/. . . ; 
Symbol table =H(z)=l/l - Oz - 1z2/1 - lz - 2z2 

/ . . . /l - (k - l)z - kz2/ . . . . 

Theorem F provides a means of obtaining expressions for the H,, in our 
five cases, by identifying the continued fraction with expansions derived 
from Gauss’ continued fraction expression for hypergeometric series or 
from the Stieltjes-Rogers addition theorem (see Flajolet [8]); an alternative 
derivation is given below. 

3.2. Histories of Bounded Height 

With HLhl the number of histories of height I h, length n, and HihI 
the corresponding generating function, we have, as direct consequences of 
Theorem F (for proofs, see [8]): 

PROPOSITION 4. Histories of height I h have a rational generating 
function given by H”](s) = P,,(z)/Q,,(z), where Ph and Qh are polynomials 
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that sari.& the recurrences 
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P-I(Z) = 0; P,(z) = 1; PAZ) = (1 - W)Ph-I(Z) 
-a,- ,shz2Ph-2(z); 

Q-,(z) = 1; Qo(z) = 1 - w; Q,,(z) = (1 - w)Q,s-,(z) 
-ah-w2 Qh-2W. 

Hence deg P,, = deg Qh-, I h for all h. 

fiOPOSITION 5. Let H,Jz) = IZ,,2aHk,,,n~n; we have 

4, ,(z) = 
Q,,- ,W 

aOa, . . . a,- ,s,s2 . . . s,z 
k+I(Q~-kz)H(z) - Px&))> 

where p = min(k, Z) and A = max(k, I). 
In particular this gives expressions for Ho, k(z) and Hk, o(z), name&, 

Ho,&) = l 
s,s2 . . . SkZ k (Q,- ,(4W - pk- ,(z)) 

and 

4, o(z) = 
1 

aOa, . . . a,-,z 
k (Qk- ,WW - 4-,(z)). 

An alternative way of looking at the relations between the formal series 
H(z) and the polynomials Q,Jz) which appear in the convergents is by 
means of orthogonality relations. Starting from the numbers H,,, n 2 0, we 
introduce the linear form (P(x)) over polynomials P(x) = Z,,<i<kpi~i, -- 
defined by (P(x)) = Z,<i..kpiHi. This induces a scalarproduct (PlQ) = 
(P - Q), and a classical result (cf., for instance, Wall [32]) states: 

PROPOSITION 6. Let Qk(z) = zk+l Qk( 1 / z) be the reciprocal polynomial 
of Qk(z), introduced in Proposition 4. The folowing orthogonali@ relations 
hold: 

Wliz-,<4> = <Lie,-,> = 0 for 0 I i < k; 

(xklQ,-,(x)> = <iZ-,l!Z-,> = aOal . . . a,-,s,s, . . . s,. 

In other words, the Qk form a basis for polynomials which is orthogonal 
with respect to the scalar product associated with the sequence { H,ln 2 
O}. Proposition 5 follows from a more general result, expressing histories 
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by orthogonality relations: 

PROPOSITION 7. The number Hk I R of histories of length n, starting at 
level k and finishing at level 1, is giv& by 

H k.1.n = -j$j’Q”-,‘x’e;-,(x~xn,, 
, 

with $( k, I) = a,,a, . . . a, _ Is,s2 . . . s,. 

Proof: Proposition 4 yields 

Hk, I(‘) = ’ 
$(k, l)zk+’ 

[ Qk-dz)Q,-,WW - PA-h)Q,-,<z>]. 

Since the degree of PA-, Qp-, is strictly less than k + I + 1, it follows that 
J/(k 0 * Hk, I, n is the coefficient of zk+‘+” in Qk- ,(z)Q,- ,(z)H(z). Using 
(xJ’ ) = HP and elementary substitutions yields Proposition 7. 

