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Abstract. Prudent walks are special self-avoiding walks that never take a step towards an already occupied

site, and k-sided prudent walks (with k = 1, 2, 3, 4) are, in essence, only allowed to grow along k directions.

Prudent polygons are prudent walks that return to a point adjacent to their starting point. Prudent walks
and polygons have been previously enumerated by length and perimeter (Bousquet-Mélou, Schwerdtfeger;

2010). We consider the enumeration of prudent polygons by area. For the 3-sided variety, we find that the
generating function is expressed in terms of a q-hypergeometric function, with an accumulation of poles

towards the dominant singularity. This expression reveals an unusual asymptotic structure of the number of

polygons of area n, where the critical exponent is the transcendental number log2 3 and and the amplitude
involves tiny oscillations. Based on numerical data, we also expect similar phenomena to occur for 4-sided

polygons. The asymptotic methodology involves an original combination of Mellin transform techniques and

singularity analysis, which is of potential interest in a number of other asymptotic enumeration problems.

1. Introduction

The problem of enumerating self-avoiding walks (SAWs) and polygons (SAPs) on a lattice is a famous
one, whose complete solution has thus far remained most elusive. For the square lattice, it is conjectured
that the number SAWn of walks of length n and the number SAPn of polygons of perimeter n each satisfy
an asymptotic formula of the general form

(1) C · µn · nβ ,
where C, µ ∈ R>0 and β ∈ R. (In the case of polygons, it is understood that n must be restricted to even
values.) The number µ is the “growth constant” and the number β is often referred to as the “critical
exponent”. More precisely, the following expansions are conjectured,

(2) SAWn ∼
n→∞

C1 · µn· n11/32, SAPn ∼
n→∞

C2 · µn· n−5/2,

for some C1, C2 > 0.
For the square lattice, numerical methods based on acceleration of convergence and differential approx-

imants suggest the value µ = 2.6381585303 . . . . This estimate is indistinguishable from the solution of the
biquadratic equation 13µ4−7µ2−581 = 0, which we consider to be a useful mnemonic. This was observed by
Conway, Enting and Guttmann [5] in 1993, and verified to 11 significant digits by Jensen and Guttmann [23]
in 2000, based on extensive numerical analysis of the sequence (SAP2n) up to 2n = 90. (Remarkably enough,
for the honeycomb lattice, it had long been conjectured that the growth constant of walks is the biquadratic

number
√

2 +
√

2, a fact rigorously established only recently by Duminil-Copin and Smirnov [13].)
As regards critical exponents, the conjectured value β = 11

32 for walks is supported by results of Lawler,
Schramm, and Werner that relate the self-avoiding walk to the “stochastic Loewner Evolution” (SLE) process
of index 8/3; see, for instance, the account in Werner’s inspiring lecture notes [37]. For (unrooted) polygons,
the value β = − 5

2 was suggested by numerical analysis of the exact counting sequence, with an agreement
to the seventh decimal place [23]. It is also supported by the observation that many simplified, exactly
solvable, (naturally rooted) models of self-avoiding polygons appear to exhibit an n−3/2 universal behaviour
– for these aspects, we refer to the survey by Bousquet-Mélou and Brak [4], as well as the books [15, 20, 36].

Regarding lattice polygons, which are closed walks, there is also interest in enumeration according to
area, rather than perimeter. This question has analogies with the classical unsolved problem of enumerating
polyominoes, also known as animals (these may have “holes”), according to the number of cells they contain.
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Conjecturally [24], the number an (respectively, bn) of polygons (respectively, polyominoes) comprised of n
cells satisfy asymptotic estimates of the form

an ∼
n→∞

C3 · (3.9709 . . .)n · n−1, bn ∼
n→∞

C4 · (4.0625 . . .)n · n−1,

for some C3, C4 ∈ R>0; these asymptotic estimates are still of the form (1), with the critical exponent
β = −1. Interestingly enough, the critical exponent β = 0, corresponding to a simple pole of the associated
generating function, is otherwise known to arise in several simplified models, such as column-convex, convex,True?

and directed polyominoes [2, 4, 20].
As the foregoing discussion suggests, there is considerable interest in solving, exactly, probabilistically, or

asymptotically, restricted models of self-avoiding walks and polygons. Beyond serving to develop informed
conjectures regarding more complex models, this is relevant to areas such as statistical physics and the
statistical mechanics of polymers [36]. For combinatorialists, we may observe that consideration of such
models has served as a powerful incentive to develop new counting methods based on generating functions [4,
7, 20, 35], including transfer matrix methods and what is known as the “kernel method”.

The present article focuses on a special type of self-avoiding polygons, the 3-sided prudent polygons (to
be defined shortly – see Definition 1 in Section 2), when these are enumerated according to area. Roughly,
a walk is prudent if it never takes a step towards an already occupied site and it is 2-, 3-, 4-sided if it has,
respectively, 2, 3, or 4 allowed directions of growth; a prudent polygon is a prudent walk that is almost
closed. For area n, we will obtain a precise asymptotic formula (Theorem 2 below),

(3) PAn ∼ C(n) · 2n · ng,
one that has several distinguishing features: (i) the critical exponent is the transcendental number g = log2 3,
in sharp contrast with previously known examples where it is invariably a “small” rational number; (ii) the
multiplier C is no longer a constant, but a bounded quantity that oscillates around the value 0.10838 . . . and
does so with a minute amplitude of 10−9. The oscillations cannot be revealed by any standard numerical
analysis of the counting sequence PAn, but such a phenomenon may well be present in other models, and,
if so, it could change our whole view of the asymptotic behaviour of such models.

Plan and results of the paper. Prudent walks are defined in Section 2, where we also introduce the
2-sided, 3-sided, and 4-sided varieties. The enumeration of 2- and 3-sided walks and polygons by perimeter
is the subject of insightful papers by Bousquet-Mélou [3] and Schwerdtfeger [32] who obtained both exact
generating function expressions and precise asymptotic results. In Subsections 2.2–2.4, we provide the
algebraic derivation of the corresponding area results: the enumeration of 2- and 3- sided polygons according
to area is treated there; see Theorem 1 for our first main result. For completeness, we also derive a functional
equation for the generating function of 4-sided prudent polygons (according to area), which parallels an
incremental construction of [3, §6.5] – this functional equation suffices to determine the counting sequence in
polynomial time. Section 3, dedicated to the asymptotc analysis of the number of 3-sided prudent polygons,
constitutes what we feel to be the main contribution of the paper. We start from a q-hypergeometric
representation of the generating function of interest, PA(z), and proceed to analyse its singular structure:
it is found that PA(z) has poles at a sequence of points that accumulate geometrically fast to 1

2 ; then,

the Mellin transform technology [17] provides access to the asymptotic behaviour of PA(z), as z → 1
2 in

extended regions of the complex plane. Singularity analysis [20, Ch.VI–VII] finally enables us to determine
the asymptotic form of the coefficients PAn (see Theorem 2) and even derive a complete asymptotic expansion
(Theorem 3). As already mentioned, the non-standard character of the asymptotic phenomena found is a
distinctive feature. Section 4 concludes the paper with brief remarks relating to asymptotic methodology.
In particular, experiments suggest that similar asymptotic phenomena are likely to be encountered in the
enumeration of 4-sided prudent polygons.

A preliminary announcement of the results of the present paper is the object of the communication [1].

2. Prudent walks and polygons

One interesting sub-class of self-avoiding walks (SAWs) for which a number of exact solutions have been
recently found are prudent walks. Introduced by Préa [30], these are SAWs which never take a step towards an
already occupied node. Exact solutions of prudent walks on a 2-dimensional square lattice were later studied
by Duchi [11] and Bousquet-Mélou [3], who were able to enumerate certain sub-classes. The enumeration of
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(a) (b) (c) (d)

Figure 1. Examples of (A) a two-sided prudent SAW; (B) a three-sided prudent SAW;
(C) an (unrestricted) prudent SAW; (D) a prudent SAW leading to a prudent SAP.

the corresponding class of polygons is due to Schwerdtfeger [32]. In this section, we first recall the definition
of prudent walks and polygons, then summarize the known results of [3, 32] relative to their enumeration
by length or perimeter; see Subsection 2.1, where 2-, 3-, and 4-sided prudent walks are introduced. We
then examine the enumeration of polygons according to area, in each of the three non-trivial cases. The
case of 2-sided polygons is easy enough (Subsection 2.2). The main result of this section is Theorem 1 of
Subsection 2.3, which provides an explicit generating function for 3-sided polygons – it is on this expression
that our subsequent asymptotic treatment is entirely based. In the case of 4-sided (i.e., “general”) polygons,
we derive in Subsection 2.4 a system of functional equations that determines the generating function and
amounts to a polynomial-time algorithm for the generation of the counting sequence.

2.1. Main definitions and results. We use the same classification scheme as the authors of [3, 32]. By
definition, the endpoint of every prudent walk always lies on the boundary of the smallest lattice rectangle
which contains the entire walk, referred to here as the bounding box or just box. This property leads to a
natural classification of prudent walks (see Figure 1).

Definition 1. Let ω be a prudent walk of length n, and let ωi be the prudent walk comprising the first i
steps of ω. Let bi be the bounding box of ωi. Then ω is 1-sided if ωi ends on the north side of bi for each
i = 0, 1, . . . , n; 2-sided if each ωi ends on the north or east sides of bi; 3-sided if each ωi ends on the north,
east or west sides of bi (with one caveat, described below); and 4-sided (or unrestricted) if each ωi may end
on any side of bi.

Remark. The issue with 3-sided prudent walks is encapsulated by the walk (0, 0) → (1, 0) → (1,−1) →
(0,−1). If one draws the walk’s box after each (discrete) step, then it is clear that the walk always ends on
the north, east or west sides, seemingly fulfilling the 3-sided requirement. However, if the walk is taken to
be continuous, then along the step (1,−1)→ (0,−1), the endpoint is only on the south side. In general this
occurs when a walk steps from the south-east corner of its box to the south-west corner (or vice versa) when
the box has width one and non-zero height. Allowing such walks forces us to account for structures like
those in Figure 2; while this is certainly possible, it complicates a number of rational terms and contributes
little to the asymptotic behaviour of the model. For this reason we follow the examples of Bousquet-Mélou
and Schwerdtfeger [3, 32] and exclude these cases.

An equivalent definition of the 3-sided walks considered here is to forbid two types of steps: when the
box has non-zero width, a south step may not be followed by a west (resp. east) step when the walk is on
the east (resp. west) side of the box.

Walks (length). The enumeration of 1-sided prudent walks (also known as partially directed walks) is
straightforward, and the generating function for such walks is rational – we will not discuss these any
further. Duchi [11] successfully found the generating function for 2-sided walks, showing it to be algebraic.
Bousquet-Mélou [3] solved the problem of 3-sided prudent walks, finding the generating function to be non-
D-finite. For the unrestricted case, functional equations were found by both Duchi and Bousquet-Mélou, but
at present these equations remain unsolved.

