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Abstract 

We analyse a stack protocol of the Capetanakis-Tsybakov-Mikhailov type 
for resolving collisions in a random multiple-access channel. We obtain a 
functional equation for the generating function of the expected collision 
resolution interval (CRI) durations, which is non-local with a non- 
commutative iteration semigroup. Using Mellin transform techniques and 
geometric properties of the iteration semigroup we show that for amval rates 
smaller than a fixed threshold, the mean CRI duration for n initial colliders is 
asymptotically proportional to n. Ergodicity conditions are also demonstrated. 
ASYMPTOTIC ANALYSIS; FUNCTIONAL EQUATION; MELLIN TRANSFORM; I 

PROTOCOL; RANDOM ACCESS; TREE ALGORITHM 

1. Introduction 

Since the mid 1970s many papers have been published on the analysis of the 
performance of single-channel message-switching communications networks, 
springing from the ALOHA network concept. The application to these 
networks of standard techniques used for the evaluation of perfoTance of 
computing systems has proved to be either difficult or inadequate, because the 
processes governing the behaviour of these networks do not behave like those 
familiar from queueing theory. As will be observed below, multitype branching 
processes are more often what one finds, and the duration of such a process is 
the underlying quantity we wish to compute. 

We briefly recall the salient principles of the original ALOHA network, as 
they apply to the analysis presented in this paper. 

(a) A single error-free channel is shared among many users which transmit 
messages of constant length (packets). Time is slotted, and may be 
considered discrete. Users are synchronized with respect to the slots. 
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Each slot is equal to the time required to transmit a packet, and packets 
are transmitted at the beginning of slots only. 

(b) Each transmission is receivable by every user. Thus, when two or more 
users transmit simultaneously, packets are said to ‘collide’ (interfere) 
and none is received correctly: these collisions are treated as transmis- 
sion errors and each user must strive to retransmit its colliding packet 
until it is correctly received. The users all employ the same algorithm for 
this purpose, and have to resolve the contention without the benefit of 
any other source of information on other users’ activity save the 
common channel. 

The collision resolution algorithm is clearly the Gordian knot of the 
behavior of the transmission process, affecting, among other things, the delay 
experienced by messages until they are sucessfully transmitted, the buffering 
requirements at the nodes that maintain the broadcast activity, and perhaps 
most significantly, the ‘efficiency’ of this multiple-access scheme, in terms of 
the maximum traffic rate it will allow before destabilizing (unless more 
involved measures, such as slot reservation policies, are used to reduce its 
criticality). 

Many protocols for collision resolution have been suggested and investig- 
ated. Most are based on the original ALOHA concept: each user with a 
‘colliding’ packet will repeatedly retransmit, each time with certain probability 
until it hits a free slot, and thus succeeds. The main drawback of these 
protocols is that, left to their own devices, the nodes congest the channel, and 
in the absence of additional controls they are unstable (Fayolle (1975)). 

Our analysis concerns only the maximum traffic rate that the channel can 
carry under a particular channel access scheme and collision resolution 
algorithm (CRA). These are defined in the next section. It turns out (this is 
shown in Section 4, and see also Fayolle and Hofri (1982)) that the only 
quantity one needs in order to evaluate the limiting rate is the expected 
duration of the collision resolution interval (CRI) which is defined in terms of 
the specific CRA. These expected durations are shown to satisfy a difference 
equation, which we convert to a non-local functional equation for their 
exponential generating function (Section 2.1). The analysis of this equation is 
the main thrust of this paper: 
- we show a formal series solution of the equation (Section 2); 
- the solution uses two non-commutative transformations in the complex 

The investigation of the group generated by these transformations allows US 

The desired channel capacity is obtained in Section 5. 

plane. 

to obtain an asymptotic, estimate of the expected CRI durations (Section 3). 
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1.1. The CTM algorithm. In this paper we consider a variety of the 
Capetanakis-Tsybakov-Mikhailov (CTM) CRA. We shall show that this CRA 
induces stable behavior of the channel as long as the rate of arrival of new 
packets is below a certain bound. The particular variety is described in Fayolle 
and Hofri (1982) as channel protocol #3 there. It does not require external 
controls to stabilize, and allows users to transmit a packet as soon as it is 
generated, regardless of the activity of the other transmitters. Thus users do 
not have to monitor the channel continuously, but only when they wish to 
transmit. Such users are called ‘active’ users. 

Broadly speaking the CTM CRA is a ‘divide and conquer’ algorithm. 
Specification of the CTM CRA with continuous input. Points (a) and (b) of 

(c) Each user monitoring the channel knows, by the end of the slot, if that 
slot produced a collision or not. 

(d) Each active user maintains a conceptual stack. When an inactive user 
becomes active, it enters level 0 in the stack. It will transmit at the 
nearest slot, and will always do so when at stack level 0. 

At each slot end, a user determines its position in the stack according to the 
following procedure (identical to all users, who are unable, however to 
communicate their stack state). 

Case 1: following a non-collision slot. A user in stack level 0 (there can be at 
most one user, system-wide) becomes inactive, and users at any other stack 
level decrease their stack level by 1. 

Case 2: following a collision slot. All users at stack level i, i L 1 change to 
level i + 1. The users at level 0 are split into two groups; one group remains at 
level 0, while the members of the other push themselves into level 1. Note that 
no such user is aware then of how many users there are at each level. This 
partition can be made on the basis of a random variable, such as the flipping of 
a coin, on the basis of the time when the user became active, etc. 

the introduction ’hold, and we also make the following assumptions: 

The CRI duration, that is the time it takes under this algorithm, to dispose 
of a group of n colliding users, is denoted by L,. This includes the slot of the 
initial collision and subsequent slots, until all active users who were at level i in 
their respective stacks, return there. Or, if it was empty initially (and known to 
be such to any listener), it returns to this marked state. We formulate the 
process in this manner, rather than saying that L, is the time until the nth 
successful transmission after the collision because: 

(a) there will generally be newly arriving packets that have to be cleared 
before the CRI is over, and 
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(b) even when all the colliding packets have actually been successfully 
transmitted (as well as subsequent arrivals) there may be empty levels in 
the other active users’ stacks, which are not known to be empty and 
must be disposed of by silent slots. Brief reflection will show that those 
users cannot know whether some users occupy the corresponding levels 
in their stacks or not. 

1.2. The mathematical model. To the above description we add the following 

(i) The numbers of new packets generated in each slot (or the numbers of 
new active users) form a sequence of i.i.d. random variables, denoted 
by {& i 2 l } ,  which follow the Poisson distribution with parameter A. 

