
JOURNAL OF ALGOIUTHMS 1, 111-141 (1980)

Sequence of Operations Analysis for Dynamic
Data Structures*

P. FLAJOLET

Iria-Luboria, 78150, Rocquencourt, France

J. FRANCON

Centre de Cakul du CNRS, BP 20 CR467037 Strasbourg, France

AND

J. VUILLEMIN

Uniwrsit~ de Paris-S4 Batiment 490,91405 Orsay, France

Received October 8, 1979

This paper introduces a rather general technique for computing the average-case
performance of dynamic data structures, subjected to arbitrary sequences of insert,
delete, and search operations. The method allows us effectively to evaluate the
integrated cost of various interesting data structure implementations, for stacks,
dictionaries, symbol tables, priority queues, and linear lists; it can thus be used as a
basis for measuring the efficiency of each proposed implementation. For each data
type, a specific continued fraction and a family of orthogonal polynomials are
associated with sequences of operations: Tchebycheff for stacks, Laguerre for
dictionaries, Charlier for symbol tables, Hermite for priority queues, and Meixner
for linear lists. Our main result is an explicit expression, for each of the above data
types, of the generating function for integrated costs, as a linear integral transform
of the generating functions for individual operation costs. We use the result
to compute explicitly integrated costs of various implementations of dictionaries
and priority queues.

1 .I~R~DUCTION

The purpose of this paper is to describe a rather general technique for
computing the average cost of a sequence of operations, which is applica-
ble to many of the interesting known implementations of data structures in
computer science.

*A preliminary version of this paper was presented at the 20th IEEE Symposium on
Foundations of Computer Science, at Puerto Rico, October 1979.

111
01966774/80/02011 l-31$02.00/0
Copyright 0 1980 by Academic Press, Inc.

All rights of repaduction in my form reserved.

112 FLAJOLET, FRANCON, AND VUILLEMIN

We provide both a methodological framework and the corresponding
computational techniques, allowing one to perform quantitative compari-
sons among various data organizations, i.e., classes of data structures
together with associated algorithms for operating on these structures.

In comparing the costs (with respect to some measure such as time,
space, OS charge, . . .) of two data organizations A and B for the same
operations, we cannot merely compare the costs of individual operations
for data of given sizes: A may be better than B on some data, and
conversely on others; operation 1 may be more efficient in A whereas
operation 2 is more efficient in B; etc.

A reasonable way to measure the efficiency of a data organization is to
consider sequences of operations on the structure; the cost of each such
sequence is the sum of the costs of individual operations. Given a finite set
of sequences of fixed length, we can define the maximal, minimal, and
average costs over the set in an obvious way.

This general problem has already generated interesting work pertaining
to the cost of sequences of operations for partition structures (disjoint set
union); both maximal cost (see Tarjan [29]) and average cost (Doyle and
Kivest [6]; Yao [33]; Knuth and Shonhage [26]) have been studied.

For dictionary structures, where insertion, deletions, and searches are
allowed, the “Knott phenomenon” (Knott [22]) for binary search trees
(Knuth [24]; Hibbard [191) has stimulated a general methodological reflec-
tion by Knuth [25], and a difficult mathematical analysis by Jonassen and
Knuth [21]. Interesting results for maximal cost have been obtained by
Snyder [35] under hypotheses very similar to ours.

Our work is a continuation of that of Flajolet et al. [ll], in which
dictionaries are analyzed under sequences of operations. It also extends
previous results by Francon [13] based on the combinatorial methods of
Francon and Viennot [15]. Some of the techniques relative to the use of
continued fractions appear in Flajolet [7, 81.

We provide here both a methodological framework and the correspond-
ing computational techniques allowing one to perform quantitative com-
parisons between data structures belonging to the same type. The method
applies to structures having a “randomness preservation property,” which
includes many of the classical implementations used in computer science;
lists, search trees, tournament trees, binomial queues, and position trees are
a sample of those amenable to our methods.

The plan of the paper is as follows: Section 2 provides the set of
necessary definitions for data types, data structures, and integrated costs.
Sections 3 and 4 describe the use of continued fractions and orthogonal
polynomials to derive enumeration results relative to sequences of opera-
tions. Section 5 presents the integral transforms associated with each of the
basic data types: these transforms map generating functions for individual

DYNAMIC DATA STRUCTURES 113

costs of operations to generating functions for integrated costs of
sequences of operations. The results are then applied in Section 6 to
provide explicit evaluations and comparisons of classical data structures.
Finally, Section 7 discusses some of the implications of our work and
outlines possible extensions.

2. DATA TYPES, HISTORIES, AND INTEGRATED COSTS

2.1. Data Types, Data Organizations

We consider here data structures subject to the following operations:

A for adjunction, i.e., insertion;
S for suppression, i.e., deletion;
Q + for positiiw query, i.e., successful search
Q - for negative query, i.e., negative search.

Keys are accessed either by value or by position, and additional con-
straints may be imposed on the set of keys accessible at each stage.

A data type is a specification of the basic operations allowed together
with its set of possible restrictions. The five data types to be studied here
are

Dictionary Keys belonging to a totally ordered set are
accessed by value; all four operations A, S,
Q +, Q - are allowed without any restriction.
Keys belonging to a totally ordered set are
accessed by value; the basic operations are A and
S; deletion (S) is performed only on the key of
minimal value (of “highest priority”).
Keys are accessed by position; operations are A
and S without access restrictions (linear lists make
it possible to maintain dynamically changing
arrays).
Keys are accessed by position; operations are
insertion (A) and deletion (S) but are restricted to
operate on the key positioned first in the structure
(the “top” of the stack).
This type is a particular case of dictionary, where
deletion always operates on the key last inserted
in the structure; only positive queries are per-
formed (think of the management of the symbol
table of an Algol-like language, where insert is

priority queue

Linear list

Stack

Symbol table

114 FLAJOLET, FKANGON, AND VUILLEMIN

performed upon entering a block, while the corre-
sponding delete occurs upon exit from that block).

A data organization is a machine implementation of a data type. It
consists of a data structure, which specifies the way objects are internally
represented in the machine, together with a co!lection of algorithms imple-
menting the operations of the data type.

Stacks

Dictionaries

Priority queues

Linear lists

Symbol tables

They are almost universally represented by arrays,
or linked lists.
The most straightforward implementation is by
sorted or unsorted lists; binary search trees have a
faster execution time and several balancing schemes
have been proposed: AVL and 2-3 trees; bichro-
matic trees by Guibas and Sedgewick 1181. Other
alternatives are h-tables and digital trees (see Knuth
[24] for many interesting implementations).
They can be represented by any of the search trees
used for dictionaries; more interesting are heaps (see
Knuth [24]), P-tournaments (Jonassen and Dahl
[20]), leftist tournaments (Crane [34], binomial tournu-
ments (Vuillemin [30]), binary tournaments and
pagodas (Francon et al. [161). One can also use
sorted lists, and any of the balanced tree structures
(used as a tournament rather than a search tree) for
implementing priority queues (see Ah0 et al. [l]).
The most straightforward implementation is by
linked lists and arrays. Position tournaments
(Vuillemin [3 11) are a more efficient implementation
to which balancing schemes can be applied (Brown
and Tarjan [3]).
These are special cases of dictionaries. All the
known implementations of dictionaries are applica-
ble here, and the authors are not aware of interest-
ing specific implementations for symbol tables,
although a rather nice deletion algorithm can be
programmed for binary search trees, if the keys
arrival times are (implicitly) present in the structure.

