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Abstract
Enumerating bipartite (with black and white vertices) planar maps according to the degree
distribution of the vertices is useful to physicists. We first exhibit a bijection between these
maps and some family of trees. The generating functions of these trees are then obtained
with classical decomposition on the combinatorial structure of the trees.

The physicists need to add Ising or hard particle models to planar maps to model particle
location or spin. We can relate bijectively these maps with an additional structure to the
bipartite maps. We finally enumerate the Ising and hard particle configurations on maps.
(Joint work with Mireille Bousquet-Mélou from LABRI)

1. Introduction

Following their bijective instincts the authors use in [1] a combinatorial approach to solve prob-
lems arising from 2-dimensional quantum gravity: the enumeration of planar maps under Ising and
hard particle models. The main results have already been obtained by use of the powerful matrix
integrals approach [3, 2]. Alas the matrix integral does not provide any insight on the combinatorial
behavior of these maps like why their generating functions are algebraic. The authors exhibit a
bijection between bipartite planar maps and some class of trees to explain the algebraicity of the
generating functions. They then show the relation between bipartite planar maps and maps with
the physicists’ additional models.

Let’s first recall some basic definitions: a planar map is a connected graph drawn on the sphere
with non-intersecting edges, a rooted map is a map that possesses a root edge, i.e., an oriented
edge. As a convention, when the map is drawn on the plane, its infinite face lies to the right of the
rooted edge. In this talk we only deal with bipartite maps, meaning that each and every edge of
the map has one black and one white endpoint.

The degree distribution of a bipartite map is a pair of partitions (A, u) coding the number of
white vertices of a certain degree and the number of black vertices of a certain degree. The ith part
of the partition A is the number of white vertices of degree i. For example the map on Figure 2
has a contribution x3z323y5y3ys to the generating function where z; counts the number of white
vertices of degree ¢ and y; the number of black vertices of degree 1.

2. Maps and Trees

Direct enumeration of bipartite planar maps being difficult, we try a bijective argument: since
planar maps are closely related to trees we enumerate a certain class of tree. Let’s first introduce
blossom trees: these are trees with black-and-white edges and also half-edges, which are called leaves
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FI1GURE 1. Closure

or buds whether they hang from a white or a black vertex. These trees are rooted at a leaf or a
bud, and the vertex attached to this half-edge is called the root vertex. Furthermore, we define the
total charge (resp. charge) of a blossom tree as the difference between the number of leaves in the
tree and the number of buds where the root half-edge does (resp. does not) count. The charge of
a vertex is just the charge of the subtree rooted at this vertex. A blossom tree must furthermore
satisfy the condition that all white vertices have nonnegative (> 0) charge and all black ones a
charge at most 1 (except the root vertex which has no charge condition to satisfy). A k-leg map is
a bipartite map rooted at a half-edge with k leaves and no bud (hence the map is rooted at a leaf).

2.1. Closure. We define a closure operation ¢ on blossom trees T" of total charge £ > 1 by walking
counterclockwise around the infinite face. Each and every time the next half-edge after a bud is
a leaf we fuse these two half-edges into an edge. This process eventually stops and we obtain a
bipartite planar map rooted at a half-edge with k leaves that remain unmatched, i.e., a k-leg map.
Last but not least we introduce balanced trees: these trees are rooted at a leaf and after closure,
the root is unmatched.

Proposition 1. Let T be a balanced tree having total charge k (k > 1) and degree distribution (X,
w). Then ¢(T) is a k-leg map with degree distribution (X, u).

Half-edges are counted as regular edges when determing the degree of a vertex. This is highly
useful here since it keeps the degree distribution of the vertices unchanged by fusing half-edges (and
also by splitting a bicolor edge as we will see in the next paragraph).

2.2. Opening. We shall now define the reciprocal operation of the mapping ¢: the opening v of a
k-leg map. Let M be a k-leg map, we walk counterclockwise around the infinite face starting from
the root. For each edge visited from its black to its white endpoint that can be deleted without
breaking the connectedness of the map, we cut this edge into two half-edges: a bud from the black
endpoint and a leaf from the white one. At the end of the process we get a balanced tree (since it’s
rooted at a leaf (root of the k-leg map) and its root is a single leaf) of total charge (for this kind of
charge we also count the rooted leaf) k.

Theorem 1. Closure and opening are inverse bijection between balanced blossom trees of total
charge k and k-leg maps. Moreover the degree distribution is preserved.