(ii) The decisions described in step (d) above, taken by each ‘colliding’ user 
at the end of a collision slot, form a sequence of independent Bernoulli 
trials, with p being the probability of staying at level 0. This probability 
is assumed to be uniform for all users and time homogeneous. For 
definiteness and with no loss of generality we assume 1 > p  I q  

(iii) It will be useful to define the ‘degenerate’ CRIs Lo and L1 to be of size 

assumptions: 

(=1 - p ) .  

1. 

2. The basic equations 

2.1. The functional equation for the generating function of mean CRI 
durations. The definition of the channel protocol provides the following 
recursive relation for the random variables L,: 
(2.1) ,Lo=L1=1 

(2.2) L, = 1 + &+x + Ln--I+Y, n Z 2  

where I ,  the number of messages immediately retransmitted, follows the 
binomial distribution B(n, p ) ,  X is the number of new arrivals in the collision 
slot and Y is the number of new arrivals in the slot following L,,,. 

The L,’s are defined on the canonical space BN+ x P,  where B and P are the 
underlying probability spaces associated respectively with each Bernoulli trial 
and with a Poisson process of intensity A. ( N +  is the set of natural integers.) 

Defining a, = E(L,) and taking expectation in (2.1) and (2.2) yields 

Relations of type (2.3) have been studied in Tsybakov and Vvedenskaya 
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(1980), for p = q = 4 only, although it was for the case of more general input. 
The arguments were different and, as will appear later, the mathematical 
problem is completely altered when p # q. Introducing 

(2.4) 

we get from (2.3) 

(2.5) Y(z) - Y(A + p ~ )  - Y(d + qz )  = 1 - exp (-2)[2~(A)(l+ Z) + zY'(A)] 

where 

Evaluating (2.5) for z = A/p and z = A/q, and eliminating Y(2A), one obtains 
!if'(A) in terms of Y(A): 

(2.6) vyn) = 2 ( ~  - ipqa),  
where 

exp (-Alp) - exp ( -A/q)  

- exp ( 4 q )  - - exp ( - U p )  
4 P 

Note. While this reduction is convenient and simplifies some of the 
computations below, it is inessential from a mathematical point of view (see 
Fayolle and Hofri (1982)). 

a a (2.7) K =  

Finally, (2.5) can be written as follows. 

Lemma 1. The generating function Y(z) of the a, defined in (2.4) satisfies 
the functional equation 

(2.8) Y(z) - Y(A + p z )  - Y(d + 42) = 1 - 2Y(A) exp (-z)(l+ Kz).  

Equations (2.3) and (2.4) provide Y(0) = 1, Y'(0) = 0. 

2.2. An iteration scheme for the functional equation. In this section we 
develop an iterative scheme for solving the basic functional equation (2.8) with 
its boundary conditions, and for expressing the Taylor coefficients of 

(2.9) a(z )  = exp (z)Y(z). 

This requires the introduction of a non -commutative iteration semigroup with 
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properties that are also of use in the later asymptotic analysis. The solution 
appears as sums indexed on this iteration semigroup. 

Define a&) = A + p z  and u2(z) = A + 42, and introduce the following 
notation: 

(i) Let H be the semigroup of linear substitutions generated by u1 and u2, 
where the semigroup operation is the composition of functions. The 
identity of H ,  denoted by E ,  is thus the function E ( Z )  = z for all z E C 
(the complex plane). 

(ii) Any member of H can be written in the form 

u = uilui, - aim where n 2 0 and ii E { 1, 2). 

Define 

lull = card 0' lij = l}; 1uI2 = card I ij = 2); 
1.1 = 1.11 + 1 4 2 ;  

this last quantity is called the length of the substitution u. 
(iii) The subset of H formed with substitutions of length n is denoted by H,, 

so that 
H, = {a E H :  1u1= n } .  

The semigroup H satisfies the obvious decompositions: 

(2.10) 

and correspondingly for H,, n Z 1: 

H, = UIHn-l U U*H,-1 { H, = Hn-101 U Hn-1Uz. (2.11) 

(iv) For a, /3 complex numbers, define 
(a; /3)" = al"llpl"lz* 

We can now state the following result. 

Lemma 2. If a, /3 are complex numbers satisfying tlle contraction condition 

(2.12) la1 + Is1 < 1  

(2.13) 

(2.14) 

and if t ( z )  is an entire function, then the functional equation 

f ( Z )  - af(Ul(Z>)  - Pf(u2(z)) = 44 

f(z) = c (a; P ) " W z ) ) .  

has a unique entire solution given by 

O € H  
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Proof. 
(i) Existence: For z in C and any o E H, we have 

The proof is straightforward by induction on 1.1. Let 

Then the sum in (2.14) is absolutely convergent and its modulus is bounded by 

Thus for z in any bounded domain, f ( z )  as given by (2.14) is a uniformly 
convergent sum of analytic functions and therefore is analytic. Using decem'- 
position (2.10), we have 

f (2) = t ( z )  + c (a; P ) " t ( W )  + c (a; P)"t(@)) 
aGHa1 U E H U ~  

= t (z)  + a c (a; P ) " t ( v ( z ) )  + B c (a; P)"t(ro2(z)) 

= t ( z )  + d(al(z)) + P.(o2(z)) ,  

t € H  "QH 

so that f ( z )  indeed satisfies Equation (2.13). 

(ii) Uniqueness: To discuss the solutions of (2.13), we have only to consider 
domains D such that 

o ~ D c D  ' C T ~ D C D .  \ '\ Such domains necessarily contain the real interval [A/p;A/q] ,  since for any 
z ,  the set H [ z ]  = {a(z) I 0 E H} admits this 'interval as the set of its 
accumulation points (see Figure 1). Let fi and fi be two analytic solutions of 

- - 
P 4 

3gure 1. The successive transforms of a point t, in the case p = 8, q =f. The point 
ui,ujz 0 - a ui,(z) is labelled iliz - i, 
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Equation (2.13) in such a domain D. By iteration of the functional relation, fi 
and f2 are necessarily entire. Setting S(z) =fi(z) -f2(z), we see that S(z) 
satisfies the relation 

(2.15) 

(2.16) 

6(z) - aW1(z)) - PS(&)) = 0, 

W )  = c (a; P>“&+)). 

whence by iteration of (2.15) for any n > 0, 

a e H ,  

We prove that S(z) is of bounded modulus in the wllole of the comF 
plane, hence constant by Liouville’s theorem: let 

For any z E C, there exists some n E N  such that 

ex 

2A 
4 

Io(z)I 5- for all CJ E H,. 

Thus with (2.16) for this value of n 

I W l ~  M c (14; IPI)“ = Wlal + < M ?  
aeH,  

which therefore establishes the uniform boundedness of 6. Obviously we can 
only have 6(z) = 0 which proves the two solutions fi and f2 coincide. 

In what follows we encounter equations of form similar to (2.13) where the 
coefficients a! and P do not satisfy the ‘contraction condition’. However, we 
can state the following particular case. 