Proposition 6 follows by setting k = 0, and noting that Ho,,, n = 0 for 
n < 1, since I steps are necessary to reach level I. 0 

4. DATA TYPES AND THE CLASSICAL ORTHOGONAL POLYNOMIALS 

The preceding section provides formulas for the number of histories 
H k,,, ,,, which are expressed only in terms of the orthogonal polynomials 
associated with the corresponding continued fraction. 

Each data type, defined by its possibility set r = {pos( 0, k)( 0 E 52, 
k 2 0} is thus characterized by a family of orthogonal polynomials 
{e,-,lk 2 o}. L e us first recognize the polynomials associated with each t 
of our five data types. 

4.1. Stacks and Tchebycheff Polynomials 

_Polyno@als assockted with stac& satisfy Q- t = 1, Qe = z, Qk = 
Z&e, - Qk-2; thus Q(z, t) = lZk,,,Qk-,(z)tk = l/(1 - zt + t’). Elemen- 
tary manipulations lead to the explicit form 

Q,-,(z) = &,( - l)i( k ; ‘)zk-li, 

a Tchebycheff polynomial. 

THEOREM 1 ,S. The Tchebycheff polynomials associated with stacks have a 
generating function &z, t) = l/(1 - zt + t2). Stack histories admit 

c Hnz” = 

1 - (1 - 4z2)“2 

It>_0 
2z2 = n~odT(?)z2n 
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and 

x 

z2 ‘/2 

n,k>O 
HO>k,ntkzn = n F20 Hk,O,ntkZn = 2z2 wl--c;le-t; -‘4z2,,,2J 

for generating functions. 

Proof. Computing (&xt)) in two different ways yields 

( * 1 - A-t + t2 ) =*(1 -xt/:l + tJ=~~oHkk4 

and 

( k;o&-,(x)tk) = k~o<o-,(x,IQ,-,(x,>fk = l; 

setting t = (1 - (1 - 4~~)‘/~)/2z leads to 

2 H,,z” = (1 - (1 - 4~‘)“~)/2z~. 
tl>O 

Proceeding similarly with (g(x, u)&x, t)) leads to 

~~te,-,(x,e,-,(x)>ukt’ = & 

on the one hand, and to 

cl ; t2> F (~-l(x)xn)uk( +) = (1 : t2> 2 HCI,k,.uk( +)’ 
,n k. R 

on the other. Identifying these two expressions and changing t to 
(1 - (1 - 4z2)*12)/2z yields the result. 0 

4.2. Dictionaries and Luguerre Polynomials 

The polynomials associated with dictionaries satisfy &, = 1, & = z - 1, 
ek = (z - 2k - l)~,-, - k2 * cke2. Th’ is recurrence translates, over the 
generating function 

into the differential equation 

$ ecz, t) = e<z, t). ;,: i21 9 
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expanding leads to the explicit form 

p,-,(z) = ,~ow( g+zi9 

a Laguerre polynomial. 

THEOREM 1,D. The Lquerre polynomials associated with dictionaries 
admit 

kFo L(z); = -!- t - l+t exp z 1 + t 
for exponential generating function. As for dictionary histories: 

H(z) = x H”$ = +- 
nzo * Z’ 

thus H, = n! and 

H(u, v, z) = x Hk,,,n~kv’$ = 
1 

k,I,n>O 1 - z(l + U)(l + v) - uv * 

Proof. As for stacks, 

k~oe,_,cx)~) = ’ 

on the one hand, and 

on the other; letting t/(1 + t) = z leads to 
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Let A(u, U, 2) = (e<x, 24)&c, u)Q(x, z/(1 - z))); we compute 

By Proposition ‘7, 

thus A(u, o, z) = (1 - z)H(u, u, z). Replacing Q by its expression in A 
gives 

A(u, 24 0 u, 2) = -* l-z - 1 
i+u 1+0 ( ( 

expxz+- - 
1+u+ I+0 1) 

l-z 
=(I+u)(l+u)Hz+,:u+lSIu ( 

- - 
) 

l-z 
= 1 - (1 + u)(l + u)z + 241) 

= (1 - z)H(u, u, z). 0 

This treatment applies mutatis mutandis to the remaining data types, 
and we merely state the results. 

