Algorithms Seminar 20022004, Available online at the URL
F. Chyzak (ed.), INRIA, (2005), pp. 51-54. http://algo.inria.fr/seminars/.

Patterns in Trees

Thomas Klausner

Technical Mathematics, Technische Universitdt Wien (Austria)
December 9, 2002

Summary by Marianne Durand and Julien Clément

Abstract

Given a tree, considered as a pattern, the question is how many times this pattern appears
in a tree of size n. The average and variance of this parameter are obtained in this talk.

1. Introduction

The problem of counting the number of occurrences of a pattern in a general tree is motivated for
example by compression of arithmetical expressions. This talk presents first a simpler problem, that
is counting planted patterns in planted trees, and reduces this problem to solving asymptotically
a system of functional equations satisfied by related generating functions. The second part shows
that the problem of general trees and general patterns is in fact very close to the planted problem,
and can be reduced in a similar way to solving certain systems of functional equations. In the last
section, asymptotic results on the number of occurrences of a given pattern in trees of size n are
found from those systems, namely a normal distribution with explicit mean and variance.

2. Planted Trees and Planted Patterns

A planted tree is a rooted tree, where the degree of the root is equal to 1. To begin with, it is
simpler to search planted patterns in planted trees.

2.1. Combinatorial decomposition. The search of a planted pattern in a planted tree is as
follows. First, see if the pattern and the tree match when you match the two roots, this may
give an occurrence, second build planted subtrees, and search recursively inside. Building planted
subtrees consists in erasing the root (this gives a tree, as the root was of degree 1) and then split
the new root into a root for each of his sons, to create a forest of planted trees.

Ficure 1. Example of a pattern.

(a) A white circle stands for any tree. (b) A tree in which the pattern occurs twice.



52 Patterns in Trees

The pattern shown in Figure 1 is the example we use all along this summary. The pattern is first
decomposed in planted subtrees (also named sub-patterns) which are named ¢; (the ordering does
not matter). Formally to obtain a planted subtree, one has to cut an internal edge in 2, and add a
planted root on the cut side of the edge . To get all the subtrees, do it for all internal edges. The
pattern is then fully known by the relation between its sub-patterns. For the example, we have the
relations:

t1:0><t2><t3
lo=0XpPXPXPXDP
l3=0XpXp

where o stands for the (planted) root, and p for any tree. In a planted tree the root is used to
indicate where is the “top,” so when a planted tree is seen as a subtree of a planted tree, this
information is no longer necessary. This explains why the relation t; = o x to X t3 holds, with the
subtrees to and t3 “losing” their planted root.

Now with this description, we are able to search recursively a planted pattern in a planted tree,
but to count them, we have to take care of overlaps as shown in Figure 1(b). The reason appears
during the writing of the generating function equation. Overlaps are possible, because of the
non trivial intersection of the definition of ¢; and t3. To avoid this, it is sufficient to rewrite the ¢;
differently to obtain a disjoint set of specifications (that is no tree satisfy two specifications). The ¢;
define sub-sets with overlaps of the set p of all trees, the symbols a; are defined as standing for the
underlying partition of the set, based on theoretic set operations (intersections, union, difference)
involving the t;’s or the set of all trees p. Now all the a; are disjoint (they are defined as a partition),
and each ¢; can be written as a union of a;’s.

The system of equations obtained on the ¢;’s is then easily translated into a system in the a;’s.
In the example we obtain:

a; =tl = {o} x ag x (a1 Uas)

az={o} Xxpxpxpxp

az = ({o} x (pxp)) \m

ag =p\ (a1 Uaz Uas)
This is a system involving only the a;’s, as the relation p = a3 Uas UaszUay holds. In the a;’s basis,
only a; represents a pattern, and so can be counted as a pattern, that is marked with a u symbol

in the generating function, as explain in the next paragraph. Whereas in the ¢; basis, t3 may be a
pattern, but without certainty, so that we do not know whether it should be counted or not.

2.2. Generating functions. The generating function of all trees is denoted by p(z,u), where z
codes the size of the tree, and u the number of patterns. So that p(z,u) =3_, , pn’k%uk, with py,
the number of trees of size n (the number of nodes of the planted rooted tree) that contains k
occurrences of the pattern. In what follows,if a letter a stands for a set of trees, then a(z,u)
stands for the corresponding generating function. As the set of all the trees p is decomposed as
the disjoint union of the a;’s, the generating function p(z,u) is the sum of the a;(z,u). For a
presentation of the relation between combinatorial decomposition and generating functions, see [2].
Basically, the operations on sets are translated into operations on generating functions; unions
of disjoint sets, exclusions and products translate into +, — and x. The system of equations
between the a; is translated into generating functions equations. The number of a;’s is denoted
by L. All the relations but the last are written as equalities between a; and the root times disjoint
union or exclusion of a;’s, so that we have the relation a;(z,u) = zPj(ai(z,u),...,ar(z,u),u),



T. Klausner, summary by M. Durand and J. Clément 53

where P; is a polynomial. The last variable of the polynomial, u, is used to mark the patterns.
For the last relation, ar, = p\ Ua;, we get ar(z,u) = zeP%) — » Z;‘:_ll Pj(a1(z,u),...,ar(z,u),1).
To understand this equation, remember that the generating function of all trees, when there is no
pattern to be counted, is p(z) = 2eP(?) . The rest is a basic translation, except for the last variable u.
The P;’s have to be applied to 1 for their last variable, because in the set ay,, there is no pattern
to be marked.

