Profile of Random Recursive Trees and Random Binary Search Trees

Hsien-Kuei Hwang

Institute of Statistical Science, Academia Sinica (Taiwan)

April 26, 2004

Summary by Brigitte Chauvin and Jean-Maxime Labarbe

1. Introduction

Random recursive trees model is a simple probability model useful for many applications as system generation, spread of contamination of organisms, internet interface map, stochastic growth of networks or statistical physics. A random recursive tree is constructed as follows: one starts from a root node with the label 1; at each step $n, n \ge 2$, a new node with the label n is attached uniformly at random to one of the previous nodes labelled by $1, 2, \ldots, n-1$. In this model, the labels are increasing along any path from the root to a node.

Denote by $X_{n,k}$ the number of nodes at distance k from the root in a random recursive tree with n nodes. We are interested in the *profile* of random recursive trees, i.e., the collection $\{X_{n,k} : k \in \mathbb{N}\}$. More precisely, there exist some results about the mean and the variance of the $X_{n,k}$ but the limit distribution of $X_{n,k}$ scaled by its mean, in the range $k/\log n \sim \text{Constant}$ is a source of intriguing phenomena. Notice that the profile provides a fine and informative shape characteristic, it is related to path length, depth, height, width, ... and also to generation of random trees or other algorithmic problems.

A well-known connection between random recursive trees and binary search trees is the following: by rotation, a planar tree gives a binary tree and then it appears that the profile of random recursive trees is exactly the "left" profile of binary search trees (meaning that the distance of a node is only counted for left branches). Consequently, it is of the same flavour to study the profile of binary search trees; results and phenomena for $Y_{n,k}$, the number of external nodes at level k and $Z_{n,k}$, the number of internal nodes at level k in a random binary search tree, appear as a simple transposition.

2. Main Results

Let k depend on n, let $\alpha_{n,k} = k/\log n$ and suppose that:

$$\lim_{n \to \infty} \alpha_{n,k} = \alpha$$

The main phenomena are summarized in the following proposition:

Proposition 1 (Main phenomena).

-
$$\mathbf{E}(X_{n,k})$$
 is unimodal and $\mathbf{Var}(X_{n,k})$ is bimodal,
- $\forall \alpha \in [0, e), \ X_{n,k} / \mathbf{E}(X_{n,k}) \xrightarrow{d} X_{\alpha}$ (convergence in distribution)
- $\forall \alpha \in [0, 1], \ X_{n,k} / \mathbf{E}(X_{n,k}) \xrightarrow{m} X_{\alpha}$ (convergence of all moments)

 $- for \ k = o(\log n), \ (case \ \alpha = 0), \ \ (X_{n,k} - \mathbf{E}(X_{n,k})) / \sqrt{\mathbf{Var}(X_{n,k})} \xrightarrow{m} \mathcal{N}(0,1)$

76 Profile of Random Recursive Trees and Random Binary Search Trees

$$- \text{ for } k = \log n + o(\log n) \text{ (case } \alpha = 1) \text{ and } |k - \log n| \to \infty,$$
$$(X_{n,k} - \mathbf{E}(X_{n,k})) / \sqrt{\operatorname{Var}(X_{n,k})} \xrightarrow{m} X'_1$$

- for $k = \log n + O(1)$, $(X_{n,k} - \mathbf{E}(X_{n,k})) / \sqrt{\mathbf{Var}(X_{n,k})}$ does not converge in distribution. where X_{α} and X'_{1} are limit distributions we describe further.

The proof is based both on the contraction method and the moment method.

Let $\mu_{n,k}$ be the first moment of $X_{n,k}$. A fine study of the asymptotics of $\mu_{n,k}$ leads to

for
$$0 \le \alpha < e$$
, $\frac{\log \mu_{n,k}}{\log n} \longrightarrow \alpha - \alpha \log \alpha$.

The second moment and the variance of $X_{n,k}$ can also be asymptotically described: if $0 \le \alpha < 2$,

$$\mathbf{Var}(X_{n,k}) \sim \left(\frac{\Gamma(\alpha+1)^2}{(1-\alpha/2)\Gamma(2\alpha+1)} - 1\right) \mu_{n,k}^2$$

and the variance exhibits a *bimodal behavior* when $\alpha = 1$.

For the second point in the proposition, i.e., the limit distribution, the starting point is the recurrence formula satisfied by the $X_{n,k}$ (a branching-type property):

(1)
$$X_{n,k} \stackrel{d}{=} X_{U_n,k-1} + X_{n-U_n,k}^*$$

where U_n is uniform over $\{0, \ldots, n-1\}$ and $X_{j,k}$ and $X^*_{j',k'}$ are independent of each other and independent of U_n . As usually, thanks to the asymptotics of the first moment $\mu_{n,k}$ of $X_{n,k}$ and because U_n/n converges in distribution to a uniform distribution U on the interval [0,1], it is possible to deduce a limit equation from (1):

$$X_{\alpha} \stackrel{d}{=} \alpha U^{\alpha} X_{\alpha} + (1 - U)^{\alpha} X_{\alpha}^*.$$

Moreover, the convergence of the first m moments is obtained for $0 \leq \alpha < m^{1/(m-1)}$ and the moments of the limit distribution $\nu_m := \mathbf{E}(X^m_{\alpha})$ are given by a recurrence relation:

$$\nu_m = \frac{1}{m - \alpha^{m-1}} \sum_{j=1}^m \binom{m}{j} \nu_j \nu_{m-j} \alpha^{j-1} \frac{\Gamma(j\alpha + 1)\Gamma((m-j)\alpha + 1)}{\Gamma(m\alpha + 1)}.$$

In the particular case when $\alpha = 1$, the convergence of all moments in the fifth point of the Proposition is obtained by the method of moments: all moments satisfy the same type of recurrence:

$$a_{n,k} = b_{n,k} + \frac{1}{n-1} \sum_{j=1}^{n-1} (a_{j,k-1} + a_{j,k})$$

so that generating functions techniques and transfer theorem allow one to get asymptotics for higher moments. Notice that the limit distribution X'_1 is nothing but $(dX_{\alpha}/d\alpha)|_{\alpha=1}$ and is a solution of a 'quicksort'-type equation:

$$X_1' \stackrel{d}{=} UX_1' + (1-U)X_1'^* + U + U\log U + (1-U)\log(1-U).$$

Among open questions:

- what happens at the boundary of the interval (α_-, α_+) of convergence of binary search trees (analog of the interval (0, e) for recursive trees)?
- how to prove a.s. convergence in general?
- how to plot or simulate limit laws like X_{α} ?