Corollary. The equation 

(2.17) 

(2.18) f(z) = Wz); z )  =f(O) + Zf’(0) + 2 [t(a(z)) - t(a(0)) 

f(z> -f(%W -f(%(Z)) = 42)  

has the solution 

“€If 

- 201; dUt’(40)>l*  

Proof. Equation (2.17) reduces to (2.13) by double differentiation. Integrat- 
ing the solution (2.14), which now involves t”(z), term by term twice produces 
(2.18). 

The equation (2.17) has to satisfy certain consistency relations, such as 
t (A/q)  = t(A/p). In all the applications we have encountered, t ( z )  contains 
unknown constants and this relation is instrumental in determining them. 
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Theorem 1. Define 

449 

(2.19) D(A) = exp (-a(O)){(l + Ka(A)) exp (-(P; q)"A) 
O € H  

- 1 - Ka(0) - A@; q)"[K - 1 - Ka(O)]}. 

A necessary and sufficient condition for Equation (2.8) to have an entire 
solution is that 

D(A)# -4, and K # a .  

If this condition is satisfied, one has 
4 

(2.20) 
1 

a ,= l -  [T, +KU, +KnV,] 
1 1 + 2D(A) 

where 

Proof. Equation (2.19) follows from Lemma 1 and the corollary to Lemma 
2 upon substitution of z = A: 

(2.23) q ( z )  = 1 - 2 q ( A ) z  ((1 + Kc(z))  exp (-o(z)) 
U 

- (1 + Ka(0)) exp (-a(0)) - z(p;  q)"exp (-a(O))[K - 1 - Ka(O)]} 

and observing a(z) = a(0) + (P; q)"z. 
This provides the linear equation for q ( A )  

(2.23a) W )  = 1 - W ( W ( A ) ,  

which has a solution iff D(A) # - 5. 
When the condition-is satisfied, q ( A )  = 1/1+ 2D(A) and substituting this in 

(2.23) and equating the Taylor coefficients on both sides of (2.23) yield the last 
part of the theorem. 

Note. For computational purposes it is preferable to compute the 
coefficients of the differentiated series. Then we define for n 2 2 

(2.24) 
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and obtain 
I "  

(2.25) D(A) = 2 [(l - Kn)g, + Kk,] 
n 2 2  n!' 

3. Asymptotic analysis 

Having obtained an explicit result for v ( z ) ,  and through . for the an, we 
note that these do not provide an analytically usable characterization of the 
behaviour of a, as n increases. To obtain the latter we have to resort to 
different means. 

3.1. The exponential approximation. The first step is to use exponential 
approximations for the coefficients T,, U,, V, (cf. Knuth (1973), p. 131, for a 
similar situation). Replacing (1 - a)" by exp ( -an)  we introduce the quantities 

' where we have set a ( a )  = (p; q ) 9  We prove the following result. 

Lemma 3. The collision resolution times satisfy the relation 

[ t (n)  + Ku(n) + Knu(n)] + O(nl-q)  
2 

1 + 2D(A) 
a, = 

for any positive q ,  such that 

(3.3) 

Proof. We use the expression of Lemma 1 and show that T,, U,, nV, are 
approximated for large n by t (n) ,  u(n) ,  nu(n), respectively, to the stated 
tolerance. We prove the result only for T,, the other cases being identical. 
From the definition 

T, - t (n )  = 2 exp (-a(o))[(l- a(a))n - exp ( -a(a)n) l  Sif 2 s(a). 
aeH aeH 

To evaluate this sum, we split it and define 
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Since for a positive a, (1 - a )  < exp ( -a ) ,  and since for 1.1 S Y, a(a)  5 q", we 
find: 

(3.4) S1(v) = O(2" exp (-nq")). 

Choosing Y such that p " < n-4 ensures that for all a : 1u1> Y, 

(1 - ~ ( u ) ) "  - exp ( - a ( a ) n )  = exp (-a(u)n)O(na2(a)), 

uniformly in u. (Easy to see by writing (1 - ~(0)). = exp (n  log (1 - ~(0))) and 
developing.) Noting that Eoani a2((a) = (p2 + q2)i, we obtain 

(3.5) 

We can now select 

log2 n 
Y = log, (--)? 

to ensure that S1(v) is exponentially small by (3.4): 

S1(v) = O(ncl exp (-log2 n ) )  for some finite cl. 

The above condition on p" is also satisfied, so that by (3.5) 

(3.7) S2(v) = O(n(p2 + q2)") = 0((p2 + q 2 ) 2log,tog nnl-log@2+q2)/Iog 4) 

which satisfies the lemma requirement. 

3.2. MeZZin transform techniques. We now propose to study the asymptotic 
behaviour of a,, as n gets large. An outline of the rest of this section follows: 
Lemma 3 has reduced the problem to that of estimating the asymptotic 
equivalents t (x ) ,  u (x)  and v(x)  as x + a .  We first compute the Mellin 
transforms of t, u, v, which have factored forms in which both the gamma 
function and certain Dirichlet series related to the iteration group appear. We 
then use the classical correspondence between the singularities of Mellin 
transforms in the right half-plane and terms in the asymptotic expansion of the 
original functions for large values of the arguments (a fact which devolves from 
the inversion theorem for Mellin transforms). 

Locating singularities of the Dirichlet series, and in particular estimating the 
dominant terms in their asymptotic expansions around their poles , requires 
some deeper properties of the iteration group H. Once this is done, we can 
conclude with the asymptotic estimates of t (x ) ,  u(x) ,  v(x). The discussion 
distinguishes two cases based on certain arithmetical properties of the 
probabilities p ,  q and we can conclude finally that a,, has a linear growth in n. 
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We start by introducing the two Dirichlet series: 

(3.8) 

E(s) = c exp ( - 4 O ) ) a ( O ) @ " ;  qS)7 
a e H  

(3.9) 

in which the sums are absolutely convergent for Re(s) > 1. We also consider 
the function 

(3.10) P ( x )  = t ( x )  + Ku(x)  + KXv(x), 

which appears in the approximation of a,, and which is defined for all x 5 0. 

M v ( x ) ;  s] and is given by 
The Mellin transform of a function f ( x )  defined on R+ is denoted by f *(s) or 

(3.11) f*(s) = I ; ( x ) x " - l  dx 
0 

and satisfies the important functional property: 

(3.12) Mlf (ax ) ;  s] = a-"f*(s) 

for any positive a. (See Doetsch (1955), Davies (1978) for basic properties and 
definitions of the Mellin transform.) We have the following result. 

Lemma 4. The Mellin transform of the function P ( x )  of (3.10) is 

p*(s) = e(-s)[r(s) + m ( s  + 1)1+ KE(-s)r(s) 

and the integral (3.11) defining P* is absolutely convergent for s : -2 < 
Re(s) < -1. 