4.3. Priori@ Queues and Hermite Polynomials 

The relevant polynomials here are Hermite polynomials 

e,-,(‘> = O<,~k/2(- lli 2ii, (kk; 2iJ! Zk-2ie 

THEOREM 1,PQ. The Hermite polynomials associated with priority queues 
admit 

x ek- ,(z)-$ = exp( zt - :) 
k>O 

for an exponential generating function. As for priori@ queue histories: 

H(z) = z H,,$ = exp( f), 
?I>0 

H(u, U, Z) = 2 + zu + 240 + uz . 
k. I, n 2 0 

z&Jdk$ 5 - eXp( G 
. . 
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4.4. Linear Lists and Meixner Polynomials 

THEOREM 1,LL. The Meixner polynomials associated with linear lists 
admit 

kIxo @I- l(z); = l 
* (1 + ty* 

exp(z arc tg 1) 

for an exponential generating function. As for histories: 

H(u, u, z) = x Hk,l,nukv’$ = 
1 

k,I,ntO (1 - uu)cos z - (u + u)sin z ’ 

4.5. Symbol Tables and Charlier Polynomials 

THEOREM MT. The Charlier polynomials associated with symbol tables 
admit 

ksoQk-l(z)$ = (l + t)‘+‘e-’ 

for an exponential generating function. As for histories, 

H(z) = 2 Hfi$ = exp(e’ - z - 
020 

and 

= exp(e’( 1 + u)( 1 + u) - 1 

4.6. Other Data Types 

1) 

- z - u - u). 

The reader might be curious, at this point, to know how many “classi- 
cal” orthogonal polynomials there are, and what are the polynomials 
associated with other data structures, such as dequeue (pos(A, k) = 
pos(S, k) = 2), or linear lists with interrogations (pos(A, k - 1) = 
pos(S, k) = k, pos(Q, k) = k), etc. 
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A partial answer to these questions can be given, provided we restrict 
ourselves to possibilities pos(0, k) = ak + /3 which are linear functions of 
k. Note, in this case, that the continued fraction expressing histories is the 
quotient of two diverging hypergeometric functions, as shown by Perron 
[28, Vol. 2, p. 2881. If we further restrict the product pos(A, k) . pos(S, k) 
to be of the form k(crk + j3) with (Y + j3 > 0, then the associated orthogo- 
nal polynomials are within the class of Meixner polynomials (Meixner [27]; 
see also Chihara [5, pp. 163-166]), which comprise only five generic 
families of polynomials. Data types that fall in that category are thus 
amenable to a treatment similar to that applied in one of the cases 
considered in this paper. 

~.THE INTEGRAL COST THEOREM 

The preceding section provides expressions for the number Hk,,,n of 
histories of length n, starting at level k and finishing at level 1. From the 
definition of level crossing numbers (Section 2.4) we infer the formulas 

NAk,. = x HO,k,i’ak~Hk+I,O,n-i-I? 
Oli<n 

N&n = 2 HO,k,i*qk’Hk,O,n-i-l? 
OSi<n 

Nsk,. = x H,,k,;‘Sk.Hk-,,O,n-i-,. 
OSiin 

We are thus in possession of all the quantities needed in order to apply 
the integral cost formula: 

KA,, = 2 CA, * N&,.9 KQ, = x CQk. NQk,.v 
k>O k>O 

KS,, = 2 CS, - NSk3 n and K,, = KA, + KQ” + KS,,. 
k2l 

5.1. Integrated Cost for Stacks 

In the case of stacks, a, = s, = 1 and qk = 0; thus NA,(~) = 

%>oNAk/ = zHo,dz) . Hic+,,O(z)> where Ha, &j = X,,,OH, b ,,z”. By 
Theorem l,S, HO, k(z) = Hk, ,,(z) = z ‘B(z)&+ ‘, where - ’ ’ 

