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Abstract

We give an overview of Sattolo’s algorithm, which allows to perform random generation of
a cyclic permutation of a fixed number of elements. In Section 1, we describe the algorithm
and prove its correctness by using a recursive proof which parallelizes the recursive structure
of the algorithm.

The recursive structure also allows to analyze two simple parameters associated to the al-
gorithm. As we see in Section 2, simple recursive equations have been obtained by Prodinger
and then studied by Mahmoud to obtain convergence results of the distribution of these pa-
rameters.

In Section 3, we present the method exposed by Mark C. Wilson in his talk to deal
with the analysis of parameters associated to the algorithm. He uses a “grand” generating
function F (t, u, x) associated to each parameter and tries to obtain an explicit expression
for this function. He only partially succeeds and finds an explicit expression for ∂

∂x
F (t,u,x)

x ,
from which Prodinger’s and Mahmoud’s results can be retrieved.

1. Sattolo’s Algorithm

1.1. Description. In [4], Sattolo presents a very simple algorithm to uniformly sample a cyclic
permutation σ of n elements.

The algorithm starts with the identity permutation σ(0) = Id. For each i ∈ {1, . . . , n − 1}, we
denote by σ(i) the permutation obtained after the i first steps. Step i consists in choosing a random
integer ki in {1, . . . , n − i} and swapping the values of σ(i−1) at places ki and n − i + 1. In this
way, we obtain a new permutation σ(i), which is equal to σ(i−1) ◦ τki,n−i+1, where τki,n−i+1 is the
transposition exchanging ki and n− i+ 1.

Finally, the algorithm returns the permutation σ = σ(n−1). An example of the execution of the
algorithm is illustrated on Figure 1, where n = 5 and the sequence of chosen random integers is
3, 1, 2, 1. The returned cyclic permutation on this example is 1→ 5→ 3→ 2→ 4→ 1.

Sattolo’s algorithm is the adaptation for cyclic permutations of a very well known algorithm [1]
to sample a permutation of n elements at random. The only difference is that Sattolo’s algorithm
chooses the random integer ki in {1, . . . , n − i} whereas the algorithm of [1] chooses ki randomly
in {1, . . . , n− i+ 1} at step i.

1.2. Correctness. The fact that the algorithm returns a uniformly distributed random cyclic
permutation follows from the unicity and existence of the decomposition of a cyclic permutation σ
as a product τk1,n ◦ · · · ◦ τki,n−i+1 ◦ · · · ◦ τkn−1,2, where ki ∈ {1, . . . , n− i} for 1 ≤ i ≤ n− 1.
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1 2 3 4 5
1 2 5 4 3
4 2 5 1 3
4 5 2 1 3
5 4 2 1 3

Figure 1. The execution of Sattolo’s algorithm for n = 5, and when the sequence
of chosen random swapping places is 3, 1, 2, 1.

This property can be established recursively by associating to σ the number q(σ) = σ(n). As σ
is cyclic, q(σ) ∈ {1, . . . n− 1}. In addition τq(σ),n ◦ σ fixes n and is cyclic on {1, . . . , n− 1}: indeed,
with the cyclic notation, if σ = (n, q(σ), r1, . . . , rn−3), then τq(σ),n ◦ σ = (n)(q(σ), r1, . . . , rn−3).

Notation. We denote the permutation τq(σ),n ◦ σ by σ↓.

2. Analysis of the Algorithm: Probabilistic Approaches

In the literature, two parameters are analyzed: the number of times a value k is moved is denoted
by Mn,k and the total distance covered by a value k is denoted by Dn,k. For example, on Figure 1,
the values of Mn,k are 1, 1, 1, 2, 3 and the values of Dn,k are 3, 1, 2, 4, 4 for k = 1, 2, 3, 4, 5.

2.1. Prodinger’s approach. In [3], Prodinger introduces the probabilistic generating function
φn,k(u) =

∑
l P (Mn,k = l)ul associated to the parameter Mn,k and the probabilistic generating

function ξn,k(u) =
∑

l P (Dn,k = l)ul associated to the parameter Dn,k.
Using the recursive structure of the algorithm, he obtains a recursive system of two equations

for φn,k(u):

(1)

{
φn,k(u) = n−k

n−1u+ k−1
n−1φk,k(u) 1 ≤ k < n

φn,n(u) = u
n−1

∑n−1
k=1 φn−1,k(u) n ≥ 2, φ1,1(u) = 1

We note En,k = E(Mn,k). Observing that En,k = φ′n,k(1) and derivating Equation-system 1 at
u = 1, we find the following recursive system:

(2)

{
En,k = n−k

n−1 + k−1
n−1Ek,k

En,n = 1 + 1
n−1

∑n−1
k=1 En−1,k

From this system, it is easy to deduce an explicit expression for E(Mn,k):

(3) E(Mn,k) =
n+ 2k − 5
n− 1

k ≥ 2, E(Mn,1) = 1 n ≥ 2, E(M1,1) = 0

Similarly, we can find an explicit expression for Var(Mn,k):

(4) Var(Mn,k) =
2(k − 2)(3n+ 1− 2k)

(n− 1)2
− 4Hk−2

n− 1
k ≥ 2, Var(Mn,1) = 0
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For the parameter Dn,k, the recursive structure of the algorithm yields:

(5)

{
ξn,k(u) = un−k

n−1 + n−2
n−1ξn−1,k(u), 1 ≤ k < n

ξn,n(u) = 1
n−1

∑n−1
k=1 ξn−1,k(u)un−k n ≥ 2, ξ1,1(u) = 1

From these equations, we can also obtain an exact expression for the mean and variance of the
variable Dn,k.