3



(a) (b)

Figure 2. Examples of the (A) prudent walks and (B) prudent polygons which we exclude
from the definition of 3-sided.

The dominant singularity of the generating functions for 2-sided and 3-sided prudent walks is a simple
pole at ρ = 0.4030317168..., the smallest real root of 1 − 2x − 2x2 + 2x3. Dethridge and Guttmann [9]
conjecture that the same is true for unrestricted prudent walks, based on a computer-generated series of 100
terms. They also conjectured that the generating function for unrestricted prudent walks is non-holonomic1

(non-D-finite). Here is a summary of known results, with the estimates tagged with a question mark (?)
being conjectural ones:

(4)

Walks Generating function Asymptotic number References

2-sided algebraic κ2 · ρ−n, ρ−1 ' 2.481 Duchi [11], Bousquet-Mélou [3]

3-sided non-holonomic κ3 · ρ−n, ρ−1 ' 2.481 Bousquet-Mélou [3]

4-sided functional equation κ4 · ρ−n, ρ−1 ' 2.481 (?) Dethridge & Guttmann [9].

The values of the multipliers, after [9], are κ2 = 2.51..., κ3 = 6.33... and (estimated) κ4 ≈ 16.12.

Prudent polygons (perimeter). Self-avoiding polygons (SAPs) are self-avoiding walks which end at a
node adjacent to their starting point (excluding walks of a single step). If the walk has length n − 1 then
the polygon is said to have perimeter n.

Definition 2. A prudent self-avoiding polygon (prudent polygon) is a SAP for which the underlying SAW
is prudent. In the same way, a prudent polygon is 1-sided (resp. 2-sided, etc.) if its underlying prudent walk
is 1-sided (resp. 2-sided, etc.).

A 1-sided prudent polygon starting at (0, 0) must end at (0, 1), thus consisting only of a single row of cells
and having a rational generating function. The enumeration of 2- and 3-sided prudent polygons by perimeter
has been addressed by Schwerdtfeger [32]. The non-trivial 2-sided prudent polygons are essentially inverted
bargraphs [31], and so the 2-sided case has an algebraic generating function. Schwerdtfeger finds the 3-sided
prudent polygons to have a non-D-finite generating function.

If PP (k)(z) =
∑
n≥0 p

(k)
n zn is defined to be the half-perimeter generating function for k-sided prudent

polygons (so p
(k)
n is the number of k-sided prudent polygons with perimeter 2n), then the following holds [32]:

(i) the dominant singularity of PP (2)(z) is a square root singularity at σ = 0.2955977..., the unique real

root of 1 − 3x − x2 − x3. So p
(2)
n ∼ λ2σ

−nn−3/2 as n → ∞, where λ2 is a constant; (ii) the dominant
singularity of PP (3)(z) is a square root singularity at τ = 0.24413127..., where τ is the unique real root of

τ5 + 6τ3 − 4τ2 + 17τ − 4. So p
(3)
n ∼ λ3τ

−nn−3/2 as n → ∞, where λ3 is a constant. Schwerdtfeger has
furthermore classified 4-sided prudent polygons in such a way as to allow for functional equations in the
generating functions to be written. Unfortunately no one has thus far been able to obtain a solution from
said equations. We again present a summary of known results.

1 A function is said to be holonomic or D-finite if it is the solution to a linear differential equation with polynomial
coefficients; see [33, Ch. 6] and [20, Ap. B.4].
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(5)

Polygons (perimeter) Generating function Asymptotic number References

2-sided algebraic λ2 · σ−nn−3/2, σ−1 ' 3.382 Schwerdtfeger [32]

3-sided non-holonomic λ3 · τ−nn−3/2, τ−1 ' 4.096 Schwerdtfeger [32]

4-sided functional equation λ4 · υ−nn−δ, υ−1 ≈ 4.415 (?) Dethridge et al. [8]

The empirical estimates regarding 4-prudent polygons are taken from [8]. They are somewhat imprecise,
and it is suspected that the critical exponent satisfies δ = −3.5± 0.1, with δ = −7/2 a compatible value. check?

Prudent polygons (area). The focus of this paper is on the enumeration of prudent polygons by area,
rather than perimeter. The constructions we use here are essentially the same as Schwerdtfeger’s [32]; the
resulting functional equations and their solutions, however, turn out to be quite different, as will be revealed
by the peculiar singularity structure of the generating functions and the non-trival asymptotic form of the
coefficients. We have modified Schwerdtfeger’s construction for 4-sided prudent polygons slightly to allow
for an easier conversion into a recursive form (see Subsection 2.4).

We will denote the area generating function for k-sided prudent polygons by PA(k)(q) =
∑
n≥1 PA

(k)
n qn.

For 3- and 4-sided prudent polygons, it is necessary to measure more than just the area – in these cases,
additional catalytic variables will be used (see [3] for a more thorough explanation).

2.2. Enumeration of 2-sided polygons by area. The non-trivial 2-sided prudent polygons can be con-
structed from bargraphs. Let B(q) =

∑
n≥1 bnq

n be the area generating function for these objects. The area

generating function for bargraphs, B(q), is

B(q) =
q

1− 2q

and so bn = 2n−1 for n ≥ 1. (Bargraphs are a graphical representation of integer compositions.)

Proposition 1. The area generating function for 2-sided prudent polygons is

PA(2)(q) =
2q

1− 2q
+

2q

1− q
,

and so the number of such polygons is PA
(2)
n = 2n + 2 for n ≥ 1.

Proof. A 2-sided prudent polygon must end at either (0, 1) or (1, 0). Reflection in the line y = x will not
invalidate the 2-sided property, so it is sufficient to enumerate those polygons ending at (1, 0) and then
multiply the result by two.

The underlying 2-sided prudent walk cannot step above the line y = 1, nor to any point (x, y) where
x, y < 0. So any polygon beginning with a west step must be a single row of cells to the left of the y-axis.
The generating functions for these polygons is then q

1−q .

A polygon starting with a south or east step must remain on the east side of its box until it reaches the
line y = 1, at which point it has no choice but to take west steps back to the y-axis. It can hence be viewed
as an upside-down bargraph with north-west corner (0, 1). The area generating function for these objects is
B(q) = q

1−2q .

Adding these two possibilities together and doubling gives the result. �

2.3. Enumeration of 3-sided polygons by area. When constructing 3-sided prudent polygons, we will
use a single catalytic variable which measures width. To do so we will need to measure bargraphs by width.
Let B(q, u) =

∑
n≥1

∑
i≥1 bn,iq

nui be the area-width generating function for bargraphs (so bn,i is the number

of bargraphs with area n and width i).
The area-width generating function for bargraphs, B(q, u), satisfies the equation

(6) B(q, u) =
qu

1− q
+

qu

1− q
B(q, u),

which is obtained by successively adding columns. Accordingly, by solving the functional equation, we obtain

B(q, u) =
qu

1− q − qu
5



Figure 3. The decomposition used to construct 3-sided prudent polygons.

and so bn,i =
(
n−1
i−1
)

for n, i ≥ 1. (Clearly, bn,i counts compositions of n into i summands.)

Let W (q, u) =
∑
n≥1

∑
i≥1 wn,iq

nui be the area-width generating function for 3-sided prudent polygons

which end at (−1, 0) in a counter-clockwise direction. As we will see, this is the most complex type of 3-sided
prudent polygon; everything else is either a reflection of this or can be constructed from something simpler.

Lemma 1. The area-width generating function for 3-sided prudent polygons ending at (−1, 0) in a counter-
clockwise direction, W (q, u), satisfies the functional equation

(7) W (q, u) = qu(1 +B(q, u)) +
q

1− q
(W (q, u)−W (q, qu)) + qu(1 +B(q, u))W (q, qu)

Proof. The underlying prudent walk cannot step to any point (x, y) with x, y < 0, nor to any point with
x < −1. It must approach the final node (−1, 0) from above. So the only time the endpoint can be on the
west side of the box and not the north or south is when the walk is stepping south along the line x = −1.
So prior to reaching the line x = −1, the walk must in fact be 2-sided. Note that the north-west corner of
the box must be a part of of the polygon.

If the walk stays on or below the line y = 1, then (as will be seen in Proposition 1), it either reaches the
point (0, 1) with a single north step, or by forming an upside-down bargraph. This must then be followed by
a west step to (−1, 1), then a south step. This will form either a single square or a bargraph with a single
square attached to the north-west corner, giving the first term on the right-hand side of (7).

Since the north-west corner of the box of any of these polygons is part of the polygon, it is valid to add
a row of cells to the top of an existing polygon (so that the west sides line up). This can be done to any
polygon. If the new row is not longer than the width of the existing polygon we obtain the term∑

n≥1

∑
i≥1

wn,iq
nui ·

i∑
k=1

qk = q
∑
n≥1

∑
i≥1

wn,iq
nui · 1− qi

1− q
,

giving the second term in the right-hand side of (7).

Note. For the remainder of this subsection, we will omit unwieldy double or triple sums like the one above,
and instead give recursive relations only in terms of the generating functions.

Instead, the new row may be longer than the width of the existing polygon. In this case, as the walk steps
east along this new row, it will reach a point at which there are no occupied nodes south of its position, and
it will hence be able to step south in a prudent fashion. It must then remain on the east side of the box
until reaching the north side, at which point it steps west to x = −1 and then south to the endpoint. This
effectively means we have added a row of length equal to the width +1, and then (possibly) an arbitrary
bargraph. So we obtain

quW (q, qu)(1 +B(q, u))

which gives the final term in the right-hand side of (7). �

Lemma 2. The area-width generating function for 3-sided prudent polygons ending at (−1, 0) in a counter-
clockwise direction is

W (q, u) =

∞∑
m=0

F (q, qmu)

m−1∏
k=0

G(q, qku),

6



where

F (q, u) =
qu(1− q)2

(1− 2q)(1− q − qu)
, G(q, u) =

−q(1− q − u+ qu− q2u)

(1− 2q)(1− q − qu)
.

Proof. Substituting BW (q, u) = qu
1−q−qu into (7) and rearranging gives

(8) W (q, u) = F (q, u) +G(q, u)W (q, qu)

Substituting u 7→ uq gives

(9) W (q, qu) = F (q, qu) +G(q, qu)W (q, q2u)

and combining these yields

(10) W (q, u) = F (q, u) + F (q, qu)G(q, u) +G(q, u)G(q, qu)W (q, q2u).

Repeating for u 7→ q2u, q3u, ..., qMu will give

(11) W (q, u) =

M∑
m=0

F (q, qmu)

m−1∏
k=0

G(q, qku) +

M∏
m=0

G(q, qmu)W (q, qM+1u).