Proof. Applying (3.12) repeatedly we see that a function of the form 

(3.13) 

has a transform of the form 

(3.14) 

which is valid provided s is in the intersection of the domain of absolute 
convergence of f*(s) and of the domain of absolute convergence of the sum 
that appears in (3.14). 

We use the classical transforms 

(a) Q (exp ( - x )  - 1 + x)xS-l  dx = r(s) for s : --2 < Re@) < -1 

(b) [ (exp ( - x )  - 1)Y-l dx = T(s) , for s : -1 <Re($) < 0. 
0 

(3.15) 
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Applying (3.14) to the sum definllig t(x), we find that 

t*(s) = T(S) c exp (-a(O)>{(p; q ) " Y  
a e H  

where the condition on s from (3.15a) is -2 < Re(s) < -1 and the condition on 
s from the convergence requirement of the sum is Re@) c -1. The transforms 
of u and 2r are dealt with in a similar way, whence the result by linearity of the 
transform. 

By the inversion theorem, P ( x )  is expressible in terms of P * ( s )  as the 
int egr a1 

i rc+ im 

(3.16) P ( x )  = -& P*(s)x- 'ds,  for any c in (-2, -1). 
21n c-im 

3.3. Analytic properties of some Dirichlet series. We propose to evaluate 
(3.16) by shifting the line of integration to the right, taking residues of the 
integrand into account. The first residues will give the dominant terms in the 
asymptotic expansion of P ( x )  as x + m .  Evaluation of these terms requires 
however some more detailed analytic information on e(s) and f ( s ) .  

To treat e(s) and f ( s )  simultaneously, we consider Dirichlet series given by 
a sum of the form 

(3.17) 

where r(u)  is any continuously differentiable function on [0, A / q ] .  Strictly 
speaking, we should also require r not to vanish identically on ( U p ,  Uq) .  We 
have the following result. 

Theorem 2. For any function r ( . )  continuously differentiable on [0, A / q ]  the 
function ~ ( s )  in (3.17) is meromorphic for Re(s) > 0. It has a simple pole at 
s = 1, and around that point admits the expansion 

(3.18) 

where h(p, q )  is the entropy function 

h(p, q )  = p  logp-' + q log 4-l 

and w(u)  is a weight function independent of r(u) ,  to be computed later: 
w(u)  = wl(u) + %(u), with wl, w2 defined in Equations (3.42), (3.43). 
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Briefly, the idea is first to find a function that has the same behaviour at 
s = 1, to first order, as o(s). This function is called D ( s )  below. 

The proof is long and of a computational character. We shall break it down 
to a number of lemmas. We first prove that the set of singularities of o(s) in 
the half-plane Re(s) > 0, is contained in the set of singularities of (1 - p“ - 
q“)-,. From this we have the following result. 

Lemma 5. The function 

n(s )  = o(s)(l - p s  - 4”) 

is analytic for Re@) > O  and uniformly bounded in any half-plane Re($) 2 

Proof. For Re@) > 1, the sum expressing o(s) is absolutely convergent, so 

r]  >o. 

that we can regroup terms in the expression of n(s) .  We have 

4 s )  = c r(a(O))(p”; 4“)“ - c r(a(O))p“(p”; 4 Y  
a a H  B E  H 

(3.19) 

We first transform the second and third sums in (3.19): 

(3.20) c r(a(O))p”(p”; = c r ( w l ( o ) ) @ s ;  4 T  

(3.21) c r(a(O))q”(p”; 47 = c r(m-l(0))(pS; 4% 

a e H  T E Hal  

U E H  T E H U ~  

we then use the decomposition H = { E }  U Ha,  U Ha2 in the first sum in (3.19) 
and group terms with those of (3.20), (3.21), so that 

Jt(s) = r(0)  - c (r(ta,l(O)) - r(z(O)))(p”; 4”IT 
T E H U ~  

- c (r(tazl(0)) - r ( m ) ) ( p ” ;  
T E Ha2 

Equation (3.22) is valid for Re@) > 1; now using the observations 

z(a)  - z (b)  = (p; q)‘(a - 6 )  

r ( z (a ) )  - r ( W )  = O((P; dTh - 

uniformly in IzI for fixed a and b, we see that the sums in (3.22) are 

o( Ips+,; @+,)TI) = 0([1 - p+y - ~q”+’1]--’) 
TEH 

and therefore converge for Re($) > 0. Thus (3.22) provides the analytic 
continuation of n(s )  to the left of s = 1 and the lemma is established. 



The analysis of a protocol 455 

The next stage of the proof of Theorem 2 is to obtain the main terms in the 
expansion of o(s) around s = 1. To that purpose, we decompose the sum 
expressing ~ ( s ) :  

4 s )  = c c r(40))(P"; q")'. 
nLO u e H ,  

Define the sequence of functions over the interval [0, U q ] :  

4" 6" = p s  + 4s' @ t ) ( u ) =  2 @";@")" with f =  p" . (3.23) 
a(O)<u p" + qs7 

The function @k)(u) is thus the cumulative distribution function of the discrete 
probability distribution which to the point a(O), with 0 E H,, associates the 
probability @"; Q")? The expression of o(s) then becomes 

(3.24) 4 s )  = c (P" + q"), I r (u)  d @ t W ,  
flZ0 uzo 

where the integral is a Riemann-Stieltjes integral taken on R, although for 
u > A/q there is no contribution. As we shall see, when n tends to a, tends 
to a limit, and the value of this limit for s = 1 gives the main term in the local 
expression of ~ ( s ) .  

Lemma 6. For 6 such that p < 6 < 1, let D ( 6 )  be the domain 

D ( 6 )  = {s E C : PSI < S and 14'1 < S}. 

Then, for each s in D(6) ,  there exists a function @k)(u)  defined on R, such 
that 

l@$)(u) - +k)(u)l d AS" for all u in R and for some A E R. 

In particular, @g)(u) has the explicit form 

a 
if US- 

P I o  a 
(3.25) 

A 
if - S u e  

4 

Proof. From the definition (3.23) of the @$I, using the decomposition 
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-- 

H,+l = alH, U a2H,, we have 

$$l l (U)  = 2 ps(ii"; Q")"+ 2 Q"(i"; qS)q 
a e H ,  o e H ,  

a1a(O)<u aza(O)<u 

and, since al, a2 are monotone increasing functions, 

(3.26) @ $ l l ( U >  =p"$$)(a;'(u)) + Q"$?)(&(U)) ,  

with 
+t) (u)=O if u<O; @ ~ ) ( u ) = I  if OSU. 