B(z) = 
1 - (1 - 4z2)“2 

2z2 . 
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Substituting in the generating function J&t(z) = Z,,,,,KA,,z” leads to 

KA(z) = x CA, * z2k+2(B(z))2k+3 
k>O 

= z2B(z)3CA(z2B2(z)), 

where we let CA (1) = I: k,OCA, * tk represent the generating function of 
unitary adjunction costs f& the stack implementation. A similar treatment 
can be applied to KS, and we find: 

THEOREM 2,s. The generating functions of unitary costs CA(t) and CS(t) 
and integrated costs U(z) and KS(z) f  or stacks are related by the linear 
transform M(z) = z2B3(z)CA(z2B2(z)) and KS(z) = B(z)CS(z2B2(z)), 
where 

B(z) = 
1 - (1 - 4z2)*‘2 

2z2 . 

5.2. Integrated Costs for Dictionaries 

The formula NAk(z) = a,zH,, k(~) . Hk+ ,, 0(t) is of no direct use here, 
since the ordinary generating functions Ho, ,Jz) diverge for all real z. 
Theorem l,D, however, provides an analytic expression for the exponential 
generating function 

This leads to an expression for the exponential generating function of level 
crossings 

NAk(z) = x NAk,,$, 
fl>O 

through the classical convolution theorem for Laplace transforms: 

PROPOSEON 8. The expfnential generating functions for le1.14 crossing 

numbers NO,(z) and paths H,, Jz) are related by 

akcz) = ak&, kb) * ri,+l,O(z)? 

hi(Z) = &O, kcZ) * ik,O(z), 

&(Z) = sktiO, k(Z) * fik- 1, O(z), 

where * denotes (Lupface) convolution 

(,i l h)(x) = i?(x - r)&r) dr. 



DYNAMIC DATA STRUCTURES 133 

Proof: We start with the classical lemma expressing ,the fact that the 
Laplace transform maps a convolution product into an ordinary Cauchy 
product: let 

the product (2 * I?)(X) = 1$(x - 7)&r) d7 is equal to 

The (purely algebraic) proof starts with 

Using the well-known inversion formula for binomial coefficients, 

we get 

The expressions for &Jr) then follow directly from the formulas given at 
the beginning of Section 5. c] 

Theorem l,D yields the expression 

i&,(z) = E&,(z) = z”/ (1 - Z)k+‘. 

Substituting in the formula for G(z): 

ii(z) = x CA,. No, 
k>O 

= kTo(k + l)cAk&l ‘:-+‘;;k+, (I Tk++ dT 
- 7 

T(2 - T)  r d7 = 
(1 - z + 7x1 - 7) (1 - z - T)(l - 7)‘; 
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where e,(x) = Xk>e(k + l)CA,xk. Splitting the integral Ji = /‘e’” + (:,* 
and performing the respective changes of variable T = z/2 - (I and T = 
z/2 + a lead to 

a + ‘* do 
(p’ - cl’)’ 

with (Y = z/2, /? = 1 - (Y. Setting u = (a* - a*)/( p* - a*) yields, after 
simplifications, 

G(Z) = j”e,(u)( =)I’* du 
0 

with t = e. 

A similar treatment is applied to ?Q +, KAQ -, and KAS and we find: 

THEOREM 2,D. Exponential generating functions 

of the integrated cost of dictionaries are related, for each operation 0, to the 
generating functions of unitary costs, by the following linear integral trans- 

f arms : 

iii(z) = ~%Ju)( E)“* du, 
0 

c.?“(X) = 2 (k + l)CA, * Xk, 
k>O 

t = &; 

6%~) = & ~“~&4 
du 

0 (( 1 - u)(t - u))“* ’ 

e,(X) = x (kCQ,+ + (k + l)CQ,)xk; 
k>O 

G(z) = ~‘*C?s(u)( +=)“* du, 
0 

e,(x) = c (k + l)c&+, . Xk 
k?O 

Of course, k(z) = G(z) + ~Q(z) + k(z) can be expressed in terms 
of Co(x) = zk,eCo,. xk rather than in terms of the modified ‘&, above; - 
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for example, integration by parts provides 

a4 = t2CA(t2) ( 1 & ‘P 

l-f t* 
I CA(u) 

u du -- 
2 0 (1 - u)((t - u)( I - u)y2 ’ 

an expression which is less convenient to work with. 