Of course there are other interesting data types: queues and dequeues
(see Knuth [23]) are closely related to stacks; partition structures (also
called disjoint set union) involve the operation of union, which is not
considered here. One could also allow for more operations: split and merge
for dictionaries; extract and union for priority queues; search, cut, con-
catenate. and reverse for linear lists.

DYNAMIC DATA STRUCTURES 115

2.2 Sequences of Operations

Before proceeding further, we need to state precise definitions concern-
ing sequences of operations for each of our basic data types.

A data type can be formally described by the universe of keys, the set of
files, and the specification of the way operations perform on files.

(a) The universe X from which keys are drawn is the set of real numbers
(in practice X is more likely to be some very large but finite set).

(b) A file status, or simply file, for a given data type is a structured finite
set of keys: for dictionaries and priority queues, the set of files is the set of
all finite subsets of X (i.e., a file can be any finite set of keys); for linear
lists, stacks and symbol tables, the set of files is the set of all sequences
on X.

(c) For each input k, operation 0, and file 5, we need to describe in
each case the way 4 is transformed when operation 0 E {A, S, Q +, Q - }
is performed on key k:

Stack

Dictionary

If 5 = (k,, k,, . . . , k,), performing A(k) leads to
(k,, k,, . . . , k,, k) ; performing S leads to
(k,, k,, . . . , k,- ,) with output k,, provided s 2 1.
If ‘3 = {k,, k,, . . . , k,,}, performing O(k) leads to a
new file 5’ with

9” = 9 ifO=Q+andkE%
orO= Q-andke ‘3;

5’ = 9 u {k} ifO=Aandk@T;
9’ = ‘3\ {k} ifO=SandkET

(other cases undefined).

Priority queue With 5 = {k,, k,, . . . , k,}, A(k) with k @ 4 leads
to ‘3’ = ‘3 u {k} ; suppression S leads to ‘3’ = 5 \
{a>, where a = min,,i<p{ki}, and is meaningless if --

Linear list &yh
0.
3 a sequence of keys (k,, k,, . . . , k,), A(P; k)

is defined iff 1 I p I 1 + 1 and the resulting file is
B’=(k ,,..., kP-,,k,kp ,..., k,); on the other
hand, S(p) leads to 9’ = (k,, . . . , kp-,, $,+I,
. . .) k,).

Symbol tables With 5 = (k,, k,, . . . , km), performing O(k) leads
to a new file 9’ such that

5’ = 5 ifO=Q+andkE%;

‘3’ = (k,, . . . , k,,,, k) ifO=AandkE%;
‘3” = (k,, . . , , k,,,-,) ifO= S.

116 FLAJOLET, FRANCON, AND WILLEMIN

A sequence of operations is a sequence of the form O,(k,); O,(k& . . . ;
O,(k,), where for 1 I i I n, ki E K is a key and Oi E 0 =

{A, S, Q + , Q - } is an operation.
For each of the data types considered above, we define the content 4 of

the file at stage i by the rules:

F, =0

4 is the result of performing O,(k,) on &-, for 1 I i I n.

With each data organization and sequence of operations O,(k,); . . , ;
O,(k,,) there is naturally associated a cost (execution time, number of

comparisons, storage utilisation, etc.) which is the sum, for 1 I i I n, of
the cost of executing the algorithm implementing Oi, with input key ki, on
the data structure representing E;;- ,.

2.3. Histories

In the remaining part of this section, we introduce a notion of equiva-
lence between sequences of operations, serving two purposes: first, in a
wide class of data organizations implementing each given data type, the
sequences of operations physically performed within the machine are the
same, for two equivalent sequences of operations (if we think in terms of
machine language implementations, the sequences of contents of the
ordinal counter are the same); second, the number of equivalence classes of
operation sequences is finite, and thus we can define a notion of average
cost over such sequences.

Of course, we have to define equivalence of operation sequences for
each of our five data types. We shall proceed by defining canonical
representations-called histories-for sequences of operations, with two
sequences equivalent if they share the same underlying history. Canonical
sequences for linear lists and stacks, where access to keys is by position
only, are obtained by retaining only the information relative to the position
of keys (forgetting about key values): canonical sequences for dictionaries,
priority queues, and symbol tables are obtained by retaining at each stage
only the relative rank (w.r.t. to the order relation on %) of the key which is
operated upon; in other words, two sequences of operations are equivalent
iff they are order-isomorphic.

We can unify all cases by providing the following general definition of a
rank function:

DEFINITION. Let ‘3 be a nonempty file content, for any of our five data
types, and let k be an arbitrary key. We define rank(k, 9) as follows:

(1) For stacks, rank(k, 9) = 0;

DYNAMIC DATA STRUCTURJZS 117

(2) For dictionaries, 9 = {k,, . . . , kd} with k, < k, < . . . < kd
and we let rank(k, 9) = i - 1 if k E 9 and k = ki, and rank(k, 5) = i if
k6!9andki<k<ki+,, with the convention k,, < k < kd+,.

(3) Forpriorityqueues,9={k ,,..., kp}withk,<k,< . . . <$
and we let rank(k, $) = i if ki < k I ki+ r with the convention k, I k <
k p+l*

(4) For linear lists, ‘5 = (k,, . . . , k,) and rank(k, 3) = k - 1 for
llklZ+l.

(5) For symbol tables, rank(k, 9) is defined as in case 2, for diction-
aries.

With each legal sequence of operations I, = O,(k,); . . . ; O,,(k,,), we
associate its history, which is a pair (S, V), where S = (O,, O,, . . . , 0, >
is the schema of L and V = (rank(k,, F,), . . . , rank(ki, Fi-,), . . . ,
rank(k,,, F,-,)) is the valuation of L; the number n is the Zength of the
history.

Two sequences of operations are said to be equivalent if they have the
same underlying history.

Figure 1 gives for each data type an instance of a sequence of operations
together with its corresponding history.

Histories can be defined independently as combinatorial objects. For
s= o,o,... 0, a schema, the height of i at stage hi is defined by
hi = IO,. . . OilA - IO,. . . Oil,, the excess of adjunctions over suppres-
sions. Quantity hi is also the size of the file resulting from any sequence

Dictionary

-40.7) A(3.1) A(0.57) Q -(0.69) S(3.1) Q +(2.7) S(O.57)
AD Al Ao Ql- s2 Ql+ so

priority queue
A(2.7) A(3.1) A(0.57) S,, A(0.69) S,, S,,

Ao Al --‘o so Ao so so
Stack

42.7) A(3.1) A(O.57) s, A(0.69) SW Stop

-40 Ao -40 so Ao so so
Linear list

A(l; 2.7) A(l; 3.1) A(3; 0.57) w A(2; 0.69) S(3) SW

Ao Ao A2 Sl Al s2 so
Symbol table

42.7) A(3.1) A(0.57) %,t Q +(3.1) A(0.69) S,

Ao Al Ao so Q: Ao so

FIG. 1. !kquences of operations with corresponding histories; ranks are indicated as
subscripts to the operators.

