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Abstract

The urn model was first introduced as a mathematical object by Eggenberger and Pólya
[2] in 1923. It has since become handy to model some problems arising from computer
science, like for instance the coupon collector problem, hashing problems or even random
tree generation. The original goal of Pólya and Eggenberger was related to public health
and the spread of epidemics.

Until recently the only approach to urn problems was through the probabilistic toolkit.
In [3] Flajolet, Gabarró, and Pekari first devised an approach using analytic combinatorics
for certain families of urn (balanced ones). Puyhaubert [4] travels down this same path
and uses the characteristics method for solving partial differential equations to obtain more
precise results on the asymptotic behavior of the urns (moments, limit law).

1. Model

An urn contains balls of different types, say colors. Suppose first that we have two types of balls,
say black ones and white ones. The given of the problem is the initial configuration of the urn,
i.e., the number of black and of white balls at the origin of time and a 2 × 2 replacement matrix
M = (mi,j)i,j with integral entries that codes the evolution rules of the urn.

The time is discrete and at time n a ball is picked (and then put back in the urn) uniformly at
random from the urn. If a black (resp. white) ball is drawn from the urn, we add m1,1 (resp. m2,1)
black and m1,2 (resp. m2,2) white balls in the urn. For this talk the replacement matrix has fixed
entries (for instance they do not depend on the time) and the sum of the entries of any row is
constant (we say the urn is balanced). This balance condition means the number of balls in the
urn at time n+ 1 does not depend on the ball picked at time n. Our matrices are triangular (say
upper-triangular, meaning we necessarily have m2,1 = 0). One last condition is tenability : if the
entries of the matrix were negative one might end up trying to remove balls that no longer exist in
the urn, therefore the entries are all positive integers.

As an example, we explain the urn model for the coupon collector problem. We have n different
coupons to collect. We code coupons already collected as black balls in the urn and those not
already collected as white balls. At time zero, there are just n white balls in the urn for no coupon
has yet been found. Each time we pick a coupon (or ball) either it is one we already possess in our
collection (black ball) and then the urn composition does not change, or it is a new coupon (white
ball) and then we remove the white ball and add a black ball to mark we have one more coupon in
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our personal collection. We can model this behavior with the replacement matrix

M =
(

0 0
1 −1

)
and the initial composition of n white balls.

2. Counting

This part actually initiates from [3] and their results on analytic urns. Throughout the rest of
the summary we use the replacement matrix M with an initial composition U0

M =
(

1 1
0 2

)
, U0 =

(
1
1

)
to serve as an example of the methods.

We enumerate all possible compositions of an urn (knowing its initial composition and its re-
placement matrix) at time n with a polynomial fn(u, v) where u marks the number of black balls
and v the number of white balls in the urn. A composition can be counted several times if there
are several histories (picks of the distinguished balls) leading to this composition at time n.

For our example we have f0(u, v) = uv, f1(u, v) = u2v2+uv3, and f2(u, v) = 3uv5+3u2v4+2u3v3.
Each history of length n (series of the n picks) has the same probability 2 · 4 · . . . · (2n).

From an urn composition urvs at time n there are r possibilities of picking a black ball and this
leads to a composition ur+1vs+1 at time n+ 1, and there are s possibilities of picking a white ball
leading to a composition urvs+2 at time n+1. Hence from the urvs composition at time n we have
rur+1vs+1 + survs+2 possible compositions at time n + 1. We introduce a differential operator Γ
to code the evolution of the monomials urvs:

(1) Γ = uv · u ∂
∂u

+ u0v2 · v ∂
∂v
.

This operator is linear so it extends to the whole polynomial allowing us to describe in a simple
manner the possible evolutions of the urn composition: fn+1(u, v) = Γfn(u, v).

We introduce the main generating function for our study:

H(z, u, v) =
∑
n≥0

fn(u, v)
zn

n!
,

it satisfies the initial condition H(0, u, v) = uv and the partial differential equation ∂
∂zH = ΓH.

We know there is one sole generating function satisfying these two conditions, and from it we can
derive the moments of the random variable Xn counting the number of black balls in the urn and
also its limit law.

Why focus uniquely on black balls? Because the balance condition on the urn means the popu-
lation growth of the urn is deterministic: whatever the history of the urn the population increases
by two at every replacement. It leads to s+ r = 2 + 2n = 2(n+ 1) balls in the urn at time n.

