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Abstract
We shall explain how knot, link and tangle enumeration problems can be expressed as matrix
integrals which will allow us to use quantum field-theoretic methods. We shall discuss the
asymptotic behaviors for a great number of intersections. We shall detail algorithms used
to test our conjectures.

1. Classification and Enumeration of Knots, Links, Tangles

A knot is defined as a closed, non-self-intersecting curve that is embedded in three dimensions
and cannot be untangled to produce a simple loop (i.e., the unknot). A knot can be represented
by its plane projection (i.e., its diagram). A knot can be generalized to a link, which is simply a
knotted collection of one or more closed strands. A tangle is defined as a region in a knot or link
projection plane surrounded by a circle such that the knot or link crosses the circle exactly four
times. An alternating knot (resp. link) is a knot (resp. link) which possesses a knot diagram (resp.
link diagram) in which crossings alternate between under- and overpasses (see Figure 1).

Figure 1. An alternating link, a tangle and an non-alternating knot

Figure 2. A 61 knot of the Tait’s classification

P. G. Tait [16, 17, 18, 19, 20, 21] undertook a study of knots in response to Kelvin’s conjecture
that the atoms were composed of knotted vortex tubes of ether (Thompson [24]). He categorized
knots in terms of the number of crossings in a plane projection (see Figure 2). He also made some
conjectures which remained unproven until the discovery of Jones polynomials:
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1. Reduced alternating diagrams have minimal link crossing number,
2. Any two reduced alternating diagrams of a given knot have equal writhe,
3. The flyping conjecture, which states that the number of crossings is the same for any reduced

diagram of an alternating knot (see [25] for definition of the flyping equivalence).
Conjectures (1) and (2) were proved by Kauffman [4], Murasugi [9], and Thistlethwaite [22,

23] using properties of the Jones polynomial or Kauffman polynomial F (see Hoste et al. [1]).
Conjecture (3) was proved true by Menasco and Thistlethwaite [7, 8] using properties of the Jones
polynomial. Schubert [12] showed that every knot can be uniquely decomposed (up to the order
in which the decomposition is performed) as a knot sum of a class of knots known as prime knots,
which cannot themselves be further decomposed. Knots that are the sums of prime knots are known
as composite knots.

There is no known formula for giving the number of distinct prime knots as a function of the
number of crossings. The numbers of distinct prime knots having n = 1, 2, . . . crossings are 0, 0,
1, 2, 3, 7, 21, 49, 165, 552, 2176, 9988, . . . (Sloane’s M0851) [13].

In the 1932, Reidemeister [10] first rigorously proved that knots exist which are distinct from the
unknot. He did this by showing that all knot deformations can be reduced to a sequence of three
types of “moves,” called Reidemeister moves (see Figure 3).

; ;

Figure 3. The three Reidemeister moves (poke, twist and slide)

2. Feynman Diagrams. O(n) Matrix Model and Renormalization

We want to enumerate prime alternating tangles with a given number of components and crossing.
Let ak;p be the number of prime alternating tangles with k + 2 components and p crossings. Let
Γ(n, g) be the corresponding generating series:

Γ(n, g) =
∞∑

k=0,p=1

ak;p n
kgp

In [29], we have shown that the integral

(1) Z =
∫
dMeN [− 1

2
trM2+ g

4
trM4] where dM =

∏
i

dMii

∏
i<j

d<eMij d=mMij

over N×N hermitean matrices is well suited for the counting of alternating links and tangles: for an
appropriate choice of α(g), 2 ∂

∂g limN→∞
1
N2 logZn(g, α(g)) is the generating function of the number

of alternating tangle diagrams with n 4-valent crossings. In the context of knot theory, it seems
natural to consider this integral over complex (non hermitean) matrices, in order to distinguish
between under-crossing and over-crossing. However, this integral is closely related to the simpler
integral (1) in the large N limit.

It has been known to physicists since the pioneering work of ’t Hooft [15] that the large N
limit of the previous integral (1) may be organized in a topological way. While the leading term
corresponds to planar diagrams, the subdominant terms of order N−2h of 1

N2 logZ(g) are describe
by graphs drawn on a Riemann surface of genus h.
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The series expansion of Z in powers of g may be represented diagrammatically by Feynman
diagrams, made of undirected edges or “propagators” with double lines expressing the conservation
of indices, 〈MijMkl〉0 = 1

N δilδjk and the 4-valent vertices gNδqiδjkδlmδnp (see Figure 4). More
precisely

lim
n→∞

1
N2

logZ =
∑

weight gn

where the sum is over all planar diagrams with n vertices and with a weight equal one over the
order of the automorphism group of the diagram.
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Figure 4. Propagator and 4-valent vertex