118 FLAJOLET, FRANCON, AND WILLEMIN

Stack Dictionary Priority queues Linear lists Symbol table

postA 9 4 1 k+l k+l k+l k+l
INS k) 1 k 1 k 1
pos(Q+, k) 0 k 0 0 k
podQ-,k) 0 k+l 0 0 0

FIN. 2. The five possibility functions considered here.

of operations with schema O,O, . . . Oi. A pair (S; V) where S =
o,o,... O,E{A,S,Q+,Q-}*andV= V,V,...V,,EE*represents
a history for a data type Z iff

-each of the heights in 0, . . . 0, is nonnegative,
-each of the Vi satisfies 0 I Vi < pos”(O,, hi-r) where posx :

(GCQ+,Q-} x A’ + N is the possibility function relative to each data
type (see Fig. 2).

Histories are thus combinatorial objects, and there are finite& many
histories of a given length. Figure 3 enumerates all histories of length 2 for
each data type.

2.4. Integrated Costs for Stationary Structures

Restricting attention to histories is justified for data structures satisfy-
ing:

Relevance of histories hypothesis [RHH]: The costs of two equivalent
sequences of operations are identical.

All of the data organizations mentioned in Section 2.1 satisfy RHH
except h-code and digital search structures that perform arithmetic on their
keys; roughly speaking, structures satisfying RHH access their keys by a
decision tree, whose only primitive operation is comparison between keys.

Data type Histories of length 2

Stack AS

Dictionary Q-z-
oo

A Q-
00

Priority queues AS
00

Linear lists AS
00

Symbol table AS
00

AA
00
AS Q-A AQ’
00 00 00

AQ- AA AA
01 00 01
AA AA
00 01
AA AA
00 01

AQ’ AA AA
00 01 IO

FIGURE 3

DYNAMIC DATA STRUCTURES 119

Other data organizations which violate RHH are garbage collection
structures, where deletion S is performed by marking a node rather than by
physically removing it from the structure.

These are the only data organizations violating our hypothesis, since
RHH can be established, in a rather general setting, under the following
hypotheses:

(1) Decision Tree Hypothesis. The only way in which the data organi-
zation can access the keys is by performing comparisons between keys.

(2) Oblivion Hypothesis. Only keys which are present in the structure
(i.e., have not been deleted) can be compared.

Given a data organization satisfying RHH and a history h, we define the
cost of h as the cost of any operation sequence having h for history.

DEFINITION. Let ‘Jc, be a finite set of histories of length n; the in-
tegrated cost K, over X, is defined as

In most of our applications, we choose for X,, the set of all possible
histories of length n, starting and finishing with an empty file. Comparing
data organizations over this set of histories is analogous to what we do
when we reduce the analysis of sorting algorithms over unbounded sets of
keys, to an analysis over the n! permutations of [n] = { 1,2, . . . , n}.

Given a possibility function associated with a data type, a set of histories
is complete if, for each schema 0,; . . . ; 0, associated with a history in X,
any history g made of the same schema and of any valuation Vi; . . . ; V,
(compatible with the schema by the possibility rule) is also in X.

Thus, in a complete set of histories, the number of histories with a given
schema 0,; . . * ; 0, is IIi<i<npos(Oi, hi-r). --

To define a complete set of histories, we thus need only describe the
schemata of this set.

For example, the complete set of histories of length 2 contains six
schemata Q -Q -, Q -A, AS, AQ -, A Q +, AA corresponding to two stack
histories, eight dictionary histories, etc. (cf. Fig. 3).

We denote by:

(1) %,, the complete set of histories of length n, and of initial and
final height h, = h, = 0; our main interest lies in these histories.

(2) %I,n the complete set of histories of length n, of initial height
h, = k and final height h, = 1.

Of course, ‘Jc, = %&, O,n and we denote the cardinalities of these sets by
H” = I&l andHk,,,n = Wk,,,.I.

120 FLAJOLET, FRANCON, AND VUILLEMIN

Our goal in this paper is to compute explicitly integrated costs of data
organizations over X. This proves possible for data organizations which,
in addition to satisfying RHH, have a “randomness” or “stationarity”
property, which we now define.

For each data organization satisfying RHH, we call the state of the
structure at a given time the state of a machine implementing it. Thus,
algorithms representing the various operations A, S, and Q map states into
states; we assume that the cost of such an algorithm depends only upon
input and output states (it is time independent). The size of a state is the
number of keys present in memory.

DEFINITION. Two states are equiualent, if they are attainable from the
empty state (size 0) through two equivalent sequences of operations.

From now on, we use the word state instead of equivalence class of
states; we let Ek denote the set of states of size k.

For binary search trees, Ek can be identified by the set of binary trees
with k nodes; for sorted lists, Ek can be identified by the unique sequence
(1, 2, * * * 7 k) while, for unsorted lists, the k! states Ek correspond to
permutations of 1, 2, . . . , k. Figure 4 describes the number of states of
size k, for various data organizations.

DEFINITION. The probability distribution induced on the set Ek by all
the possible histories consisting of k insertions (i.e., with schema

Ak = AA . . . A),

is called the standard probability distribution on Ek.
We let p,(e) denote the standard probability of state e.

DEFINITION. A data organization is stationary if for all k the three
probability distributions induced over Ek by all possible histories of
schemata A k+‘S, A kQ -, and A kQ + coincide with the standard probabil-
ity distribution (defined by histories of schema A k). This stationary condi-
tion coincides with the notion of randomness under hypothesis (I,, DO) in
Knuth [25].

As shown by Knott’s phenomenon, randomness under our hypotheses is
not equivalent for binary search trees to randomness under the condition
that keys be independently drawn from a uniform distribution, Among the
data organizations mentioned in Fig. 4, only balanced tree structures are
not stationary:

PROPOSITION 1. The implementation of stacks by lists, dictionaries by
unsorted lists, sorted lists, binary search tree, priority queues by sorted lists,

DYNAMIC DATA STRUCTURES 121

binary search trees, binary tournaments, pagodas, binomial queues, and Iinear
lists by unsorted lists and position tournaments are all stationary data
organizations. Except for binary search tree, the standard frequencies of states
e E Ek are all equal; such structures are called uniform.

Proof. Stationarity of binary search trees resides in Hibbard’s theorem
for deletions (Hibbard [191; Knuth [24]; Knott [22]).

The other cases are treated by the following result, due to Knuth [25]
and Franqon [14]:

PROPOSITION 2. A data organization is uniform iff V k, V 0 E
{A, S, Q+, Q-}, V e’ E Ek,:

IEJ * l{e E E,lO(e) = e’}l = pos(0, k). lE,J

wherek’=kforOE{Q+,Q-},k’=k+lforO=Aandk’=k-1
for 0 = S.

Data Number of states Standard
organization Data structure ofsizek probability stationary

Stack Lists

Dictionary Unsorted lists
and UL
symbol table Sorted lists SL

Binary search
tree BST

FViOl-ity

queue

Linear
IidS

Binomial list
BL

Balanced Tree
BT

Sorted list
Heaps

Leftists and
balanced
tournaments

Binary search
tree

Binary
tournaments

Pagodas
Binomial queues

Unsorted lists
Position

tournaments
Balanced tree

1

k!

