CHI Hyperbolic Cosine Integral

CHI. 1 Introduction

Let x be a complex variable of $\mathbb{C} \backslash\{0, \infty\}$. The function Hyperbolic Cosine Integral (noted Chi) is defined by the following third order differential equation

$$
\begin{equation*}
-x \frac{\partial y(x)}{\partial x}+2 \frac{\partial^{2} y(x)}{\partial x^{2}}+x \frac{\partial^{3} y(x)}{\partial x^{3}}=0 . \tag{CHI.1.1}
\end{equation*}
$$

The initial conditions of CHI.1.1 at 0 are not simple to state, since 0 is a (regular) singular point.

Related function: Hyperbolic Sine Integral

CHI. 2 Series and asymptotic expansions

CHI.2.1 Asymptotic expansion at 0 .

CHI.2.1.1 First terms.
(CHI.2.1.1.1) $\operatorname{Chi}(x) \approx\left(\frac{-x^{2}}{4}-\frac{x^{4}}{96}-\frac{x^{6}}{4320}-\frac{x^{8}}{322560}-\ln (x)+\gamma \ldots\right)$.
CHI.2.1.2 General form. The general form of is not easy to state and requires to exhibit the basis of formal solutions of ?? (coming soon).

CHI.2.2 Asymptotic expansion at ∞.
CHI.2.2.1 First terms.

$$
\operatorname{Chi}(x) \approx \mathrm{e}^{\frac{1}{x}} x y_{0}(x)+\mathrm{e}^{\left(-\frac{1}{x}\right)} x y_{1}(x)
$$

where

$$
\begin{aligned}
& y_{0}(x)=\frac{1}{2}+\frac{x}{2}+x^{2}+3 x^{3}+2 \ldots \\
& y_{1}(x)=-\frac{1}{2}+\frac{x}{2}-x^{2}+3 x^{3}+2 \ldots
\end{aligned}
$$

CHI.2.2.2 General form.
CHI.2.2.2.1 Auxiliary function $y_{0}(x)$. The coefficients $u(n)$ of $y_{0}(x)$ satisfy the following recurrence

$$
\begin{aligned}
& -2 u(n) n+u(n-1)\left(-3+3(n-1)^{2}+5 n\right)+ \\
& u(n-2)\left(8-5 n-4(n-2)^{2}-(n-2)^{3}\right)=0
\end{aligned}
$$

whose initial conditions are given by

$$
\begin{aligned}
& u(1)=\frac{1}{2} \\
& u(0)=\frac{1}{2}
\end{aligned}
$$

This recurrence has the closed form solution

$$
u(n)=\frac{\Gamma(n+1)}{2}
$$

CHI.2.2.2.2 Auxiliary function $y_{1}(x)$. The coefficients $u(n)$ of $y_{1}(x)$ satisfy the following recurrence

$$
\begin{aligned}
& -2 u(n) n+u(n-1)\left(3-3(n-1)^{2}-5 n\right)+ \\
& u(n-2)\left(8-5 n-4(n-2)^{2}-(n-2)^{3}\right)=0
\end{aligned}
$$

whose initial conditions are given by

$$
\begin{aligned}
& u(1)=\frac{1}{2} \\
& u(0)=-\frac{1}{2}
\end{aligned}
$$

This recurrence has the closed form solution

$$
u(n)=\frac{-(-1)^{n} \Gamma(n+1)}{2}
$$