We now seek to take M →∞. To obtain the result stated in the Lemma, it is necessary to show that

M∑
m=0

F (q, qmu)

m−1∏
k=0

G(q, qku)

converges, and
M∏
m=0

G(q, qmu)W (q, qM+1u)→ 0

as M →∞ (both considered as power series in q and u).
Both F and G are bivariate power series in q and u. We have that

F (q, u) = qu+ q2(u+ u2) + q3(2u+ 2u2 + u3) +O(q4)

G(q, u) = q(−1 + u) + q2(−2 + u+ u2) + q3(−4 + 2u+ 2u2 + u3) +O(q4)

It follows that F (q, qmu) = O(qm+1) and G(q, qku) = O(q) for all m, k ≥ 0. So we have that

F (q, qmu)

m−1∏
k=0

G(q, qku) = O(q2m+1)

So considered as a power series in q and u, the first term in the right-hand side of (11) does converge to a
fixed power series as M →∞.

By the same argument, we have that
M∏
m=0

G(q, qmu)→ 0

as M →∞. So it suffices to show that W (q, qM+1u) converges to a fixed power series. But now every term
in the series W (q, u) has at least one factor of u (since every polygon has positive width), so it immediately
follows that W (q, qM+1u)→ 0 as M →∞.

So both terms in (11) behave as required as M →∞, and the result follows. �

Theorem 1. The area generating function for 3-sided prudent polygons is

PA(3)(q) =
−2q3(1− q)2

(1− 2q)2

∞∑
m=1

(−1)mq2m

(1− 2q)m(1− q − qm+1)

m−1∏
k=1

1− q − qk + qk+1 − qk+2

1− q − qk+1

+
2q(3− 10q + 9q2 − q3)

(1− 2q)2(1− q)
= 6q + 10q2 + 20q3 + 42q4 + 92q5 + 204q6 + 454q7 + 1010q8 + 2242q9 + 4962q10...

7



Proof. A 3-sided prudent polygon must end at (−1, 0), (0, 1) or (1, 0), in either a clockwise or counter-
clockwise direction. Setting u = 1 in W (q, u) gives the area generating function

(12) W (q, 1) =
−q3(1− q)2

(1− 2q)2

∞∑
m=1

(−1)mq2m

(1− 2q)m(1− q − qm+1)

m−1∏
k=1

1− q − qk + qk+1 − qk+2

1− q − qk+1
+
q(1− q)2

(1− 2q)2
.

A clockwise polygon ending at (−1, 0) can only be a single column, which has generating function

(13)
q

1− q
.

A counter-clockwise polygon ending at (0, 1) cannot step left of the y-axis or above the line y = 1. While
it is below this line, it must remain on the east side of its box, and upon reaching the line y = 1, it must
step west to the y-axis. It must therefore be a bargraph, with generating function

(14)
q

1− 2q
.

A reflection in the y-axis converts a polygon ending at (−1, 0) to one ending at (1, 0) in the opposite
direction, and reverses the direction of a polygon ending at (0, 1). So adding together and doubling (12),
(13) and (14) will cover all possibilities, and gives the stated result. �

2.4. Enumeration of 4-sided polygons by area. This case is included for completeness, as the results
are not needed in our subsequent asymptotic analysis. A 4-sided prudent polygon may end at any of
(0, 1), (1, 0), (0,−1), (−1, 0) in either a clockwise or counter-clockwise direction. Reflection and rotation
leads to an 8-fold symmetry, so it suffices to count only those ending at (−1, 0) in a counter-clockwise
direction. We modify Schwerdtfeger’s sub-classification slightly.

Let X(q, u, v) =
∑
n≥1

∑
i≥1
∑
j≥1 xn,i,jq

nuivj be the generating function for those polygons (class X )
for which removing the top row does not change the width or leave two or more disconnected pieces, with q
measuring area, u measuring width and v measuring height.

Let Y (q, u, v) =
∑
n≥1

∑
i≥1
∑
j≥1 yn,i,jq

nuivj be the generating function for the unit square plus those

polygons (class Y) not in X for which removing the rightmost column does not change the height or leave
two or more disconnected pieces, with q measuring area, u measuring height and v measuring width.

Let Z(q, u, v) =
∑
n≥1

∑
i≥1
∑
j≥1 zn,i,jq

nuivj be the generating function for the polygons (class Z) not
in X or Y, with q measuring area, u measuring width −1 and v measuring height.

Proposition 2. The generating functions X(q, u, v), Y (q, u, v) and Z(q, u, v) satisfy the functional equations

X(q, u, v) =
qv

1− q
[X(q, u, v)−X(q, qu, v)] +

qv

1− q
[Y (q, v, u)− Y (q, v, qu)]

+
quv

1− q
[Z(q, u, v)− qZ(q, qu, v)]

(15)

Y (q, u, v) = quv +
qv

1− q
[Y (q, u, v)− Y (q, qu, v)] +

qv2

1− q
[Z(q, v, u)− Z(q, v, qu)]

+quv[X(q, qv, u) + Y (q, u, qv) + qvZ(q, qv, u)]

(16)

(17) Z(q, u, v) =
qv

1− q
[Z(q, u, v)− Z(q, qu, v)] + qvY (q, qv, u) + quvZ(q, u, qv)

The generating function for 4-sided prudent polygons is then given by

PA(4)(q) = 8[X(q, 1, 1) + Y (q, 1, 1) + Z(q, 1, 1)]

= 8q + 24q2 + 80q3 + 248q4 + 736q6 + 2120q7 + 5960q8 + 16464q9 + 44808q10 + . . .

Proof. As with the 3-sided polygons in Lemma 1, the walk cannot visit any point (x, y) with x, y < 0 or
with x < −1. The walk must approach (−1, 0) from above, and must do so immediately upon reaching the
line x = −1. So every polygon contains the north-west corner of its box. As in the 3-sided case, this leads
to a construction involving adding rows to the top of existing polygons.
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X :

Y :

Z :

Figure 4. The decompositions used to construct 4-sided prudent polygons in X ,Y,Z
(from top to bottom).

By definition, a polygon in X of width i can be constructed by adding a row of length ≤ i to the top of
any polygon of width i. Adding a row to a polygon in X gives∑

n≥1

∑
i≥1

∑
j≥1

xn,i,jq
nuivj · v

i∑
k=1

qk = qv
∑
n≥1

∑
i≥1

∑
j≥1

xn,i,jq
nuivj · 1− qi

1− q
,

which is the first term in the right-hand side of (15). Performing similar operations for polygons in Y and
Z gives the rest of (15).

Note. Again, for the remainder of this subsection we give recursive relations purely in terms of the generating
functions.

Polygons not in X must also contain the north-east corner of their box. This leads to another construction
involving adding columns to the right-hand side of existing polygons. To obtain a polygon in Y of height i,
a new column of height ≤ i should be added to a polygon of height i which contains the north-east corner
of its box. So adding a column to a Y polygon gives

qv

1− q
Y (q, u, v)− qv

1− q
Y (q, qu, v)

which is the second term in the right-hand side of (16). Performing a similar operation for Z polygons gives
the third term in (16).

Adding a new column to a polygon in X containing its north-east corner can be viewed as adding a
sequence of rows on top of one another, and so if the new column has height ≥ 2 then the resulting polygon
is actually in X . If the new column has height one, however, the resulting polygon is in Y. Isolating those
polygons in X which contain their north-east corner is difficult; however, we can perform an equivalent
construction by adding a row of length i+ 1 to any polygon of width i. Doing so to a polygon in X gives

quvX(q, qv, u)

and combining this with the same for Y and Z gives the fourth term in (16). The quv term is the unit
square.

Polygons in Z also contain the south-east corner of their box. In a similar fashion to the constructions
for Y and Z, we can add a new row to the bottom of a polygon containing its south-east corner. To do so

9



to a polygon in Z of width i + 1 (remember u measures width −1) requires a new row of width ≤ i, so we
obtain

qv

1− q
Z(q, u, v)− qv

1− q
Z(q, qu, v)

which is the first term in the right-hand side of (17).
Adding a new row to the bottom of something in X (containing its south-east corner) will give back

something in X , which will have been constructed by an alternate method described above. Adding a new
row of length ≥ 2 to a polygon in Y will result in another polygon in Y, which will also be constructible via
alternate means. So we are left only with the possibility of adding a row of length one to the bottom of a
polygon in Y. This is analogous to the above description of adding a column of height one to the right of a
polygon in X ; we now proceed by adding a column of height i+ 1 to a polygon in Y or Z of height i. Doing
so gives the final two terms in (17). �

3. Asymptotics

For most lattice object problems, finding and solving the functional equation(s) is the difficult part. Once
a generating function has been found, the dominant singularity is often quite obvious, and so the asymptotic
form of the coefficients can be easily described. The problem of 3-sided prudent polygons, however, turns out
to be rather the opposite. The functional equation (7) was not terribly difficult to obtain, and its solution
is relatively simple – it only comprises a sum of products of rational functions of q.

The asymptotic behaviour of this model, on the other hand, is considerably more complex than any model
we have seen before. The dominant singularity at q = 1/2 is not even apparent from the representation of
Theorem 1. As we shall see, there is in fact an accumulation of poles of the generating function2 PA(z)
towards q = 1/2. Accordingly, the nature of the dominant singularity at q = 1/2 is rather unusual: a singular
expansion as q approaches 1/2 can be determined, but it involves periodic fluctuations, a strong divergence
from the standard simple type Zα(logZ)β , where Z := 1 − z/ρ, with ρ (here equal to 1/2) the dominant
singularity of the generating function under consideration. This is revealed by a Mellin analysis of PA(z)
near its singularity, and the periodic fluctuations, which appear to be in a logarithmic scale, eventually echo
the geometric speed with which poles accumulate at 1/2. Then, thanks to a suitable extension to the complex
plane, the singular expansion can be transfered to coefficients by the method known as singularity analysis [20,
Ch. VI]. The net result is, for the coefficients PAn, an asymptotic form that involves a standard element 2nng,
but multiplied by a periodic function in log2 n. The presence of oscillations, the transcendental character of
the exponent g = log2 3, and the minute amplitude of these oscillations, about 10−9, are noteworthy features
of this asymptotic problem.

Theorem 2. The number PAn ≡ PA(3)
n of 3-sided prudent polygons of area n satisfies the estimate

(18) PAn = [κ0 + κ(log2 n)] 2n · ng +O
(
2n · ng−1 log n

)
, n→∞,

where the critical exponent is

g = log2 3
.
= 1.58496

and the “principal” constant is

(19) κ0 =
π

9 log 2 sin(πg) Γ(g + 1)

∞∏
j=0

(1− 1
32−j)(1− 3

22−j)

(1− 1
22−j)2

.
= 0.10838 42946.

