
Algorithms Seminar 2002–2004,
F. Chyzak (ed.), INRIA, (2005), pp. 101–104.

Available online at the URL
http://algo.inria.fr/seminars/.

Forty Years of ‘Quicksort’ and ‘Quickselect’: a Personal View

Conrado Mart́ınez
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Abstract
The algorithms ‘quicksort’ [3] and ‘quickselect’ [2], invented by Hoare, are simple and elegant
solutions to two basic problems: sorting and selection. They are widely studied, and we
focus here on the average cost of these algorithms, depending on the choice of the sample.
We also present a partial sorting algorithm named ‘partial quicksort’.

1. ‘Quicksort’ and ‘Quickselect’

The sorting algorithm ‘quicksort’ is based on the divide-and-conquer principle. The algorithm
proceeds as follows. First a pivot is chosen, with a specified strategy. Then all the elements of the
array but the pivot are compared to the pivot. The elements smaller than the pivot are stored
before the pivot, and the elements larger after the pivot. These two sub-arrays are then recursively
sorted.

We denote by Cn the average number of comparisons done to sort an array of size n, and πn,k
the probability that the kth element is the chosen pivot in an array of size n. The recursive design
of the algorithm is translated into a recurrence satisfied by the cost Cn:

(1) Cn = n− 1 + tn +
n∑
k=1

πn,k(Ck−1 + Cn−k).

The value tn denote the cost, in terms of comparisons, of the choice of the pivot, that may depend
on n.

The selection algorithm ‘quickselect’ is based on the same principles. To select the mth element
out of an array of size n, first a pivot is chosen, then the array is partitioned into two sub-arrays,
and the mth element is then recursively selected into the appropriate sub-array.

The average cost of selecting the mth element in an array of size n, in terms of comparisons,
using this algorithm is denoted by Qn,m, which satisfies the recurrence

(2) Qn,m = n− 1 + tn +
m−1∑
k=1

πn,kQn−k,m−k +
n∑

k=m+1

πn,kQk−1,m.

In the particular case of the standard variant, where the pivot is chosen with a uniform probability
(πn,k = 1/n), those recurrences are solved, and lead to the theorem:

Theorem 1. The average number of comparisons to sort n elements using the standard ‘quick-
sort’ [3] is

(3) Cn = 2(n+ 1)Hn − 4n ∼ 2n log n,
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where Hk is the kth harmonic number. The average number of comparisons Qn,m to select the mth
element out of n elements using the standard ‘quickselect’ [5] is

(4) Qn,m = 2((n+ 1)Hn − (n+ 3−m)Hn+1−m − (m+ 2)Hm + n+ 3) = Θ(n).

The maximum of the function Qn,αn is located at α = 0.5 and is worth (2 + 2 log 2)n.

2. Different Sampling Strategies

To improve the cost of these two algorithms, a first idea is to use a different algorithm for small
subfiles (for example insertion sort), and a second idea is to use samples to select better pivots,
and reduce the probability of uneven partitions which lead to quadratic worst case.

2.1. Median of 3. A simple strategy to select a pivot, due to Singleton [11], is median of 3.
The pivot is chosen as the median of a sample of size 3, selected with uniform probability. The
distribution of the pivot is now characterized by πn,k = (k−1)(n−k)

(n
3)

.

The average number of comparisons in this case is equal to ([10])

Cn =
12
7
n log n+O(n),

which is roughly 14% less than standard ‘quicksort’.
The median-of-3 strategy can also be applied to the algorithm ‘quickselect’. Kirshenhofer, Mar-

tinez, and Prodinger studied this variant in [4]. By using bivariate generating functions and tech-
nical exact computation, they found that the average number of comparisons is

Qn,m = 2n+
72
35
Hn −

156
35

Hm −
156
35

Hn+1−m + 3m− (m− 1)(m− 2)
n

+O(1).

In the particular case where m = dn/2e, the average number of comparisons is 11
4 n + o(n), which

is 18% less than in the standard case.