On the example, we have the system:

The only pattern marked is in the first equation.

In this section, we have found how to obtain a system of equations satisfied by the generating
function p(z,u), that counts the number of occurrences of a given planted rooted pattern in planted
rooted trees.

3. General Trees and General Patterns

Before searching general patterns in general trees, we consider the problem of searching two
planted patterns in a planted tree. The number of patterns counted is the sum of the number of
occurrences of the two patterns, eventually with overlaps. The idea is to make a “union” counting
on the patterns. The technique is very similar to what is presented in section 2, so we just give the
main lines.

The first pattern is decomposed into sub-patterns, named t1,..., %, the second pattern is also
decomposed into the sub-patterns ¢511,...,t;. Then, all the ¢; are grouped as if they came from the
same pattern, the partition a; is found from all the ¢;’s. The system of equation in the generating
function a;(z,u) is built in a similar way, and both patterns are marked with a u. At the end we
have a system of equation satisfied by the generating function p(z,u) we are looking for.

Now that we know how to count (count is used in the sense of having an equation satisfied by
the generating function) for two patterns, the next step is to count the occurrences of a not-planted
pattern in a planted rooted tree. In order to do this, we build all possible ways of planting the
patterns, and we consider the union of all these planted patterns as explained in the previous
paragraph.

Finally to search a pattern (non-planted) in a tree (non-planted), we simply plant the tree, and
then search the pattern inside the planted tree, as the planting of a tree does not change the number
of occurrences of the pattern.

So the problem of counting the number of occurrences of a pattern in a tree is reduced to
“solving” a system of equations of corresponding generating functions. Next section is devoted to
finding asymptotic results on the coefficients of the generating function p(z,u).

4. Asymptotic

To study the asymptotic behavior of the pj, i, defined as coefficients of p(z,u) =Y pn i %uk, we

rely on a general theorem of Michael Drmota [1], that studies solutions of systems of functional



54 Patterns in Trees

equations. Let X,, denotes the random variable of law defined by

P(X,=k) =% withp, =Y pus.
Pn A
This theorem, under some conditions, proves that X, is asymptotically Gaussian, and provides
explicit formulas for the mean and variance, that are here proportional to n.

To start with, we define some notations. Bold letters always stand for a vector. The letter a
denotes the vector (aj(z,u),...,ar(z,u)). The symbol F stands for

F(u,y,z) = (Fl(u7y7z)> s 7FL(uaY7z))

where
3 L—1
Fi(u,y,2) = zPi(y,u) (for1<i<UL), and Fr(uy,z)=zeic1¥ —z Z Pi(y,1).
i=1

So that the system of functional equations can be rewritten as a = F(u, a, z). The differentiation
of a function f with respect to x is written f;, and Fy is the matrix with entries 2—5;.

We want the system to be strongly connected, which means that there is no sub-system that can
be solved independently. This is verified when the pattern does not contain leaves, as each a; but
the last depends on the last (as each sub-pattern ends into at least one unspecified tree), and ar,
depends on all a; but itself. For the particular case where the pattern requires the presence of leaves,
the branch leading to the leaf is considered as a black box, and plays no role in the decomposition.
This particular case can thus be reduced to the general case without leaves.

A slightly modified version of the main theorem from [1] now says that under conditions that

are satisfied in this context, X, is asymptotically Gaussian, with mean and variance
E[X,]=un+0O(1) and Var[X,]=o?n+0(1).
The value of the constants p and o comes from the solution of the system of functional equations
y =F(uy,z)
0=det(I—-Fy(u,y,z))
that admits a solution y(z) and u(z). The constants 4 and o2 are given by

_ _UZ(l) and o2 = _uzz(l)

u(1) u(1)

Bibliography

+,u2+,u.

[1] Drmota (Michael). — Systems of functional equations. Random Structures and Algorithms, vol. 10, n° 1-2; 1997,
pp. 103-124.

[2] Sedgewick (Robert) and Flajolet (Philippe). — Analytic combinatorics—Symbolic combinatorics. — 2005. http:
//algo.inria.fr/flajolet/Publications/books.html.