1

uniform

uniform

uniform
cf. Knuth [24,

p. 6711
k

bp2’, . . . , b$O ?

?

1
cf. Knuth, [24,

P. 191

?

k!

k!
k!/2k-‘W

k!

k!

?

?

uniform

?

?

cf. Knuth [24,
p. 6711

uniform

uniform
uniform

uniform

uniform

?

Yes

Yes

YeS

YeS

No

No

Ye.5

No

No

Yes

Yes

YeS
YeS

Yes

Ye.3

No

FIG. 4. Data structures and their standard probabilities; here k = (4 . . . b& and v(k) =
&<i<pbi.

122 FLAJOLET, FRANCON, AND VUILLIMIN

Proposition 1 follows by inspection, the nontrivial case of binomial
queues being treated by Brown [2]. 0

DEFINITION. For a stationary data organization, we define the indiuid-
ual cost CO, of operation 0 on a file of size k by the formula CO, = ZeEE,
p,(e) (cost of 0 on state e), wherep,(e) is the standard frequency of e.

Knuth [24] likes to express such costs, measured in time units on a MIX
implementation of the algorithm realizing the operation. Simpler measures
are also realistic, and Fig. 5 provides an expression of the average number
of key comparisons for each of the stationary data structures of Fig. 4, in
the author’s implementations.

Starting from the average costs CO, of operations on files of size k in
stationary structures, we can express the integrated cost K, over X,, as a
linear combination of the CO,, whose coefficients, the level crossing num-
bers, depend only upon X,,.

DEFINITION. The level crossing number NO,, n is the number of opera-
tions of type 0 performed on a file of size k in the course of all histories in
xl*

Our interest in stationary data organizations is now justified by the
following formula for computing integral costs:

PROPOSITION 3. For stationary data organizations, the indiuidual costs
CO, of operations and the integrated cost K,, = (1 /H,) * Z,, E %cost(h) are
related by K,, = (1 /H,,) * Z o, kNOk, n * CO,, where the NO, are the level
crossing numbers associated with X,.

ProoJ: Apply the definitions and one inversion of summation. 0

Data type Data organization CA* WI CQ,+ CQic-

Dictionary Sorted list (k + V/2 (k + I)/2 (k + I)/2 (k + W2
unsolicd lid (k + I)/2 (k + O/2 k
Binary search tree WkP, - 1) 2(l + I/k)& - 3 2(1 + l/k)Hk - 3 Y&+I - 1)

Priority Sorted list (k + 2)/z 0
qucuc Binary search tree zfHk+I - I) 0

Binary toutnammt Hk+I - 1/2 2(Hk - 2 + I/k)
Pagodas W - I/(& + 1)) Z(H, - 2 + I/k)
Binomial queues 1 + v(k) - r(k + 1) o(k) + u(k) - 1 - u(k - I)

Linear lists List (k + P/2 (k + 1)/z
Position tournament z(Hk+, - 1) 2(1 + I/k)H, - 3

FIG. 5. Average number of comparisons for operations in various stationary data organi-
zations. Here, Hk = 1 + f + . . . + l/k, k = Xi,,,bi2’, v(k) = Xir& and u(k) =

(l/k)Ziz$bi2’.

DYNAMIC DATA STRUCTURES 123

At this stage, the problem of estimating integrated costs has been
reduced to:

(1) evaluating individual costs, which itself combines a counting of
instructions (or simply comparisons) with the weighting that comes from
the standard probability distribution;

(2) evaluating the level crossing numbers NO,, n and plugging them into
the formula for integrated costs.

The second aspect is to be discussed in the next two sections.

3. HISTORIES AND CONTINUED FRACTIONS

In Section 2, we reduced the computation of integrated costs to the
evaluation of certain combinatorial sums in which there appear the quanti-
ties H,,, Hk, I, my NO,, ,,, etc. In this section we express the generating func-
tions relative to these quantities in terms of continued fractions.

3.1. The Continued Fraction Theorem

We consider schemata as defined in Section 2 and we introduce an
arbitrary possibility set r : pos(A ; k) = a,; pos(Q + ; k) = 4: ;
pos(Q -; k) = qk ; pos(S; k) = s,. We also let qk = qz + &. Diction-
aries thus correspond to the particular case: ak = k + 1; qk = 2k + 1;

‘k = k. The following result is from Flajolet [7, 81:

THEOREM F (the continued fraction expansion theorem). Let H,, be the
number of histories ending at zero, relative to the possibility set II, and let
H(z) = Z n,OHnzn be the corresponding generating function. Then H(z) has
the following continued fraction expansion :

H(z) =
1

l-
a,sZz2

1 - qr.2 - -
. . .

Proof: (sketch). Define the alphabet X = {A,, A ,, . . . , Q,,, Q,,
* , s,, s,, * . * }, where Oi (0 = A, Q, or S) denotes operation 0 on a

file of sizej. Let St”] denote the set of schemata represented by words over
X having height I h. The S thl have the following regular expression
descriptions:

SLol = (Qo)*; S I” = (Qo + Ao(Q,)*S,)*;

s12’ = (Qo + &(Q, + A,(Q,)*S,)*S,)* . . . ,

124 FLAJOLET, FRANCON, AND VUILLEMIN

and in general Slh+ ‘1 is obtained by substituting (Q,, + A,,(Q,, + ,)* S,, + ,) for
Q,, in the expression for S . lhl If we let HI”1 denote the number of histories
of height I h length n and Hrhl(z) = Zt,cH,(“]. z”, we have: Hlol(z) = 1
+ qoz + q&2’+ . . . =‘l/(l - q@z), -

Hqz) = 1

1 - 4d - WlZ2/ (1 - w) ’

etc.; in general, Hlh+‘l(z) is obtained by substituting

qh +
ahsh + lz

’ - qh+l’

for qh in HIhI(The theorem follows by letting h go to infinity. 0

Using the more economical notation

l/l - q($ - aos,zZ/. . . /l - q*z - Uh.Yh,,Z2/. . .

for H(z), we apply Theorem F to our five data types and obtain continued
fraction expressions for the corresponding generating functions H(z) =

L2OHS

Stacks ‘H(z) =1/l - z2/1 - z’/ . . . /l - z”/. . . ;
Dictionary DH(z) = l/l - lz - 12z2/1 - 3z - 22z2

/ . . . /l - (2k - 1)z - k2z2/ . . . ;
Priority queue wH(z)=l/l - 1z2/1 - 2z2/. . . /l - kz2/. . . ;
Linear list LLH(z)=l/l - 12z2/1 - 22z2/. . . /l - k2z2/. . . ;
Symbol table =H(z)=l/l - Oz - 1z2/1 - lz - 2z2

/ . . . /l - (k - l)z - kz2/

Theorem F provides a means of obtaining expressions for the H,, in our
five cases, by identifying the continued fraction with expansions derived
from Gauss’ continued fraction expression for hypergeometric series or
from the Stieltjes-Rogers addition theorem (see Flajolet [8]); an alternative
derivation is given below.