Let us consider the four regions 

a a R3 = { u I 2il S u <--}; R4 = { u I u}; 4 
the substitutions a;', a,' operate on these regions as follows: 

(3.27) 

In particular, each element of [Alp; Alq[ has only one image by a;', aT1 in the 
interval. For any I E R, we define the norm 

Ilfl lI = SUP {IfWl : E I > .  

Let no be such that O ~ @ ~ ( O )  > Alp; ,then 

(3.28) Vn > no and Va E H, : ala(0) > -. 
P 
a 

Working on the four cases of (3.27), we first find that for all n >no, 

lI$Wl - $:)IlR] r B " l l $ ~ '  - @ ~ ~ l I l o - ~ R 1  + 4"ll$? - @$~lllC7~'R1 
s 6 11 (by - @$2111R1. 

Since the functions in the first norm vanish, using (3.28), thus 

I l $ f $ l  - $ f ) l l R l  SA16" for some finite Al.  

Similarly, 

II $ 2 1  - $?llRz 6 II @?I - @ ~ ~ t I I R 2 U R 3 ,  

II@?-?-1- $$)IIR~ II@?' - @$1111R4.+ all@?)- @ ? ~ i I ( R 2 u R J .  
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Also, since a(0) < A/q for all finite (3, @ t ) ( u )  is 1, when u E R4, hence 

457 

ll@% - @?llR4 = 0. 
Therefore, for some Az and n > no, 

(3.29) ll@t) - @ t L l l l R  SAZS". 

Hence for each u, the sequence {@f) (u ) }  is a Cauchy sequence, so that it 
converges to a limit @?)(u). From (3.29) follows that, for some A:  

(3.30) Il@$) - @?)I1 <ASn,  

as was to be proved. 

satisfies the equation 
Using this result in conjuction with Equation (3.26), one sees that $5) 

(3.31) @?(u) =pS@5)(a, l (u))  + 4"@k'(o;'(u)) 

with the boundary conditions 

A 
(3.32) $?)(u)=O if U S -  h @P(u)=I if - S U ;  

P' 4 
and it is easy to check that (3.31), (3.32) when s =1,  are satisfied by the 
piecewise linear function of the statement of Lemma 6. 

Thus @?( u )  is nothing but the cumulative distribution function associated 
with the uniform distribution on [Alp, A/q]. We now proceed to use this result 
in conjunction with the expression (3.24) for ~ ( s ) .  Define 

(3.33) 
1 w - r (u)  du 

1 D(s )  = U ( S )  - 
1 -p" - q"A --- A I,, 

which, a priori, is only analytic for Re(s) > 1. Using (3.24), Equation (3.33) 
becomes 

D ( S )  = 2 ( p s  + q ~ ) n /  r(u) d(@f ) (u )  - @F(U)) 
n Z O  u r o  

and integrating by parts 

' . (3.34) D ( s )  = 2 (p" + qs)n r'(u)(@g)(u) 1- - @t)(u) )  du. 
n 20 ut0 ' 

Using the decomposition 

@P'(u) - &'(u) = @P)(u) - @ F ' ( U )  + @ p ( u )  - @$'(u), 

! 
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(3.'35) Dl(s)  = (p" + qS)"I  r ' (u) (@g)(u)  - @il)(u)) du, 
n 10 u z o  

" 

(3.36) D ~ ( s ) ,  = 2 (p" + 4")" r'(u)(@$')(u) - @$)(u)) du. 
n 1 O  

Using the geometric convergence (cf. (3.30)) of Lemma 6, we see that Dl(s )  
is analytic in a neighbourhood of s = 1, and we may write 

" 

(3.37a) 
r'(u)wl(u) du 

with 

(3.37b) W l ( u )  = (@P(u) - @:"(u)) du. 
nBO 

Furthermore, we can show the following. 

Lemma 7. The function D2(s) is analytic in a neighbourhood of s = 1. 

Proof. We use an indirect argument: since D2(s) = D ( s )  - Dl(s)  is the 
difference of two functions meromorphic at s = 1, it is meromorphic there and 
has at most a simple pole at s = 1 by Lemma 5. We propose to prove that as 
s*1+ 

which will establish that D2(s) is regular at s = 1. We write first, using (3.35), 
(3.34), (3.23): 

d n ( s )  = (p" + 4")" r(v(o))[@"; 4")' - (p; 4)"]. 
v e H ,  

D ~ ( s )  = 2 d n ( s ) ,  
n e 0  

We estimate the d,'s using the decomposition 

H,, = Hk x H, with k = k(n)  = [Vn], 1 = l (n)  = n - [Vn], 
and writing 

dn(s) = (p" + qs)n c 2 r (m(O)) [@";  4")"" - (p; 4)ar].  
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Since r is assumed to be continuously differentiable and u(z(0)) - a(0)) = 
(p; q)"z(O), we write r (a t (0) )  = r(a(0)) + O((p; 4)") uniformly in u, z. Hence 

4 ( S )  = (p" + 4")" c r(a(O))[@"; Qs)"'- (p; 4)""I 
U€Hk ' € H I  

Using the fact that 

2 @";Q")"= l  and (p ;q )""=(p;4 )" ,  
t ~ H 1  ' P H I  

we get 

dn(s) = (Ps + 4")" 2 ~(O(O))[@"; Q")"- (P; 417 
U€Hk 

+ CP" + 4 " ~ [  2. ( w ;  Q")"(P; 4)" + b2; q2)u)]. 
U€Hk 

For s = 1 + E, the term in the second line is 

0(p2 + 42)k(p1+c + ql+a)n--k(~ + &k(n)), E > o 
and thus is O(Mvn) for some M : 0 < M < 1. 

that 
We now estimate the first term in d,(s). Computing derivatives, one finds 

@";Q")"- (p ;4 ) "=  ( P ; 4 ) a [ k ( n ) M P ; q ) +  I~IllogP+Icr,llog41 
+ (s - 1) + O(s - 1)2, 

uniformly in a. 
We have thus proved that 

d,(s) = Ob" + q")"k(n)(s - 1) + O(Mvn). 

Since, as x + 1- 
2 [$]x' = O(1- x) -$ ,  
n 

we obtain D2(s) = O(s - l)-J and D2(s) is analytic at s = 1 by our preceding 
remarks. 