In order to connect integral (1) with knot theory, we take any planar diagram (i.e., 4-regular
planar map) and to the following: starting from an arbitrary crossing, we decide it is a crossing
of two strings (again there is an arbitrary choice of which is under/over-crossing). Once the first
choice is made, we simply follow the string and form alternating sequences of under- and over-
crossings. The remarkable fact is that this can be done consistentlty (see Figure 5). If we identify
two alternating diagrams obtained from one another by inverting undercrossings and overcrossings,
then there is a one-to-one correspondence between planar diagrams and alternating link diagrams.

g

Figure 5. A planar diagram and one of the two corresponding alternating link diagrams

In order to distinguish strands of links, we introduce a more general model, which we shall call the
intersecting loops O(n) model. If n is a positive integer, then consider the following multi-matrix
integral:

(2) Z(N)(n, g) =
∫ n∏
a=1

dMa e
N tr(− 1

2
M2

a+
Pn

b=1
g
4
(MaMb)

2)

and the corresponding free energy

F (n, g) = lim
N→∞

logZ(N)(n, g)
N2

=
∞∑

k,p=1

fk;pn
kgp.

The correlation functions count tangle diagrams:
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lim
N→∞

〈
1
N
tr(M1M2M3M2M1M3)

〉
c

= .

For tangles, a convenient way to keep track of the number of connected components and of the
connections of the external legs is to use colors. The colors allow us to distinguish the various
external legs and add an extra power series variable in the theory (the number of colors n) to count
separately objects with different numbers of connected components.

This model has two problems:
1. the diagrams generated by applying Feynman rules are not necessarily reduced or prime,
2. several reduced diagrams may correspond to the same knot due to the flyping equivalence.

We are therefore led to renormalize the quadratic and quartic interaction of (2). A key observation
is that, while there is only one such quadratic O(n)-invariant term, there are two quartic O(n)-
invariant terms, which leads to a generalized model with 3 coupling constants (i.e., t, g1 and g2) in
the action (bare coupling constants):

(3) Z(N)(n, t, g1, g2) =
∫ n∏

a=1

dMae
Ntr[− t

2
M2

a+
Pn

b=1(
g1
4
MaMbMaMb+

g2
2
MaMaMbMb)]

where t, g1 and g2 are functions of the renormalized coupling constant g, chosen such that the
correlation functions are the appropriate generating series in g of the numbers of alternating links
(see [28] and Figure 6).

g21gt
−1

Figure 6. The three coupling constants

There are currently two values of n for which the corresponding matrix model has been exactly
solved: n = 1 and n = 2.

The case n = 1 is particulary important since it corresponds to counting all alternating tangles
regardless of the number of connected components. We have the usual matrix model

Z(N)(t, g) =
∫
dM eN tr(− t

2
M2+ g

4
M4) with g = g1 + 2g2 .

“Renormalization” equations recombine into a fifth degree equation:

32− 64A+ 32A2 − 4
1 + 2g − g2

1− g
A3 + 6 g A4 − g A5 = 0.

Correlation functions are given in terms of its solution. In particular, if
〈

1
N trM

2`
〉
c

=
∑∞

p=0 apg
p

is the generating function of prime alternating tangles with 2` legs where p counts the crossings,
then

ap
p→∞∼ cst g−pc p−5/2 with gc =

√
21001−101

270 (g−1
c ≈ 6.147930) .
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These works generalize known results: the case ` = 2 (Sundberg and Thistlethwaite [14]), and
Zinn-Justin and Zuber [29]. The number fp of prime alternating links grows like fp ∼ cst g−pc p−7/2

(Kunz-Jacques and Schaeffer [6]).
In case n = 2, integral (2) is equivalent to integral (4) that is recently studied in detail and

computed in the framework of the random lattice model (Zinn-Justin [26] and Kostov [5]). In [30],
we thus carry out the explicit counting of alternating 2-color tangles: their generating function is
the solution of coupled equations involving elliptic functions.

Z(N)(t, g1, g2) =
∫
dM1 dM2 e

N tr

[
− t

2
(M2

1 +M2
2 )+

g1+2g2
4

(M4
1 +M4

2 )+
g1
2

(M1M2)2+g2M2
1M

2
2

]
(4)

When we introduce a complex matrix X = 1√
2
(M1 + iM2), we obtain:

Z(N)(t, b, c) =
∫
dX dX† eN tr(−tXX†+bX2X†2+ 1

2
c(XX†)2) with b = g1 + g2 and c = 2g2 .

The number γp of prime alternating 2-color tangles with p crossings grows like

γp
p→∞∼ cst g−pc p−2(log p)−1 with g−1

c ≈ 6.28329764 .

In [27], we establish that the number fp of reduced alternating link diagrams with two colors and
p crossings has the following asymptotics:

fp
p→∞∼ cst g−pc p−3 log p with gc = π(π−4)2

16 (g−1
c ≈ 6.91167) .

The number g−1
c = 6.91167 . . . is slightly larger than the value 6.75 obtained for only one color.