3. A Method for Solving PDEs

The partial differential equation

(2) u2v
∂H

∂u
+ v3∂H

∂v
=
∂H

∂z

can be solved using the characteristics method (see [1] for a thorough course on it). We first
introduce the notion of first integral and some of its properties before applying them to our simple
example.
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Definition 1. Let x′(t) = f(x) be an ordinary differential equation where x is a C1 function from
an open I of R to an open U of Rn and f is a C1 function from U to Rn. A C1 function ψ from U
to R is said to be a first integral for the equation x′(t) = f(x) if for any solution x(t) to the
differential equation ψ(x(t)) is constant.

The equation x′(t) = f(x) is actually a system of n ODEs if we look at the coordinates (xi)i
and (fi)i of the functions x(t) and f(x) on the canonical basis of Rn. The benefit of using prime
integrals is to avoid partial derivatives to deal solely with ODEs. The next proposition describes
this link between ODEs and PDEs, its proof is quite straightforward.

Proposition 1. A function ψ is a prime integral of dx
dt (t) = f(x) if and only if for any point of U

we have

(3)
n∑
i=1

fi(x1, . . . , xn)
∂ψ

∂xi
(x1, . . . , xn) = 0.

For a “good” differential system of n equation there exist n−1 prime integrals (ψi)i whose deriva-
tives are linearly independent such that any prime integral can be expressed as φ(ψ1, . . . , ψn−1) for
any arbitrary C1 function φ.

For our guideline example we have to solve the PDE (2) which is of the type of (3). Given the
proposition we only have to look for prime integrals of the system of three equations

(4)
du

dt
= u2v,

dv

dt
= v3, and

dz

dt
= −1.

We eliminate the dt from all three equations and obtain a system of two equations

dv

v3
= −dz, and

du

u2
=
dv

v2
,

then we integrate and get two first integrals (checking it is easy) whose derivatives are linearly
independent:

ψ1(z, u, v) = z − 1
2v2

, and ψ2(z, u, v) =
1
v
− 1
u
.

The generating function for the urn is written in the form

H(z, u, v) = φ

(
z − 1

2v2
,
1
v
− 1
u

)
for some arbitrary function φ. We also have an initial condition H(0, u, v) = uv that leads to

H(z, u, v) = uv(1− 2v2z)−1/2
(
1− uv−1(1− (1− 2v2z)1/2)

)−1
.

4. Results

We now take a more general 2× 2 triangular replacement matrix M and an initial composition
(a0, b0) for the urn, thus with an initial population of t0 = a0 + b0 balls.

M =
(
a b− a
0 b

)
We solve the PDE

ua+1vb−a
∂H

∂u
+ vb+1∂H

∂v
=
∂H

∂z
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associated to the urn using the characteristics method from the previous section. It leads to the
generating function

(5) H(z, u, v) = ua0vb0(1− bvbz)−b0/b(1− uav−a(1− (1− bvbz)a/b))−a0/a.

If we denote by Xn the random variable counting the number of black balls at time n, we obtain
the probability of having a0 + ka black balls at time n and also a full expansion of its lth-order
moment.

P(Xn = a0 + ka) =
n!

t0 · · · (t0 + (n− 1)s)

(a0
a + k − 1

k

) k∑
i=0

(−1)i
(
k

i

)( b0−ai
b + n− 1

n

)
bn(6)

E((Xn)l) = al
Γ(a0+la

a )Γ( t0b )

Γ(a0
a )Γ( t0+la

b )
nla/b +O(n(l−1)a/b).(7)

We are also interested in the local limit law of the random variable Xn. The density can be
expressed using Mittag–Leffler functions so that the limit law is a stable law lookalike. More
precisely, for any positive x such that xna/b is an integer we have the equivalent

P(Xn = a0 + axna/b) =
1
na/b

Γ( t0b )
Γ(a0

a )
x

a0
a
−1
∑
k≥0

(−1)k

Γ( b0−kab )
xk

k!
+O

(
1

n2a/b

)
.

5. Triangular Urns of Size 3

We can easily adapt the generating function approach to urns filled with balls of three distinct
colors. The matrix is then 3× 3. We still ask for a triangular and balanced matrices. The methods
are the same as for the two color case but they are original contributions from Puyhaubert since
the probabilistic method needs additional constraints (irreducibility) to deal with 3× 3 matrices.

Balanced 3× 3 triangular replacement matrices (for balance 2 and 3) are classified according to
the asymptotic growth of their three populations.

The generating function methodology leads to results for matrices of arbitrary size but the
computations, especially to determine first integrals become heavier.
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[3] Flajolet (Philippe), Gabarró (Joaquim), and Pekari (Helmut). – Analytic urns. Annals of Probability, .
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