With Lemma 7 and result (3.37), we can conclude that D(s)  is analytic at 
s = 1, so that extracting from the second term in (3.33) the coefficient of 
(s - 1)-l we have the residue of o(s) around s = 1; we define the difference 
E(s) ,  

1 1 rA4 A A 

il il Jklp '('1 du 
E(s)  = O ( S )  - - s-1 (3.38) 

h h  4)( - - - )  4 P  
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which admits around 1 an expansion of the form 

a. + al(s - 1) + a2(s - 212 + - . 
To complete the proof of Theorem 2, we now look for an explicit expression 

of ao. From Equations (3.33), (3.38) we see that 

1 1 w 
r (u )  du - 1 

--- 
(3.39) a. = E( l )  = D(1) + lim 

1 - p s  - 4" (s  - l)h(p, 4 ) )  E LIP 
4 P  

where the existence of D(1) is guaranteed by Lemma 7. Dealing first with the 
limiting term, the value in the parenthesis equals 

d S-1 
at s = 1, - 

d s l - p s - q s  
which yields 

P log2 P + 4 log2 4 
2 h 2 b  4 )  

$ P ( u )  - &'(u) = @t'(U)  - &'(u) + q@(u) - &'(u) 

Proceeding to compute D(l) we use Equation (3.34) and the decomposition 

we see .that D(s)  can also be written in the form: 

D(s)  = (p" + qs)n I r'(u)(&)(u) - @t)(u) )  du 

+ (1 -p" - qS)-l I r' (u)(@P)(u)  - +k)(u)) du, 

n LO 

for Re@) > 1. When s 1+, the first term converges to D1(l) given by 
expression (3.37). The second term is thus another form of D2( l ) ,  so that it has 
a limit when s+ 1+ which is equal to: 

with 

To obtain ~ ( u ) ,  explicitly we differentiate the functional equation satisfied 
by and find: 

a d d 
- @t'(U)  =es - (#e(a,'(u)) + 4" - @k)(a,l(u)) (3.40) dS dS dS 

+ L(s)@$)(rr;'(u)) - L(s)@k)(a; l (u) )  

with L(s) =psqs  logplq and L = L(1) < 1 for all p, q. 
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4 x 1  Lki;---A 
X 

h h 231. 
P 4 

- - 0 

Figure 2. The graph of the triangular function b(x)  

Let b(x)  be the triangular function 

(3.41) b(x)  = L[ #?)( o ~ ' ( x ) )  - #?'( o ~ ' ( x ) ) ] .  

The graph of b(x)  is displayed in Figure 2. Initializing (3.40) at s = 1, and 
integrating it to solve this functional equation, we find that 

(3.42) %(4 = - c (P; q)ab(a-l(u))lh(P, 41.. 
a e H  

Equation (3.42) defines a function which is nowhere differentiable and which is 
a superposition of triangular functions of smaller and smaller supports and 
amplitudes. Functions of a similar nature are not uncommon in the analysis of 
algorithms. 

The function wl(u) in (3.37b) can also be expressed in a similar way: 

(3.43) Wl(U> = c (P; dUa(a- l (u ) ) ,  
U€H 

where a(u)  is the piecewise-linear function 

the graph 'of which is displayed in Figure 3. 
These calculations complete the proof of Theorem 2 with w(u) = wl(u) + 

%(u), using an 'explicit' expression through (3.42) and (3.43). 

3.4. Evaluation of the inverse Mellin transform. Theorem 2 thus gives 
expressions for the first terms in the expansion of the functions O(-s), @(-s) 
appearing in Lemma 4, around their singularity at s = -1. By the Mellin 

- 
P 

Figure 3. The graph of function a(x)  
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inversion theorem (3.16), 

To carry out the integration we have to establish a general property on the 
poles of S*(s) in the right half-plane in order to complete the integration 
contour in the above integral to a closed curve. Let 

f (s) = p" + q" - 1, 

and 

Z ( f )  = {s I Re@) > O;f(s) = 0). 

The set Z(f) contains by Lemma 5 the poles of o(s) is the right half-plane. We 
prove that Z ( f )  is uniformly discrete in the following sense. 

Lemma 8. There exists a real number 6 > 0 such that 

vs, s' E: Z ( f )  1s - S ' J  > 6. 

Proof. Assume on the contrary that the lemma is not satisfied. Then for all 
6 > 0, there exists an s in Z ( f )  and an a with la1 < 6 such that 

p" + q" = 1 and pS+" + q"+" = 1. 

Eliminating q", we should have 

(3.44) 
1-q" 

P" =p" - 

Now for small a, a local expansion shows that 

The function 

log (1 - x )  
h(x)  = - 

X 

satisfies h(x)  > 1 for all x E (0, 1/2). 
Thus the right-hand side of (3.44) is of modulus strictly larger than 1 for a 

small enough. There is thus a contradiction in (3.44) since for Re(s)>O, 
b"I < 1; this establishes the lemma. 

The argument used in Lemma 8 can actually be used to prove that all 
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elements of ZV)  are simple zeros of f ( s )  and that for every 6 > 0 there exists 
an q > O  such that 

Vs’, Re($’) > 0, Vs E ZV) : 1s - s’I > S f ( s ’ )  > q. 
One then sees that for some fixed small enough E > O  such that the minimal 
distance between points in Z ( f )  is larger than 4~ and for each integer n there 
exists a closed contour r,, with the following properties. 

(i) I?,, consists of four curves: 

with 

r; = {-3 + it I t E [-n, +n]> 
r; = { z  I Re ( z )  E [-3, -E]; Im (2) E [n, n + 2 4 )  

= { z  I Re ( z )  E [-3~, E]; Im (2) E [-n - 2 ~ ,  n + 2 ~ 1 )  
= { z  I Re (z)  E [-$, -E]; Im (2) E [-n - 2 ~ ,  -4). 

(ii) Each point in r,, is at a distance at least E from a zero of f(-s). 
Such a contour can be constructed by distorting a rectangular contour so as 

to avoid the zeros of f(-s). We can thus assume that r,, is rectifiable and has 
length O(n). Figure 4 displays the shape of such a contour. We now consider 
the integral 

with r,, oriented clockwise, and let n tend to 03. 
By the complement formula for the gamma function, T(z) has an exponen- 

tial decrease at a along imaginary lines. On the other hand, along all of I?,,, 

Figure 4. A schema showing the contour r,, in the upper half-plane 
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0(-s) and €j(-s) are bounded by Lemma 5 and the remarks following it. 
Thus, the integral 

(3.45) 

taken along ri and tends to 0 exponentially fast. Integrals (3.45) along I?: 
and r: tends to limits that are respectively P ( x )  and a function of x which is 
O(x3&) as x gets large. Taking residues into account by the Cauchy theorem, 
we therefore get 

P(x )  = - Re s(P*(s)x-') + O(x3&) 

~ ~ ~ m ~ ~ ~ g - e x ~ e n d e & ~ ~ ~ ~ e  poles that lie inside the contour. Because of 
the exponential decrease of r(s) at io3 and the uniform discreteness of the set 
of zeros of f(s), the sum of the residues is absolutely convergent. 

Note that while (1 -p-' - q-')-l does have poles with Re(s) > -1 (for 
certain p ) ,  P * ( s )  does not, as can be shown by bounding (3.17). 

