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ABSTRACT. A considerable number of asymptotic distributions arising in ran-
dom combinatorics and analysis of algorithms are of the exponential-quadratic
type, that is, Gaussian. We exhibit a class of “universal” phenomena that are
of the exponential-cubic type, corresponding to distributions that involve the
Airy function. In this paper, such Airy phenomena are related to the co-
alescence of saddle points and the confluence of singularities of generating
functions. For about a dozen types of random planar maps, a common Airy
distribution (equivalently, a stable law of exponent 3/2) describes the sizes of
cores and of largest (multi)connected components. Consequences include the
analysis and fine optimization of random generation algorithms for multiply
connected planar graphs. Based on an extension of the singularity analysis
framework suggested by the Airy case, the paper also presents a general clas-
sification of compositional schemas in analytic combinatorics.

INTRODUCTION

Maps are planar graphs embedded in the plane, and as such, they model the
topology of many geometric arrangements in the plane and in spaces of low dimen-
sions (e.g., 3-dimensional convex polyhedra). This paper concerns itself with the
statistical properties of random maps, i.e., the question of what such a random map
typically looks like. We focus here on connectivity issues, with the specific goal of
finely characterizing the size of the highly connected “core” of a random map (see
Section 1 for definitions).

The bases of an enumerative theory of maps have been laid by Tutte [49] in the
1960’s, this in an attempt to attack the four-colour conjecture. The present pa-
per builds upon Tutte’s results and upon previous analyses of largest components
given by Bender, Richmond, Wormald, and Gao [7, 27]. We establish the common
occurrence of an interesting probability distribution, the “Airy distribution of the
map type”, that precisely quantifies the sizes of cores in about a dozen varieties of
maps, including general maps, triangulations, 2-connected maps, etc. As a corol-
lary, we are able to improve on the complexity of the best known random samplers
for multiply connected planar graphs and convex polyhedra from [44].

The analysis that we introduce is largely based on a method of “coalescing saddle
points” that was perfected in the 1950’s by applied mathematicians [3, 8, 52] and
has found scattered applications in statistical physics and the study of phase tran-
sitions [41]. However, this method does not appear to have been employed so far
in the field of random combinatorics. We claim some generality for the approach
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proposed here on at least two counts. First, a number of enumerative problems
are known to be of the “Lagrangean type”, being related to the Lagrange inver-
sion theorem and its associated combinatorics. The classical saddle point method
is then instrumental in providing asymptotics of simpler problems. However, the
confluence of saddle points that presents itself in “critical regions” is a stumbling
block for the basic method. As we show here, planar maps are precisely instances
of this situation. Next, parallel developments suggested by the theory of random
maps and the corresponding integration contours lead to the precise analysis of a
general composition schema. Indeed, it is known, in the realm of analytic com-
binatorics, that asymptotic properties of random structures are closely related to
singular exponents of counting generating functions. For “most” recursive objects
the exponent is % and the probabilistic phenomena are described by classical laws,
like Gaussian, exponential, or Poisson. Methods of the paper permit us to quantify
distributions associated with singular exponents % present in maps and unrooted
trees, and, more generally, they extend to distributions occurring in relation to
compositions of generating functions with algebraic-logarithmic singularities.

Very roughly, the classical saddle point method gives rise to probabilistic and
asymptotic phenomena that are in the scale of n'/? and the analytic approximations
are in the form of an “exponential-quadratic” (e“”2) corresponding to Gaussian
laws. The coalescent saddle-point method presented here gives rise to phenomena
in the scale of n'/3, with analytic approximations of the “exponential-cubic type”
(eiws), which, as we shall explain, is conducive to Airy laws. The Airy phenomena
that we uncover in random combinatorics should thus be expected to be of a fair
degree of universality. Here are scattered occurrences of what we recognize as Airy
phenomena in the perspective of this paper: the emergence of first cycles and of the
giant component in the Erdds-Rényi graph model [20, 24, 32], the enumeration of
random forests of unrooted trees [34], cluster formation in the construction of linear
probing hashed tables [23, 33], the area under excursions and the cumulative storage
cost of dynamically varying stacks [36], the area of certain polyominoes [15], path
length in combinatorial tree models [47], and, perhaps, the threshold phenomena
involved in the celebrated random 2-SAT problem [10]. We briefly return to these
questions in the conclusion section of the paper.

Plan of the paper. Basics of maps are introduced in Section 1, where the Airy dis-
tribution is also presented. The asymptotic theory of maps can be developed along
two parallel lines, one based on saddle points, the other on singularity analysis—
this is the main thread of the paper. We first approach the analysis of core-size via
a representation of generating functions of interest by powers (the so-called “La-
grangean framework”), which are then amenable to variations of the saddle point
method. A fine analysis of the geometry of associated complex curves is shown to
open access to the size of the core, with the Airy distribution arising from double
or “nearby” saddles (Section 2); a refined analysis based on the method of coa-
lescent saddle points then enables us to quantify the distribution of core-size over
a wide range with precise large deviation estimates (Section 3). By singularity
analysis techniques, we show more generally that the very same Airy law is bound
to occur in any instance of a composition schema of singular type (3 o 2), which
sheds a different light on the previous analyses; see Section 4. The methods based
on saddle points and singularities are then applied to more than a dozen types of
planar maps, thereby providing a precise quantification of largest multiconnected
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components, with consequences on the random generation of highly connected pla-
nar graphs (Section 5). Finally, the singularity analysis methods can be extended
to any composition schema that is “critical”: see Appendix A where connections
with stable distributions of probability theory are also discussed. Major analytic
properties of the Airy distribution “of the map type” are gathered in Appendix B.
Here is a diagram summarizing the logical structure of the paper:

1. Basics of maps

SN

2. Two saddles 4. Singularity Analysis
3. Coalescing saddles (A. Compositions, stable laws)

~N

5. Largest components
(B. Airy distribution)
An extended abstract of this paper has been presented at the ICALP’2000 con-
ference; see [2].

1. BASICS OF MAPS

This section organizes known facts about the enumeration of maps, and for the
convenience of readers not familiar with this chapter of combinatorial theory it is
presented in a largely self-contained way; see, e.g., [29, 43] for more. It is intended
as a preparation of the technical treatment in the rest of the paper. The two basic
ingredients introduced concurrently here are: (i) exact power representations for
map counts (via the Lagrangean framework) that are to be later exploited by the
saddle point method in Sections 2-3; (i4) singularity analysis, which provides direct
asymptotic estimates, and is extended in Sections 4-5 as well as Appendix A.

A map is an embedding of a connected planar graph in the sphere, considered
up to orientation preserving homeomorphisms. By construction the complement of
the vertices and edges of a map in the sphere is a union of simply connected faces.
In general loops and multiple edges are allowed. A map is completely characterized
by its underlying graph together with a cyclical ordering of edges around each
vertex. Following Tutte [48, 49], we consider rooted maps, that is, maps with
an oriented edge called the root—this simplifies the analysis without essentially
affecting statistical properties (see [42] and Section 5). In order to represent maps
on the plane, a point of the sphere must be placed at infinity; by convention we
always choose it so that the root runs along the infinite face counterclockwise.
Figure 1 illustrates this convention. From now on, unless explicitly mentioned, all
maps are rooted.

FIGURE 1. Three representations of maps. The first two are
identical as maps, while the third one is not, although the three
underlying planar graphs are identical.
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FIGURE 2. The decomposition of a map into its nonseparable
core and the pending submaps.

Generically, we take M and C to be two classes of maps, with M, C, the
subsets of elements of size n (typically, elements with n edges). Here, C is always
a subset of M that satisfies additional properties—typically, higher connectivity.
The elements of M are then called the “basic maps” and the elements of C are
called the “core-maps”. We define informally the core-size of a map m € M as the
size of the largest C—component of m that contains the root of m.

As a pilot example, we shall specialize the basic maps M to be the class of
all' maps with size taken as the number of edges. Define a separating vertex (or
articulation point) as a vertex whose removal disconnects the graph. The class Cy,
will then be taken as the set of nonseparable maps with k£ edges, where a map is
called nonseparable (or 2-connected) if it has no separating vertex. In this case, the
core of a map is obtained by starting from the root and removing all “pending”
submaps that are attached only through an articulation point. This is illustrated
by Figure 2, in which the central map on the right is a nonseparable map, namely
the core of the map displayed on the left.

Our major objective is to characterize the probabilistic properties of core-size of
a random element of M,,, that is, of a random map of size n, when all elements
are taken equally likely. Core-size then becomes a random variable X,, defined
on M,. In essence, the pilot example thus deals with 2-connectivity in random
(connected) maps. The paradigm that we illustrate by a particular example is in
fact of considerable generality as can be seen from Section 5 below.

1.1. The physics of maps. From earlier works [7, 27, 43], it is known that a
random map of M,, has with high probability a core that is either “very small”
(roughly of size k = O(1)) or “very large” (being ©(n)). The probability distribu-
tion Pr(X,, = k) thus has two distinct modes. The small region (say k = o(n)) has
been well quantified by previous authors, see [7, 27, 43]: a fraction p, = % of the
probability mass is concentrated there. The large region is also known from these
authors to have probability mass py = 1 — p; = % concentrated around agn with
Qg = % but this region has been much less explored as it poses specific analytical
difficulties. Our results precisely characterize what happens in terms of an Airy
distribution.

LWe also speak of the class of “general” maps when we need to contrast it with special classes
of maps.



RANDOM MAPS AND AIRY PHENOMENA 5

0.0025

0.002 {,

0.4 0.0015

0.3
0.001
0.2

0.1 0.0005

—1 0 1 2 o 71000

FIGURE 3. Left: The standard Airy distribution. Right: Ob-
served frequencies of core-sizes k € [20;1000] in 50,000 random
maps of size 2,000, showing the bimodal character of the distribu-
tion.

The Airy function Ai(z), as introduced by the Royal Astronomer Sir George
Bidell Airy, is a solution of the equation y"” — zy = 0 that can be defined by a
variety of integral or power series representations including (see [1, 50]):

Ai(z) = 21 et 9 gy
™
(1) (n
+1)/3) . 2(n+1)w
32/3 }:(31/3 ) )/3) sin ( )

n! 3

Equipped with this definition, we present the main character of the paper, a
probability distribution closely related to the Airy function.

Definition 1. The standard Airy distribution of the “map type” is the probability
distribution whose density is

Alz) = 2e—2w3/3 (zAi(z%) — Ai'(2?))

(2) = E Z 32/3 7271/3—!—1) sin(—2nm/3).
n>1

The Airy distribution of parameter ¢ is defined by the density cA(cz).

Major properties of the function A(z) (including the equivalence between the
two definitions of (2)) are gathered in Appendix B. The Airy distribution® is a
probability distribution, i.e., [, A(z)de = 1, and an unusual feature is the fact
that the tails are extremely asymmetrlc.

L —5/2 i 1/2 (_é 3)
(3) A(:z:)w_>_Oo 4\/7_r|$| and A(z) ﬁx exp ( —32” ).

T—00

A plot of the map—Airy distribution is presented in Figure 3 (left).

We shall find that the size of the core (when conditioned upon the large region)
and the size of the largest 2-connected component of a random map are described
asymptotically by an Airy law of this type. Figure 3 (right) exemplifies this with
simulation results of core-size: the “bimodal” character of the combinatorial dis-
tribution is clearly visible and the convergence of simulation data to the limit Airy
distribution curve is already excellent at size n = 2,000. (Additional simulation
data are given in Section 5.4.)

2The Airy distribution of the map type is known in the probability literature as a stable law
of index g (see Appendix A), and in celestial mechanics as the Holtsmark distribution.
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1.2. The combinatorics of maps. Let M, and C} be the cardinalities of M,
and Ci. The generating functions of M and C are respectively defined by

M(z) := Z Mp2" and C(z) == Z Cr 2.

n>1 k>1

Root-face decompositions. As shown by Tutte, there results from a root-face
decomposition and from the quadratic method [29, Sec. 2.9] that many families
of maps have a generating function M (z) that is algebraic, and more specifically
Lagrangean, which means that it can be parametrized by a system of the form

(4) M(z) = ¥(L(2)) where L(2) = z¢(L(2)),

for two rational power series ¥, ¢, with L being determined implicitly by ¢. We
first prove that M(z) is Lagrangean.

Proposition 1. The generating function of general maps M (z) is Lagrangean:

M(z) = ¥(L(2)), L(z) = 2¢(L(2))

5 1
®) W)= 1y2-y), o) =3(1+9)"
Accordingly, the number of general maps satisfies
23" (2n)!
M, =["|M(z) = ———=.
©6) (="M (2) (n+2)!In!

Proof. Schematically, for the family of general maps with n edges, the treatment
goes as follows (see [29] for details). Let M°(z,u) be the bivariate generating
function of maps where z,u mark respectively the number of edges and the degree
of the root face. Also the map of size 0 with one vertex and no edge is momentarily
allowed. (Consequently, M(z) = M°(z,1) — 1.) First, the functional equation

M?®(2z,1) —uM®(z,u)
1-u

(7 M°(z,u) = 1 +u?2M°(2,u)? + uz

reflects the construction of maps starting from the map of size 0 by either adding
an isthmus (also known as bridge) that connects two simpler maps, or by adding
an edge that cuts across an existing face. From (7), upon isolating M°(z,u), one
gets the equivalent “quadratic form”

Me(z,1)
u(l —u)’

for some explicit rational functions Q(z,u) and R(z,u). The principle of the qua-
dratic method is to bind z and u in such a way (@ priori unknown) that the left
hand side vanishes. Consequently, under the binding, the right side of (8) should
have a double root, which is expressed by the conditions

The compatibility condition of these two equations is then expressed by two rational
relations between the three quantities M°(z,1), u, and z, from which one finds that
u = u(z) should satisfy u?z+ (u—1)(2u—3) = 0. Computations based on the further
change of parameter L = 1/(1 — u) (see [29, 48] and Section 5 for other examples)
then lead to the Lagrangean parametrization (5).