The function κ(u) is a smooth periodic function of u, with period 1, mean value zero, and amplitude
.
=

1.54623 · 10−9, which is determined by its Fourier series representation:

κ(u) =
∑

k∈Z\{0}

κke
2ikπu, with κk = κ0 ·

sin(πg)

sin(πg + 2ikπ2/ log 2)
· Γ(1 + g)

Γ(1 + g + 2ikπ/ log 2)
.

2 Throughout this section only dedicated to 3-sided prudent polygons, we omit redundant superscripts and let PAn and

PA(q) represent, respectively, what was denoted by PA
(3)
n and PA(3)(q) in Section 2.
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Quantity at q = 1/2 reference

u =
q

1− q 1 Eq. (23)

v =
1− q + q2

1− q
3

2
Eq. (23)

a =
q2

1− q + q2
1

3
Eq. (41)

γ =
log v

log 1/q
log2(3/2) Eq. (50)

C(q) =
2q(3− 10q + 9q2 − q3)

(1− q)(1− 2q)2
∼ 1

4(1− 2q)2
Eq. (21) and (26)

A(q) =
2q(1− q)2

(1− 2q)2
∼ 1

4(1− 2q)2
Eq. (21) and (25)

Figure 5. A table of some of the recurring quantities of Section 3, their reduction at q = 1/2
and the relevant equations in the text.

The proof of the theorem occupies the next subsections, whose organization reflects the informal descrip-
tion given above. We shall then discuss the fine structure of subdominant terms in the asymptotic expansion
of PAn; cf Theorem 3. Some quantities that appear repeatedly throughout this section are tabulated in
Figure 5 for convenience.

3.1. Resummations. We start with a minor reorganization of the formula provided by Theorem 1: com-
pletion of the finite products that appear there leads to the equivalent q–hypergeometric form

(20) PA(q) = C(q) +A(q) ·Q(1; q) ·
∞∑
n=1

(−1)nq2n

(1− 2q)n
· 1

Q(qn; q)
.

Here and throughout this section, the notations are

(21) C(q) :=
2q(3− 10q + 9q2 − q3)

(1− q)(1− 2q)2
, A(q) :=

2q(1− q)2

(1− 2q)2
,

and

(22) Q(z; q) := Q (z; q;u(q), v(q)) , where Q(z; q;u, v) =
(vz; q)∞
(quz; q)∞

,

with

(23) u(q) =
q

1− q
, v(q) =

1− q + q2

1− q
.

In the definition of Q, the notation (x; q)n represents the usual q-Pochhammer symbol:

(x; q)n = (1− x)(1− qx) · · · (1− xqn−1).

Lemma 3. The function PA(q) is analytic in the open disc |q| <
√

2 − 1, where it admits the convergent
q-hypergeometric representation

(24) PA(q) = C(q) +A(q)
(v; q)∞
(qu; q)∞

∞∑
n=1

(−1)n
q2n

(1− 2q)n
(uqn+1; q)∞
(vqn; q)∞

,

with A(q), C(q), u ≡ u(q), v ≡ v(q) rational functions given by (21) and (23).

Proof. The (easy) proof reduces to determining sufficient analyticity regions for the various components of
the basic formula (20), some of the expansions being also of later use. First, the functions A(q) and C(q)
are meromorphic for |q| < 1, with only a pole at q = 1/2. They can be expanded about the point q = 1/2
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to give

A =
1

4(1− 2q)2
+

1

4(1− 2q)
− 1

4
− 1− 2q

4
(25)

C =
1

4(1− 2q)2
+

5

4(1− 2q)
+

3

4
− 17(1− 2q)

4
+O((1− 2q)2)(26)

The function Q(1; q) is analytic for |q| < 1 except at the points for which (uq; q)∞ = 0, that is, the points

σ for which 1− σ − σn = 0 for n ≥ 2. The smallest of these (in modulus) is ϕ = (
√

5− 1)/2 = 0.618034...,
a root of 1 − q − q2. So Q(1; q) is certainly analytic at q = 1/2; the constant term in its expansion about
q = 1/2 is

Q(1; 1/2) =
(3/2; 1/2)∞
(1/2; 1/2)∞

= −0.18109782...

In similar fashion, 1/Q(z; q) is bivariate analytic at points (z, q) for which |q| < 1, except when (vz; q)∞ =
0. This occurs at points (zj , q) where zj := 1

vqj , for j ≥ 0. In particular, for |q| < θ, where3

(27) θ
.
= 0.56984 := the unique real root of 1− 2x+ x2 − x3,

we have |z0| > θ, hence |zj | > θ, for all j ≥ 0. So, 1/Q(z; q) is analytic in the region {(z, q) : |z|, |q| < θ}.
Thus, for all n ≥ 1, the functions 1/Q(qn; q) are all analytic and uniformly bounded by a fixed constant, for
|q| < r0, where r0 is any positive number such that r0 < θ.

From these considerations, it follows that the central infinite sum that figures in (20) is, when |q| < r1,
dominated in modulus by a positive multiple of the series

(28)
∑
n

r2n1
(1− 2r1)n

,

provided that r1 < θ and r21/(1 − 2r1) < 1. Any positive r1 satisfying r1 <
√

2 − 1 is then admissible.
In that case, for |q| < r1, the central sum is a normally convergent sum of analytic functions; hence, it is
analytic. �

The radius of analyticity of PA(q) is in fact 1/2. In order to obtain larger regions of analyticity, one needs
to improve on the reasoning underlying the derivation of (28). This will result from a transformation of the
central infinite sum in (20), namely,

(29) S(q) :=
∑
n≥1

(−1)n
q2n

(1− 2q)n
· 1

Q(qn; q)
.

Only the bound 1/Q(qn; q) = O(1) was used in the proof of Lemma 3, but we have, for instance, 1/Q(qn; q) =
1 +O(qn), as n→∞, and a complete expansion exists. Indeed, since 1/Q is bivariate analytic in |z|, |q| < θ,
its z-expansion at the origin is of the form

(30)
1

Q(z; q)
= 1 +

∑
ν≥1

dν(q)zν .

In particular, at z = qn, we have

(31)
1

Q(qn; q)
= 1 +

∑
ν≥1

dν(q)qνn.

Now, consider the effect of an individual term dν(q) (instead of 1/Q(qn; q)) on the sum (29). The identity

(32)
∑
n≥1

(−1)n
q2n

(1− 2q)n
qνn = − qν+2

1− 2q + qν+2

3 The function v(q) = 1 + q2/(1 − q), having nonnegative Taylor coefficients, satisfies |v(q)| ≤ v(|q|), for |q| < 1; thus,
|1/v(q)| ≥ 1/v(|q|). Also, 1/v(x) decreases from 1 to 0 for x ∈ [0, 1]. Hence, with θ the real root of 1/v(θ) = θ, it follows that

|z0| > θ as soon as |q| < θ.

12



provides an analytic form for the sum on the left, as long as q is not a pole of the right-hand side. Proceeding
formally, we then get, with (31) and (32), upon exchanging summations in the definition (29) of S(q), a form
of PA(q) that involves infinitely many meromorphic elements of the form 1/(1− 2q + qν+2).

We shall detail validity conditions for the resulting expansion; see (34) below. What matters, as seen
from (32), is the location of poles of the rational functions (1−2q+ qν+2)−1, for ν ≥ 1. Define the quantities

(33) ζk := the root in [0, 1] of 1− 2x+ xk+2 = 0.

We have

ζ0 = 1; ζ1 =

√
5− 1

2

.
= 0.618, ζ2

.
= 0.543, ζ3

.
= 0.518, . . .

and ζk → 1
2 as k increases. The location of the complex roots of 1 − 2x + xk+2 = 0 is discussed at length

in [20, Ex. V.4, p 308], as it is related to the analysis of longest runs in binary strings: a consequence of
the principle of the argument (or Rouché’s Theorem) is that, apart from the positive real root ζk, all other
complex roots lie outside the disc |z| < 3

4 . The statement below builds upon this discussion and provides
an extended analyticity region for PA(q) as well as a justification of the validity of the expansion resulting
from (31) and (32), which is crucial to subsequent developments.

Lemma 4. The generating function PA(q) is analytic at all points of the slit disc

D0 :=
{
q : |q| < 55

100 ; q 6∈ [ 12 ,
55
100 ]

}
.

For q ∈ D0, the function PA(q) admits the analytic representation

(34) PA(q) = C(q)−A(q)
(v; q)∞
(qu; q)∞

 q2

(1− q)2
+
∑
ν≥1

dν(q)
qν+2

1− 2q + qν+2

 ,
where

dν(q) = [zν ]
1

Q(z; q)
≡ [zν ]

(quz; q)∞
(vz; q)∞

.

In the disc |z| < 55
100 punctured at 1

2 , the function PA(q) is meromorphic with simple poles at the points
ζ2, ζ3, . . ., with ζk as defined in (33). Consequently, the function PA(q) is non-holonomic, and, in particular,
transcendental.

Proof. The starting point, noted in the proof of lemma 3, is that fact that 1/Q(z; q) is bivariate analytic at
all points (z, q) such that |z|, |q| < θ, where θ

.
= 0.56984 is specified in (27). Cauchy’s coefficient formula,

dν(q) =
1

2iπ

∫
|z|=θ1

1

Q(z; q)

dz

zν+1
,

is applicable for any θ1 such that 0 < θ1 < θ. Let us set θ1 = 56
100 . Then, since 1/Q(z; q) is analytic, hence

continuous, hence bounded, for |z| ≤ θ1 and |q| ≤ θ1, trivial bounds applied to the Cauchy integral yield

(35) |dν(q)| < C · θ−ν1 ,

for some absolute constant C > 0.
Consider the double sum resulting from the substitution of (31) into (29),

S(q) =
∑
n≥1

(−1)n
q2n

(1− 2q)n
·
(

1 +
∑
ν≥1

dν(q)qνn
)
.

If we constrain q to be small, say |q| < 1
10 , we see from (35) that the double sum is absolutely convergent.

Hence, the form (34) is justified for such small values of q. We can then proceed by analytic continuation
from the right-hand side of (34). The bound (35) grants us the fact that the sum that appears there is indeed
analytic in D0. The statements, relative to the analyticity domain and the alternative expansion (34) follow.
Finally, since the value 1

2 corresponds to an accumulation of poles, the function PA(q) is non-holonomic
(see, e.g., [16] for context). �
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As an immediate consequence of the dominant singularity being at 1
2 , the coefficients PAn must obey a

weak asymptotic law of the form

PAn = 2nθ(n), where lim sup
n→∞

θ(n)1/n = 1,

that is, θ(n) is a (currently unknown) subexponential factor.

More precise information requires a better characterization of the behaviour of S(q), as q approaches the
dominant singularity 1

2 . This itself requires a better understanding of the coefficients dν(q). To this end, we
state a general and easy lemma about the coefficients of quotients of q-factorials.