To conclude the computation of P ( s ) ,  we estimate the residue of P * ( s )  at 
s = -1. Introducing the notations ~ ( s )  = (s - l)-lp(r) + v(r) + o(s - 1) with 

(3.46) 

we have around s = -1: 

e(-s) = p(exp (-u))(s + 
g(-s) = -p(u  exp (-u))(s + I)--' + v(u exp ( -u ) )  + o(s + 1) 

v(exp ( - u ) )  + o(s + 1) 

y + o(s + 1) r(s + 1) =-- 
1 

s + l  
-1 A r(s) =s+l + ( y  - 1) + o(s + 1) 

x-' = x(1 - (s + 1) log x + o(s + 1)2). 

With these expansions, we see that P * ( s )  has only a simple pole at s = -1. 
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The residue there is found to be equal to -A  where 

(3.48) 
A = (exp (-Alp) - exp (-AIq))(GK(l - 2 y )  + 2H(K - 1)) 

+ [Ku exp ( - u )  - (2K - 1) exp ( - u ) ] w ( u )  du I 
where 

and K is given in (2.7).  Similarly, let x be a pole of (1 -p-” - q-”)-l with 
Re($) 1 -1, the residue of /3*(s) at x is -a (x )  where 

and nl and n2 are the n-functions of Lemma 5 (in (3.19)) associated with 
r (u)  = exp ( -u) ,  u exp ( -u) .  Note that this collection of poles may contain 
superfluous ones. The leading term, however, is genuine. 

With these calculations, we have the following result. 

Theorem 3. The average time to resolve an n-collision satisfies 

a(x1n-x + O(nl-q),  
2 

1 + 2D(A) 
n +  

24 
an = 1 + 2D(A) (3.50) 

the sum being extended to x’s  satisfying 

1 - P - x  - 4 - x  = 0; -1 S Re (x )  < -1 + q ;  x # -1 

for any sufficiently small q > 0. 

The sum in the expression of the theorem is a bounded fluctuating function 
with an amplitude small compared to the value of A ,  typically less by several 
orders of magnitude. Its asymptotic nature depends on very specific arithmeti- 
cal properties of numbers p and q. In the sum 

(3.51) 

for large n, the a ( x )  have an exponential decrease in IIm(x)l while the rz-% 
increase with IRe ( % ) I .  Estimating the order of (3.51) thus necessitates 
determining the relation between Re’(x) and Im(x) for the leftmost x ’ s  that 
are poles of (1 -p-’ - q-’)-l.  Setting 

Re ( x )  = -1 + E ;  Im ( x )  = t ,  
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we look for th, solutions of 

(3.52) 

for small positive E. Simplifying (3.52), it decomposes into 

pl-" exp (it logp) + q'-'exp (it log q )  = 1 

(3.53) 

(3.54) 

(3.54) yields 

pl-€ cos (t . logp) + q'-€ cos (t . log q )  = 1 

p'-€ sin (t . logp) + q'-" sin (t . log q )  = 0. 

With a, /? denoting the principal values of t logp and t log q in [-n, n), 

(3.55) 

so that a and /3 are of opposite sign. For E small enough, from (3.53), (3.55) 
we see that a, p must be small and in the limit, when E = 0. (3.53) can only be 
satisfied by a = p = 0. 

(3.56) ]a1 I A d ;  1/31 5  BE^. 
Local expansions show that for some constants A ,  B, 

Since a and p are principal values of t logp, t log q, we have 

t logp = 2un + a 
t logq = 2bn  + p 

for integral a, b. Thus eliminating t and using (3.56), one must have 

(3.57) 

Since p is linearly related to t, this represents a relation between E and t, i.e. 
Re ( x )  and Im ( x ) .  Note that as E +  0 values of u and b that will satisfy (3.57) 
will increase, and provide a vanishing contribution to the sum unless the 
following holds. 

Corollary. If p = logp/log q is rational, Le. p = d / r  with (d, r )  = 1, one has 

(3.58) n + It. P(r . logp)  + o(n'-") 2 A  
1 + 2D(A) 

an = 

for some r] > 0, with P ( u )  a Fourier series of u with mean value 0. 

The proof relies on the fact that in this case (3.52) admits solutions with 
E = 0 (this is also apparent from (3.57)). Note that in this case the Dirichlet 
series have a pole-free strip right of Re ( s )  = -1. 

While in general (when p is not rational) the fluctuating function (3.51) is 
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o (n) ,  and the limit limn-,m a , /n  exists, th,s is not the case in (3.58); the latter 
represents a situation where the ratio &,,In continues to oscillate (with a 
minute amplitude) around the 'mean value' given by the leading term. 

4. Evaluating the mean CRI duration when p = q = $ 

When p =; the computational structures of Sections 2 and 3 simplify 
considerably, even though one expects no qualitative difference in the behavior 
of the underlying processes. Note that this case comes under the corollary to 
Theorem 3. Solving the equation D(A) = - $, to obtain the range of stability 
still involves numerical search. Indeed, substituting p = 4 in g, and k, of (2.24), 
recalling that now a(z), when 101  = i, is 

one obtains 

(4.1) D(A) = K exp (-2A) 2'exp (2A/2'){exp (-A/2i)(1 - A/2i) 
i Z 0  

- 1 - 2(A/2')2 + 2(A/2i))  

a rather finicky series that converges fast to -112 for A =  A,, = 0.360177147+ , 
in good agreement with the results reported in Fayolle and Hofri (1982). 

Now an can be evaluated also from the solution given in Lemma 1-for 
p = 112 it is relatively painless, or approximated by (3.48). The first again gives 
a series which is amenable for evaluation: 

This too agrees satisfyingly with the values obtained in Fayolle and Hofri 
(1982). From Equation (3.48) the first term provides exp ( - 2 A ) / ( l -  2A) log 2. 
For the integral we need w(u) .  Now for p = q, w2(u) # 0 for one point only, 
u = 2A, and its contribution to the integral vanishes. The value of wl(u) is 

a(a;'(u)),  and since a vanishes outside (0,2A) we obtain the contribution 
of the second term in (3.48) 

A 
= I exp ( -u) (2K - 1 - Ku)  du 

= 2KA exp ( - 2 4  2 2-' exp (2AI2') 

iZ0 2 q 1 - 2 - 9  

iZ0 
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hence 

(4.3) 

For this particular choice of p the set {x} in (3.50) is known; it comprises 
X k  = -1 + 2nik/log 2, with k going over all the integers. But due to cancella- 
tions the sum gives an increase in a, that is about five to seven orders of 
magnitude below the main term, and we neglected it in the numerical 
evaluations. Comparing the values of a, according to (4.2) and (4.3) showed 
consistent overestimate when using the ‘asymptotic’ value. The difference 
depends on A: for n = 10 and A in the range (0.1,0.36) it varied between 
11.7% to 7.7%. For n = 20, it was 2.3% to 3.7%. 