(8) (M°(2,u) = R(z,u))* = Q(z,u) +
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There results from the form (4) and from the Lagrange inversion theorem [29]
an explicit form for the coefficients of M (z), namely,

Q Mo = M) = 2" )00

where [2™]F(z) denotes the coefficient of 2™ in the series expansion of F(z). For
the family of general maps, this instantiates to (6) as given in the statement of the
theorem. 0

Alternatively, elimination shows that M (z) is an algebraic function, in this case
admitting of closed form:

(10) M(z) = ~1+ 54% (-0 182) + (1 - 122)2).

Substitution decompositions. As shown again by Tutte, maps satisfy addi-
tionally relations of the “substitution type”. Such relations usually take the form
M = C oH where the family H is a simple variation of the “basic” family M while
the “core” family C is defined by stronger connectivity constraints.

Proposition 2. The generating function of nonseparable maps is Lagrangean:
ci) = ¥(Z®), L) = to(L))

(11) 1 ~ 3
P(y) = -y(2 - =
W) =3y2-v), ¢ A= 4/3)
Accordingly, the number of nonseparable maps satisfies
4(3k — 3)!
(12) Cr = [¥]C(2) = m

Proof (sketch). Between the family M of general maps and the family C of nonsep-
arable maps, the substitution relation

(13) M(z) = ZC’kzk(l + M(2))** = C(H(z)), with H(z)=2(1+ M(2))?,
k>1

expresses that each map is formed of a core with k edges (chosen among the Cj
nonseparable maps with & edges) in which 2k (possibly empty) maps are sub-
stituted. This is exactly the decomposition illustrated by Figure 2: the core is
obtained starting from the root edge® by detaching all pending submaps until there
is no separation vertex left; conversely a submap can be attached at each of the 2k
“corners” of a nonseparable map in order to form a general map.

An equation like (13) determines effectively (albeit in an implicit manner) the
exact enumeration of objects of type C which are more “complex”, i.e., here, more
highly connected than the initial maps of M. One can go further. In view of
Equations (4), (13), the generating function H(z) is also expressible in terms of the
basic Lagrangean series L(z):

(14) H(z) =(L(z)) with (y) = % (1_ %)2

In order to extract the generating function C(t) from the relation M (z) = C(H(z)),
it is natural to introduce the change of variables z = z(t) defined by t = H(z), which

3Remark that this decomposition covers the cases when the root is a bridge or a loop, provided
one adopts the convention that the two maps with one edge (i.e., the bridge and the loop) are
nonseparable.
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yields C'(t) = M(2(t)). As both M (z) and H(z) are defined in terms of L(z), letting
L(t) = L(2(t)) leads to the system (11). This parametrization is finally amenable

to the Lagrange inversion theorem, hence the expression (12) for the coefficients
Ck. O

The proof also shows that the generating function C(t) of nonseparable maps is
a cubic algebraic function,

C3 +20? + (1 —18t)C + 27t% — 2t = 0,
that is an elementary variant of the generating function of ternary trees.

The core-size parameter. Qur analysis assumes the uniform distribution over
general maps of size n, with each map being taken with probability 1/M,,. Under
this model, we let X,, denote the random variable of core-size. Let M, ; be the
set of maps with n edges whose core comprises k edges; we define the bivariate
generating function

M(z,u) = ZMH,kukz" with M, , = card (M, ;).
n,k

The following obvious refinement of (13) gives access to core-size:
(15) M(z,u) = C(uH(2)) (with H(z) = z(1+ M(2))?).
In summary:

Proposition 3. The probability distribution of core-size is determined by
(16) Pr(X, = K) = X [ H(2)",
M,

where one has, with ¢(y) = 3(1 +y)? and ¥(y) = (y/3)(1 —y/3)?:

K 110 () ) o)

(1) EHE =

Proof. Relation (16) is a mere rephrasing of (15). The expression (17) results
from (14) and Lagrange inversion. O

The involved generating functions are algebraic (and even rationally parametrized
under the Lagrangean framework), which leads to complicated alternating binomial
sums expressing Pr(X,, = k). The exponential cancellations involved are however
not tractable in this elementary way as k increases, and complex asymptotic meth-
ods must be resorted to.

1.3. The asymptotics of maps. There is another side to the coin, to be explored
further in Section 4. It relies on singularity analysis [22], the principle being a gen-
eral correspondence between the expansion of a generating function at a singularity
and the asymptotic form of its coefficients.

Proposition 4. Fach generating function M (2),C(z), H(z) has a unique dominant
singularity (at %, %, % resp.) and a singular expansion with singular exponent %

at its singularity in the sense that

M(z) = }-%(1-12z)+8(1-122)%2+0((1 — 122)?)

(18) Clz) = g - 2(1 —272/4) + %(1 —272/4)%2 + O((1 — 272/4)?)
H(z) = 5 —3(1-122)+35(1-122)%2 + O((1 — 122)?).
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In particular, one has

k

(19) M,, ~ %12%*5/2, and Cj ~ 22—7 % (%) k=52,
Proof (sketch). In this proof, we purposely conduct the discussion in abstract terms,
and relate the existence of such expansions to the general Lagrangean framework.
The motivation stems from the need to cover the schemas of Section 5. (Clearly,
singular expansions of M,C, H could be derived by direct computation while the
asymptotic forms of (19) are obvious consequences of the closed-forms available for
M,,, Cy in this particular instance.)

(1) The universal asymptotics of maps. An implicitly defined function L(z) =
2¢(L(z)) has in general an isolated singularity of the square-root type dictated by
a failure of the implicit function theorem [5, 37]:

(20) L) =7l —z/p)"* +0(1=2/p) (s> 0);
there the singularity p and the singular value 7 are determined by the equations
T
21 T7¢' (1) — ¢(7) = 0, p=—.
(21) (1) - 8(7) e

The expansion (20) yields in turn the singular expansion of the generating func-
tion of maps via M(z) = ¥(L(z)). It appears that in all known map-related
parametrizations of the form (4), the cancellation ¥'(7) = 0 holds, so that the
singular exponent is shifted to 3/2:

(22) M(2) = ¥(L(2)) = ¥(7) —ma (1 — 2/p) + may2(1 — 2/p)**> + O((1 — 2/p)?).
(The constants Iy /5, m1,m3/, are positive and computable from ¢, ¥,7.) Accord-

ing to singularity analysis [22] (or the Darboux-Pdlya method [5]), the singular
expansion then entails*

3mgs; p "

47 /2

This generic asymptotic form is “universal” in so far as it is valid for all known
“natural” families of maps (see Section 5 for a listing, as well as the discussion in
[6])-

(i7) Substitution relations and asymptotics. The substitution relation (13) entails
another remarkable property of the asymptotic expansions of M (z), H(z) and C(z).
First, as H is defined in terms of M by H(z) = z(1 + M(z))?, both H and M have
the same dominant singularity, p, with singular exponent 3/2. In particular, one
has

(24) H(2) = $(L(2) = $(7) = ha(1 = 2/p) + hgj2(1 = 2/p)** + O((1 = 2/p)?),
and, accordingly, the parametrization H(z) = ¥ (L(z)) must also satisfy ¢'(7) = 0.

The function L that determines C is implicitly defined, so that its singularity p
and singular value 7 are solutions of a system analogous to (21), which reduces to
Y'(T) =0, p = (7). Accordingly, one has 7 = 7, hence p = ¥(7), and

(25)  C(t) = ¥(r) — 1 (1 = t/3(7)) + c32(1 = /(7)) + O((1 = t/9h())?),

4Na.turally, in this toy example, asymptotic estimates can be directly derived from closed forms
like (6) and (12).
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where ¢; and c3/; are computable positive numbers. This results in

_3espp () *

ir kP

The analysis specializes for the families of general maps and nonseparable maps
where it provides T =1, p = %, Y(1) = %. Hence, the singular expansions of (18)
and the asymptotic forms (19) of the exact counts (6) and (12). O

(26) Cr = [2"1C(2)

Propositions 3 and 4 open access to the distribution of core-size in two parallel
ways.

(7) The structure constant 7 which is by construction a saddle point of ¢(z)/z
plays a fundamental role, and from the preceding proof one has the “coalescence
relations”

d [(¢(z) d
(27) (%) =0 fwen.=o
The coalescence relations express the fact that 7 is a saddle point common to
#(2)/z and ¢(z). The saddle point analysis of Sections 2-3 takes off from the power
forms (16), (17) provided by the Lagrangean framework and from the relations (27)
which can be taken as basic axioms.

(4¢) In terms of the composition equation M (z) = C(H (z)), the calculation above
implies that the value of H(z) at its singularity p coincides with the dominant
singularity of C(z):

(28) H(p) =r.0.c(C(2)),

where “r.o.c.” denotes radius of convergence. Such a composition C o H is called

critical. This situation of confluence of singularities is considered in full generality
in Section 4 where the analysis of core-size is developed from the power form (16)
of Proposition 3 and from the criticality assumption (28).

Both approaches are “universal” for cores in map. Section 5 lists several other
types of maps for which the coalescence relations (27) hold (with various rational
function pairs ¢,), and for which core-size is described by a composition schema
that is critical in the sense of (28) (with various algebraic functions C, M).

2. TWO SADDLES

The probability distribution of core-size in maps is determined by Proposition 3
above. What is essentially needed is a way to estimate [2"]H (z)*. The saddle point
approach starts from a contour integral representation based on the Lagrangean
form, Equation (17), in conjunction with Cauchy’s coefficient formula,

(29) ) = Eob [ e
1

n 2w
= k1 G(z) exp(nK(2)) dz.

n 2w Jr
There I is a contour encircling the origin anticlockwise, while
¥'(2)
P(2)
are respectively the “kernel” and the “cofactor” of the integrand. (Principal deter-
minations of the log extended by continuity from the positive axis are understood.)

(30) K(z) = K(z;n,k) = glog¢(z) +log(e(z)/z), and G(z)=
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In simple cases, integrals over complex contours involving large powers are
amenable to the basic saddle point method. The idea consists in deforming the
contour I' in the complex plane, this, in order to have it cross a saddle point of the
integrand, (i.e., a zero of the derivative) and to take advantage of concentration of
the integral near the saddle point. In the process, the contour is made to coincide
with part of a steepest descent line. Then local expansions yield approximations that
are of the “exponential quadratic” type when the saddle point is simple (i.e., only
the first derivative vanishes). We refer to de Bruijn’s book for a vivid description
of standard saddle point landscapes in connection with asymptotic analysis [13].

For the problem at hand, there are two real saddle points, given by the saddle
point equation B%K (z) = 0; one is fized and equal to 7, while the other varies with

N
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FIGURE 4. Saddle landscapes and paths of integrations. From
top to bottom, k = an with a =1/6, a = 1/3, and o = 1/2. The
path of integration (thick line) is seen to go through the dominant
saddle which is double in the middle landscape and simple in the
other two. Black and dotted lines are respectively the level curves
R(K (7)) and R(K(7")) of the kernel K (z) = alogy + log(¢/z).
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Error: n /2 n~ /8t n~ /2
Central region “Wide” region
k: [aon + an®/?, agn + bn*/®] [en, (1 —€)n]
Saddle points: =T
Method: nearby saddle points coalescing saddle points
(Section 2.3) (Section 3)
Type: (z—t)e @t =t2/3 g4 /(m —t)e at=t2/3 44
2
Angle: :I:?7T — cubic curve
Error: p /3t n/3
F1cURE 5. Top: A broad classification of the methods involved

in the classification of tails and centre of the core-size distribution.
Bottom: Refinements of the saddle point method applicable to the
critical region of the law of core-size.

n, k. In particular, for nonseparable cores of general maps, one has
n—k
n+ 3k’

The relative positions of these two saddle points and the geometry of the inte-
grand evolve with the ratio k/n, as shown by Figure 4. The basic saddle point
method applies when these two points are sufficiently separated from one another,
that is, as long as a := k/n is “far away” from the special value ag = é This cor-
responds to the situation already known from the works [7, 27, 43]. The situation
changes and there appears a “critical” region when k assumes values near agn (as
it turns out, in the scale of n?/3). In that interesting case, the basic version of the
saddle point method ceases to be applicable, and this is precisely where we fit in:
by a detailed examination of the analytic geometry of the saddle points, we provide
suitable integration contours that “capture” the main asymptotic contributions.
Such an approach leads to a precise quantification of core-size in random maps.
Figure 5 summarizes the main methods involved in the saddle-point analyses of
this and the next section.

(31) 7=1 and 7 =3

2.1. Distinct saddles. When £k is far enough from agn, one of the two saddle
points is nearer to the origin and predominates. In that case, the basic method
applies, with the integration contour a circle centred at the origin and passing
through the dominant saddle point. This corresponds to the already known results
of Bender, Gao, Richmond, and Wormald [7, 27] supplemented by [43].
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Theorem 1 (Tails and distinct saddles). Consider nonseparable cores of general
maps. Let a = k/n, ag = 1/3, and take € an arbitrarily small but fized positive
number.

(i) The left tail of the probability distribution of core-size has a polynomial decay:
uniformly for en < k < (ag — €)n, one has

1 1
~ B m B (ag — )

(7¢) The right tail has an exponential decay: there exists a positive constant A < 1
such that, uniformly for (ap + €)n < k < n(1 — €), one has

Pr(X, = k) = O(A").

Pr(X, = k)

Proof (Sketch). We limit ourselves to brief indications on proof techniques (that
rely on [7]), which merely serves as a basis for comparison with the next sections.
For both left and right tails, I is taken to be a circle through the saddle point that
is “dominant” (in the sense that it is nearer to the origin). We denote by 74 this
dominant saddle point.