3. Algorithm: Transfer Matrix
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Figure 7. The steps are ordered by their number below the diagram. At each step,
the active line is distinguished by an arrow.

In [2, 3], we propose a new method to enumerate alternating knots using a transfer matrix
approach. The basic ingredient is the ability to cut the object one is studying into slices, which
represent the state of the system a fixed (discrete) time. The naive idea would be to draw the knot
diagrams on the plane in such a way that time would correspond to one particular coordinate of
the plane, that is to read the knot diagrams “from left to right.” Here, this idea does not work
directely, and one is led to a slightly more sophisticated notion of slices, which we shall explain
using the example of Figure 7.
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A basis state will be described by a series of left and right arches and the position of the active
line. As an illustration, we show all the intermediate states of the example of Figure 7 on Figure 8.

87654321 9 10

Figure 8. A sequence of intermediate states. The active line is denoted by an arrow.

The table below gives numbers ak,p of prime alternating tangles with 2 external legs, k circles (i.e.,
k+1 connected components) and p crossings up to p = 15 (even though they can be easily obtained
for p up to 18 or 19, as in [3], on a work station, and probably further using larger computers).
Tangles of types 1 (i.e., Γ1) and 2 (i.e., Γ2) are distiguished by the two ways of connecting their
external legs. The reader is reminded that the total number of tangles is given by Γ1 + 2Γ2.

Γ1 | Γ2

p
k 0 1 2 3 4 5 6 | 0 1 2 3 4 5 6

1 1 | 0
2 0 | 1
3 2 | 1
4 2 | 3 1
5 6 3 | 9 1
6 30 2 | 21 11 1
7 62 40 2 | 101 32 1
8 382 106 2 | 346 153 24 1
9 1338 548 83 2 | 1576 747 68 1
10 6216 2968 194 2 | 7040 3162 562 43 1
11 29656 11966 2160 124 2 | 31556 17188 2671 121 1
12 131316 71422 9554 316 2 | 153916 80490 15295 1484 69 1
13 669138 328376 58985 5189 184 2 | 724758 425381 87865 6991 194 1
14 3156172 1796974 347038 22454 478 2 | 3610768 2176099 471620 52231 3280 103 1
15 16032652 9298054 1864884 193658 10428 260 2 | 17853814 11376072 2768255 308697 15431 290 1

4. Algorithm: Random Sampling

In [11], in order to generate a random map according to the uniform distribution on rooted
4-regular planar maps with p vertices one generate a blossom tree according to the uniform distri-
bution on blossom tree and apply closure that is a (p + 2)-to-2 correspondence between blossom
trees and rooted 4-regulat maps (see Figure 9). This algorithm allows to generate in linear time (up
to p = 107 vertices) rooted 4-regular planar maps with p vertices and two legs, with uniform prob-
ability. One can compute various quantities related to the map thus generated and then average
over a sample, as always in Montecarlo simulations.

The main idea of the physical interpretation of the number ap(1) of rooted 4-regular maps is
to consider planar maps as discretized random surfaces (with the topology of the sphere). As the
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Figure 9. Schaeffer’s bijection between blossom trees and planar maps.

number of vertices of the map grows large, the details of the discretization can be assimilated to the
fluctuations of the metric on the sphere. Now, physics tell us that the metric is the dynamical field
of general relativity, i.e., gravity, and that this type of fluctuations in the metric are characteristic
of a quantum theory. In our case it means that, as p becomes large, the discrete nature of the
maps can be ignored and there exists a scaling limit, the properties of which are described by
two-dimensional euclidian gravity. In particular any parameter of random planar maps that makes
sense in the scaling should converge to its continuum analog. A fundamental parameter of this
kind turns out to be precisely the number of (unrooted) planar maps: it is expected to scale to
the partition function Zg(A) of two-dimensional quantum gravity with spherical topology at fixed
area A, through a relation of the form 1

pap(1)
p→∞∼ Zg(A), with A proportional to p.
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Figure 10

Here the factor 1/p is due to the fact that the partition function does not takes the rooting into
account. We conjecture that for |n| < 2, the matrix model is in the universality class of a 2D
field theory with spontaneously broken O(n) symmetry, coupled to gravity. The large size limit is
described by a a conformal field theory (CFT) coupled to gravity with c = n− 1:

ap(n) ∼ cst(n) gc(n)−p pγ(n)−2, fp(n) ∼ cst(n) gc(n)−p pγ(n)−3,

γ =
c− 1−

√
(1− c)(25− c)
12

.

In particular, knots correspond to the limit n→ 0:

fp(0) ∼ cst g−pc p−
19+

√
13

6

With Schaeffer’s algorithm, we have tested quantity: γ′ ≡ dγ
dn |n=1

= 3/10 according to the
conjecture. We obtain a very good agreement (see Figure 10).
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