3.2. Histories of Bounded Height

With HLhl the number of histories of height I h, length n, and HihI
the corresponding generating function, we have, as direct consequences of
Theorem F (for proofs, see [8]):

PROPOSITION 4. Histories of height I h have a rational generating
function given by H”](s) = P,,(z)/Q,,(z), where Ph and Qh are polynomials

DYNAMIC DATA STRUCTURES

that sari.& the recurrences

125

P-I(Z) = 0; P,(z) = 1; PAZ) = (1 - W)Ph-I(Z)
-a,- ,shz2Ph-2(z);

Q-,(z) = 1; Qo(z) = 1 - w; Q,,(z) = (1 - w)Q,s-,(z)
-ah-w2 Qh-2W.

Hence deg P,, = deg Qh-, I h for all h.

fiOPOSITION 5. Let H,Jz) = IZ,,2aHk,,,n~n; we have

4, ,(z) =
Q,,- ,W

aOa, . . . a,- ,s,s2 . . . s,z
k+I(Q~-kz)H(z) - Px&))>

where p = min(k, Z) and A = max(k, I).
In particular this gives expressions for Ho, k(z) and Hk, o(z), name&,

Ho,&) = l
s,s2 . . . SkZ k (Q,- ,(4W - pk- ,(z))

and

4, o(z) =
1

aOa, . . . a,-,z
k (Qk- ,WW - 4-,(z)).

An alternative way of looking at the relations between the formal series
H(z) and the polynomials Q,Jz) which appear in the convergents is by
means of orthogonality relations. Starting from the numbers H,,, n 2 0, we
introduce the linear form (P(x)) over polynomials P(x) = Z,,<i<kpi~i, --
defined by (P(x)) = Z,<i..kpiHi. This induces a scalarproduct (PlQ) =
(P - Q), and a classical result (cf., for instance, Wall [32]) states:

PROPOSITION 6. Let Qk(z) = zk+l Qk(1 / z) be the reciprocal polynomial
of Qk(z), introduced in Proposition 4. The folowing orthogonali@ relations
hold:

Wliz-,<4> = <Lie,-,> = 0 for 0 I i < k;

(xklQ,-,(x)> = <iZ-,l!Z-,> = aOal . . . a,-,s,s, . . . s,.

In other words, the Qk form a basis for polynomials which is orthogonal
with respect to the scalar product associated with the sequence { H,ln 2
O}. Proposition 5 follows from a more general result, expressing histories

126 FLAJOLET, FRANCON, AND VUILLEhiIN

by orthogonality relations:

PROPOSITION 7. The number Hk I R of histories of length n, starting at
level k and finishing at level 1, is giv& by

H k.1.n = -j$j’Q”-,‘x’e;-,(x~xn,,
,

with $(k, I) = a,,a, . . . a, _ Is,s2 . . . s,.

Proof: Proposition 4 yields

Hk, I(‘) = ’
$(k, l)zk+’

[Qk-dz)Q,-,WW - PA-h)Q,-,<z>].

Since the degree of PA-, Qp-, is strictly less than k + I + 1, it follows that
J/(k 0 * Hk, I, n is the coefficient of zk+‘+” in Qk- ,(z)Q,- ,(z)H(z). Using
(xJ’) = HP and elementary substitutions yields Proposition 7.

Proposition 6 follows by setting k = 0, and noting that Ho,,, n = 0 for
n < 1, since I steps are necessary to reach level I. 0

4. DATA TYPES AND THE CLASSICAL ORTHOGONAL POLYNOMIALS

The preceding section provides formulas for the number of histories
H k,,, ,,, which are expressed only in terms of the orthogonal polynomials
associated with the corresponding continued fraction.

Each data type, defined by its possibility set r = {pos(0, k)(0 E 52,
k 2 0} is thus characterized by a family of orthogonal polynomials
{e,-,lk 2 o}. L e us first recognize the polynomials associated with each t
of our five data types.

4.1. Stacks and Tchebycheff Polynomials

_Polyno@als assockted with stac& satisfy Q- t = 1, Qe = z, Qk =
Z&e, - Qk-2; thus Q(z, t) = lZk,,,Qk-,(z)tk = l/(1 - zt + t’). Elemen-
tary manipulations lead to the explicit form

Q,-,(z) = &,(- l)i(k ; ‘)zk-li,

a Tchebycheff polynomial.

THEOREM 1 ,S. The Tchebycheff polynomials associated with stacks have a
generating function &z, t) = l/(1 - zt + t2). Stack histories admit

c Hnz” =

1 - (1 - 4z2)“2

It>_0
2z2 = n~odT(?)z2n

DYNAMIC DATA STRUCTURES 127

and

x

z2 ‘/2

n,k>O
HO>k,ntkzn = n F20 Hk,O,ntkZn = 2z2 wl--c;le-t; -‘4z2,,,2J

for generating functions.

Proof. Computing (&xt)) in two different ways yields

(* 1 - A-t + t2) =*(1 -xt/:l + tJ=~~oHkk4

and

(k;o&-,(x)tk) = k~o<o-,(x,IQ,-,(x,>fk = l;

setting t = (1 - (1 - 4~~)‘/~)/2z leads to

2 H,,z” = (1 - (1 - 4~‘)“~)/2z~.
tl>O

Proceeding similarly with (g(x, u)&x, t)) leads to

~~te,-,(x,e,-,(x)>ukt’ = &

on the one hand, and to

cl ; t2> F (~-l(x)xn)uk(+) = (1 : t2> 2 HCI,k,.uk(+)’
,n k. R

on the other. Identifying these two expressions and changing t to
(1 - (1 - 4z2)*12)/2z yields the result. 0

4.2. Dictionaries and Luguerre Polynomials

The polynomials associated with dictionaries satisfy &, = 1, & = z - 1,
ek = (z - 2k - l)~,-, - k2 * cke2. Th’ is recurrence translates, over the
generating function

into the differential equation

$ ecz, t) = e<z, t). ;,: i21 9

128

whose solution is

FLAJOLET, FRANCON, AND VUILLEMIN

expanding leads to the explicit form

p,-,(z) = ,~ow(g+zi9

a Laguerre polynomial.

THEOREM 1,D. The Lquerre polynomials associated with dictionaries
admit

kFo L(z); = -!- t - l+t exp z 1 + t
for exponential generating function. As for dictionary histories:

H(z) = x H”$ = +-
nzo * Z’

thus H, = n! and

H(u, v, z) = x Hk,,,n~kv’$ =
1

k,I,n>O 1 - z(l + U)(l + v) - uv *

Proof. As for stacks,

k~oe,_,cx)~) = ’

on the one hand, and

on the other; letting t/(1 + t) = z leads to

DYNAMIC DATA STRUCTURES 129

Let A(u, U, 2) = (e<x, 24)&c, u)Q(x, z/(1 - z))); we compute

By Proposition ‘7,

thus A(u, o, z) = (1 - z)H(u, u, z). Replacing Q by its expression in A
gives

A(u, 24 0 u, 2) = -* l-z - 1
i+u 1+0 ((

expxz+- -
1+u+ I+0 1)

l-z
=(I+u)(l+u)Hz+,:u+lSIu (

- -
)

l-z
= 1 - (1 + u)(l + u)z + 241)

= (1 - z)H(u, u, z). 0

This treatment applies mutatis mutandis to the remaining data types,
and we merely state the results.