The main contribution to the integral arises from an immediate vicinity of 74.
In this vicinity the kernel admits an expansion of the quadratic type

K(rq+u) = K(13) — k2 |a—a0|u2 +O0(u?),

where ks is a positive continuous function of a. In particular, provided « is far
enough from g the basic saddle point applies and the integral (29) is, up to lower
order terms, given by the integral over a small vertical segment following the steep-
est descent line on both sides of 74. This yields
k exp(K
[zn]H(z)k ~ p(

n o
exp(K (7a))" / G (7a + u) exp(—nsz |a — ag| u® + O(nu®))du,
n 2w -5

where the “range” § is chosen so that
né? — oo, né® = 0,

ensuring a complete local capture of the contribution as well as validity of the
quadratic approximation. Here, we adopt § = logn/+/n.

The left tail (k < agn) corresponds to 74 = 7, i.e., the fixed saddle point 7 is
dominant (Fig. 4, top). In this case the expansion of G(7 + u) leads to part (%)
of the theorem. Remark that the slow decay of probabilities (k= 3/2) in this region
results from the formula

Cr[z"|H (2)k
My,

where the exponential rate of growth of [2"]H(2)*, namely exp(K (7))" = p~"(1)*,
exactly compensates the exponential rate of decay of Cy /M,

The right tail (k > aon) has 74 = 7' dominating (Fig. 4, bottom). This case
leads to part (i4) of the theorem and the exponential decay of probabilities follows
because K (7') < K (1) does not allow exp(K (7'))™ to catch up with the exponential
factor present in Cy/M,. O

Pr(X,=k) =

This basic saddle point analysis can lead in fact to precise estimates with correc-
tion terms to any order, as long as «a stays away from ag. For instance, one has for
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the right tail: there exist two real functions f(a) and g(a), positive and continuous
on the interval [1/3,1], such that

(a — a0)1/2

(1—a)3/2
uniformly for agn + n*3X(n) < k < n —n?/3X(n), where \(n) is any function
tending to infinity.

Pr(X, = k) ~ f(a) n~1/2¢—n(a—a0)’ g(a)

2.2. A double saddle. We next analyse the “centre” of the distribution, that is,
consider the case where k = aon exactly. Then, the two saddle points of (31)
become equal: 7/ = 7. This case serves to introduce with minimal apparatus the
enhancements that need to be brought to the basic saddle point method. Observe
that the complete confluence of the saddle points precludes the use of “exponential-
quadratic” approximations and the problem becomes of an “exponential cubic”
type. The following statement is a variant, with error terms added, of Theorem 1,
case (c), by Bender, Richmond, and Wormald [7]. (See also comments after the
proof.)

Theorem 2 (Centre and a double saddle). The centre of the probability distribution
of the (nonseparable) core-size of a random element of M., (general maps) satisfies,
1

when k = agn with ap = 3:

3v/322/3T(2/3)
8w

Proof. From now on, we purposely conduct the proof in the form of a general
discussion of an integral (29) and a kernel K(z) of the form (30). In this way,
generic formule (see especially (34) below) can be later reused for all families of
maps listed in the Section 5. What is considered here is the case of a double saddle
point at 7 when k& = agn. (For nonseparable cores of general maps, one should take
ap=3%andT=1)

When &k = agn, Equation (29) becomes

/ G(z)exp (nK(2))dz,
r

where the kernel K reduces to K(z) := log ((¢/2)1y*). By assumption, the quantity
eX has a double saddle point at 7 sometimes called a “monkey saddle”, viz., a saddle
with places for two legs and a tail. The idea consists in choosing a contour that is
no longer a circle centred at the origin, but, rather, approaches the real axis at an
angle (see Fig. 4, middle), so that it still follows steepest descent lines.

Pr(X, = k) = k2/3 (1 +0(n~3(log n)4))  ~ 44441 K23

(32) (" H () = 5

Global analysis. Let 6° be a small enough but fixed positive quantity (here,
0° = 1/10 proves adequate). Specifically, the integration path I' consists of the
following parts: (i) two (small) segments A7, A3 that have length 6° and intersect
at T, at an angle of +27/3; (ii) the part I'° of a circle centred at 0 from which a
small arc is taken out, joining with the nonreal ends of Af; AS.

By choosing §° small enough, we ensure that eX decreases strictly in modulus
along A{, A3, when going away from 7. By examining the global topography of
the real part of K(z) along I'° (and possibly deforming the contour but keeping it
homotopic to I'° in C\ {0} for more complicated cases), we ensure that the modulus
of the function eX remains smaller than its value at the nonreal ends of Ag, AS.
Consequently, the contribution of the part due to I'° is exponentially small.
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Next, we shall choose a value § < §° (the “range”) depending on n and tending
to 0 as n — oco. With a suitable choice of J, see (33) below, and by virtue of
the decay of |e®| along the part of the contour at a distance from 7 that is larger
than &, the corresponding contribution is also exponentially negligible (roughly like
exp(—log®n)). Then, the analysis reduces to a purely local analysis of e®. We
denote by A, A, the parts of the contour that are at distance at most ¢ from 7
and adopt a value of ¢ satisfying two conflicting requirements,
(33) né® = oo, nd* — 0, specifically 8 = (logn)n="/3.

Local analysis. We can now switch to the local analysis. The situation is such
that there is coincidence of two saddle points (7, 7'). Accordingly, the kernel K has
a double saddle point in 7, meaning that its local expansion is of the cubic type:

K(2) = ko — k3(z — 7)® + O((z — 7)*) (Ko, k3 > 0).

This cubic form together with the fact that k3 is positive explains the geometry of
the “landscape” corresponding to |eK |, in particular, the level curves, the steepest
descent lines, and the steepest ascent lines [13]. For example, the steepest descent
lines are at angles 0,27/3,—2m/3 (see Figure 4, middle). Thus, locally at 7, the
integration path I' follows two steepest descent lines of the landscape.

The contribution I; 5 along A;UA, to the integral in (32) provides the dominant
contribution and is estimated next by a local analysis of K for values of z near 7.
Set u = z — 7. The condition né* — 0 in (33) implies that terms of order 4 and
higher do not matter asymptotically, and a simple calculation, using the fact that
G(1 +u) = —g1u + O(u?), yields

L= / G-exp(nK)dz = —g1 exp(/eo)”/ uexp (—nwzu®) (1+0(nd*)) du.
A A

1UA, 1UA
The rightmost integral taken along A; U A, can be extended to two full half
lines of angle +27/3 emanating from the origin, this at the expense of intro-
ducing only exponentially small error terms (since né®> — oo0). The rescaling
v = u(nks3)'/3 exp(2in/3) on A; and v = u(nks3)'/? exp(—2ir/3) on Ay then shows
that the completed integral equals

+oo

() /3715 — e 70%) [ wexp(—®)do = —(uss) /4 S T(23),
0 V3

where the evaluation results from a cubic change of variable. In summary, we have
found, with Iy the (negligible) contribution due to the part I' \ (A; U Ay) of the
contour,

g1 T'(2/3) exp(ko)”
fe§ /3 953 n2/3
The definition of the kernel K implies that g1, ko and k3 are expressible in terms
of ¢, ¢, and 7 alone,

n=210 ko =tog (Mg ngzﬁ(f@ng(z)) ,

L"H @) = - (T + 10) = (1+0(nd*)) .

Y(1) T dz3 =z o
which leads to
T —n k
(34) [2"]H"(z) = :2’% 2;2\/%)” n‘f/(; ) (1+O(n*1/3(logn)4)).
3
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By the the asymptotic forms (23), (26) of M, Ck, the last estimate renormalizes
to give the probability of core-size at k = agn:
(35)
Cr[z"|H"2) _ c3p g1 T(2/3) _, -
Pr(X,=k) = = n= 23 (14 0m 3logn)*)) .
(Xn = k) i s w278 23 (1+ 00 ogn)"))

For nonseparable cores of general maps, one has eX(?) = (1+2)%(2(2 —3)?)"/3 /2,
T =1, k3 = 1/6 and g1 = 3/2 and the theorem follows as a specialization of
Equation (35). O

A similar reasoning proves that the estimate remains valid for n = 3k + e with
e constant, and more generally for any e that does not grow “too fast” (in fact,
e = o(n?/?)). Tt is interesting to contrast our approach with that of [7]: there, the
authors use a circle centred at the origin that passes though the double saddle point;
in other words, because the saddle point is double, the contour adopted in [7] is a
stationary phase contour that does not benefit of strong concentration properties;
accordingly the proof in [7] needs to appeal to estimates of oscillating integrals
based on the method of Van der Corput, but the situation seems less favourable
for deriving good error bounds. In contrast, as we see next, our approach extends
rather easily to a complete analysis in the central region.

2.3. Nearby saddles. When £ is close to agn, we choose in the representation (29)
an integration contour I' that catches simultaneously the contributions of the two
saddle points 7' and 7. For this purpose, we adopt a contour that goes through
the mid-point, ¢ := (7' + 7)/2, and, like in the previous case, meets the positive
real line at an angle of 27 /3. Local estimates of the integrand, once suitably
normalized, lead to a complex integral representation that eventually reduces to
Airy functions.

Theorem 3 (Local limit law and nearby saddles). The probability distribution of
core-size admits a local limit law of the Airy type in the following sense: for any
real numbers a,b, one has, as n — 0o,

k—
(36) Nn =  sup n?PPr(X, = k) —prcA Pliliie Ly ) BN 0,
a<*=20n <p n?/3
> 373 =

with A the Airy density of Definition 1, p, = %, and ¢ = $22/3,
The method also provides an estimate of the rate of decay of 7,,, which turns out

to be of the same order as the relative error term at the centre of the distribution;
see (39) below.

Proof. The proof parallels closely the one of Theorem 2. We set k = agn + zn?/3
where z lies in a finite interval of the real line. The kernel is now a perturbation of
the previous one: K (z) = log ((¢/z) e zb”"_l/s).

The contour of integration now comprises two small segments A§, A$ of length §°
meeting in ¢ = (7' + 7)/2 at an angle +27/3 with the positive axis, completed by
the arc of a circle simply encircling the origin. The quantity 6° is chosen like before
and, for asymptotic purposes, we need only consider subparts A;, Ay of A7, A3
that have length § = (logn)n—'/3 satisfying (33) above.

We estimate the contribution I » arising from A; U Ay, which is the significant
part of the contour. The distance between the two saddle points 7,7 is O(n~1/3)
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which represents the geometric “scale” of the problem. One thus sets z = ¢ +
u (with |u| < n='3logn). In the neighbourhood of ¢, local expansions of K
and G are somewhat more complicated and are then best checked (with suitable
monitoring) by a computer algebra system like Maple. The computation relies
on the assumption = O(1), but some care in performing expansions is required
because of the relations (33), namely né® — oo and né* — 0.

The local expansions of the functions G(¢ +u) and K({ + u) for x bounded and
small u are found to be

K(C+u) = ko —rhaen % — gllz*n™ + kya?un™?® — kgu® + O(n™*3log* n),
G(C+u) = gozn Y — gru+ O(n 23 log’ n).

There ko, kg, kg, K1, K3, go, g1 are computable positive numbers and the error terms
are valid for u € A; U Ay. The change of variable u = vn~1/3 gives

s

o _ ! 2/3_ 1.3 2, 3
Il s = n 1/3/ ((901' . gw)n 1/3 +€1) efon—roTn Ko T +K1T-v— K3V  +€2 dv
o ] - 2, 3
= exp(ko)"n 2/3/ ((gox — g1v) +TL1/361) g Fo T HRITTUT RSV o2 gy,

= exp(ro)" n—2/3 /(9033' _glv)e—ngw3+n1:c2v—nsv3 dv (1 + O(e»)).

By convention, the variables €; and es generically denote error terms that satisfy
e1 = O (n"23(logn)?) and ea = O (n~*/3(logn)*), and are uniform in z and
n; integration takes place over the union of two segments A}, A} each of length
on'/3 =logn. Perform finally the change of variable v = bt (with b = (3k3)~1/3)

and complete (introducing a negligible error) the integration path to e*2"/3co0:
2in/3
exp(.‘io)” 2 /ooe Jo 003 2bt—ﬁ
MH(2)Y = —/——b x — t)e Fo¥ Tr sdt (1+e€
[ ] ( ) 2imn2/3 9 Ooe—2in/3(wgl ) ( 2)

= exp(ko)"n~ 2 PcA(cx)(1 + e2).

The reduction to Ai(z) and Ai’(z) is achieved by an integral representation equiv-
alent to Definition 1 (see Appendix B for details). The Airy density function A
involves the scaling factor ¢ = bgy (also: k§ = 2¢®, k1b = ¢?, i = c). In summary,
for z = O(1) and k = agn + zn?/3, the main estimate found is

6T) ) = o) ned(er) (14 O logn)?))
which gives eventually
(38) Pr(X, = k) = n™*/p cA(ea) (1+ O(n~"/*(logn)"))

For nonseparable cores of general maps, one finds p;, = %, c = %22/ 3, and the
statement follows. O

Theorem 3 together with the companion Theorem 7 below answer precisely a
conjecture of Bender et al. in [7, p. 274], where the authors say (notations adjusted):
“we believe that for |k—agn| = xn?/? the probability is asymptotic to [some unknown
function] B(x)n=2/3.”

The quantity 7, in (36) measures the “speed of convergence” of the discrete
distributions of X, to the Airy density limit. This speed is dictated by the error
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term €5 above, so that one has
(39) Nn =0 (n_1/3(log n)4) .

This error term can be improved to O(n~'/3) provided expansions are pushed to
the next order, and a complete asymptotic expansion could even be derived. We do
not continue in this direction but turn instead to the analysis of coalescent saddle
points that gives access to a wide region of k values—this however at the expense
of a somewhat increased technical complexity.