2.2. Optimal sampling. The median-of-3 strategy can be generalized to the median-of-2t + 1
strategy for any integer t. Mart́ınez and Roura in [6] consider the case where the size of the sample
is s = 2t + 1, with t = t(n) depending on n. Traditional techniques to solve recurrences cannot
be used here. Their approach is to make an extensive use of the continuous master theorem of
Roura [9]. This theorem states that if the sequence Fn satisfies the recursive equation

(5)
{
Fn = bn ifn < N
Fn = tn

∑
k wn,kFk

,

with appropriate growth conditions on the wn,k, then the asymptotic behavior of Fn is known.
It depends on the growth of the toll function tn and of the coefficients wn,k, and is equivalent to
tn logk n(log log n)i or nα logk n, where all the coefficients involved are known. This theorem is the
appropriate tool to deal with the recurrences satisfied by the cost of ‘quicksort median of 2t+ 1’.

The complexity considered in [6] is the total cost. The total cost is function of the number of
comparisons and of the number of exchanges, and is defined by #comparisons + ζ#exchanges,
where ζ is usually considered to be around 4. We state the following theorem on the total cost of
the algorithms ‘quicksort’ and ‘quickselect’.

Theorem 2. If we use samples of size s, with s = o(n) and s = ω(1), then the average total cost
of ‘quicksort’ is

(6) Cn = (1 + ζ/4)n log2 n+ o(n log n).
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The average total cost of ‘quickselect’, with the same sample strategy, to find an element of given
random rank is

(7) Qn = 2(1 + ζ/4)n+ o(n).

The optimal sample size s∗, that minimizes the total cost of ‘quicksort’ and ‘quickselect’, satisfies
s∗ = O(

√
n), and depends on the number of comparisons done to select the pivot.

The conclusion is that if exchanges are expensive, we should use fixed-size samples and pick the
median.

Many other strategies of pivot selection are available. For example ‘median-3-3 quicksort’, where
the pivot is the median of three medians of three samples, each sample of size three [1]. This leads
to all the strategies where the pivot is a median of other preselected medians, each issued of a
selection strategy of the same type. The idea to keep in mind is that the gain obtained by a better
pivot strategy should always be larger than the additional cost of the choice of the pivot.

2.3. Adaptive sampling. For the ‘quicksort’ algorithm, the best pivot is the median of the array.
This is not obviously the best choice for ‘quickselect’, for example if m is small or close to n. The
idea of Mart́ınez, Panario, and Viola in [8] is to choose a pivot with relative rank in the sample
close to α = m/n.

3. Partial Sort

The partial sort problem is, given an array of size n, sort the m smallest elements. The algorithm
‘quickselsort’ answers this question. It selects the mth element by ‘quickselect’, and then applies
‘quicksort’ to the m− 1 elements to its left. The cost of this algorithm is Θ(n+m logm). Another
way is the heapsort-based partial sort, that builds a heap and extracts m times the minimum. Its
cost is also Θ(n+m logm).

A solution, given by Mart́ınez in [7], is ‘partial quicksort’. This algorithm uses the principles
of ‘quicksort’, and proceeds as follows. First find a pivot (with any strategy) and then recursively
apply ‘partial quicksort’ to the sub-arrays concerned. More precisely, if the pivot is smaller than m,
sort the left sub-array, and apply ‘partial quicksort’ to the right sub-array. If the pivot is greater
than m, then apply ‘partial quicksort’ to the left sub-array.

The average number of comparisons Pn,m needed to sort the m smallest elements in an array of
size n satisfy the recurrence

Pn,m = n− 1 + t+
n∑

k=m+1

πn,kPk−1,m +
m∑
k=1

πn,k (Pk−1,k−1 + Pn−k,m−k) .

In this recurrence, t is the number of comparisons done to choose the pivot, and k represents the
position of the pivot, chosen with probability πn,k. When k is greater than m, the algorithm sorts
the m smallest elements in the left sub-array, that has size k − 1. In the other case, when k is
smaller than m, the algorithm sorts the entire left sub-array, and the m − k smallest elements of
the right sub-array, that has size n−k. We recognize that Pn,n is the average cost of the algorithm
‘quicksort’.

In the standard case, when πn,k = 1/n, this recurrence is solved exactly, and we get that the
average number of comparisons done by ‘partial quicksort’ is

(8) Pn,m = 2n+ 2(n+ 1)Hn − 2(n+ 3−m)Hn+1−m − 6m+ 6.

‘Partial quicksort’ makes 2m− 4Hm + 2 comparisons and m/3− 5H −m/6 + 1/2 exchanges less
than ‘quickselsort’.
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