Lemma 5. Let a be a fixed complex number satisfying |a| < 1 and let q satisfy |q − 1
2 | <

1
10 . One has,

for ν ≥ 1

(36) [zν ]
(az; q)∞
(z; q)∞

=
1

(q; q)∞

∞∑
j=0

(aq−j ; q)∞
(q−j ; q)j

· qjν .

Proof. The function h(z) := (az; q)∞/(z; q)∞ has simple poles at the points zj := q−j , for j ≥ 0. We have

h(z) ∼
z→zj

ej(a; q)

1− zqj
, ej(a; q) :=

(aq−j ; q)∞
(q−j ; q)j(q; q)∞

.

The usual expansion of coefficients of meromorphic functions [20, Th. IV.10, p. 258] immediately implies a
terminating form for any J ∈ Z≥0:

(37) [zν ]h(z) =

J∑
j=0

ej(a; q)qjν +O(RnJ),

where we may adopt RJ = 3
2q
−J .

The last estimate (37) corresponds to an evaluation by residues of the Cauchy integral representation of
coefficients,

[zν ]h(z) =
1

2iπ

∫
|z|=RJ

h(z)
dz

zν+1
.

Now, let J tend to infinity. The quantity RJ lies approximately midway between two consecutive poles,
q−J and q−J−1, and it can be verified elementarily that, throughout |z| = RJ , the function h(z) remains
bounded in modulus by an absolute constant (this requires the condition |a| < 1). It then follows that we
can let J tend to infinity in (37). For ν ≥ 1, the coefficient integral taken along |z| = RJ tends to 0, so that,
in the limit, the exact representation (36) results. �

The formula (36) is equivalent to the partial fraction expansion (Mittag-Leffler expansion; see [22, §7.10])
of the function h(z), which is meromorphic in the whole complex plane:

(38)
(az; q)∞
(z; q)∞

= 1 +
1

(q; q)∞

∞∑
j=0

(aq−j ; q)∞
(q−j ; q)j

zqj

1− zqj
.

(The condition |a| < 1 ensures the convergence of this expansion.) As observed by Christian Krattenthaler
(private communication, June 2010), this last identity is itself alternatively deducible from the q-Gauß
identity4

2φ1

[
A,B
C

; q,
C

AB

]
=

(C/A; q)∞(C/B; q)∞
(C; q)∞(C/(AB); q)∞

,

upon noticing that

h(z) =
(a; q)∞

(1− z)(q; q)∞
2φ1

[
q/a, z
qz

; q, a

]
.

4 For notations, see Gasper and Rahman’s reference text [21]: page 3 (definition of φ) and Eq. (1.5.1), page 10 (q-Gauß
summation).
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A direct consequence of Lemma 5 is an expression for the coefficients dν(q) = [zν ]Q(z; q)−1, with Q(z; q)
defined by (22):

(39) dν(q) =
1

(q; q)∞

∞∑
j=0

(quv−1q−j ; q)∞
(q−j ; q)j

·
(
vqj
)ν
, ν ≥ 1.

To see this, set

a = quv−1 =
q2

1− q + q2
,

and replace z by zv in the definition of h(z). Note that at q = 1/2, we have u = 1, v = 3/2, a = 1/3, so
that, for q ≈ 1/2, we expect dν(q) to grow roughly like (3/2)ν .

Summarizing the results obtained so far, we state:

Proposition 3. The generating function of 3-sided prudent polygons satisfies the identity

(40) PA(q) = D(q)− q2A(q)
(a; q)∞(v; q)∞
(q; q)∞(av; q)∞

∞∑
ν=1

∞∑
j=0

[
(aq−j ; q)j
(q−j ; q)j

· vν q(j+1)ν

1− 2q + qν+2

]
,

where

(41) a =
q2

1− q + q2
, v =

1− q + q2

1− q
, D(q) = C(q)− q2

(1− q)2
A(q)

(v; q)∞
(av; q)∞

,

and A(q), C(q) are rational functions defined in Equation (21).

Proof. The identity is a direct consequence of the formula (39) for dν(q) and of the expression for PA(q)
in (34), using the equivalence av = qu and the simple reorganization

(aq−j ; q)∞ = (aq−j ; q)j · (a; q)∞.

Previous developments imply that the identity (40) is, in particular, valid in the real interval (0, 12 ). The
trivial equality

(42)
(aq−j ; q)j
(q−j ; q)j

=
(a− q)(a− q2) · · · (a− qj)
(1− q)(1− q2) · · · (1− qj)

then shows that the expression on the right-hand side indeed represents a bona fide formal power series in q,
since the q-valuation of the general term of the double sum in (40) increases with both j and ν. �

The formula (40) of Proposition 3 will serve as the starting point of the asymptotic analysis of PA(q) as
q → 1/2 in the next subsection. Given the discussion of the analyticity of the various components in the proof
of Lemma 3, the task essentially reduces to estimating the double sum in a suitable complex neighbourhood
of q = 1/2.

3.2. Mellin analysis. Let T (q) be the double sum that appears in the expression (40) of PA(q). We shall
take it here in the form

(43) T =

∞∑
j=0

(aq−j ; q)j
(q−j ; q)j

[ ∞∑
ν=1

vν q(j+1)ν

1− 2q + qν+2

]
=

∞∑
j=0

(aq−j ; q)j
(q−j ; q)j

Hj(q),

with

(44) Hj(q) :=

∞∑
ν=1

vν q(j+1)ν

1− 2q + qν+2
.

We will now study the functions Hj and propose to show that those of greater index contribute less significant
terms in the asymptotic expansion of PA(q) near q = 1/2. In this way, a complete asymptotic expansion of
the function PA(q), hence of its coefficients PAn, can be obtained.

The main technique used here is that of Mellin transforms: we refer the reader to [17] for details of the
method. The principles are recalled in §3.2.1 below. We then proceed to analyse the double sum T of (43)
when q is real and q tends to 1/2. The corresponding expansion is fairly explicit and it is obtained at a
comparatively low computational cost in §3.2.2. We finally show in §3.2.3 that the expansion extends to a
sector of the complex plane around q = 1/2.
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3.2.1. Principles of the Mellin analysis. Let f(x) be a complex function of the real argument x. Its
Mellin transform, denoted by f?(s) or M[f ], is defined as the integral

(45) M[f ](s) ≡ f?(s) :=

∫ ∞
0

f(x)xs−1 dx,

where s may be complex. It is assumed that f(x) is locally integrable. It is then well known that if f satisfies
the two asymptotic conditions

f(x) =
x→0

O(xα), f(x) =
x→+∞

O(xβ),

with α > β, then f? is an analytic function of s in the strip of the complex plane,

−α < <(s) < −β,

also known as a fundamental strip. Then, with c any real number of the interval (−α,−β), the following
inversion formula holds (see [38, §VI.9] for detailed statements):

(46) f(x) =
1

2iπ

∫ c+i∞

c−i∞
f?(s)x−s ds.

There are then two essential properties of Mellin transfoms.

(M1) Harmonic sum property. If the pairs (λ, µ) range over a denumerable subset of R × R>0 then one
has the equality

(47) M

∑
(λ,µ)

λf(µx)

 = f?(s) ·

∑
(λ,µ)

λµ−s

 .

That is to say, the harmonic sum
∑
λf(µx) has a Mellin transform that decomposes as a product

involving the transform of the base function (f?) and the generalized Dirichlet series (
∑
λµ−s)

associated with the “amplitudes” λ and the “frequencies” µ. Detailed validity conditions, spelled
out in [17], are that the exchange of summation (

∑
, in the definition of the harmonic sum) and

integral (
∫

, in the definition of the Mellin transform) be permissible.
(M2) Mapping properties. Poles of transforms are in correspondence with asymptotic expansions of the

original function. More precisely, if the Mellin transform F ? of a function F admits a meromorphic
extension beyond the fundamental strip, with a pole of some order m at some point s0 ∈ C, with
<(s0) < −α, then it contributes an asymptotic term of the form P (log x)x−s0 in the expansion
of F (x) as x→ 0, where P is a computable polynomial of degree m− 1. Schematically:

(48) F ?(s) :
s→s0

C

(s− s0)m
=⇒ F (x) :

x→0
P (log x)x−s0 = Res

(
f?(s)x−s

)
s=s0

Detailed validity conditions, again spelled out in [17], are a suitable decay of the transform F ?(s),
as =(s)→ ±∞, so as to permit an estimate of the inverse Mellin integral (46) by residues – in (48),
the expression is then none other than the residue of f?(s)x−s at s = s0.

The power of the Mellin transform for the asymptotic analysis of sums devolves from the application of
the mapping property (M2) to functions F (x) =

∑
λf(µx) that are harmonic sums in the sense of (M1).

Indeed, the factorization property (47) of (M1) makes it possible to analyse separately the singularities
that arise from the base function (via f?) and from the amplitude–frequency pairs (via

∑
λµ−s); hence an

asymptotic analysis results, thanks to (M2).

3.2.2. Analysis for real values of q → 1/2. Our purpose now is to analyse the quantity T of (43) with
q < 1/2, when q → 1/2. This basically reduces to analysing the quantities Hj(q) of (44). Our approach
consists of setting t = 1− 2q and decoupling5 the quantities t and q. Accordingly, we define the function

(49) hj(t) ≡ hj(t; q, v) := q−2
∞∑
ν=1

(vqj)ν

1 + tq−ν−2
,

5 An instance of such a decoupling technique appears for instance in De Bruijn’s reference text [6, p. 27].
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so that

Hj(q) = hj(t; q, v(q)),

with the definition (44). We shall let t range over R≥0 but restrict the parameter q to a small interval
(1/2 − ε0, 1/2 + ε0) of R and the parameter v to a small interval of the form (3/2 − ε1, 3/2 + ε11), since
v(1/2) = 3/2. We shall write such a restriction as

q ≈ 1

2
, v ≈ 3

2
,

with the understanding that ε0, ε1 can be taken suitably small, as the need arises. Thus, for the time being,
we ignore the relations that exist between t and the pair q, v, and we shall consider them as independent
quantities.

As a preamble to the Mellin analysis, we state an elementary lemma

Lemma 6. Let q be restricted to a sufficiently small interval containing 1/2 and v to a sufficiently small
interval containing 3/2. Each function hj(t) defined by (49) satisfies the estimate

(50) hj(t) =
t→+∞

O

(
1

t

)
, hj(t) =

t→0


O(1) if j ≥ 1

O(t−γ) if j = 0, with γ =
log v

log(1/q)
.

For γ, we can also adopt any fixed value larger than log2(4/3)
.
= 0.415, provided q and v are taken close

enough to 1/2 and 3/2, respectively.