Remark. The situation encountered with maps resorts to a general discussion
of coefficients of the form

["] (=) " p(2)"

(with the possible addition of cofactors), this in critical regions where the basic
saddle point method breaks down. The case of maps leads to coalescence between
a fixed saddle point and a movable one, but other situations could be similarly dealt
with®. Equivalently, the problem can be rephrased as one of estimating coefficients
of trivariate rational functions,

1
(1 —ug(2))(1 — vy(2))

Under suitable conditions, an Airy phenomenon must take place when m = n and
k ~ agn. Pemantle [40] has launched an ambitious research programme that aims at
relating asymptotic coefficient estimates to geometric properties of singular varieties
and it would be of obvious interest to relate the present study to Pemantle’s results.
At least, our results indicate that Airy phenomena and, more generally, stable
laws of rational index must be present in certain critical problems of multivariate
asymptotic analysis.

[u™vk 2"

3. COALESCING SADDLES

In the present section, we provide a uniform description of the transition regions
around n/3, allowing k to vary in a wide region between o(n) and n — o(n). To this
purpose, we set

k=aon+pn=(1/3+B)n,
12

and derive estimates valid uniformly for § in any compact subinterval of | — 2, 2[.

Theorem 4 (Wide region and coalescent saddles). Let k = (1/3 + B)n for S in
any compact subinterval of | — %, 2[. Then, Pr(X, = [n/3+ Bn]) equals
(40)
1
3(1+30)

ay

32273 (%A(n1/3§) t o2 P (_2”53) Ai(”2/352)> (1+0(1/n)),

5Regarding the estimate at the centre, if at 7 the cofactor G has a zero of order p and the
kernel K has a saddle point of multiplicity ¢, then a factor F(%) should replace I‘(%) More
generally, functions akin to stable laws (defined in Appendix A) of rational index are expected
in the central region. We are however not aware at the moment of any natural combinatorial
example involving saddle points of multiplicity larger than 2.
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where the quantities £, a1, and a4 depend only on B (we set L(x) = zlogx):

3 1 1 1/3

(41) & = <§L(1+3ﬂ/2)+5L(1—3ﬂ/2)—§L(1+3,3)) ,
ap _ 3 35/6 /2 _ 2 36 a;
42 5 = Z<<1—9ﬁ2/4)<1+35)> and as = 55\ B 1@

The error term of (40) is uniform for B in any compact subinterval of | — é, %[

The estimates involve Airy functions composed with the quantity n!/3¢ that
depends nonlinearly on 8. In particular, Formula (40) extends the estimates of
Section 2.3 when k = n/3 4+ zn?/3, since in that case # — 0 while n'/3¢ is propor-
tional to z, and the following approximations apply as § — 0:

U= 22P=55/4)+0(B), as =~ 222 +0(B), €= 32/(3 - 12/2) + O(").

This results in the following second order approximation, which is uniform in the
central region z = O(1) and refines Theorem 3: with ¢ = 322/3,

_ 2/3 _CA(CSU)_ (13 cz A'(ca) —-1/3 —2/3
(43) Pr(X, = |n/3+an®?))= 00 (1 (18— Alenly iy =1/3 4 O(n )) .
As soon as k leaves the n/3 + O(n?/3) region, the two Airy terms in (40) start
interfering and large deviations are then precisely quantified by (40). When k drifts
away to the left of n/3 (and n'/3¢ — —o0), basic asymptotics of Airy functions
show that the formula simplifies to agree with the results of Section 2.1.

Proof. The transition phenomenon to be described is the coalescence of two simple
saddle points into a double one®. We follow the book of Bleistein and Handelsman
[8, Sec. 9.2], where the method originally due to Chester, Friedman, and Ursell
is exposed (see also the books by Olver [39, pp. 351-361] and Wong [52]). The
simplest occurrence of the phenomenon appears in the integration of exp(nf(t))
with a cubic function f,
3
J)="5 —€t+r.

Indeed, in this case there are two saddle points +£& and —& (given by f'(t) =
2 — &2), coalescing into a double saddle point as £ — 0. The landscape of R(f(t))
is represented on Figure 6 for £ = 1 and £ = 0. As expected, this landscape around
t = 0 is very similar to the ones of Figure 4 near z = 1. The strategy consists in
performing a change of variable in order to reduce the original problem (29) to this
purely cubic case. Denote the kernel of the integral as K (z) = log(¢*/"¢/z), with
k = (1/3+ B)n and the dependency on f kept implicit. The integral in (29) is

In,p) = / G(2) exp(nK (2))dz,
r
where I' is any contour that simply encircles the origin. In accordance with the
discussion above, we seek a change of variable of the form
(44) K(z)=—(*/3-¢&) +r.

6As pointed out by a referee, the expansions derived here look similar to uniform asymptotic
expansions derived by Wong and his coauthors for Laguerre and Charlier polynomials [9, 26].
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FIGURE 6. The landscape of R(f(t)) for £ =1 and £ = 0.

The parameters & = £(8) and r = r(8) must be chosen in order to map one
landscape onto the other and in particular 7 and 7' onto +& and —¢ respectively.
This leads to the conditions

1 2 2
r=slK(r) + K] = K1) - 36 = log(4(r)*/™ /p) — 2¢€°

(45) 3 3
€ = JIK(r) - K()].

There are three possibilities for £ and we choose the real cubic root. In view of the
values of K, ¢ and 1, this leads to the definition (41).

The change of variable must satisfy (44) and map 7 and 7' onto £ and —&
respectively. In fact there exists a unique mapping z — t of this type that is
conformal and sends the disc D of diameter [1, 2] to a domain Dg. We note first
that we may freely restrict 8 to a subinterval of [—%, %] provided this interval
contains the central value ag. Indeed, outside of such an interval, the classical
asymptotic estimates of the Airy function show that the statement reduces to what
has been obtained earlier by standard saddle point arguments. We thus take g
in [-3, 15]. Then, for B in [~ i5], the image Dg contains the fixed disc D’
of diameter [—%, %] In other words, it is possible to choose consistently for each
z in D, an image ¢t among the three branches allowed by (44). As illustrated by
Figure 7, this mapping is very close to the linear mapping that sends 7 and 7' onto
& and —&.

The existence of this conformal mapping is proven in Appendix C. Let 2(t) be
the inverse mapping and Go(t) = G(2(t))2(t) where #(t) = 2. Remark that Go(t)
is analytic in D', since the change of variable is conformal and G(z) is analytic in
D.

Next, we make the contour I' precise and simultaneously proceed with the esti-
mation the integral. As is usual with saddle point integrals, we first need to localise
the integral in D, neglecting the parts of the path down in valleys,

I(n,B) = /FG(z) exp(nK(z))dz = G(2) exp(nK(z))dz + €.

rnbp
The geometry of the landscape immediately implies that the portion I'\ D of ' can
be chosen so as to wind about the origin while lying entirely in valleys, and we fix
such choice once and for all. Consequently, the integral on I' \ D is bounded by
the values at its endpoints, themselves fixed to be at z = 74 + e¥2i"/3_ with 7, the
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FIGURE 7. The conformal mapping z — ¢ for § = —1/10: (i) A
grid in the z-plane and a part of the path I'; (4) the corresponding
images in ¢-space.

dominant saddle point (the one closest to the origin). The error term then satisfies
€1 = O(c")I(n,B) for some 0 < ¢ < 1, i.e., it is exponentially negligible.

Inside the disc D we apply the change of variable (44), then restrict attention
to the disc D', and deform the contour I' N D into the relevant finite part of A, =
{tet?", ¢ > 0}:

In,p) = / G(e() exp(nf(0)2(6) dt + e

= / Go(t) exp(nf(t)) dt + e.
AocND’

As each end point is moved between two locations low in the valleys, the second
error term es is again exponentially negligible.

In order to evaluate the last integral one needs to dispose of the cofactor Go(t).
This is done via an integration by part. Since Go(§) = 0 and Gy is regular, taking
a1 = Go(—¢€)/(2€) leads to

Go(t) = (€ — t)ay + (t* — £)Ho(2),

where Hy(t) is regular in D’. The expression (42) for a; follows from this definition
using the value of 2(—¢&) as computed in Appendix C. The integral I(n, ) is then

I(n,B) = exp(nr) / (¢ —t)ar exp (—n (£2/3 — €°t)) dt + Ro,
AND!
where after integration by part, and up to another exponentially negligible term,
Ro = S [ @ e (—n (03 - €0) di+es
n AnD!

The integration by part above has reduced the order of magnitude by a factor
n, but because of the cancellation G¢(§) = 0, this second order term might in-
terfere. Fortunately, Ro is amenable to the same treatment as I(n, ). Iterating
the integration by part could lead to a complete expansion of I(n, 3) but we shall
content ourselves with the nezxt term, in which no further cancellation occurs. Set
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H{(t) = a2€ + azt + (t* — €2)Hy(t), with Hy(t) regular in D', and as, as functions
of 8; we have

I(n, B) = exp(nr) /Aoo(§ (a1+%) —t (m—%g)) exp (—n (t*/3 — €°t)) dt + Ry,

where the integral has been extended to the whole of A, at the expense of yet
another exponentially negligible term. The error term is

/ Hi(t)exp (—n (t*/3 — £7t)) dt + 4.
AenD!
In terms of the Airy function, we thus have directly
_ o, exp(nr) 1/3 A2\ A:(,2/3¢2) _ _ 93\ purg,2/342
I(n,B) —2m7n2/3 (§n <a1+ - )A1(n &) (al - )Al (n*/°¢ )) + Ry,

and the error term R; can be estimated: following [8, p. 375], there exist dy and
dy positive such that

exp(nr d . d .
|R1| < # (—0|A1(n2/3§2)| + n2—;3|A1'(n2/3£2)|) .

n2 nl/3

The theorem follows from formulae (29), (23), (26), (45) and the definition of
the map—Airy law, upon setting as = (as + a3)&. O

exp(nr)
n2

Ry

4. SINGULARITY ANALYSIS OF THE COMPOSITION SCHEMA

There are two aspects to the enumeration of maps. One aspect relies on what
we have called the “Lagrangean framework”, and has been treated accordingly by
suitable adaptations of the saddle point method. The other one employed by Gao
and Wormald in [27] is further developed now: it exploits directly the fact that
map generating functions like M, C, H each have a unique dominant singularity
that is isolated and involves the singular exponent % In this section, we provide
an analysis of the probability law arising from any functional composition schema
of singular exponent 3/2 under the “criticality” assumption already encountered in
Section 1.3; the abstract conditions are (46), (49), and (50) below. (Other non-
critical cases turn out to be in fact simpler and are already known from [4, 25, 45]
and related works.) We establish that the “map—Airy” distribution is due to appear
systematically in such contexts. Technically, this section extends to large powers
the principles of Flajolet and Odlyzko’s singularity analysis method [22, 38] and
constitutes an alternative to the method of nearby saddles.

As we aim at analysing combinatorial generating functions, we restrict attention
in what follows to functions with nonnegative coefficients at 0. First, a function F'
analytic at 0 with radius of convergence rg is said to be singular with exponent %
if the following conditions hold:
(46)

F(z) is analytic on |2| = rF, 2z # rF;

F(z) is continuable in A := { z | |2| < Rp, 2 € [rr, R¥] };

F(z)=fo—fi(l=z/rp)+ f3/2 (1 — 2/rr)3? + O((1 — z/rp)?) as z = rp in A.
There, fo, f1, f3/2 are positive constants and R is some constant satisfying Ry >
rpg. This fact, by virtue of singularity analysis, entails
L3S e

(47) [2"F(2) 1r
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Next, as seen in Section 1, the equations describing core-size are of the composi-
tion type. Given generating functions with nonnegative coefficients, C' and H, we
consider in the abstract the functional composition schema

M(z,u) = C(uH(z))
and the associated family of probability distributions

J\C/[—I; 2" H(2)*, Cr == [%]C(2), M, :=[2"]M(z,1).

(48) Pr(X,=k)=
Combinatorially, this corresponds to a composition M = C o H between classes
of objects, where objects of type H are substituted freely at individual “atoms”
(e.g., nodes, edges, or faces) of elements of C. The bivariate generating function
is such that [2"u*]M(z,u) gives the number of M-objects of total size n whose
C—component (the “core”) has size k and X, is the corresponding random variable
describing core-size in this general context. We then define the composition schema
C(uH(z)) to be of singular type (2 o 3) by the condition

(49) C(z), H(z) have singular exponent 3 in the sense of (46).

In addition, the composition schema is said to be critical if there is exact coincidence
between the singular value of H and the singularity of C"

(50) H(ry) =rc.

(Criticality is satisfied in all composition schemas of maps examined in this paper.)

Here come a few basic observations on the “physics” of the counting problem.
We denote the radii of convergence of C' and H by r¢ = o and rg = p, and
impose the condition H(p) = o expressing criticality (50). The local expansions
are assumed to conform to (46):

(51)
Hiz) = 0 — m(—2/p) + hyp(—2/p*? + O(1—2/p))
Cz) = c - all—z/o) + c3p(l—2/0)%% + O((1-2z/0)?).
First, straight singularity analysis (see (46)) provides the asymptotic counts
3hss;  _ k 3c3/2
H, =[2"|H(2) ~ " Cr=[2"]C(2) ~ o~ ",
V) ~ T O= (10 ~

3m3/2 pfn
4v/7nd ’

Also, from the definition (48) of the distribution of core-size X, and the fact that
any H(z)* has itself a singular expansion of exponent 3, there results that

Mn = [ZH]M(Z, 1) ~ where M3z = C1 h3/2/0' + C3/2(h1/0)3/2.

h
(52) Pr(X, = k) ~ —L2 kot=1Cy,

mg/2
for any fized k. Thus, for bounded values of k, the probability decays initially
roughly like
3hs /2 c3/2 —3/2
4m3/2 0'\/7_1' ’
(as proved below, this estimate as k — oo remains in fact valid as long as k = o(n))
and the O(1) region of k contributes a total mass of about

(53)

(54) ps == c1hg s/ (oms)2),
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as seen by summation of (52). Thus, the bimodal character present in cores of map
(Section 1.1 and Figure 3) is generally present in compositional schemas.