G. Schaeffer, summary by J. Fayolle 5

B

F1GURE 2. Opening

1 1 1 1
o or or or
1 -1 -

F1GURE 3. Decomposition

The reader is referred to [1] for a complete proof. We know that the generating functions of
trees are algebraic, and this holds for balanced blossom trees of charge k. The bijection between
blossom trees of total charge k and bipartite k-leg maps assures us that the generating function of
k-leg maps is also algebraic.

3. Counting some Blossom Trees

We enumerate blossom trees according to the charge and the color of their root vertex. The
methods are overall the same and we focus here on the degree generating function A]™ (x,y) of
blossom trees of charge 1 rooted at a white vertex (hence the “o—” exponent) where furthermore
the vertices can have degree 2 or 4. We have a decomposition of these trees involving other blossom
trees with degrees 2 or 4 as can be seen on Figure 3.

If the root vertex has degree 2 then one edge is the root leaf and the other one is either a leaf
(charge 1) or a black and white edge (remember the tree is bicolor) with the charge of the tree
hanging from the black endpoint being 1. If the root vertex has degree four, things follow the same
pattern. We obtain a system with four degree generating functions:

AT =mo(1+ AY7) + 324 A% (1 4+ A7), AT = a1+ A7),
AT = AT +3p(A5 + (A77)%), AT =y + 3ya AT
We solve this system to get A]™ (x,y).

4. Ising and Hard Particle Models

We add an Ising configuration to a graph G by coloring its vertices with two colors (black and
white). An edge is said frustrated if it has end points of the two colors. The hard particle model
is a particularization of the Ising model where we forbid edges with two black endpoints (e — e).
This means that no two physical particle can be adjacent in the graph.

We look for a bijection between maps with these two additional physical models (on the edges)
and the bipartite maps we already obtained results on. On bipartite maps both o — o and e — e
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edges are forbidden. We use a trick to go from maps with a hard particle configuration to bipartite
maps: we transform the o — o edges of the map with a hard particle configuration into o — # — o
edges in the bipartite map. The spades vertices are counted as ordinary black edges in the bipartite
map.

The generating function related to the physics of the hard particle model is

H(X, Y, u) =Y XOy*@yo=@),
g
where each exponent respectively counts the degree of white vertices, black vertices and the number
of o — o edges in the map. The o — o edges are said vacant because there is no physical particle on
any end of the edge.

We want to obtain the generating function H(X,Y,u) of maps with a hard particle configuration
when the map is rooted at a vacant edge. Therefore when we use the transformation trick the
bipartite map must be rooted at a black vertex of degree 2. We know from the previous sections
how to obtain the degree generating function F(x,y) of bipartite maps rooted at a black vertex of
degree 2.

Theorem 2. The degree generating function F(x,y) of bipartite planar maps rooted at a black
vertex of degree 2 is related to generating functions of blossom trees:

F(x,y) = (A" — A37)* + A7 — A7 — (437)%).

Once we have this degree generating function [note that the generating functions A7~ and A7~
are not the same as in section 3 since we have no condition on the degree of the vertices here], we
notice that the transformation trick does not modify the degree of the white vertices hence X = xy.
The black vertices of degree k # 2 keep the same degree and the same color (these vertices are of
the e type, not of the # type) thus Yy = y,. The black vertices of degree 2 can be of the two types:
either it is a # vertex and then reversing the trick will transform it into a vacant edge marked by
the variable u, or it is a e vertex and the degree remains the same. The leading y2 in F(x,y) stems
from the root condition and the black vertex at the root is of the # kind so we substitute yo = u
here. For the rest we substitute yo = u + Y5 in the blossom trees generating functions. Once we
applied the four substitutions in F'(x,y) we obtain the degree generating function H(X,Y,u).

For maps with the Ising model, we use a generalization of the transformation trick for the
hard particle model, using two kind of white vertices. The substitution in the generating function
counting bipartite maps is a little bit more complicated but the same method applies.

Bibliography

[1] Bousquet-Mélou (Mireille) and Schaeffer (Gilles). — The degree distribution in a bipartite planars maps: ap-
plications to the Ising model, 2002. http://xxx.1lpthe. jussieu.fr/abs/math.C0/0211070 also as an extended
abstract in FPSAC’03.

[2] Di Francesco (Philippe), Ginsparg (Paul), and Zinn-Justin (Jean). — 2d gravity and random matrices. Physics
Reports, vol. 254, n° 1-2, 1995.

[3] Zvonkine (Alexandr). — Matrix integrals and map enumeration: an accessible introduction. Mathematical and
Computer Modelling, vol. 26, n° 8-10, 1997, pp. 281-304.