4.3. Priori@ Queues and Hermite Polynomials

The relevant polynomials here are Hermite polynomials

e,-,(‘> = O<,~k/2(- lli 2ii, (kk; 2iJ! Zk-2ie

THEOREM 1,PQ. The Hermite polynomials associated with priority queues
admit

x ek- ,(z)-$ = exp(zt - :)
k>O

for an exponential generating function. As for priori@ queue histories:

H(z) = z H,,$ = exp(f),
?I>0

H(u, U, Z) = 2 + zu + 240 + uz .
k. I, n 2 0

z&Jdk$ 5 - eXp(G
. .

130 FLAJOLET, FRANCON, AND VUILLEMIN

4.4. Linear Lists and Meixner Polynomials

THEOREM 1,LL. The Meixner polynomials associated with linear lists
admit

kIxo @I- l(z); = l
* (1 + ty*

exp(z arc tg 1)

for an exponential generating function. As for histories:

H(u, u, z) = x Hk,l,nukv’$ =
1

k,I,ntO (1 - uu)cos z - (u + u)sin z ’

4.5. Symbol Tables and Charlier Polynomials

THEOREM MT. The Charlier polynomials associated with symbol tables
admit

ksoQk-l(z)$ = (l + t)‘+‘e-’

for an exponential generating function. As for histories,

H(z) = 2 Hfi$ = exp(e’ - z -
020

and

= exp(e’(1 + u)(1 + u) - 1

4.6. Other Data Types

1)

- z - u - u).

The reader might be curious, at this point, to know how many “classi-
cal” orthogonal polynomials there are, and what are the polynomials
associated with other data structures, such as dequeue (pos(A, k) =
pos(S, k) = 2), or linear lists with interrogations (pos(A, k - 1) =
pos(S, k) = k, pos(Q, k) = k), etc.

DYNAMIC DATA STRUCTURES 131

A partial answer to these questions can be given, provided we restrict
ourselves to possibilities pos(0, k) = ak + /3 which are linear functions of
k. Note, in this case, that the continued fraction expressing histories is the
quotient of two diverging hypergeometric functions, as shown by Perron
[28, Vol. 2, p. 2881. If we further restrict the product pos(A, k) . pos(S, k)
to be of the form k(crk + j3) with (Y + j3 > 0, then the associated orthogo-
nal polynomials are within the class of Meixner polynomials (Meixner [27];
see also Chihara [5, pp. 163-166]), which comprise only five generic
families of polynomials. Data types that fall in that category are thus
amenable to a treatment similar to that applied in one of the cases
considered in this paper.

~.THE INTEGRAL COST THEOREM

The preceding section provides expressions for the number Hk,,,n of
histories of length n, starting at level k and finishing at level 1. From the
definition of level crossing numbers (Section 2.4) we infer the formulas

NAk,. = x HO,k,i’ak~Hk+I,O,n-i-I?
Oli<n

N&n = 2 HO,k,i*qk’Hk,O,n-i-l?
OSi<n

Nsk,. = x H,,k,;‘Sk.Hk-,,O,n-i-,.
OSiin

We are thus in possession of all the quantities needed in order to apply
the integral cost formula:

KA,, = 2 CA, * N&,.9 KQ, = x CQk. NQk,.v
k>O k>O

KS,, = 2 CS, - NSk3 n and K,, = KA, + KQ” + KS,,.
k2l

5.1. Integrated Cost for Stacks

In the case of stacks, a, = s, = 1 and qk = 0; thus NA,(~) =

%>oNAk/ = zHo,dz) . Hic+,,O(z)> where Ha, &j = X,,,OH, b ,,z”. By
Theorem l,S, HO, k(z) = Hk, ,,(z) = z ‘B(z)&+ ‘, where - ’ ’

B(z) =
1 - (1 - 4z2)“2

2z2 .

132 FLAJOLET, FRANCON, AND VUILLEMIN

Substituting in the generating function J&t(z) = Z,,,,,KA,,z” leads to

KA(z) = x CA, * z2k+2(B(z))2k+3
k>O

= z2B(z)3CA(z2B2(z)),

where we let CA (1) = I: k,OCA, * tk represent the generating function of
unitary adjunction costs f& the stack implementation. A similar treatment
can be applied to KS, and we find:

THEOREM 2,s. The generating functions of unitary costs CA(t) and CS(t)
and integrated costs U(z) and KS(z) f or stacks are related by the linear
transform M(z) = z2B3(z)CA(z2B2(z)) and KS(z) = B(z)CS(z2B2(z)),
where

B(z) =
1 - (1 - 4z2)*‘2

2z2 .

5.2. Integrated Costs for Dictionaries

The formula NAk(z) = a,zH,, k(~) . Hk+ ,, 0(t) is of no direct use here,
since the ordinary generating functions Ho, ,Jz) diverge for all real z.
Theorem l,D, however, provides an analytic expression for the exponential
generating function

This leads to an expression for the exponential generating function of level
crossings

NAk(z) = x NAk,,$,
fl>O

through the classical convolution theorem for Laplace transforms:

PROPOSEON 8. The expfnential generating functions for le1.14 crossing

numbers NO,(z) and paths H,, Jz) are related by

akcz) = ak&, kb) * ri,+l,O(z)?

hi(Z) = &O, kcZ) * ik,O(z),

&(Z) = sktiO, k(Z) * fik- 1, O(z),

where * denotes (Lupface) convolution

(,i l h)(x) = i?(x - r)&r) dr.

DYNAMIC DATA STRUCTURES 133

Proof: We start with the classical lemma expressing ,the fact that the
Laplace transform maps a convolution product into an ordinary Cauchy
product: let

the product (2 * I?)(X) = 1$(x - 7)&r) d7 is equal to

The (purely algebraic) proof starts with

Using the well-known inversion formula for binomial coefficients,

we get

The expressions for &Jr) then follow directly from the formulas given at
the beginning of Section 5. c]

Theorem l,D yields the expression

i&,(z) = E&,(z) = z”/ (1 - Z)k+‘.

Substituting in the formula for G(z):

ii(z) = x CA,. No,
k>O

= kTo(k + l)cAk&l ‘:-+‘;;k+, (I Tk++ dT
- 7

T(2 - T) r d7 =
(1 - z + 7x1 - 7) (1 - z - T)(l - 7)‘;

134 FLAJOLET, FRANCON, AND VUILLEMIN

where e,(x) = Xk>e(k + l)CA,xk. Splitting the integral Ji = /‘e’” + (:,*
and performing the respective changes of variable T = z/2 - (I and T =
z/2 + a lead to

a + ‘* do
(p’ - cl’)’

with (Y = z/2, /? = 1 - (Y. Setting u = (a* - a*)/(p* - a*) yields, after
simplifications,

G(Z) = j”e,(u)(=)I’* du
0

with t = e.