Finally, the expectation of core-size in a random M-—structure of size n is found
by similar means to satisfy

(55  E(Xn) = Min[zn] (%C(uH(z)))uZI ~ (63/2 (ha /0)1/2) .

m3/2

What is noticeable is that the mean of X, is O(n), while the distribution assigns a
fraction of the probability mass near the origin.

Theorem 5 (Composition Schema (3/203/2)). Consider a critical combinatorial
schema M := C o H of type (2 o 2), with parameters as specified in (51). The
distribution of core-size of a random element in M with size n has three asymptotic
regimes depending on the value of k/n in comparison to

ag :=o/h.
(i) For k = an, with a fized and 0 < a < ag, the left tail is polynomially small:
3h3/2 c3/2
4m3/2 Uﬁ

(i3) In the central region k = agn + zn?/® with x = O(1), an Airy law holds:

Pr(X, =k) ~ (1—a/ag) 2 k32,

2/3P (X n 2/3) —3/2 C3/2 A( ) h 1 < h’l )2/3
n T = aon + zn ~ « —— cA(cx where ¢ = — .
" 0 0 mg/2 Qo 3h3/2

(4i1) For k = an, with « fized and a > g, the right tail is exponentially small:
Pr(X, = k) = O(A*) for some A= A(a), 0 < A< 1.

Proof. The analysis” reduces to estimating coefficients of large powers of H(z) and
the starting point is Cauchy’s coefficient formula

" g 1 r dz
(56) ["]H(2)" = o : H(2)" g
now evaluated directly without reference to any parametrization. Contours corre-
sponding to the three cases are depicted in Figure 8.

Common to cases (i) and (i), we choose the contour 7 as being composed of an
arc of some circle of radius R > p connected to a loop around [p, R]. The open loop
approaches p at an angle —¢ (where ¢ has to be strictly less than 7/2) then winds
around p while staying at a distance from p chosen to be n~", and then continues
at an angle ¢ from the positive axis. (We shall take ¢ = 0 and r = 1 for the left
tail, ¢ = /3 and r = 2/3 for the central region.)

A technical point must be noted before we can proceed. Let Dy be the disk of
radius R centred at 0. In what follows, we analyse large powers of h(z) = H(2)*/zin
parts of some Dpg. Since H(z) has nonnegative coefficients and a unique dominant
singularity, along any circle centred at 0 of radius < p, it attains its maximum
modulus uniquely on the positive real axis, but this property does not necessarily
hold outside of the disk of convergence |z| = p. However, if any fixed neighbourhood

"To keep this section short, we only indicate the major analytic steps and do not attempt
to make error terms systematically explicit or uniform (see however Figure 9 for indications).
Details can be easily supplied by reference to the singularity analysis paper [22] as the approach
is somewhat similar.
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FIGURE 8. The three contours (v1,72,73) corresponding to the
three regimes of the distribution of core-size (left tail, centre, right
tail, resp.).

V of p is excluded, one can still ensure that |H(z)| < H(p) and |h(2)| < h(p) for
z € Dr\ V. In the analysis described below, we also make use of local expansions
near p and base the analysis on the fact that |h(z)| decreases locally away from p
along certain directions in a neighbourhood V' of p. Again, this need not hold
globally, but, by having restricted V suitably, we can always assume that this
decrease holds throughout V. In what follows the contours v that we choose are
implicitly taken inside domains Dg, V that satisfy these requirements. In this way,
we ensure two properties: (a) the contribution to (56) that is due to the arc of the
larger circle is exponentially small compared to o*p~™; (b) the dominant part of
the integral arises from a vicinity of the singularity where local expansions can be
assumed to be valid throughout. In particular, one has for z near p in a A-domain
of the form (46):

(57)

[e% a h
h(z) = 2G) ="—(1+(1—}“—a)z+ﬂz3/2+0(z2)), Z:=1-2.
z p o o p

(The determinations are the principal ones when Z > 0, corresponding to z left of
p-)

(1) Left tail. For this regime, the local expansion (57) shows that the function
h(z) = H(z)*/z decreases when going away from 1 parallel to the real axis since
the coefficient of Z is positive when a < oy and Z has there a negative real part.
The contour v; adopted then includes a loop in the z—plane—this is exactly the
Hankel contour of singularity analysis—passing at distance 1/n from the singularity
and oriented positively. Only a small part of the contour, the “range”, matters
asymptotically. The standard change of variable z = p(1 — t/n) is performed and,
up to exponentially small terms, only the part ¢+ < (logn)? of the contributes.
Then the Cauchy kernel 27" becomes, in the limit n — oo, the exponential kernel
e! multiplied by p~", and the expansion of H(z)* provides

H(z)k Ukp_"e)\t (1 n khg/y t3/2
n

o+l dz = n3/2

— hi k
1.99 —q_mr
(58) +O0(n )) dt, A:=1 paleg
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In the t—plane, the image contour of y; is now completed into a loop 7f coming from
—00 — i, encircling the origin on the right and going back to —oo + 4 (introducing
again only exponentially small error terms). In the process, termwise integration of
the expansion (58) against the kernel e* shows that the contribution of the term 1
is negligible (the complete integral f% eMdt is identically 0). One finds in this way
that
n k akp™™ hyppk 1 t(1—ah1/0)43/2
o.kp—n h3/2k

['(-3/2)n%2 o (
where the second line derives from Hankel’s original representation of the Gamma
function [51, Sec. 12.22]:

(59)

1 —ah1/0)75/2,

/ t—%et dt.

T(s) 2ir ) o

From there, the left-tail estimates () result after normalization by
Cr  c3/2 (n\5/2 _,

60 — ~ — .

(60) ™ (z) "

The formula (59) extends (53) provided k tends to infinity more slowly than agn,
but it introduces a curious distortion factor of (1 — a/ag)~5/2. The estimate obvi-
ously ceases to be valid when a approaches ag.

(it) Central region. In this case, we adopt as integration contour in the z—plane
a contour 7, including a positively oriented “loop” that is made of two rays at an
angle of /3 and —m/3 with (0, +00); also, the two rays intersect on the real axis
left of the singularity, at a distance chosen to equal pn=2/3.

When a = k/n is exactly at ag, the term linear in Z disappears from (57). Also,
the argument of Z3/2 is £x so that h(z) = H(2)*/z decreases in modulus when
going away from p. When k/n is within O(n~'/3) from ayg, |h(z)| decreases along
the contour away from p provided Z is a bit larger than n=2/3, say, Z > n=2/3logn
(since, then, the terms involving Z3/2 take over the terms linear in Z), and we may
neglect the corresponding contribution to the integral as it is exponentially small
(roughly like exp(—log® n)).

We perform the normalization z = p(1 —t/n?/3) and, so that, on the significant
part of the contour, one has ¢ < log? n. First, an easy calculation shows that, in
the range,

(61)

k,—n h
powE dz = —% exp (—%mt + z—izt:’/z + O(n_0'33)) dt.
Next, the variable ¢t evolves on a contour made of two segments of angle 27 /3
and —2/3, intersecting at —1, and each of length O(log”n). At the expense
of exponentially small error terms, this contour can be extended back to infinity.
Reverting the orientation and shifting the contour by 1, this results for ¢ in the new
contour composed of two infinite rays, and Equation (61) implies

O'kp_n 1 ooe h3/2 . h
ME(E o~ TP L N3/2 372 M ‘
[Z"1H(2) n23 2in /m_m,s eXp( By ! a “’t) di

2im/3
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The integral representation is one of the basic forms of the Airy distribution (see
Appendix B). In summary, we have found a “central” estimate for large powers
of H,
okp™ o
# E CA(CCL')
which, after the normalization (60), gives precisely the Airy density in the central
region (i7). As a consistency check, note that the total mass concentrated near agn
comes out as 1 — p,, where p, is the mass of the “small” k region (54); also the
contribution to mean core-size due to the central region is ~ ag(l — ps)n, which
matches asymptotically the direct estimation in (55).

["1H (2)* ~

(4i1) Right tail. Without loss of generality, we assume that H(z) is of exact
order z at 0 and consider accordingly o < 1. Let ¢ be any positive number strictly
less than the radius of convergence p of H(z). Since H has nonnegative coefficients,
trivial bounds applied to coefficient integrals entail

@ n
(62) ["H ()" < (%) .

Let h(z) = H(2)*/z. One has trivially h’'(0") = —oo while, at the other end,
h'(p) = ‘;—: (afr —1), a quantity that is strictly positive precisely when a > o'/h;.
Thus h(z) is decreasing away from 0 and increasing when z approaches p from the
left. Consequently, it attains its minimum value at some point (o € (0, p) and the
inequality h({o) < h(p) = o®/p holds there. (In fact, the minimum is unique and
thus determined by the relations: h'(¢o) = 0 and 0 < {o < p.) Thus, from the
bound (62) taken at ¢ = (o, one finds that [2"]H (2)*¥ < h({p)". Combining this last
inequality with the known asymptotic forms of Cy and M,, shows that

Pridn =) =0 (’;z(é?)))n ’

where (y is a computable function of a. This constitutes the exponentially small
estimate of the right tail (iii), with A = h({o)/h(p). The point (o is in fact a saddle
point of the integrand. As is true of coefficients of order n in powers of order n
of “most” analytic functions (see e.g., the survey [28]), the saddle point method
applies. Here, it suffices to take as integration contour the circle of radius (o that
is a saddle-point contour. In this way, the upper bound is easily refined into the
asymptotic form cA™n~1/2, O

Closer inspection of the proof reveals that the error terms can be made uniform
(see the last line of Figure 9): for the left tail, this requires a to be confined to a
closed subinterval of (0, «g) for the central region, uniformity is granted when z is
restricted to any finite interval, which corresponds to k = agn + O(n2/ 3).

It is quite striking to watch the interplay between the various regimes analysed
and the choice of the corresponding contours. See Figure 9 for a summary, which is
to be compared to Figure 5 for the saddle-point approach. As is expected from the
general theory [22], when k remains O(1), the usual Hankel contour (at distance 1/n
from p) fully captures the singular behaviour of the generating functions (see (52))
and it continues to do so as long as k remains smaller than agn. As soon as the
central region k =~ agn is approached, the Hankel contour must be moved away
from the singularity (at distance n~=2/3) while being folded back towards the circle
of convergence as shown on Figure 8. Finally, when k exceeds agn, the contour
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Left tail Central region Right Tail
Method: singularity analysis this paper saddle point
— — _ 1
Type: /ett3/2dt (F(—g) 1) /ets/2 “tdt (Ai(mz)) /e * at (F(§)>
Angle (¢): +0 ig :I:g
. L 1 1

Dist. to sing.: - 75 o(1)

log? n log?n log? n
Range: — 273 172
Error: n /2 /3 n~1/?

FicURE 9. Composition of singularities: The methods, types
of normalized integrals, contours (angle, distance to singularity),
effective ranges where the integrals are concentrated, and approx-
imation errors corresponding to the three regimes of the law of
core-size.

moves further back (it can be entirely folded within the disk of convergence) passing
through a saddle point that is then at distance O(1) from p.

5. VARIETIES OF MAPS, LARGEST COMPONENTS, AND RANDOM SAMPLING

The results obtained in the particular case of nonseparable cores of maps belong
to a very general pattern in the physics of random maps. In this section, we
first exhibit fifteen classes of maps that resort to the composition schema and the
Lagrangean framework (Section 5.1). The analytic properties, in terms of either
the associated saddle point geometry or the singularity structure, entirely parallel
the treatment given for nonseparable core of general maps. Accordingly, an Airy
law of the map type holds for multiconnected cores of several varieties of maps
(Theorem 6). Next, in Section 5.2, we follow the lines of earlier works of Bender,
Gao, Richmond, and Wormald and “transfer” the estimates of core-size to largest
multiconnected components of random maps (Theorem 7). Various consequences
for random sampling are given in Section 5.3, and we conclude with simulation
results that support very well all our previous analyses (Section 5.4).

5.1. Map related composition schemas. We start with a few definitions of
classes of maps that have proved to be of interest in the combinatorial literature.

Families of maps. A map is loopless if it does not contain any loop; bridgeless
if it does not contain any bridge (a bridge, or isthmus, is an edge whose removal
disconnects the map); simple if it does not contain multiple edges nor loops; bipar-
tite if the vertices can be coloured in two colours such that each edge is incident to
both colours.

A map is k-connected, k > 2, if it cannot be separated into several connected
components by removing k — 1 vertices. A map is nonseparable if it is 2-connected
and loopless, with an exception for the two maps with one edge (the bridge and
the loop) that are taken to be nonseparable by convention.

A map is a singular triangulation if all its faces have degree three (including
the outerface); it is a triangulation if moreover it is 3-connected (these correspond
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to the usual geometric triangulations, with straight line triangles and no multiple
edges); it is an irreducible triangulation if moreover all its cycles of length three
bound a face. Observe that 3-connected maps are in one-to-one correspondence
with graphs of convex polyhedra, and that irreducible triangulations are also called
4-connected mazximal planar graphs.

Table 1 illustrates these definitions by providing for various families the first few
terms of their generating functions. These generating functions are well-known [29,
35, 43] and the ones given are relative to rooted maps. Historical references on the
enumeration of these families can be found in [35].

Many families of maps have algebraic generating functions, that admit La-
grangean parametrizations of the form (4). Moreover, they normally have a unique
dominant singularity and a singular exponent equal to 3/2, with the validity of
the singular expansion being as required by Theorem 5. Table 2 illustrates this
“universal” phenomenon by providing the parametrizations, dominant singularity
and singular expansion for the families of Table 1.