Proof. Behaviour as t→ +∞. The inequality (1+tq−ν−2)−1 < t−1qν+2 implies by summation the inequality

hj(t) ≤ q−2t−1
∞∑
ν=1

vνqjνqν = O

(
1

t

)
, t→ +∞,

given the convergence of the geometric series
∑
ν vq

(j+1)ν , for v ≈ 3/2 and q ≈ 1/2.

Behaviour as t→ 0. First, for the easy case j ≥ 1, the trivial inequality (1 + tq−ν−2)−1 ≤ 1 implies

hj(t) = O

(∑
ν

(vqj)ν

)
= O(1), t→ 0.

Next, for j = 0, define the function

ν0(t) := −2 +
log(1/t)

log(1/q)
,

so that tq−ν−2 < 1, if ν < ν0(t), and tq−ν−2 ≥ 1, if ν ≥ ν0(t). Write
∑
ν =

∑
ν0

+
∑
ν≥ν0 . The sum

corresponding to ν ≥ ν0 is bounded from above as in the case of t→ +∞,∑
ν≥ν0(t)

vν

1 + tq−ν−2
≤

∑
ν≥ν0(t)

vνt−1qν+2 = O
(
t−1(vq)ν0

)
= O

(
t−1(vq)ν0

)
, t→ 0,

and the last quantity is O(t−γ) for γ = (log v)/ log(1/q). The sum corresponding to ν < ν0 is dominated by
its later terms and is accordingly found to be O(t−γ). The estimate of h0(t), as t→ 0, results. �

We can now proceed with a precise asymptotic analysis of the functions hj(t), as t→ 0. Lemma 6 implies
that each hj(t) has its Mellin transform h?j (s) that exists in a non-empty fundamental strip left of <(s) = 1.
In that strip, the Mellin transform is

(51)

M[hj(t)] = q−2M
[

1

1 + t

]
·

( ∞∑
ν=1

(vqj)ν(q−ν−2)−s

)
(by the Harmonic Sum Property (M1))

= q−2M
[

1

1 + t

]
· vqj+3s

1− vqj+s
(by summation of a geometric progression)

= q−2
π

sinπs

vqj+3s

1− vqj+s
(by the classical form of M[(1 + t)−1]).
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The Mellin transform of (1 + t), which equals π/ sin(πs), admits 0 < <(s) < 1 as the fundamental strip, so
this condition is necessary for the validity of (51). In addition, the summability of the Dirichlet series, here
plainly a geometric series, requires the condition |vqj+s| < 1; that is,

<(s) > −j +
log v

log 1/q
.

In summary, the validity of (51) is ensured for s satisfying

λ < <(s) < 1, with λ := max

(
0,−j +

log v

log 1/q

)
.

Lemma 7. For q ≈ 1/2 and v ≈ 3/2 restricted as in Lemma 6, the function hj(t) admits an exact
representation, valid for any t ∈ (0, q−3),

(52) hj(t) = (−1)j
vq3γ−2j−2

log 1/q
tj−γΠ(log1/q t) + q−2

∑
r≥0

(−1)r
vqj−3r

1− vqj−r
tr.

Here,

γ ≡ γ(q) :=
log v

log 1/q

so that γ ≈ log2
3
2

.
= 0.415, when q ≈ 1

2 ; the quantity Π(u) is an absolutely convergent Fourier series,

(53) Π(u) :=
∑
k∈Z

pke
−2ikπu,

with coefficients pk given explicitly by

(54) pk =
π

sin(πγ + 2ikπ2/(log 1/q))
.

Observe that the pk decrease geometrically with k. For instance, at q = 1/2, one has

(55) pk = O
(
e−2kπ

2/ log 2
)
.
= O

(
4.28 · 10−13

)k
,

as is apparent from the exponential form of the sine function. Consequently, even the very first coefficients
are small: at q = 1/2, typically,

|p1| = |p−1|
.
= 2.69 · 10−12, |p2| = |p−2|

.
= 1.15 · 10−24, |p3| = |p−3|

.
= 4.95 · 10−37.

Proof. We first perform an asymptotic analysis of hj(t) as t→ 0+. This requires the determination of poles
to the left of the fundamental strip of h?j (s), and these arise from two sources.

— The relevant poles of π/ sinπs are at s = 0,−1,−2, . . .; they are simple and the residue at s = −r is
(−1)r.

— The quantity (1− vqj+s)−1 has a simple pole at the real point

(56) σ0 := −j +
log v

log 1/q
,

as well as complex poles of real part σ0, due to the complex periodicity of the exponential function
(et+2iπ = et). The set of all poles of (1− vqj+s)−1 is then{

σ0 +
2ikπ

log 1/q
, k ∈ Z

}
.

The proof of an asymptotic representation (that is, of (52), with ’∼’ replacing the equality sign there) is
classically obtained by integrating h?j (s)t

−s along a long rectangle with corners at −d− iT and c+ iT , where
c lies within the fundamental strip (in particular, between 0 and 1) and d will be taken to be of the form
−m − 1

2 , with m ∈ Z≥0, and smaller than −j + γ. In the case considered here, there are regularly spaced
poles along <(s) = −j + γ, so that one should take values of T that are such that the line =(s) = T passes
half-way between poles. This, given the fast decay of π/ sinπs as |=(s)| increases and the boundedness of
the Dirichlet series (1 − vqj+s)−1 along =(s) = ±T , allows us to let T tend to infinity. By the Residue
Theorem applied to the inverse Mellin integral (46), we collect in this way the contribution of all the poles
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at −j+γ+2ikπ/(log 1/q), with k ∈ Z, as well as the m+1 initial terms of the sum
∑
r in (52). The resulting

expansion is of type (52) with the sum
∑
r truncated to m+ 1 terms and an error term that is O(tm+1/2).

In general, what the Mellin transform method gives is an asymptotic rather than exact representation
of this type. Here, we have more. We can finally let m tend to infinity and verify that the inverse Mellin
integral (46) taken along the vertical line <(s) = −m − 1

2 remains uniformly bounded in modulus by a

quantity of the form ctmq−3m, for some c > 0. In the limit m → +∞, the integral vanishes (as long as
tq−3 < 1), and the exact representation (52) is obtained. �

We can now combine the identity provided by Lemma 7 with the decomposition of the generating
function PA(q) as allowed by Equations (43) and (44), which flow from Proposition 3. We recall that
Hj(q) = hj(t; q, v(q)).

Proposition 4. The generating function PA(q) of prudent polygons satisfies, for q in a small enough
interval6 of the form (1/2− ε, 1/2) (for some ε > 0), the identity

(57) PA(q) = D(q)− q2A(q)
(a; q)∞(v; q)∞
(q; q)∞(av; q)∞

T (q),

where the notations are those of Proposition 3, and the function T (q) admits the exact representation

(58) T (q) = (1− 2q)−γ ·Π
(

log(1− 2q)

log 1/q

)
U(q) + V (q), γ ≡ log v

log 1/q
,

with Π(u) given by Lemma 7, Equations (53) and (54). Set

t = 1− 2q.

The “singular series” U(q) is

(59) U(q) =
vq3γ−2

log 1/q

(−q−1t; q)∞
(−aq−2t; q)∞

, γ =
log v

log 1/q
;

and the “regular series” V (q) is

(60) V (q) = − (q; q)∞
(a; q)∞

q−2

1 + q−2t
+ q−2

(q; q)∞(av; q)∞
(a; q)∞(v; q)∞

∞∑
r=0

(a−1v−1q; q)r
(v−1q; q)r

(
−aq−2t

)r
.

Proof. We start from T (q) as defined by (43). The q-binomial theorem is the identity [21, §1.3]

(61)
(θz; q)∞
(z; q)∞

=

∞∑
n=0

(θ; q)n
(q; q)n

zn.

Now consider the first term in the expansion (52) of Lemma 7. Sum the corresponding contributions for all

values of j ≥ 0, after multiplication by the coefficient
(aq−j ;q)j
(q−j ;q)j

, in accordance with (43) and (44). This gives

U(q) =
vq3γ−2

log 1/q

∞∑
j=0

(aq−j ; q)j
(q−j ; q)j

(−q2t)j .

A simple transformation of type (42) finally yields
∞∑
j=0

(aq−j ; q)j
(q−j ; q)j

(−q−2t)j =

∞∑
j=0

(a−1q; q)j
(q; q)j

(−aq−2t)j

which provides the expression for U(q) of the singular series, via the q-binomial theorem (61) taken with
z = −at and θ = a−1q.

Summing over j in the second term in the identity (52) of Lemma 7, we have

V (q) = q−2
∞∑
r=0

(−q−2t)r
∞∑
j=0

(aq−j ; q)j
(q−j ; q)j

vqj−r

1− vqj−r
.

6 Numerical experiments suggest that in fact the formula (58) remains valid for all q ∈ (0, 1/2).
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Now, the Mittag-Leffler expansion (38) associated with Lemma 5 can be put in the form

(az; q)∞
(z; q)∞

= 1 +
(a; q)∞
(q; q)∞

∞∑
j=0

(aq−j ; q)j
(q−j ; q)j

zqj

1− zqj
.

An application of this identity to V (q), with z = vq−r, shows that

V (q) = q−2
(q; q)∞
(a; q)∞

∞∑
r=0

(−q−2t)r
(

(avq−r; q)∞
(vq−r; q)∞

− 1

)
,

which is equivalent to the stated form of V (q). Note that this last form is a q-hypergeometric function of
type 2φ1; see [21].

So far, we have proceeded formally and left aside considerations of convergence. It can be easily veri-
fied that all the sums, single or double, involved in the calculations above are absolutely (and uniformly)
convergent, provided t is taken small enough (i.e., q is sufficienty close to 1/2), given that all the involved
parameters, such as a, u, v, then stay in suitably bounded intervals of the real line. �

3.2.3. Analysis for complex values of q → 1/2. We now propose to show that the “transcendental”
expression of PA(q) provided by Proposition 4 is actually valid in certain regions of the complex plane that
extend beyond an interval of the real line. The regions to be considered are dictated by the requirements of
the singularity analysis method to be deployed in the next subsection.

Definition 3. Let θ0 be a number in the interval (0, π/2), called the angle, and r0 a number in R>0, called
the radius. A sector (anchored at 1/2) is comprised of the set of all complex numbers z = 1/2 + reiθ such
that

0 < r < r0 and θ0 < θ < 2π − θ0.

We stress the fact that the angle should be strictly smaller than π/2, so that a sector in the sense of the
definition always includes a part of the line <(s) = 1/2. The smallness of a sector will be measured by the
smallness of r0. That is to say:

Proposition 5. There exists a sector S0 (anchored at 1/2), of angle7 θ0 < π/2 and radius r0 > 0, such that
the identity expressed by Equations (57) and (58) holds for all q ∈ S0.