2.2. Mahmoud’s refinements. In [2], Mahmoud considers the “randomized” variable Mn,Kn

where Kn is a random element uniformly chosen in {1, . . . , n}. Writing ψn(u) = E(uMn,Kn ) for its
probabilistic generating function, he obtains from Equation-system 1 the simple recursive equation
ψn(u) = n−2+u

n ψn−1(u) + u
n . Hence ψn(u)− u

2−u = n−2+u
n

(
ψn−1(u)− u

2−u

)
. As a consequence, he

obtains

(6) ψn(u) =
u

2− u

(
1− 2Γ(n− u+ 1)

uΓ(u− 1)Γ(n+ 1)

)
Thus, for 0 ≤ u < 2 and according to Stirling formula, ψn(u) →n→∞

1
2

u
1−u/2 , which is the

probabilistic generating function of a geometric random variable Geo(1/2). As a consequence,
Mn,Kn converges in distribution to Geo(1/2), a result which can be intuitively predicted from the
recursive structure of the algorithm.

Then Mahmoud “derandomizes” Mn,Kn , using the equation φn,k(u) = n−k
n−1u + k−1

n−1uψk(u). He
finds an explicit limit φα(u) for φn,k(u) when k

n →n→∞ α, such that φα(u) is the probabilistic
generating function of a random variable Xα = B + (1−B)(1 + Geo(1

2)) where B has law Ber(α).
Hence, when k

n →n→∞ α, Mn,k converges in distribution to a mixture of the constant 1 and of the
random variable 1+Geo(1

2), where the random variable mixing the two variables is a Bernoulli law
Ber(α) with rate α. The mean and variance of this random variable agree with the limit of the
exact expressions of Prodinger for E(Mn,k) and Var(Mn,k) when k

n →n→∞ α.
Similarly, Mahmoud randomizes the problem for ξn,k. He considers the random variable Dn,Kn ,

where Kn is an integer uniformly distributed in {1, . . . , n}. A scaling is necessary to obtain a
convergence result. We have to consider the variable D̃n,Kn = 1

n(Dn,Kn−Kn). Writing η̃(u) for the
probabilistic generating function of D̃n,Kn , Mahmoud finds that η̃(et)→n→∞

∫ 1
0
eθt−e−θt

2θt dθ. Hence,
D̃n,Kn converges in distribution to a product of two independant uniform U(0, 1) and U(−1, 1)
random variables, a less intuitive result than for the case of Mn,Kn .

3. The Method of Mark Wilson

3.1. Introduction. Mark Wilson wants to generalize the approach of Prodinger and Mahmoud to
analyze Sattolo’s algorithm. He prefers to associate a “grand” combinatorial generating function
rather than probabilistic generating functions, although both approaches can easily be linked as we
will see. His method is presented in [5].

Noting C = ∪nCn the set of cyclic permutations, n(σ) the number of elements permuted by a
cyclic permutation, and χ(σ, p) a parameter associated to σ such as Mn(σ),p or Dn(σ),p, he introduces
the “grand” generating function

F (u, t, x) =
∑

σ∈C,p∈[n(σ)]

uχ(σ,p)tp
xn(σ)

|Cn(σ)|
.
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Observe that

F (u, t, x) =
∑
n≥1

xn

(n− 1)!

∑
1≤p≤n

tp
∑
σ∈Cn

uχ(σ,p)

=
∑
n≥1

xn
∑

1≤p≤n
tpφ(χ)

n,p(u)

where φ(χ)
n,p(u) is the probabilistic generating function associated to χ(σ, p). This establishes a link

between Prodinger’s probabilistic notations and these notations.

3.2. Originality and advantages. The originality of Mark Wilson’s method is that it tries to
establish an exact expression for the “grand” generating function F (t, u, x). From such an ex-
pression, the results of Prodinger and Mahmoud could be easily retrieved. In addition, extended
results could be obtained such as the analysis of the algorithm when the cyclic permutations are not
uniformly distributed on Cn or even when the size of the random cyclic permutation is a random
variable, such as a geometric variable for example. As we will see, the method does not completely
succeed.

3.3. Description of the method on an example. We treat here the case where χ(σ, p) =
Mn(σ),p. First, exact recursive formulae for χ(σ, p) are obtained. These formulae are groundly
equivalent to the recursive probabilistic formulae of Prodinger:

(7) χ(σ, p) =


χ(σ↓, p) if p 6= n(σ), p 6= q(σ);
1 + χ(σ↓, p) if p = n(σ), p 6= q(σ);
1 if p 6= n(σ), p 6= q(σ);
0 if p 6= n(σ), p 6= q(σ).

We denote by {I1, I2, I3, I4} the partition of I = {(σ, p)/σ ∈ C, 1 ≤ p ≤ n(σ)} induced by
Equation 7. For each i ∈ {1..4}, we denote by Σi(t, x, u) the associated generating function.
Equation 7 can easily be translated in 4 equations involving the Σi.

This system of 4 equations can be solved and yields the following expression for ∂
∂x

F (u,t,x)
x :

(8) (1− x) ∂
∂x

F (u, t, x)
x

= ut2
u

2− u
1

(1− tx)2
+

2(1− u)
2− u

(1− tx)−u +
ut

1− t

(
1

1− x
− t

1− tx

)
from which Prodinger’s and Mahmoud’s results can easily be retrieved. Unfortunately, this

expression can not be easily integrated to give an explicit expression for F (u, t, x).
A similar treatment can be carried out to deal with Dn,k.
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