Composition schemas. Table 3 presents some interesting composition schemas
relating the previous families. For each line of the table a basic family M and a
core family C are given, together with four series M (z), C(z), H(z) and D(z). The
series M (z) and C(z) are the generating function of the families M and C and are
given in terms of the series of Table 2. Except for the last line, the composition
schema has then the form

M=CoH+D,

meaning that a map of M either has a core of C in which some substituents of
H are attached, or has no core. In particular the bivariate generating function of
maps with respect to the size of the core is then

M(z,u) = C(uH(z)) + D(z).

TABLE 1. A selection of classical families together with their as-
sociated generating functions, M(z) = ), <, M,2", where M, is
the number of maps in M that have size n.

maps, size n > 1 generating function (first terms)

M general maps, n edges M (2) = 22+ 927 + 542° + 3782* + 29162°
M bridgeless maps, n edges Ms(2) = 2z + 32% +132° + 682* + 3992°
M loopless maps, n edges Ms(2) = z + 322 + 132% + 682* + 3992°
M3 simple maps, n edges Ms(z) = z + 22% + 62° + 232" +1032°

M4 nonseparable maps, n edges My(z) = 224 22 + 22% + 62" + 222° 4+ 9125
M5 nonseparable simple maps, n edges  Ms(z) = z + 2° + 2* 4+ 62° + 1625 4 7127
Mg 3-connected maps, n + 1 edges Me(2) = 2° + 427 + 62° + 242° 4 662'°

B bipartite maps, n edges Bi(2) = 2z + 327 + 122° + 562" + 2882°

B> bip. simple maps, n edges Bs(2) = 2+ 22° 4+ 52° + 152 4 522°

Bs bib. bridgeless maps, n edges Bs(z) = 22 + 2% + 62* +162° + 712°

Ba bip. nonseparable maps, n edges Ba(z) =z + 22 + 2° + 22* + 62° + 192°

Bs bip. nonsepar. simple maps, n edges Bs(z) =z 4 2* +32° + 727 + 152° + 632°
T; singular triangulations, n + 2 vert. Ti(z) = z + 42% + 242° + 1762 + 14562°
T> triangulations, n + 3 vert. To(z) = 2z + 32% +132° + 682* 4 3992°

T irreducible triangulations, n + 3 vert. Ts(z) = z + 2> + 32* 4+ 122° + 522° + 24127
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Let us now describe more specifically these schemas. Recall that maps are rep-
resented in the plane with the unbounded face on the right of the root; the inside
of a cycle is then defined with respect to the unbounded face.

e The loopless core of maps is obtained by detaching all maximal loops and
their interior (maximal means not contained within any other loop). Un-
less the root is a loop (this case gives D(z)), a loopless core is obtained.
Conversely, at each of the 2k corners of a loopless map of size k, a sequence
(1/(1 — %)) of loops with a map inside (2(1 + M)) can be attached.

TABLE 2. Generating functions, parametrizations and singular ex-
pansions for the families of Table 1. In this table, M (z) = ¥(L(z)),
where L(z) = z¢(L(z)).

M ) v 1/p singular expansion (Z =1 — z/p)
M 3(149)2 37’—;7’—2 12 L2474 87%° 1 0(2%)

My aapgy ML om0 54074 3079 4 O(27)
Ms @R uGTENeS) g s 82p . 2678/2 4 O(22)
My 4p)? %;)%‘2) 2 LAz 8732 4 0(27)

M @R MR B g -2+ Bl o)
Mo ot ghiE 4 -2+ 5270402
B, 2(14y)? vy 8 1-z+22°?+0(2%

B f4in M 2 g R o(2)

B gty CGEDEY Bk -2+ 9007 1 0)
Be Gl MR B o574 527 10

By g MR SR G- HZ+ G202
Ti 2(14y)? — el 2 L1324+ 872° +0(2%)

T2 (o)t —vty-ny B 2 1874 3O 73/2 4 O(2?)
Ts =17 e, ¥ 5 - Ez+ 37 +0(2”)

TABLE 3. Composition schemas, of the form M = C o H + D,
except the last one where M = (1 + M) x (CoH).

maps, M(z) cores, C(z) submaps, H(z) coreless, D(z)
all, M (2) E:I&goe;f::; Ma(z)  2/(1—2(14 M)’ 21+ M)
loopless M>(z) simple M3(z) z(1+ M) -

all, M (z) nonsep., M4(z) 2(1+ M)? -
nonsep. My(z) — z nonsep. simple Ms(z) z(1+ M) -
nonsep. Ms(z)/z—2 3-connected Mes(2) M z4+2M?/(14 M)
bipartite, B1(z) bip. simple, Ba(z) z(1+ M) -
bipartite, B1(z) bip. bridgeless, B3(z) z/(1 —z(1+ M))? 2(1+ M)?
bipartite, B (z) bip. nonsep., B4(z) z2(14 M)? -

bip. nonsep., Ba(z) bip. ns. smpl, Bs(z) z(1+ M) -
singular tri., T1(z) triang., z + 21%(2) 2(1+ M)? -

triangulations, T2(z) irreducible tri., T5(z) 2(1+ M)? -
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e The bridgeless core of maps is obtained by detaching all closest bridges
(a bridge is closest if there are no other bridge between it and the root).
Unless the root is a bridge a bridgeless core is obtained. Conversely, at
each corner of a bridgeless map, a sequence of bridge leading to a submap
can be attached. (This decomposition is dual to the previous one.)

e The simple core of maps is obtained by contracting all maximal cycles of
length two into single edges. Conversely each edge of a simple core may be
expanded into a cycle of length two containing a submap ((1 + M)).

e The nonsingular core of singular triangulations is just the simple core of
singular triangulations so that the schema is essentially the previous one.
The difference of H(%) is only due to the different definition of size (size n
means here n + 2 vertices, thus 2n faces and 3n edges).

e The nonseparable core of maps was already discussed for general maps and
works identically for bipartite maps.

e The 3-connected core of maps is obtained cutting all maximal 2-separators
and replacing the removed components by edges. This composition schema
is described in [48].

The last schema, irreducible core of triangulations, is obtained by emptying all
maximal 3-cycles and is described in [7]. It leads to a variant of the composition
schema: the bivariate generating function is

M(z,u) = (1+ M(2))C(uH (2)).
However this modification does not alter the applicability of our methods.

Core-size. From the expansions of Table 2, it is mechanically verified that, for
each schema M = C(H) + D, the dominant singularity of C(z) is precisely H(p),
where p is the dominant singularity of both M (z) and H(z). Thus all the com-
position schemas listed are critical and the analysis of Section 4 applies directly.
(The last schema, involves a slight adaptation but clearly resorts to a similar analy-
sis.) In addition, as shown by Table 2, all families of Table 1 obey the Lagrangean
framework, Equation (4), and are thus amenable to the saddle point methods of
Sections 2, 3 as well.

Theorem 6 (Airy law for varieties of maps). Consider any schema of Table 4 with
parameters ag, ¢ and pg. The probability Pr(X,, = k) that a map of size n has a

TABLE 4. Parameters of the composition schemas of Table 3.

maps cores o c Do
general, M1 bridge/loopless, M 2/3 3/2 2/3
loopless, M2 simple, M3 2/3 34/3/4 2/3
general, M nonseparable, M4 1/3 3/4%/3 1/3
nonsep., My nonsep. simple, M5 4/5 15°/3 /36 4/5
nonsep., My 3-connected, Mg 1/3 34/3/4 16/81
bipartite, B bip. simple, Bs 5/9 38/3/20 5/9
bipartite, B1 bip. bridgeless, B3 3/5  (15/2)%%/18 3/5
bipartite, By bip. nonsep., By 5/13 (13/6)°/%-.3/10  5/13
bip. nonsep., Bs  bip. nonsep. simple, Bs 5/17 (17/3)%%-3/20  5/17
singular tri., 71  triangulations, T> 1/2 (3/2)173 1/2

triangulations, 75 irreducible tri., T3 1/2 62/3/3 729/2048
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core of size k admits a local limit law of the map—Airy type with centring constant
o, scaling parameter ¢, and weight pe: uniformly for x in a bounded interval
cA(cz)

7 (1+0(n=*3(logn)*)) .

Pr (X" = |agn + mn2/3J) = py
5.2. The size of the largest component. It was observed in [7, 27] that the
size of the core is probabilistically related to the size of the “largest component”
in random maps. Largest components are to some extent defined on a case by
case basis, except for important situation where the cores under consideration are
nonseparable, as we now explain. Indeed the set of nonseparable components of a
map is uniquely defined by the following procedure: as long as a component contains
a separating vertex, cut this vertex into two. This decomposition does not depend
on the order in which separating vertices are cut; in particular it can be obtained
by extracting the core, as illustrated by Figure 2, and recursively applying the same
decomposition to each submap. The core of a map is thus one of its components.
All schemas of Table 3 lead to similar notions of C-components in M-maps
(see [27] for details). The aim of this section is then to characterize the size X
of the largest C-components in random M-maps of size n taken under the uniform
distribution.

Theorem 7 (Largest components and Airy law). Consider any schema of Table 4
with parameters oo and c. Let X be the size of the largest C-component in a
random M-map of size n with uniform distribution. Then

cAlcx) _

uniformly for x in any bounded interval.

Pr (X; = |aon + xn2/3j) =

Theorem 7 is proven in Appendix D. It extends precisely results of Bender et
al. [7, 27] who proved that the largest component is with high probability concen-
trated near agn. To wit:

(63) Pr (|X;'; —apn| < /\(n)nz/s) — 1,

n—-+4o00

where A(n) is any function going to infinity with n. The following proposition
completes Theorem 7, and immediately follows from [27, Lemma 4].

Proposition 5. The second largest C-component of a random M-map of size n
has almost surely size O(n?/3).

Theorem 7 and Proposition 5 provide an appealing interpretation of the bimodal
behaviour of the core. Indeed, it can be rephrased as follows for nonseparable com-
ponents of random maps: A random map m has almost surely a largest nonseparable
component of size that is map-Airy distributed and centred around n/3.

Now choose a new root r for m among its n edges. There are two possibilities:
(¢) with probability 1/3, r belongs to the largest component and the core has size
that is map-Airy distributed and centred around n/3; (i¢) with probability 2/3,
r misses the largest component and the core is a small component of size almost
surely at most O(n?/3). The two modes of the distribution X,, correspond precisely
to these two cases.

Finally similar estimates involving the Airy distribution apply to unrooted maps:

Theorem 8 (Unrooted maps). The Airy law for largest components (Theorem 7)
and the estimates of second largest components (Proposition 5) hold for random
unrooted maps.
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Probabilistic algorithm Core (k) with control function f(k)

repeat
1. Call Map(n) to generate a random map m € M,, of size n = f(k);
2. extract the core ¢ of m with respect to the schema;

until ¢ has size k;

output ¢; {c is uniform in the core class Cy}.

FIGURE 10. The extraction/rejection algorithm Core.

The fact that unrooting does not affect asymptotic distributional properties usu-
ally holds true for a parameter of random maps whose definition does not depend
on the root. Indeed the number of distinct rootings of an unrooted map with n
edges is equal to 2n unless the map has a symmetry. But the probability that
a random unrooted map has a symmetry is exponentially small in all families of
Table 2, a fact that follows from the elegant analysis of Richmond and Wormald
in [42]. The proof is then easily completed by following [42].

5.3. Random sampling algorithms. Random sampling algorithms for various
families of maps have been described by Schaeffer in [43, 44]. Here, we show that all
classes of maps described in Section 5.1 are amenable to efficient random generation
and that the Airy distribution plays a role in the fine tuning of the corresponding
algorithms.

First, there are four classes of maps which benefit of bijective equivalence with
simpler combinatorial objects and, consequently, can be generated directly: general
maps (M), nonseparable maps (My), bipartite maps (B1), and singular triangu-
lations (7). For these, one has available an algorithm, hereafter called Map, that
relies on conjugacy classes of trees; see [43, 44] and also [11] for some new families.
Given an integer n, Map outputs in linear time a map of size n, taken uniformly at
random. For the purposes of the present article we take the algorithm Map (in its
four variants) as granted.

Next, the algorithm, hereafter called Core, is a probabilistic algorithm based on
the extraction/rejection method. This algorithm is described in Figure 10. For
any composition schema (of the type C-components in M-maps), given an integer
k, Core calls the algorithm Map as a black box and, by extracting cores till the
“right” size k is encountered, it produces uniformly an element of Cy. The Core
algorithm applies directly to the classes of Tables 3 and 4 that appear as cores
of My, My,B1, Ty, namely, Mo, My, Mg, Bo, B3, By, To. The remaining classes,
M3, Bs, T3 are “cores of cores”: for these, one observes that critical composition
schemas are closed under composition (with the parameters ag and py that are then
to be composed multiplicatively), so that “cores of cores” are eventually amenable
to the Core algorithm.

We now examine complexity issues related to the rejection principle of Core.
The expected number of iterations £, made by Core satisfies the exact relation
¢, = Pr(X,, = k)~1. The choice f(k) = k/ag that was proposed in [44] yields for
instance

1

b~ —
" pecA(0)

(k/ o).
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However, the cost gets improved if one maximizes Pr(X,, = k) for a given value k. In
particular, it proves advantageous to make use of the peak of the Airy distribution.