Proof. The proof is a simple consequence of analytic continuation. We first observe that an infinite product
such as (c; q)∞ is an analytic function of both c and q, for arbitrary c and |q| < 1. Similarly, the inverse
1/(c; q)∞ is analytic provided cqj 6= 1, for all c. For instance, taking c = a where a = a(q) = q2/(1−q+q2) and
noting that a(1/2) = 1/3, we see that 1/(a; q) is an analytic function of q in a small complex neighbourhood
of q = 1/2. This reasoning can be applied to the various Pochhammer symbols that appear in the definition
of T (q), U(q), V (q). Similarly, the hypergeometric sum that appears in the regular series V (q) is seen to be
analytic in the three quantities a ≈ 1/3, v ≈ 3/2, and t = 1− 2q ≈ 0. In particular, the functions U(q) and
V (q) are analytic in a complex neighbourhood of q = 1/2.

Next, consider the quantity
(1− 2q)−γ = exp (−γ log(1− 2q)) .

The function γ ≡ γ(q) is analytic in a neighbourhood of q = 1/2, since it equals (log v)/(log 1/q). The
logarithm, log(1−2q), is analytic in any sector anchored at 1/2. By composition, there results that (1−2q)−γ

is analytic in a small sector anchored at 1/2. It only remains to consider the Π factor in (57). A single
Fourier element, pke

−2ikπu, with u = log1/q t and t = 1 − 2q, is also analytic in a small sector (anchored

at 1/2), as can be seen from the expression

(62) pke
−2ikπu = pk exp

(
−2ikπ

log(1− 2q)

log 1/q

)
.

Note that, although <(log(1−2q))→∞ as q → 1/2, the complex exponential exp(2ikπ log2(1−2q)) remains
uniformly bounded, since =(log(1− 2q)) is bounded for q in a sector. Then, given the fast geometric decay

of the coefficients pk at q = 1/2 (namely, pk = O(e−2kπ
2/ log 2); cf. (54)), it follows that Π(log2 t) is also

7A careful examination of the proof of Proposition 5 shows that any angle θ0 > 0, however small, is suitable, but only the
existence of some θ0 < π/2 is needed for singularity analysis.
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analytic in a sector. A crude adjustment of this argument (see (71) and (72) below for related expansions)
suffices to verify that the geometric decay of the terms composing (62) persists in a sector anchored at 1/2,
so that Π(log1/q t) is also analytic in such a sector.

Finally, the auxiliary quantities D(q), A(q) are meromorphic at q = 1/2, with at most a double pole there;
in particular, they are analytic in a small enough sector anchored at 1/2. We can then choose for S0 a
small sector that satisfies this as well as all the previous analyticity constraints. Then, by unicity of analytic
continuation, the expression on the right-hand side of (57), with T (q) as given by (58), must coincide with
(the analytic continuation of) PA(q) in the sector S0. �

3.3. Singularity analysis and transfer. If we drastically reduce all the non-singular quantities that occur
in the main form (57) of Proposition 4 by letting q → 1/2, we are led to infer that PA(q) satisfies, in a sector
around q = 1/2, an estimate of the form

(63) PA(q) = ξ0 (1− 2q)−γ0−2 Π(log2(1− 2q)) +O
(

(1− 2q)−3/2
)
, γ0 := log2(3/2),

where

(64) ξ0 = − 1

16
U(1/2)

(1/3; 1/2)∞(3/2; 1/2)∞
(1/2; 1/2)∞(1/2; 1/2)∞

, U(1/2) =
16

9 log 2
,

and U(q) is the singular series of (59). Let us ignore for the moment the oscillating terms and simplify Π(u)

to its constant term p0, with pk given by (54). This provides a numerical approximation P̂A(q) of PA(q).
With the general asymptotic approximation (derived from Stirling’s formula)

(65) [qn](1− 2q)−λ ∼
n→+∞

1

Γ(λ)
2nnλ−1, λ 6∈ Z≤0,

it is easily seen that [qn]P̂A(q) is asymptotic to the quantity κ02nng of Equation (18) in Theorem 2, which
is indeed the “principal” asymptotic term of PAn = [qn]PA(q), where g = γ0 + 1 = log2 3.

A rigorous justification and a complete analysis depend on the general singularity analysis theory [20,
Ch. VI] applied to the expansion of PA(q) near q = 1/2. We recall that a ∆-domain with base 1 is defined
to be the intersection of a disc of radius strictly larger than 1 and of the complement of a sector of the form
−θ0 < arg(z − 1) < θ0 for some θ0 ∈ (0, π/2). A ∆-domain with base ρ is obtained from a ∆-domain with
base 1 by means of the homothetic transformation z 7→ ρz. Singularity analysis theory is then based on two
types of results.

(S1) Coefficients of functions in a basic asymptotic scale have known asymptotic expansions [20, Th. VI.1,
p. 381]. In the case of the scale (1− z)−λ, the expansion, which extends (65), is of the form

[zn](1− z)−λ ∼
n→+∞

nλ−1

1 +
∑
k≥1

ek
nk

 , λ ∈ C \ Z≥0,

where ek is a computable polynomial in λ of degree 2k. Observe that this expansion is valid for
complex values of the exponent λ, and if λ = σ + iτ , then

nλ−1 = nσ−1 · niτ = nσ−1eiτ logn.

Thus, the real part (σ) of the singular exponent drives the asymptotic regime; the imaginary part,
as soon as it is nonzero, induces periodic oscillations in the scale of log n. A noteworthy feature is
that smaller functions at the singularity z = 1 have asymptotically smaller coefficients.

(S2) An approximation of a function near its singularity can be transferred to an approximation of coef-
ficients according to the rule

f(z) =
z→1

O
(
(1− z)−λ

)
=⇒ [zn]f(z) =

n→+∞
O
(
nλ−1

)
.

The condition is that f(z) be analytic in a ∆–domain and that the O–approximation holds in such a
∆-domain, as z → 1; see [20, Th. VI.3, p. 390]. Once more, smaller error terms are associated with
smaller coefficients.
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Equipped with these principles, it is possible to obtain a complete asymptotic expansion of [qn]PA(q) once
a complete expansion of PA(q) in the vicinity of q = 1/2 has been obtained (set q = z/2, so that z ≈ 1
corresponds to q = 1/2). In this context, Proposition 3 precisely grants us the analytic continuation of
PA(q) in a ∆-domain anchored at 1/2, with any opening angle arbitrarily small; Proposition 4, together
with Proposition 5, describe in a precise manner the asymptotic form of PA(q) as q → 1/2 in a ∆-domain
and it is a formal exercise to transform them into a standard asymptotic expansion, in the form required by
singularity analysis theory.

Proposition 6. As q → 1/2 in a ∆-domain, the function PA(q) satisfies the expansion

(66) PA(q) ∼
q→1/2

1

(1− 2q)
+R(q)+

∑
j≥1

(1−2q)−γ0−2+j
j∑
`=0

(log(1− 2q))
`
Π(j,`)(log2(1−2q)), γ0 = log2

3

2
.

Here R(q) is analytic at q = 1/2 and each Π(j,`)(u) is a Fourier series

Π(j,`)(u) :=
∑
k∈Z

p
(j,`)
k e2ikπu,

with a computable sequence of coefficients p
(j,`)
k .

Proof. From Proposition 4, we have

(67) PA(q) = PAreg(q) + PAsing(q),

where the two terms correspond, respectively, to the “regular” part (involving the regular series V (q)) and
the “singular part” (involving the singular series U(q) as well as the factor (1 − 2q)−γ and the oscillating
series).

Regarding the regular part, we have, with the notations of Proposition 4,

(68) PAreg(q) = D(q)− q2A(q)
(a; q)∞(v; q)∞
(q; q)∞(q; q)∞

V (q).

We already know that A(q) and D(q) are meromorphic at q = 2 with a double pole, while V (q) and the
Pochhammer symbols are analytic at q = 1/2. Thus, this regular part has at most a double pole at q = 1/2.
A simple computation shows that the coefficient of (1 − 2q)−2 reduces algebraically trivially – in the sense
that no q-identity is involved – to 0. Thus, the regular part involves only a simple pole at q = 1/2, as is
expressed by the first two terms of the expansion (67), where R(q) is analytic at q = 1/2. (Note that the
coefficient of (1− 2q)−1 is exactly 1, again for trivial reasons.)

The singular part is more interesting and it can be analysed by the method suggested at the beginning
of this subsection. Whenever convenient, we freely use the abbreviation t = 1 − 2q. The function γ(q) =
(log v)/(log 1/q) is analytic at q = 1/2, where

γ(q) = log2

3

2
+ 2

log 3

(log 2)2
(q − 1

2 ) + · · ·
.
= 0.58496 + 4.5732(q − 1

2 ) + 16.317(q − 1
2 )2 + 39.982(q − 1

2 )3 + 86.991(q − 1
2 )4 + · · · .

The function (1− 2q)−γ can then be expanded as

(69)
(1− 2q)−γ(q) = (1− 2q)−γ0e−(γ(q)−γ0) log t, with γ0 = γ(1/2) = log2

3

2

= (1− 2q)−γ0
(

1 +
log 3

(log 2)2
t log t+ t2P2(log t) + t3P3(log t) + · · ·

)
,

for a computable family of polynomials P2, P3, . . ., where degP` = ` and P`(0) = 0 For instance, we have,
with y := log t:

(1− 2q)−(γ−γ0) log t
.
= 1 + 2.28ty + t2(−4.07y + 2.61y2) + t3(4.99y − 9.32y2 + 1.99y3) + · · · .

The singular series U(q) of (59) is analytic at q = 1/2 and its coefficients can be determined, both numerically
and, in principle, symbolically in terms of Pochhammer symbols and their logarithmic derivatives (which lead
to q-analogues of harmonic numbers). Numerically, they can be estimated to high precision, by bounding the
infinite sum and products to a finite but large value. (The validity of the process can be checked empirically
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by increasing the values of this threshold, the justification being that all involved sums and products converge
geometrically fast – we found that replacing +∞ by 100 in numerical computations provides estimates that
are at least correct to 25 decimal digits.) In this way, we obtain, for instance, the expansion of the function
V (q), which is of the form (t = 1− 2q)

(70) U(q)
.
=

16

9 log 2
+ 9.97 t+ 21.5 t2 + 35.8 t3 + 51.9 t4 + · · · .

Finally, regarding Π(u) taken at u = log1/q(1 − 2q), we note that the coefficients pk of (54) can be

expanded around q = 1/2 and pose no difficulty, while the quantities e2ikπu can be expanded by a process
analogous to (69). Indeed, we have

(71) pk ≡ pk(q) =
π

sin(πγ0 + 2ikπ2/ log 2)
· exp

(
1 + e1(k)t+ e2(k)t2 + · · ·

)
,

where the ek only grow polynomially with k. Also, at u = log1/q(1− 2q), one has

(72) e2ikπu = (1− 2q)2ikπ/ log 2 exp
[
2ikπ log2 t

(
g1t+ g2t

2 + · · ·
)]
,

where the coefficients gj are those of (log 1/q)−1 − (log 2)−1 expanded at q = 1/2 and expressed in terms
of t = 1− 2q.