5.3. Integrated Costs for Priori& Queues 

For priority queues, Theorem 1,PQ gives us gO, ,Jz) = k! .fik, a(z) = 
zk exp(z2/2). Following the same computation as that for dictionaries 
leads to 

with 

z(z) = er212 
I ‘7 * C(T(Z - r))exp((T - Z)T) dr 

0 

C(x) = x (CA, + CS,,,)$. 
ktO 

In order to simplify the expression for K, let us formally set C(x) = 
exp(ux), where u k should be identified with CA, + CS,, ,. Changing the 
variable to p = 7 - z/2 in the integral, 

thus expressing K in terms of the Erf function of probability theory. We 
check that K(z) is an even function of z, as expected since Hu, e, 2n+, = 0. 
In 

f?(z)/z = 2 Nk.2n~k~2n-‘/ (2n)!, 
kt0 
JISO 

set z = 2.~~1~ and apply a Borel-Laplace transform %I (f; t) = 
JFe-Sf(st) dr. We obtain, on the one hand, 

E = a(&. K(Z)/Z; I) = 2 Nk,2nUk me-s(sl)“-“2 ds 
k,ntO / 0 

= r(1/2) 2 Nk 2nUkc 
2t’12 kz0 ’ 

I . n. 
PItO 
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Applying the transform to the integral expression above yields, on the 
other hand, 

integrating by parts leads to 

E= 
t’/2 co a3 t’/2 1 

-3-. 
J31/2) 

. 1 - t(u + 1) s e-S(l-2t) 

a 2s”2 2 (1 - q’/2 1 - t(u + 1) ’ 

and, expanding back as a power series in u, we identify both terms to 
obtain a remarkably simple expression: 

THEOREM 2,PQ. The generating function 

if(z) = x K2n5 
nt0 

of the integrated cost of priority queues is related to C(x) = Zk,o(CA, + 
CSk+,)xk+’ by 

- 

K(z) = ’ 
(1 - 2z)“2 

5.4. Integrated Cost for Linear Lists and Symbol Tables 

Computation of integrated costs for linear lists, symbol tables, and in 
fact any data structure whose associated polynomial falls within the 
Meixner class (see Section 4.6) can be carried out along the lines followed 
for dictionaries. Simplifications such as those found for priority queues, 
however, have not been apparent to the authors. 

THEOREM 2,LL. The exponential generating function K(z) of integrated 
costs for linear lists is given by 

k(z) = 2J’%(u) 
du 

0 u(( 1 - u)’ - 4u cot2 z)“2 ’ 

where 

C(x) = x (k + l)(CA, + CSk+,)Xk+‘. 
kt0 
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THEOREM 2,ST. The exponential generating function K(z) of integrated 
costs for symbol tables is given by 

R(z) = 2ee’-z-1~(e”‘-‘~((ez + 1 - ~)e,,(u) + e,(u)) 

X 
e -” du 

((e’ + 1 - u)* - 2e’)“* ’ 

where 

Xk 
%,(-‘d = z ccAk + csk+,)(? and 

k>O 

6. APPLICATION TO COMPUTING INTEGRATED COSTS OF SOME 
RELEVANT DATA ORGANIZATIONS 

It now remains to use the individual costs tabulated in Fig. 5, Section 2, 
in conjunction with the integral formulas given in Section 5. With the 
exception of binomial queues, all the individual costs are linear combina- 
tions of the functions (of k) 

; ; -& ; Hk; 1; k; k*; kH,, 

whose ordinary generating functions have the simple forms 

In&; x -&; -&lnr---- lln 
1 1 
-x’ I-x’ 

1 

(1 - x)’ ; (1 TX)3 ; (1 XX)’ ( 
l+ln& . 