A similar treatment is applied to ?Q +, KAQ -, and KAS and we find:

THEOREM 2,D. Exponential generating functions

of the integrated cost of dictionaries are related, for each operation 0, to the
generating functions of unitary costs, by the following linear integral trans-

f arms :

iii(z) = ~%Ju)(E)“* du,
0

c.?“(X) = 2 (k + l)CA, * Xk,
k>O

t = &;

6%~) = & ~“~&4
du

0 ((1 - u)(t - u))“* ’

e,(X) = x (kCQ,+ + (k + l)CQ,)xk;
k>O

G(z) = ~‘*C?s(u)(+=)“* du,
0

e,(x) = c (k + l)c&+, . Xk
k?O

Of course, k(z) = G(z) + ~Q(z) + k(z) can be expressed in terms
of Co(x) = zk,eCo,. xk rather than in terms of the modified ‘&, above; -

DYNAMIC DATA STRUCTURES 135

for example, integration by parts provides

a4 = t2CA(t2) (1 & ‘P

l-f t*
I CA(u)

u du --
2 0 (1 - u)((t - u)(I - u)y2 ’

an expression which is less convenient to work with.

5.3. Integrated Costs for Priori& Queues

For priority queues, Theorem 1,PQ gives us gO, ,Jz) = k! .fik, a(z) =
zk exp(z2/2). Following the same computation as that for dictionaries
leads to

with

z(z) = er212
I ‘7 * C(T(Z - r))exp((T - Z)T) dr

0

C(x) = x (CA, + CS,,,)$.
ktO

In order to simplify the expression for K, let us formally set C(x) =
exp(ux), where u k should be identified with CA, + CS,, ,. Changing the
variable to p = 7 - z/2 in the integral,

thus expressing K in terms of the Erf function of probability theory. We
check that K(z) is an even function of z, as expected since Hu, e, 2n+, = 0.
In

f?(z)/z = 2 Nk.2n~k~2n-‘/ (2n)!,
kt0
JISO

set z = 2.~~1~ and apply a Borel-Laplace transform %I (f; t) =
JFe-Sf(st) dr. We obtain, on the one hand,

E = a(&. K(Z)/Z; I) = 2 Nk,2nUk me-s(sl)“-“2 ds
k,ntO / 0

= r(1/2) 2 Nk 2nUkc
2t’12 kz0 ’

I . n.
PItO

136 FLAJOLET, FRANCON, AND VUILLEMIN

Applying the transform to the integral expression above yields, on the
other hand,

integrating by parts leads to

E=
t’/2 co a3 t’/2 1

-3-.
J31/2)

. 1 - t(u + 1) s e-S(l-2t)

a 2s”2 2 (1 - q’/2 1 - t(u + 1) ’

and, expanding back as a power series in u, we identify both terms to
obtain a remarkably simple expression:

THEOREM 2,PQ. The generating function

if(z) = x K2n5
nt0

of the integrated cost of priority queues is related to C(x) = Zk,o(CA, +
CSk+,)xk+’ by

-

K(z) = ’
(1 - 2z)“2

5.4. Integrated Cost for Linear Lists and Symbol Tables

Computation of integrated costs for linear lists, symbol tables, and in
fact any data structure whose associated polynomial falls within the
Meixner class (see Section 4.6) can be carried out along the lines followed
for dictionaries. Simplifications such as those found for priority queues,
however, have not been apparent to the authors.

THEOREM 2,LL. The exponential generating function K(z) of integrated
costs for linear lists is given by

k(z) = 2J’%(u)
du

0 u((1 - u)’ - 4u cot2 z)“2 ’

where

C(x) = x (k + l)(CA, + CSk+,)Xk+‘.
kt0

DYNAMIC DATA STRUCTURES 137

THEOREM 2,ST. The exponential generating function K(z) of integrated
costs for symbol tables is given by

R(z) = 2ee’-z-1~(e”‘-‘~((ez + 1 - ~)e,,(u) + e,(u))

X
e -” du

((e’ + 1 - u)* - 2e’)“* ’

where

Xk
%,(-‘d = z ccAk + csk+,)(? and

k>O

6. APPLICATION TO COMPUTING INTEGRATED COSTS OF SOME
RELEVANT DATA ORGANIZATIONS

It now remains to use the individual costs tabulated in Fig. 5, Section 2,
in conjunction with the integral formulas given in Section 5. With the
exception of binomial queues, all the individual costs are linear combina-
tions of the functions (of k)

; ; -& ; Hk; 1; k; k*; kH,,

whose ordinary generating functions have the simple forms

In&; x -&; -&lnr---- lln
1 1
-x’ I-x’

1

(1 - x)’ ; (1 TX)3 ; (1 XX)’ (
l+ln& .

1

Vuillemin’s binomial queue implementation of priority queues represents
a somewhat different problem: the unitary costs here are

ck = CA, + CS,, , = & ,x ibi2i,
I>0

where Zi,0bi2i is the binary representation of (k + 1). The corresponding
integrate&costs have been evaluated (using Theorem 2,PQ) by Cheno [4],

138 FLAJOLET, FRANCON, AND VUILLEMIN

TABLE 6D
Integrated Costs for Stationary Dictionary Structures

Structure Integrated cost for ‘Cl&

Sorted list (n* + 9n - 4)/12
Unsorted list (9~' + 47n - 62)/120
Binary search tree 2n(H, - 2)+ O(lop2n)

who finds

K2,

1.305. * . (2n - 1)
= n * log, n - n . a(n) + o(n),

where a(n) is some periodic function of log, n.
Tables 6D, 6PQ, and 6LL give integrated costs for stationary diction-

aries, priority queues, and linear lists, respectively, corresponding to data
organizations of Fig. 5. The only case in which we were unable to derive a
simple expression is the position tournament representation for linear lists.

Such costs are not necessarily decisive in evaluating the practical value
of these structures, since we count only the cost of key comparison, There
is, however, nothing to stop us from computing the integrated cost for a
more realistic measure, say the execution time in MIX units, as Knuth [23]
is fond of doing. This is a large but routine computational task!

TABLE 6PQ
Integrated Costs for Stationary Priority Queue Structures0

Structure Integrated cost for Yl&

Sorted list n(n + 5)/6

Binary search
tree

+y ,z<n+[yY;%f-,+~] +y -2n

=nInn+ O(n)

Binary touNament

=znlnn + O(n)

Pago& Identical to binary search trees
Binomial queue n log, n - n. a(n) + o(n),

“Here n?= 1 . 3 . 5 . . 2n - 1 and In x is the natural logarithm of x.

DYNAMIC DATA STRUCTURES 139

TABLE 6LL
Integrated Costs for Stationary Linear List Structures0

Structure

sequential list

Integrated cost for G

UL+z + 4n)/(4E*,) - n - l/4

"Here Eb is the secant number: ~,2&2,,(z2”/(2n)!) = l/cos I).

7. CONCLUSIONS; DIRECTIONS FOR FURTHER RESEARCH

We have presented here in detail a method for analyzing sequences of
operations in stationary data structures belonging to one of five basic
types. This approach can be extended in several different ways:

(a) by varying the set of histories over which the analysis is performed:
initial and final conditions can be altered, and the condition that histories
go back to the empty file can be relaxed. The generating functions given in
Section 4 are general enough to yield convolution integral expressions for
generating functions of integrated costs.