We also note that a simple variation, Largest, of the algorithm Core consists
in extracting at Step 2 the largest component instead of the core. The Largest
algorithm is only almost-uniform (i.e., uniform safe for a set of asymptotically
negligible measure, corresponding to maps with nonunique largest components). In
the analysis of the number of iterations, the probability Pr(X,, = k) has then to be
replaced by Pr(X} = k). We have:

Theorem 9 (Exact-size random sampling). For all core classes of Table 4, the
choice f(k) = k/ao yields a uniform random generator Core(k) whose average
number of iterations satisfies

1
b ~ ————(k/ag)*/>.
k pgcA(O)( /@)
Let xo =~ 0.44322 be the position of the peak of the map-Airy density function ((1—
4z3)Ai(x3) + 423 Ai' (z3) = 0). Then the optimal choice f(k) = k/ag— 0%005(147/040)2/3
reduces further the expected number of iterations to
~ 1
Oy ~ ——(k/a)?/?,
k peC.A(-’Eo)( / 0)
hence eliminating on average 1 — A(0)/ A(xo) = 30% of iterations.
Similar results hold for the almost-uniform random generator Largest, whose
complezity is smaller by a factor ~ p,.

As explained in [43, 44], a call of the algorithm Map and the extraction of the
core or of the largest component for the schemas of Table 3 take linear time. This
proves that the extraction/rejection algorithms have overall complexity O(k%/3).

The complexity can be further reduced by allowing some tolerance on the size
of the map generated. In these variants, the algorithm is terminated as soon as a
map of size k = A = [k — A,k + A] is obtained.

Theorem 10 (Approximate-size random sampling). The number of iterations of
the algorithm Core(k + A) satisfies

L(A)=0 (%/3> +1.

In particular, this algorithm, as well as its companion Largest(k + A), becomes
linear as soon as A > 0 k*/3 for some constant 6.

Regarding unrooted maps, both Map and Core give rise to almost uniform random
generators because the number of maps with a symmetry is exponentially small [42].

5.4. Experimental results. The random sampling algorithm Map has linear com-
plexity and is thus very efficient: on a standard PC the generation speed is about
100,000 edges per second. Full decomposition in nonseparable components is linear
as well and increases the cost of generation by a factor at most 2. This speed allows
to produce very easily experimental observations of the results of the paper.

Figure 3 presents the observed frequencies of core-sizes for a sample of 50,000
maps with 2,000 edges. The theoretical curve as given by Theorem 4 fits perfectly
the data on the full range & > 10, and upon using exact values for Cy, k =1...9,
the fit is complete.
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F1cURE 11. Core-size: Experimental results in the central region
for n = 2,000 (left) and n = 100,000 (right), against first and
second order approximations given by Theorems 6 and For-

mula (43).
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FIGURE 12. Left: Largest component sizes for n = 2,000, and
predictions of Theorem 7. Right: Largest against second largest
component sizes for 1,000 maps with 2,000 edges.

Figure 11 presents a region of width n?/3 around k = agn for two samples: 50,000

maps with 2,000 edges on the left hand side; 50,000 maps with 100,000 edges (with
frequencies averaged over intervals of 20) on the right hand side. On each sample
two theoretical curves are given, namely the local approximation of Theorem 6 and
the second order approximation, Formula (43). While the second order curves fit
perfectly the experimental data, the first order curve on the left hand side clearly
displays an expected discrepancy of about n—1/3 = 8% for n = 2, 000.

Figure 12 illustrates the result of Theorem 7: the size of the largest component
in random maps. Again the sample has 50,000 maps with 2,000 edges and the fit
with the theoretical curve is perfect, in a range much larger than expected (upon
using again second order approximations). It is very interesting to note that the
experimental curve presents a non regular point at k£ &~ 400 and starts decreasing
much faster. This phenomenon probably occurs when the second largest component
becomes almost as large as the first with high probability.

The interplay between the largest and second largest components is investigated
more closely on the right hand side of Figure 12: the z-axis and y-axis correspond
respectively to the sizes of the largest and second largest components and a sample
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of 1,000 maps of size 2,000 has been represented. Again it is worth pointing out
that the value k ~ 400 corresponds to the largest size observed for which the second
largest component has about the same size as the first.

6. CONCLUSION

The term of “universality” borrowed from statistical physics characterizes well
the approach of our paper. By this is meant the isolation of phenomena that obey
a common law whose global shape does not depend on specific details of the model.
Here, we diagnose the existence of a “universality class” within analytic combina-
torics, corresponding to coalescence of saddle points and confluence of singularities.
A tangible sign is the occurrence of probability distributions and asymptotic esti-
mates that involve the Airy function.

Despite the successes of the method of coalescing saddle points developed by
applied mathematicians since the 1950’s, we are only aware of scanty traces of
the method being used in combinatorial enumerations. A special mention must
however be made of Prellberg’s paper [41] that provides an analysis of the area-
perimeter generating function of staircase polygons in a “tri-critical region”. (A
technically difficult double inversion would still be required in order to transform
Prellberg’s estimates into enumerative or probabilistic results.) Roughly, two major
orbits of problems seem to resort to a precise analysis of coalescence in saddle point
landscapes.

(1) Large assemblies in critical regions must, under suitable singular conditions
(Section 4, Appendix A), lead to an Airy law of the map type (and more
generally to stable densities). There, the density is, as we saw, directly
expressible in terms of the Airy function.

(7¢) Brownian excursion area involves a different type of Airy law, of the “area
type”, of which the moments are generated by the logarithmic derivative
Ai'(2)/Ai(z); see for instance [21] for an analytic discussion. As it is sug-
gested by [41], it would be of great interest to develop a purely analytic
connection between coalescing saddle points and the various combinatorial
models that lead to the Airy law of the “area type”, like the ones considered
by Spencer in [46]. Candidates already mentioned in the introduction in-
clude displacement in parking allocations and hashing, path length in trees,
as well as area under walks and polyominoes.

The Airy distribution of the area type also intervenes in the study of connectivity
in random graphs and, from the recent work [24], it is at least known that an ana-
lytic approach based on coalescing saddle points can provide nontrivial quantitative
estimates.

APPENDIX A. POWERS, COMPOSITIONS, AND STABLE LAWS

This section builds upon the technology introduced in Section 4 and more specif-
ically on the proof of Theorem 5. We will see here that a mild extension of the
method gives access to the analysis of powers of generating functions with algebraic—
logarithmic singularities. This models large assemblies of combinatorial objects. An
immediate consequence is the analysis of the size of the “core” in a composition
CoH as soon as the associated generating functions are algebraic—logarithmic. What
appears systematically in this context is a collection of functions closely related to
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stable laws that are well-known in probability theory to arise as limit distributions
of sums of independent random variables.

In what follows, we consider a generating function H(z) that has nonnegative
coefficients and a unique isolated singularity at its radius of convergence p, so that
it satisfies the first two conditions of Equation (46) (with p = rg). We shall relax
the third condition of Equation (46) and consider more generally functions with a
singular exponent A € N, which corresponds to a dominant singular term of the
form (1 — z/p)* in the local singular expansion. The discussion is focussed on the
three ranges of A: (0,1), (1,2), and (2, +00).

Theorem 11. For any parameter X € (0,2), define the entire function

Lyt DA ok o<a<)

64)  G(z,)) = ”1;@1 1;((11++kk)/,\)
= z(_l)k—lka sin(rk/\) (1< A< 2)
E>1

The coefficient of 2™ in a large power H (2)* of a fized algebraic-logarithmic function
H(z) with singular exponent \ admits the following asymptotic estimates.

(i) For 0 < X\ < 1, that is, H(2) = o — ha(1 — z/p)* + O(1 — z/p), and when
k= an*, with x = O(1) in any compact subinterval of (0,+00), there holds

1
(65) [2"|H*(2) ~ o*p"=G (m_lu,A) .
n o
(ii) For 1 < XA < 2, thatis, H(z) = o—h1(1—z/p)+ha(1—2z/p)*+O((1—2/p)?),
when k = Z-n + zn'/A, with x = O(1) in any compact subinterval of (—oo, +00),
there holds

1 ghitt/A
(hl/hx)l/)‘G <71 A
/X /A
nt/ O'h/\/

(#91) For X > 2, a Gaussian approzimation holds. In particular, for 2 < A < 3,
that is, H(z) = 0 — hi(1 - 2/p) + ha(1 — 2/p)? — ha(1 — 2/p) + O((1 - 2/p)?).
when k = Zn + z/n, with x = O(1) in any compact subinterval of (—oo, +00),
there holds

(66) ") H () ~ ofp

_ 1 ag h1 2 2 . P
(67)  [2"]H*(2) ~ o*p n%a/ﬁ e~ /20 with a = 2(h—f — h—;)zf?/hf.
Proof. The proofs are similar to the proof of Theorem 5, Case (i4), and just require a
suitable adjustment of the geometry of the Hankel contour and of the corresponding
scaling.
Case (i). A classical Hankel contour, with the change of variable z = p(1 —t/n),
yields the approximation

k,—n »
[2"H*(2) ~ _UZipn /etfhﬁ © dt
™

The integral is then simply estimated by expanding exp(—hﬁth’\) and integrating
termwise

okpm _\k k
(69) ) ~ TS Y (h;) el
E>1
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which is equivalent to Equation (65), by virtue of the complement formula for the
Gamma function.

Case (ii). When 1 < A < 2, the contour of integration in the z-plane is chosen to
be a positively oriented loop, made of two rays of angle w/(2)\) and —m/(2)) that
intersect on the real axis at a distance 1/ n'/ left of the singularity. The coefficient
integral of H* is rescaled by setting z = p(1 — t/n'/*), and one has

k ,—n h
avp L
2" H*(2) ~ — er1” e o tdt.
) ~ s |
There, the contour of integration in the ¢-plane comprises two rays of angle 7/A
and —7 /), intersecting at —1. Setting u = t*hy/h1, the contour transforms into a
classical Hankel contour, starting from —oo over the real axis, winding about the
origin, and returning to —oo. So, with @ = 1/, one has
PR

k ,—n @ 1.
["H*(z) ~ —2 Lo (Z—l) /e”ei T w ldu.
A

2emn®

Expanding the exponential, integrating termwise, and appealing to the complement
formula for the Gamma function finally reduces this last form to (66).

Case (iii). When 2 < X < 3, the angle ¢ of the contour of integration in the
z-plane is chosen to be 7/2, and the scaling is v/n: under the change of variable
z = p(1 — t/+/n), the contour is transformed into two rays of angle m/2 and —x /2
(i.e., a vertical line), intersecting at —1, and

k ,—n ®
[ HE () ~ —Z P [ ert gy

2im\/n
with p = Z—f — g—; Complementing the square, and letting u =t — }21117?7 we get
k,—n h2
o __hT e
[2"H*(2) ~ —— P e mer® /ep“2 du,
2im\/n
which gives Equation (67). By similar means, such a Gaussian approximation can
be shown to hold for any non-integral singular exponent A > 2. |

We observe that the function G reduces to a (generalized) hypergeometric form
when A is rational. It is in all cases expressible in terms of the density of a stable
law® of index min(),2). (Note: the Gaussian law is a particular stable law of
index 2.) A comparison between our methods and Feller’s treatment shows the
striking similarity of computations in both cases. The function G is also a close
relative of the generalized Bessel function investigated by E. M. Wright that is
classically defined by

k

> z
(e, B;x) = kZ:O my

see [17, p. 211-212] for a summary of the major properties of ¢.
We now list a few applications.

8In probability theory, stable laws are defined as the possible limit laws of sums of independent
identically distributed random variables. The function G above is a trivial variant of the density of
the stable law of index \; see Feller’s book [18, p. 581-583]. Valuable informations regarding stable
laws may be found in the books by Breiman [12, Sec. 9.8], Durett [16, Sec. 2.7], and Zolotarev [53].



RANDOM MAPS AND AIRY PHENOMENA 39

2\

0.6 \
0.4 \

0.2

E—

[ 1, 15 3

FIGURE 13. The G-functions for A = 0.1..0.8 (left; from bottom
to top) and for A = 1.2..1.9 (right; from top to bottom); the
thicker curves represent the Rayleigh law (left, A = 1) and the

2
Airy law (right, A = 3).

(a) Local limit theorems for sums of generalized Zipf laws. The generalized Zipf
law of parameter s > 1 is the law of a random variable Z defined by

1 1

((s) k=’

where ((s) is the Riemann zeta function. It was proved in [19] that the probability
generation function of Z satisfies precisely the conditions of singularity analysis
(i.e., it is continuable and admits a singular expansion valid outside of the unit
circle) with the singular exponent being A = s — 1. Hence, the sum of a large
number of independent copies of the Zipf law of parameter s € (1,3) satisfies a
local limit law of the stable type with parameter s — 1. More generally, local limit
laws of the stable variety will hold for sums of random variables whose probability
generating function are algebraic-logarithmic and continuable.

(b) The case A = 1/2 covers many generating functions associated to combina-
torial structures that are implicitly (or recursively) defined and have accordingly
generating functions with a square-root singularity. This includes the varieties of
simple trees introduced by Meir and Moon in [37]. Then, one has

1 T okp—n hy 1
Gl ) = go=ew(=a*/4), ") ~ =Gl ).
The law with density proportional to xe is known as the Rayleigh law: it
has been detected in simple trees by Meir and Moon who base their analysis on
a Lagrangean change of variable and on the saddle point method. A consequence
of [37] and of Theorem 11 is then: The profile of a large tree in a simple family
obeys a Rayleigh law in the asymptotic limit. Similar results apply to T'(z), the
Cayley tree function (T = zeT) that enumerates rooted labelled nonplanar trees.