1 

Vuillemin’s binomial queue implementation of priority queues represents 
a somewhat different problem: the unitary costs here are 

ck = CA, + CS,, , = & ,x ibi2i, 
I>0 

where Zi,0bi2i is the binary representation of (k + 1). The corresponding 
integrate&costs have been evaluated (using Theorem 2,PQ) by Cheno [4], 
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TABLE 6D 
Integrated Costs for Stationary Dictionary Structures 

Structure Integrated cost for ‘Cl& 

Sorted list (n* + 9n - 4)/12 
Unsorted list (9~' + 47n - 62)/120 
Binary search tree 2n(H, - 2)+ O(lop2n) 

who finds 

K2, 

1.305. * . (2n - 1) 
= n * log, n - n . a(n) + o(n), 

where a(n) is some periodic function of log, n. 
Tables 6D, 6PQ, and 6LL give integrated costs for stationary diction- 

aries, priority queues, and linear lists, respectively, corresponding to data 
organizations of Fig. 5. The only case in which we were unable to derive a 
simple expression is the position tournament representation for linear lists. 

Such costs are not necessarily decisive in evaluating the practical value 
of these structures, since we count only the cost of key comparison, There 
is, however, nothing to stop us from computing the integrated cost for a 
more realistic measure, say the execution time in MIX units, as Knuth [23] 
is fond of doing. This is a large but routine computational task! 

TABLE 6PQ 
Integrated Costs for Stationary Priority Queue Structures0 

Structure Integrated cost for Yl& 

Sorted list n(n + 5)/6 

Binary search 
tree 

+y ,z<n+[ yY;%f-,+~] +y -2n 

=nInn+ O(n) 

Binary touNament 

=znlnn + O(n) 

Pago& Identical to binary search trees 
Binomial queue n log, n - n. a(n) + o(n), 

“Here n?= 1 . 3 . 5 . . 2n - 1 and In x is the natural logarithm of x. 
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TABLE 6LL 
Integrated Costs for Stationary Linear List Structures0 

Structure 

sequential list 

Integrated cost for G 

UL+z + 4n)/(4E*,) - n - l/4 

"Here Eb is the secant number: ~,2&2,,(z2”/(2n)!) = l/cos I). 

7. CONCLUSIONS; DIRECTIONS FOR FURTHER RESEARCH 

We have presented here in detail a method for analyzing sequences of 
operations in stationary data structures belonging to one of five basic 
types. This approach can be extended in several different ways: 

(a) by varying the set of histories over which the analysis is performed: 
initial and final conditions can be altered, and the condition that histories 
go back to the empty file can be relaxed. The generating functions given in 
Section 4 are general enough to yield convolution integral expressions for 
generating functions of integrated costs. 

(b) by varying the universe of possible keys: the case where keys are 
drawn from a finite set (a “reference file”) can in some instances be dealt 
with along similar hnes (see Flajolet and Francon [9]). 

(c) by considering other data types: those where only the four basic 
operations are allowed are amenable to the continued fraction approach. If 
further, the possibility functions are linear in the size of the file, the 
convergent polynomials can be explicitly determined and lead to the 
Meixner classification; this is the case for dequeues, double-ended priority 
queues, priority queues with various types of interrogations, . . . . On the 
other hand we are lacking a general approach for data types involving 
union as in mergeable priority queues or dictionaries. Histories for “hash 
coding” dictionaries should also be of interest. 

(d) by establishing more connections with probabilistic approaches: for 
instance, Jonassen and Dahl[20] have established that, for priority queues, 
drawing keys from an exponential distribution entails the equiprobability 
of histories (see also Knuth [25]; Jonassen and Knuth [21]). 
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