ANALYTIC COMBINATORICS: Contents
- PREFACE ix
- AN INVITATION TO ANALYTIC COMBINATORICS 1
- Part A. SYMBOLIC METHODS 13
- I. COMBINATORIAL STRUCTURES AND ORDINARY GENERATING FUNCTIONS 15
I. 1. Symbolic enumeration methods 16
I. 2. Admissible constructions and specifications 24
I. 3. Integer compositions and partitions 39
I. 4. Words and regular languages 49
I. 5. Tree structures 64
I. 6. Additional constructions 83
I. 7. Perspective 92
- II. LABELLED STRUCTURES AND EXPONENTIAL GENERATING FUNCTIONS 95
II. 1. Labelled classes 96
II. 2. Admissible labelled constructions 100
II. 3. Surjections, set partitions, and words 106
II. 4. Alignments, permutations, and related structures 119
II. 5. Labelled trees, mappings, and graphs 125
II. 6. Additional constructions 136
II. 7. Perspective 147
- III. COMBINATORIAL PARAMETERS AND MULTIVARIATE GENERATING FUNCTIONS 151
III. 1. An introduction to bivariate generating functions (BGFs) 152
III. 2. Bivariate generating functions and probability distributions 156
III. 3. Inherited parameters and ordinary MGFs 163
III. 4. Inherited parameters and exponential MGFs 174
III. 5. Recursive parameters 181
III. 6. Complete generating functions and discrete models 186
III. 7. Additional constructions 198
III. 8. Extremal parameters 214
III. 9. Perspective 218
- Part B. COMPLEX ASYMPTOTICS 221
- IV. COMPLEX ANALYSIS, RATIONAL AND MEROMORPHIC ASYMPTOTICS 223
IV. 1. Generating functions as analytic objects 225
IV. 2. Analytic functions and meromorphic functions 229
IV. 3. Singularities and exponential growth of coefficients 238
IV. 4. Closure properties and computable bounds 249
IV. 5. Rational and meromorphic functions 255
IV. 6. Localization of singularities 263
IV. 7. Singularities and functional equations 275
IV. 8. Perspective 286
- V. APPLICATIONS OF RATIONAL AND MEROMORPHIC ASYMPTOTICS 289
V. 1. A roadmap to rational and meromorphic asymptotics 290
V. 2. The supercritical sequence schema 293
V. 3. Regular specifications and languages 300
V. 4. Nested sequences, lattice paths, and continued fractions 318
V. 5. Paths in graphs and automata 336
V. 6. Transfer matrix models 356
V. 7. Perspective 373
- VI. SINGULARITY ANALYSIS OF GENERATING FUNCTIONS 375
VI. 1. A glimpse of basic singularity analysis theory 376
VI. 2. Coefficient asymptotics for the standard scale 380
VI. 3. Transfers 389
VI. 4. The process of singularity analysis 392
VI. 5. Multiple singularities 398
VI. 6. Intermezzo: functions amenable to singularity analysis 401
VI. 7. Inverse functions 402
VI. 8. Polylogarithms 408
VI. 9. Functional composition 411
VI. 10. Closure properties 418
VI. 11. Tauberian theory and Darboux's method 433
VI. 12. Perspective 437
- VII. APPLICATIONS OF SINGULARITY ANALYSIS 439
VII. 1. A roadmap to singularity analysis asymptotics 441
VII. 2. Sets and the exp-log schema 445
VII. 3. Simple varieties of trees and inverse functions 452
VII. 4. Tree-like structures and implicit functions 467
VII. 5. Unlabelled non-plane trees and P´olya operators 475
VII. 6. Irreducible context-free structures 482
VII. 7. The general analysis of algebraic functions 493
VII. 8. Combinatorial applications of algebraic functions 506
VII. 9. Ordinary differential equations and systems 518
VII. 10. Singularity analysis and probability distributions 532
VII. 11. Perspective 538
- VIII. SADDLE-POINT ASYMPTOTICS 541
VIII. 1. Landscapes of analytic functions and saddle-points 543
VIII. 2. Saddle-point bounds 546
VIII. 3. Overview of the saddle-point method 551
VIII. 4. Three combinatorial examples 558
VIII. 5. Admissibility 564
VIII. 6. Integer partitions 574
VIII. 7. Saddle-points and linear differential equations. 581
VIII. 8. Large powers 585
VIII. 9. Saddle-points and probability distributions 594
VIII. 10. Multiple saddle-points 600
VIII. 11. Perspective 606
- Part C. RANDOM STRUCTURES 609
- IX. MULTIVARIATE ASYMPTOTICS AND LIMIT LAWS 611
IX. 1. Limit laws and combinatorial structures 613
IX. 2. Discrete limit laws 620
IX. 3. Combinatorial instances of discrete laws 628
IX. 4. Continuous limit laws 638
IX. 5. Quasi-powers and Gaussian limit laws 644
IX. 6. Perturbation of meromorphic asymptotics 650
IX. 7. Perturbation of singularity analysis asymptotics 666
IX. 8. Perturbation of saddle-point asymptotics 690
IX. 9. Local limit laws 694
IX. 10. Large deviations 699
IX. 11. Non-Gaussian continuous limits 703
IX. 12. Multivariate limit laws 715
IX. 13. Perspective 716
- Part D. APPENDICES 719
- Appendix A. AUXILIARY ELEMENTARY NOTIONS 721
A.1. Arithmetical functions 721
A.2. Asymptotic notations 722
A.3. Combinatorial probability 727
A.4. Cycle construction 729
A.5. Formal power series 730
A.6. Lagrange inversion 732
A.7. Regular languages 733
A.8. Stirling numbers. 735
A.9. Tree concepts 737
- Appendix B. BASIC COMPLEX ANALYSIS 739
B.1. Algebraic elimination 739
B.2. Equivalent definitions of analyticity 741
B.3. Gamma function 743
B.4. Holonomic functions 748
B.5. Implicit Function Theorem 753
B.6. Laplace's method 755
B.7. Mellin transforms 762
B.8. Several complex variables 767
- Appendix C. CONCEPTS OF PROBABILITY THEORY 769
C.1. Probability spaces and measure 769
C.2. Random variables 771
C.3. Transforms of distributions 772
C.4. Special distributions 774
C.5. Convergence in law 776
- BIBLIOGRAPHY 779
- INDEX 801