5. The ergodicity condition 

Theorem. The necessary and sufficient condition for a stable transmission 
process (Le. a, < 00 for all n) is A <A,,, where Amax is the smallest positive 
root of 

(5.1) 1 + 2 q a )  = 0 

(see Equation (2.19)). 

We note that this condition implies a finite delay for each packet with 
probability 1. 

Proof. The proof relies on results of Section 3 together with standard 
properties of Markov chains (see for*example Cinlar (1975)). We shall deal 
with it in some detail as, it touches upon a number of issues which are 
significant in this type of model. 

The state of the system comprises the aggregate stack of all the active 
transmitters at time t and can be represented by a vector of variable length Y 

(5.2) f i ( t )  = {[N(O), N(1), - * * , N(Y)I,  y >  

where Y is a random variable, and N ( i )  is the number of active users at level i 
of their stack. The time index t denotes slot count. 

Note. { f i ( t ) } ta l  form a first-order irreducible aperiodic Markov chain, with 
countable state space. Such a chain has the same type for all its states (i.e. all 
are recurrent or all are transient). a, is the mean time of first visit from the 
state {[n], 0) to the state {[O], 0}, and the above statement implies that all 
a,, n 2 2 are finite or infinite together. Moreover, since a CRI starts with the 
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new packets that were generated in a single slot, 

where 

Suficiency. From Theorem 1, we have that the functional equation of Y(z) 
(which yields the an) has a unique entire solution, and Theorem 3 provides 
that it is finite unless A E {A,} U hl, where {Ao} is the set of roots of (5.1) and 
ill is a root of (Alq) exp (-Alq) - (A/p)  exp (-Alp) = 0. We shall denote by 
A,, the least of them all; for all p ,  min{A,,} <A,, and therefore, for 
OSA<A,,, a(z) is analytic and its uniqueness assures that those a, are 
indeed E(L,). On the contrary, if E(L,) did not exist it would imply a 
singularity for a ( z )  in the A plane, which it cannot have there. 

Necessity. The thing to prove here is that a, that result from the solution 
'(3.23) for A > A,, have no probabilistic interpretation, i.e. they are not E(L,). 
(For the rest of this section we denote E(L,) by I,, to emphasize its (possible) 
distinction from a,, defined for the time being as [z"]n!a(z)) .  We precede the 
proof by the following. 

Observation 1. The means I , ,  n Z 2 are monotonically increasing in A. 
Proof of Observation 1. Admittedly this observation appears obvious, but 

we wish to show its consistency with the recurrence relations. A preliminary 
result is an even more 'obvious' observation. 

Observation 2. l n + 1 2  I , .  This observation is proved only for In < 00, and uses 
the note above that this inequality also implies l n + , < m .  We note trivially 
l2 > lla= lo. The proof employs a procedure of examining each realization of 

up to a suitable slot, and then adding the expected duration of the rest 
of the realization. 

To a group of n colliders add one tagged packet and observe the evolution of 
the CRA till the next slot the tagged packet is in level 0. Up to this point the 
CRA behaved precisely as it would to produce L,. In this stopping slot, level 0 
may contain 

(1) One packet, 
(2) Two packets, 
(3) More than two packets. 
In case (1) the tagged packet exits the system, and whether the CRA now 

In case (2) the tagged packet converts an L1 to an L2 that will end later. The 
has the same tail, in probability, as the corresponding L n ,  and 

In case (3) L, as well as L,+l proceed with a collision, and again we follow 

terminates or not, this L,+, equals (the corresponding) L,. 

rest of 
equal expected duration, thus in summary here > I , .  
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the CRA until the tagged packet reappears in level 0. The requirement Z, <co 
implies that, with probability 1, event (3) will occur a finite number of times: 
thus, with probability 1, we conclude the process in an event that allows to 
state Z n + 1 2  I,,. 

Armed with this inequality we proceed to prove observation 1, with the 
following scenario: at slot 1 an n-collision occurred; the arrival rate during this 
slot is changed from A to > A, and in the following slots it reverts to A. Let 
the quantities that correspond to this scenario, where they differ from the usual 
(unmodified) ones, be denoted by a tilde. Writing 

where (5.4) results from (5.3) by noting that once X is determined both 
components depend on future samples of X only. To conclude that In > I,, it 
suffices to show: Edfz+*)  > Ex(Zz+x), for any value of I. We note that viewing 
20') and a(j)  as functions of j ,  there exists a unique value j o  that satisfies 

aj , where aG) =e-'-. zo, j > j o  j !  

Actually [A] Sjo  S [ X I .  We have to show G = Cjzo  [ZO) - a(j)]Zl+jS 0. Splitting 
the sum at j ,  

i o  

G = C [GO') - a ~ > l l I + j  + C [GO') - a ~ ) l l I + j ,  
- j = O  i > i o  

we note that the terms in brackets are SO in the first sum and 20 in the 
second. Thus observation 2 provides that each sum in the right-hand side will 
decrease if we replace Zr+j  by Zz+jo ,  hence 

but now the right-hand side vanishes (E a ( j )  = 20') = l), and hence 

Taking (5.5) as the basis for induction, assume it holds if the change A+ > A 
persists for k slots. Assume the change is not extended to k + 1 slots. Writing 
the equivalent of (5.3) with obvious change of notation 
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we observe that both i on tlle right-hand side are larger, by the induction 
hypothesis, than the corresponding I, with the first one satisfying a strict 
inequality, hence 

(5.7) i ,(k + 1) > 1, 

and this will hold for all k. This completes the proof of Observation 1. 

observation. Thus the necessity is established as well. 

inf {A I 0 < Y(A) < a} and the stochastic interpretation of Y(A) is easy: since 

Since I, diverges to a as A+ A,,, they remain infinite for A > A,,, by this 

The ergodicity condition A <  A,,, is equivalent, by (2.23a), to A,,, = 

we see that Y(A) represents the expected value of the mean collision resolution 
interval (in the wide sense, because a. and al are taken into account). 

6. Conclusion 

As said in Section 1, other schemes can be proposed to get a higher A,=. 
They essentially try to save ‘doomed’ slots. This can lead for example to the 
following recursive relationships for the L, : 

+ L n - I + y  if I + x # O  
if I + X = O ,  

L, = 1 + { ;;x 
(see Massey (1981) and Fayolle and Hofri (1982)). 

The functional equation for the generating function of the a, = E(L,) is 
then non-symmetrical with respect to p and q = 1 - p .  Moreover, there is a 
term involving a(qz). Nevertheless, the same analysis can be applied, although 
the details become more involved. 

Note added in proof. In a companion paper, the present authors jointly with 
Philippe Jacquet provide a delay analysis for this protocol (Fayolle et al. 
(1985)). 
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