(¢) The case A = 3/2 that appears in maps is the one that motivated the present
paper, the law being precisely of the Airy type in this case. Equivalently, the es-
timates involve the stable law of index % The singular exponent % is generally
expected in unrooted trees since there is a ratio of about n between the numbers
of rooted and unrooted trees. The recent book of Kolchin [34] discusses the enu-
meration of forests of unrooted labelled trees by number of components: what is

Pr(Z=k) =

—z?/4
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here at stake is the estimation of coefficients [2"]U(2)* where U(z) is the exponen-
tial generating function of unrooted trees, i.e., U = T — T?/2 where T = zeT is
the Cayley tree function. Consequently, an Airy density is expected to surface in
the asymptotic estimates: see Theorem 1.4.2 of [34] for an illustration. (Kolchin’s
method is based on characteristic functions and is equivalent to integrating along
the circle of convergence rather than going outside.) Next, the “giant paper on the
giant component” [32] analyses the random graph in its “critical” region where the
(unrooted) tree components play an essential réle. The analysis involves functions
closely related to Airy functions. It is interesting to note that the proof of a major
lemma, Lemma 3 of [32], does rely on a contour of the same type as ours. (The
seven page proof in [32] is justified by the need there to develop uniform estimates
valid in a wide region as well as to cope with a singular multiplier.) Finally, a
similar situation is encountered in [20, p. 182-183] where the paper deals with the
appearance of the first cycles in random graphs.

Combinatorial compositions. The results of Theorem 11 provide useful infor-
mation on composition schemas of the form

M(z,u) = C(uH(z)),

provided C and H are algebraic-logarithmic in the sense above. Combinatorially,
this represents a substitution between structures, M = C o H, and the coefficient
[2"u*]M (2, u) counts the number of M-structures of size n whose C-core has size
k. Then the probability distribution of core-size X,, in M-structures of size n is
given by
[2*]C(2)

[2"]C(H(z))
The case where the schema is critical?, in the sense that H(rg) = r¢ with rg,rc
the radii of convergence of H,C, follows as a direct consequence of Theorem 11.
What comes out is the following informally stated general principle (details would
closely mimic the statement of Theorem 11 and are omitted).

Pr(X, =k) = [2"H(2)*.

Theorem 12 (General composition schema). In a composition schema C(uH (2))
where H and C have singular exponents A\, X' (with X' < A\):

(i) for 0 < XA < 1, the normalized core-size X, /n> is spread over (0,+o0) and it
satisfies a local limit law whose density involves the stable law of index \;

(1) for 1 < X < 2, the distribution of X, is bimodal and the “large” region
X, = cn + zn'/* leads to a stable law of index \;

(4i1) for 2 < A, the standardized version of X,, admits a local limit law that is of
Gaussian type.

Similar phenomena occur when X' > X\, but with a greater preponderance of the
“small” region.

Many instances have already appeared scattered in the literature. especially in

connection with rooted trees. For instance, the Rayleigh law (A = 1) appears as

the distribution of cyclic points in random mappings; see [14] for this fact and many

9Noncritical cases follow from standard methods. In the subcritical case H(rg) < r¢, core-
size is O(1) with high probability and its law is directly induced from the initial coefficients of C.
(This results from direct singularity analysis.) In the supercritical case H(rg) > r¢ core-size is
typically about O(n) and obeys a Gaussian law in the limit. (This results from standard singularity
perturbation techniques as developed in [4, 25, 31].)



RANDOM MAPS AND AIRY PHENOMENA 41

other occurrences of this law. Naturally, the case A = 3/2 present in maps is of the
one that has motivated the present study.

APPENDIX B. THE AIRY DISTRIBUTION

In this appendix, we summarize a few properties of the Airy distribution, namely,
integral representations, series expansions, and integral transforms.

(i) Integral representations. The Airy distribution appears first through local
expansions of nearby saddle points (Section 2 and proof of Theorem 3), as

(69) Alz) = ~ / =

i coe—18

6
™ T

53
This form clearly shows its origin as an exponential-cubic approximation. In the

context of singularity analysis (Section 4 and Appendix A), what arises is the
integral representation

1
exp <§u3 - xuz) udu, 0 € (

9’

@ A= [

coe—10’

1 m 2w

32—t ) dt 0 e (=, =
eXp(g w) : €(3,3)
which is trivially equivalent to (69) via the change of variable u = t?>. A translation
u = v + z transforms the integral of (69) into

1 oo 1
(71) Alz) = e‘2m3/3i—/ exp (5113 - vm2) (v + ) dz.
T Jooe—if

This last form is equivalent (modulo the rotation v = —iw) to the definition we gave
(Definition 1) of the Airy distribution by way of the Airy function, itself defined by
the integral representation (1). As asymptotic expansions of the Airy function at
400 have long been tabulated, one additionally obtains from the Airy connection
the tail estimates expressed by (3).

(i4) Series expansions. The expression of the Airy distribution in terms of the
Airy function is itself a series expansion in disguise. A direct expansion is obtained
by starting from (70), expanding into power series the exponential exp(—=zt), and
integrating termwise. The process is the one also used in a general context in

Appendix A. The net result is the form
1 T((2n+3)/3) .
9 _ _.22/3\n -9 .
(72) A(z) — nél( x3°/°) - sin(—2nm/3)

Naturally, this means that the Airy density is reducible to hypergeometric functions.

(7i1) Mellin transforms. The Mellin transform of a function f(z) that exists on
(0, +00) is classically defined as

F5(s) = M(f(z) ;8) := / " ) de.

Knowledge of the Mellin transform (at s) of a probability density supported on
(0, +00) is thus equivalent to knowledge of a fractional moment (of order s — 1) of
the density. For the Airy distributions, we define separately

Ai(z) :=if z > 0 then A(z) else 0; A_(z) :=if £ < 0 then A(—z) else 0.
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The corresponding Mellin transforms are then written as A% (s) and A* (s). In
the case at hand, there are two possible approaches to the determination of the
transform: one is based on the integral representations (69) or (70) and the general
transform of multiplicative convolution integrals,

m (/ a(u)b(zu)du ;3) =b*(s) / a(uw)u~*du

(this results from an interchange of integrals; see [52, p. 151]); the other is based on
the series expansion (72) and the general Mellin-Lindel6f-Ramanujan representation

i ¢(n) (—.CL')” B i /1/24-1'00 (b(_s)r(s)m,s d$7

n! 2w —1/2—ic0

or, equivalently,

- (=2)"
$(—5)T(s) =M (Z (n)— ;s>
n=1
(this results from a residue calculation and from the Mellin inversion formula;
see [30, Ch. XT]).
For the Airy distributions either method is applicable and one finds (after routine
manipulations)

(73) At(s) = 23°°% #;jl) 0 < R(s) < o0
. _2s1 T(s) 1 )
(74) A% (s) F () s E 5= T)" 0<R(s) < 5.

In particular, one has A4 (1) = %, A_(1) = #. This verifies that A(z) is a probabil-
ity density and that two thirds of the probability mass are assigned to the positive
region. Also, A (2) = A_(2) = 372/3/T(2/3), which implies that the mean of
the Airy distribution equals 0. Generally, formule (73) and (74) can be used to
evaluate explicitly any fractional moment of the Airy law, for instance,

/_Z VI A() de = #r(g) (322 4 577°).

APPENDIX C. CONFORMALITY OF z(t) AND COALESCENT SADDLES

In this section, we take k = agn+ fn, with 8 fixed and the notations of Section 3
are used. We prove that there exists indeed a change of variable z — ¢, with
T4 = *&, that satisfies (44) and is a conformal mapping of the disc D onto a
domain Dg. The strategy consists in constructing first a mapping z — ¢ that is
continuous and one-to-one between D and some domain Dg, then checking that it
is conformal.

C.1. A one-to-one continuous mapping. The mapping z — u = K(2) is con-
tinuous for z € D and so is the mapping t — u = f(¢) for t € C. The problem is that
they are not one-to-one. However we shall provide a partition of the whole complex
plane C = Ule C; such that each f|¢, is one-to-one, another partition D = Ule D;
such that each restriction K|p, is one-to-one, and such that K(D;) C f(C;).

This will allow us to define for each ¢ a continuous one-to-one mapping z — t
from D; onto C; C C;; we shall choose the D; so that it follows immediately that
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FIGURE 16. The landscape of SK(z), for 5 <0, =0 and § > 0.
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FIGURE 17. Partition of the z-plane, for 8 < 0, 8 =0 and 8 > 0.
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the resulting six mappings coherently define a one-to-one mapping of D onto a
domain Dg.

Let H4, H_ and Ho denote respectively the half planes {u | Su > 0}, {u | Su <
0} and imaginary u-axis. The partition of C is readily obtained by considering the
inverse image of Hg by f, i.e., the curve

Co=1{t|Sf(t) =0} =RU{t=x+iy| 35> — 32> +4°}.

The three smooth components of this curve partition the ¢-plane into six regions
C;, as defined for f < 0, 8 = 0 and 8 > 0 by Figure 15. More precisely we take
each C; to include its border, so that its image is H4 for ¢ = 1,3,5 and H_ for
i = 2,4,6. In particular each C; N C} is either empty or a smooth segment of the
curve Cgp.

In each of the two regions C1, Cy, one easily verifies that Rf'(t) has a constant
nonzero sign. In each of the other four regions, f/(t) has a constant nonzero
sign. Hence in each region C;, the mapping ¢ — f(¢) is one-to-one (and of course
continuous).

The construction is exactly the same for the mapping z — K (z), except that
the region of interest is restricted to D. From the technical point of view, one has
to study the curve

Do ={z | SK(z) =0}
=RU{z|2arg((3 — 2)(1 +2)3/2) + 3B arg(2(3 — 2)?) = 0},

and prove that inside the disc D, it behaves qualitatively like Cyy. This analysis is
done in view of the derivative

36+2
21+ 2)(3—2)

that depends linearly on 8. As illustrated by Figure 16 and 17 the landscape of
SK (2) leads to a partition D; in agreement with the partition C; of Figure 15.
Once this is done, the local mappings can be composed to give six local mapping
z — t. These local mappings are coherent since the local mappings are identical
on the intersection D; N D; and C; N C;. Thus, a continuous one-to-one mapping
from D to a domain Dg has been defined and we let z(t) be the inverse mapping.

K'(z)=(z=7)(z = 1)

C.2. A study of 2(¢). In order for the constructed mapping z — t to be conformal,
it remains to check the necessary condition that 2(¢) is finite and nonzero. But, by
differentiation of (44), one has

(75) K (2) = — (2~ &),
so that Z(t) is seen to satisfy

(76) i) = — i : jf, ¢ _2'21(13; 2

Hence in D, there may only be problems at z = 7 and z = 7’. But letting ¢ go to
& or —£ this provides

. =t B-n1+n7T . & @B+
z(g)z_T’—T 2+ 38 and z(_£)2_7’—7' 2+ 34
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Finally the sign is seen to be positive by considering a point other than £& on the
real axis. This yields

_ |41 +3p)(1-35/2)
V38 (1+3p/2)3

These values are involved in the computation of a;.

(77) W) =4/35 and 2(=¢)

APPENDIX D. LARGEST COMPONENTS (PROOF OF THEOREM 7)

Let us first prove Theorem 7 in the case of nonseparable cores of maps. Recall
that My, ;, is the number of maps of size n with a core of size k, and set the following
notations: M} , is the number of maps of size n with a largest component of size
k; By 1 is the number of maps of size n with a core of size k that is not the largest
component. Then, the following relation holds:

(78) 2 M, = 2kM;:  + 2nBy k.

This relation is proven in two steps. First of all, amongst the 2nM, ;, maps of size
n with a core of size k and a secondary root, exactly 2nB,, ; have a core which is
not the largest component. Second of all, the remaining maps have a core which
is the largest component and, upon exchanging the réle of the two roots, they are
identified with the 2kM;';’k maps that have a largest component of size k and a
secondary root chosen in the largest component.

The following lemma next allows us to dispose of the By, ; term.

Lemma 1. Under the uniform distribution on maps with size n and core-size k =
lagn + xn?/3] for some x, the core is almost surely the largest component.
More precisely, there exists A < 1 such that

B
Pr(X; > X | X = k) = 7/ = 0(4"),
n,k

with k = |agn 4+ xn?/3], uniformly for x in a bounded interval.

Proof. Let m be a map of size n with a core ¢ of size k and a largest component [ of
size h > k. The largest component [ is contained in one of the pending submap n in
the core decomposition of m. Let m’ be obtained from m by detaching n. Then m
can be uniquely reconstructed from m/, m and the position in the core of m’ where
n is to be attached. The number B, ; of maps m is thus bounded from above by
the number of such triples: with £ representing the size of n,

. 1
Bup< Y Mnogn-Miy-2k <2k 3 -MuogxMep,
k<h<f<n—k k<h<f<n—k
where the second inequality follows from (78). Hence the probability satisfies

By < 9%k Z € Mp_gp My My MMy
Mn,k - h Mnfé MZ Mn,k Mn

k<h<f<n—k

Theorem 5 allows us to bound the ratios: the rough upper bound M, /M, =
O(h~2/3) is valid for all ¢, h; M, /M, = ©(n /) since k = agn + zn*/® with
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z bounded; finally k/(n — £) ~ =22 > g, so that there exists Ag < 1 such that

1—ap

Mg k/Mp—¢ = O(AF). This ensures the existence of some A; < 1 such that

Bn k V4 n5/2
<O Yy AT < Ch AT,
ok k<h<f<n—k h 652 (n — )%/

hence the statement of the lemma. O

Finally, Lemma 1 and Relation (78) combine to yield

1= Mok (1 O(A™) = = Mo (1= 03 4 O(n21%))
for k = n/3 + zn?/3, uniformly for  in a bounded interval. Together with ag = py,
this concludes the proof of Theorem 7 for nonseparable components of maps.

The proof extends verbatim for all schemas with ag = pg. For the two remain-
ing ones a difference arises from the fact that some edges are shared by different
components (e.g., the edges of separating 3-cycles get duplicated in the decomposi-
tion of triangulations into irreducible triangulations). The same difference surfaces
in [7, 27] in the proof given there of our Equation (63). The adaptation given
in [7, 27] of the general argument to the case of irreducible cores of triangulations
and 3-connected cores of nonseparable maps works equally well in our case.
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