(b) by varying the universe of possible keys: the case where keys are
drawn from a finite set (a “reference file”) can in some instances be dealt
with along similar hnes (see Flajolet and Francon [9]).

(c) by considering other data types: those where only the four basic
operations are allowed are amenable to the continued fraction approach. If
further, the possibility functions are linear in the size of the file, the
convergent polynomials can be explicitly determined and lead to the
Meixner classification; this is the case for dequeues, double-ended priority
queues, priority queues with various types of interrogations, On the
other hand we are lacking a general approach for data types involving
union as in mergeable priority queues or dictionaries. Histories for “hash
coding” dictionaries should also be of interest.

(d) by establishing more connections with probabilistic approaches: for
instance, Jonassen and Dahl[20] have established that, for priority queues,
drawing keys from an exponential distribution entails the equiprobability
of histories (see also Knuth [25]; Jonassen and Knuth [21]).

ACKNOWLEDGMENTS

The authors would like to thank J. Giraud and G. Vieunot for several interesting
discussions relative to this work.

140 FLAJOLET, FRANGON, AND VUILLEMIN

REFERENCES

1. A. V. ABO, J E. HOPCROPT, AND J. D. ULLMAN, “The Design and Analysis of Computer
Algorithms,” Addison-Wesley, Reading, Mass., 1974.

2. M. R. BROWN, Implementation and analysis of binomial queue algorithms, SIAM J.
Cornput. 7, No. 3 (August 1978), 298-319.

3. R. BROWN AND R. E. TARJAN, A representation for linear lists with movable fingers, in
“Proceedings, Tenth Annual ACM Symposium on the Theory of Computing, 1978,” pp.
19-29.

4. L. Cti~o, “Formes asymptotiques des co&s de files de priori&” M&moire de DEA; Fat.
Sci. <Orsay, 1979.

5. T. S. CHIHARA, “An Introduction to Orthogonal Polynomials,” Gordon & Breach, New
York, 1978.

6. J. DOYLE AND R. L. Rrvesr, Linear expected time of a simple union-find algorithm,
Inform. Proc. L&t. 5 (1976), 146-148.

7. P. FWOLET, “Analyse d’algorithmes de manipulation de fichiers,” Iris-Laboria Report
No. 321, August 1978.

8. P. FWOLET, “Analyse d’algotithmes de manipulation d’arbres et de fichiers,” These, Fat.
Sci. Orsay, Sept. 1979.

9. P. FLAIOLET AND J. FRANCON, Sequence of operations analysis of data structures under
restricted sets of keys, in preparation.

10. P. FWOLET, J. FRANCON, G. VIENNOT, AND J. VUILLEMIN, Algorithmique et combinatoire
des arbres et des permutations, to appear.

11. P. FWOLET, J. FRANGON, AND J. VUILLEMIN, Computing the integrated cost of diction-
aries, in “Proceedings, I lth ACM Symposium of Theory of Computing, 1979.”

12. J. FRAN~ON, Arbres binaires de recherche, prop&t&s combinatoires et applications,
RAIRO Inform. Theor. 10 (1976), 35-50.

13. J. FRW~N, Histoires de fichiers, RAIRO Inform. Theor. 12 (1978), 49-67.
14. J. F~ANGON, “Combinatoire des structures de don&es,” These, Universite Louis Pasteur,

Strasbourg, 1979.
15. J. FRANCON AND G. VIENNOT, Permutations selon les pits, creux, doubles, montees,

doubles descentes, nombre d’Euler et nombres de Genocchi, Discrete Muth., in press.
16. J. FRANCON, G. VIENNOT, AND J. VUILLEMIN, ‘Description et analyse dune repr&entation

performante des files de priori&” Rapport No. 12 du Laboratoire d’Informatique, 91405
Orsay; Actu Inform., in press.

17. L. J. GUIBAS, E. M. MCCREIGHT, M. F. PLASS, AND J. R. ROBERTS, A new representation
for linear lists, in “Proceedings, 9th Annual ACM Symposium on the Theory of Comput-
ing, Boulder, Colorado, 1977,” pp. 49-60.

18. L. J. GUIBAS AND R. SEDGEWICK, A dichromatic framework for balanced trees, in
“Proceedings, 19th annual IEE Symp. on the Foundations of Computer Science, 1978,”
pp. 8-21.

19. T. N. HIBBARD, Some combinatorial properties of certain trees with applications to
searching and sorting, J. Assoc. Comput. Mach. 9 (1%2), 13-28.

20. A. JONASSEN AND O.-J. DAHL, “Analysis of an Algorithm for Priority Queue Administra-
tion,” Math. Inst., University of Oslo, 1975.

21. A. JONASSEN AND D. E. Km, “A Trivial Algorithm Whose Analysis Isn’t,” Stanford
University, Report STAN-CS-77-598, March 1977.

22. G. D. KNOTT, “Deletion in Binary Storage Trees,” Ph.D. thesis, Computer Science
Department, Stanford University, Report STAN-CS-75-491, May 1975.

23. D. E. KNUTH, “The Art of Computer Programming,” Vol. 1, “Fundamental Algorithms,”
Addison-Wesley, Reading, Mass., 1968.

DYNAMIC DATA STRUCI’URES 141

24. D. E. KNUTH, ‘The Art of Computer Progr amming,” Vol. 3, “Sorting and Searching,”
Addison-Wesley, Reading, Mass., 1973.

25. D. E. KNUTH, Deletions that preserve randomness, IEEE Trans. Software Engrg. SE 3
(1977), 351-359.

26. D. E. KNUTH ,+ND A. SCH~~NAGE, ‘The Expected Linearity of a Simple Equivalence
Algorithm,” Stanford University, Report STAN-CS-77-599, March 1977.

27. Memo, Orthogonale Polynomsysteme mit einem besonderen Gestalt der erxeugenden
Funktion, J. London Math. Sot. 9 (1934), 6-13.

28. 0. &XRON, “Die Lehre von den Kettenbriichen,” 2 vols., Teubner Verlagsgesellschaft,
Stuttgart, 1954.

29. R. E. TARJAN, Efficiency of a good but not linear set union algorithm, J. Assoc. Coquut.
Mach. 22 (1975), 215-225.

30. J. Vuu~~har, A data structure for manipulating priority queues, Comm. ACM 21, No. 4
(1978), 309-315.

31. J. V~LLEMIN, A representation for linear lists with good average time performance, in
“Proceedings, ISCAJ Symposium, Tokyo, 1979.”

32. H. S. WALL, “Analytic Theory of Continued Fractions,” Chelsea, New York, 1967.
33. A. C.-C. Yao, On the average behavior of set merging algorithms (extended abstract),

Proc. ACM Symp. Theor. Conput. 8 (1976), 192-195.
34. C. A. CRANE, “Linear Lists and Priority Queues as Balanced Binary Trees,” Ph.D. thesis,

STAN-CS-72-259, Stanford University, 1972.
35. L. SNYDER, On uniquely represented data structures, Proc. IEEE Synp. Founabtiom

Conput. Sci. 18 (1977), 142-146.