We can now recapitulate the results of the discussion of the singular part: from (70), (71), and (72), we
find that the terms appearing in the singular expansion of PA(q) are of the form, for j = 0, 1, 2, . . .,

(1− 2q)−γ0−2tj (log t)
`
t2ikπ/ log 2,

with ` such that 0 ≤ ` ≤ j and k ∈ Z. The terms at fixed j, ` add up to form the Fourier series Π(j,`),
whose coefficients exhibit a fast decrease with |k|, similar to that encountered in (55). Consequently, a finite
version of (66) at any order holds, so that the statement results. �

With this last proposition, we can conclude the proof of Theorem 2.

Proof (Theorem 2). The analytic term R(q) in (66) leaves no trace in the asymptotic form of coefficients.
Thus the global contribution of the regular part to coefficients PAn reduces to 2n (with coefficient 1 and no
power of n), corresponding to the term (1− 2q)−1 in (66).

The transfer to coefficients of each term of the singular part of (66) is permissible, given the principles of
singularity analysis recalled above. Only an amended form allowing for logarithmic factors is needed, but this
is covered by the general theory: for the translation of the coefficients of the basic scale (1−z)−λ logk(1−z),
see [20, p. 387]. From a computational point of view, one may conveniently operate [20, Note VI.7, p. 389]
with

[zn](1− z)−λ (log(1− z))k = (−1)k
∂

∂λ

Γ(n+ λ)

Γ(λ)Γ(n+ 1)
,

then replace the Gamma factors of large argument by their complete Stirling expansion.
We can now complete the proof of Theorem 2. It suffices simply to retain the terms corresponding to j = 0

in (66), in which case the error term becomes of the form O
(
(1− 2q)−γ0−1 log(1− 2q)

)
, which corresponds

to a contribution that is O(nγ0 log n) = O(ng−1 log n) for PAn.
Next, regarding the Fourier element of index k = 0, the function-to-coefficient correspondence yields

(1− 2q)−γ0−2 =⇒ nγ0+1

Γ(γ0 + 2)

(
1 +O

(
1

n

))
.

Thus, the coefficient κ0 in (19) has value (cf (63) and (64)) given by

κ0 = ξ0 · p0|q=1/2 ·
1

Γ(γ0 + 2)
, γ0 =

log 3/2

log 2
,

with ξ0 as in (64). This, given the form (54) of pk at k = 0, is equivalent to the value of κ0 stated in
Theorem 2 (where g := γ0 + 1 = log2 3).

For a Fourier element of index k ∈ Z, we have similarly

(1− 2q)−γ0−2−iχk =⇒ nγ0+1+iχk

Γ(γ0 + 2 + iχk)
(1 +O(1/n)) , where χk :=

2kπ

log 2
.
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Figure 6. Left : The difference (PAn−Ω6)2−nn−g against log2 n, where Ω6 is the six-term exten-
sion of (74), for n = 60, . . . , 500; the plot reveals about three periods of the oscillating component
in the asymptotic expansion of PAn. Right : The corresponding plot, for values up to n = 6000.
The diagrams confirm the presence of oscillations that, asymptotically, have amplitude of the order
of 10−9.

We finally observe that

nγ0+1+iχk = nγ0+1eiχk logn,

so that all the terms, for k ∈ Z, are of the same asymptotic order (namely, O(nγ0+1)) and their sum
constitutes a Fourier series in log n. The Fourier coefficient κk then satisfies, from the discussion above:

κk = ξ0 · pk|q=1/2 ·
1

Γ(γ0 + 2 + iχk)
.

Thus finally, with g ≡ γ0 + 1:

(73) κk =
π

9 log 2 sin(πg + 2ikπ2/ log 2) Γ(g + 1 + 2ikπ/ log 2)

∞∏
j=0

(1− 1
32−j)(1− 3

22−j)

(1− 1
22−j)2

.

This completes the proof of Theorem 2. �

The same method shows the existence of a complete asymptotic expansion for PAn.

Theorem 3. The number of 3-sided prudent polygons satisfies a complete asymptotic expansion,

PAn ∼ 2n + 2n · ng
(

Ξ0,0 +
1

n
(log n · Ξ1,1 + Ξ1,0) +

1

n2
(
log2 n · Ξ2,2 + log n · Ξ2,1 + Ξ2,0

)
· · ·
)
,

where Ξj,` is an absolutely convergent Fourier series in log n.

The non-oscilating form obtained by retaining only the constant terms of each Fourier series is computed
by a symbolic manipulation system such as Maple or Mathematica in a matter of seconds and is found
to start as

(74)

Ω5

2n
.
= 1 + 0.1083842947 · ng

+ (−0.3928066917L+ 0.5442458535) · ng−1

+
(
0.2627062704L2 + 0.6950193894L+ 0.6985601031

)
· ng−2

+
(
0.08310555463L3 − 0.02188678892L2 − 1.570478457L− 1.18810811075202

)
· ng−3

+
(
0.06722511293L4 + 0.05494834609L3 − 3.297513638L2 − 4.663711650L− 4.156441653

)
· ng−4,

where L = log n. In principle, all the coefficients have explicit forms in terms of the basic quantities
that appear in Theorem 2 (augmented by derivatives of q-Pochhammer symbols at small rational values).
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However, the corresponding formulae blow up exponentially, so that we only mention here the next coefficient
−0.39280 . . . in (74), whose exact value turns out to be

−κ0
log 3

log2 2
g.

Figure 6 displays the difference between PAn and the six-term extension Ω6 of (74). It is piquant to note that
all the terms given in Equation (74) are needed in order to succeed in bringing the fluctuations of Figure 6
out of the closet. As a matter of fact, before the analysis of Theorem 3 was completed, the authors had
tried empirically to infer the likely shape of the asymptotic expansion of PAn, together with approximate
values of coefficients, from a numerical analysis of series. The success was moderate and the conclusions
rather “unstable” (leading on occasion to heated debates between coauthors). This state of affairs may
well be present in other yet-to-be-analysed models of combinatorics. It is pleasant that, thanks to complex
asymptotic methods, eventually . . . everything nicely fits in place.

4. Conclusions

Classification of prudent polygons. Our first conclusion is that the present study permits us to advance
the classification of prudent walks and polygons: the generating functions and their coefficient asymptotics
are now known in all cases up to 3-sided (walks by length; polygons by either perimeter or area). Functional
equations are also known for 4-sided prudent walks and polygons, from which it is possible to distill plausible
estimates. We can then summarize the present state of knowledge by the following table (compare with (4)
and (5)).

(75)

Polygons (area) Generating function Asymptotic number References

2-sided rational 2n this paper, §2.2

3-sided non-holonomic C3(n) · 2nnlog2 3 this paper, Th. 2

4-sided functional equation C4(n) · 2nn1+log2 3 (?) this paper, §2.4; Beaton et al. [1].

(The oscillating coefficient C3(n) is expressible in terms the Fourier series κ(u) of Theorem 2.) The numerical
data relative to 4-sided polygons enumerated by area (last line) are from [1]: in all likelihood, the dominant
singularity remains at 1/2 and the critical exponent is 1 + log2 3; that is, one more than the corresponding
exponent for 3-prudent polygons. Examination of subdominant terms also suggests that the number of
4-polygons, once divided by n, satisfies an expansion of the form obtained in Theorem 3 for the 3-prudent
counterparts. The “mean” amplitude is probably about 0.033, and, under the circumstances, there is little
doubt that minuscule oscillations (rendered by C4(n)) must also be present. The foregoing analysis of the
3-prudent case then at least has the merit of pointing towards the type of singularity to be expected for
4-prudent polygons as well as, possibly, to methods of attack for this case.

Methodology. The generating function of 3-prudent polygons has been found to be a q-hypergeometric
function, with the argument and parameters subject to a rational substitution. The methods developed
here should clearly be useful in a number of similar situations. Note that the asymptotic enumeration of
prudent walks and polygons by length and perimeter is in a way easier since the dominant singularity is
polar or algebraic. (Bousquet-Mélou [3] however exhibits an interesting situation where the complete singular
structure has a complex geometry.)

Estimates involving periodic oscillations are not unheard of in combinatorial asymptotics [20, 28, 29].
What is especially interesting in the case of 3-sided prudent polygons is the pattern of singularities that
accumulate geometrically fast to the dominant singularity. This situation is prototypically encountered in
the already evoked problem of the longest run in strings: the classical treatment is via real analytic methods
followed by a Mellin analysis of the expressions obtained; see [25]. In fact, the chain

(76) Coefficient asymptotics  Mellin transform + Singularity analysis

is applicable for moment analyses. For instance, the analysis of the expected longest run of the letter a in a
random binary sequence over the alphabet {a, b} leads to the generating function [20, Ex. V.4]

Φ(z) = (1− z)
∑
k≥0

zk

1− 2z + zk+1
,

25



to which the chain (76) can be applied. We could indeed recycle for our purposes some of the corresponding
analysis of [25, 20], when discussing the location of poles of the generating function PA(z), in Section 3.

Another source of similar phenomena is the analysis of digital trees [26, 34], when these are approached
via ordinary generating functions (rather than the customary exponential or Poisson generating functions).
Typically, in the simplest case of node-depth in a random digital tree, one encounters the generating function

Ψ(z) =
1

1− z
∑
k≥0

2−k

1− z(1− 2−k)
,

where the geometric accumulation of poles towards 1 is transparent, so that the chain (76) can once more
be applied [19].

We should finally mention that “critical” exponents similar to g = log2 3 surface at several places in
mathematics, usually accompanied by oscillation phenomena, but they do so for reasons essentially simpler
than in our chain (76). For instance, in fractal geometry, the Hausdorff dimension of the triadic Cantor
set is 1/g, see [14], while that of the familiar Sierpiński gasket is g, so that g occurs as critical exponent in
various related integer sequences [18]. The same exponent g = log2 3 ≈ 1.58 is otherwise known to most
students of computer science, since it appears associated to the recurrent sequence fn = n+ 3fbn/2c, which
serves to describe the complexity of Karatsuba multiplication [27] (where, recursively, the product of two
double-precision numbers is reduced to three single-precision numbers). In such cases, the exponent g is
eventually to be traced to the singularity (at s = g, precisely) of the Dirichlet series

ω(s) =
1

1− 3 · 2−s
,

which is itself closely related to the Mellin transforms of our Eq. (51). See also the studies by Drmota and
Szpankowski [10], Dumas [12], as well as [18] for elements of a general theory.

For the various reasons evoked above, we believe that the complex asymptotic methods developed in the
present paper are of a generality that goes somewhat beyond the mere case of 3-sided prudent polygons.
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