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Abstract

This talk1 (a joint work with Philippe Flajolet) presents an algorithm to approximate count
the number of different words in very large sets or texts (in the range of billions of bytes)
and its analysis. When using an auxiliary memory of m bytes, the accuracy is of the order
1/
√
m. The analysis of this new algorithm relies on asymptotic Depoissonization techniques.

1. Introduction

The problem addressed by this work is how to estimate the number of distinct elements in a
large collection of data with the following requirements while: doing a single pass on the data;
using a small amount of memory; doing only a few computations; doing no assumptions about the
distribution of the data.

Applications of such a problem are data mining optimizations and routers programmation.

2. Summary of Some Algorithms

2.1. Previous work. In the following, the input words are considered as elements of [0, 1] (take the
2-adic value of each word represented as a bit-string). We consider the number of input items N ,
the standard deviation σ of the rate of error done on the counting and the space S needed by
the algorithm. In any case a hashing of the data is done before performing the algorithms. The
algorithms precedently used for these aims may be classified as:

– (adaptive) hashing schemes [3]
∗ algorithm: hash the values in [0, 1/2] in a table; when the number of collisions exceeds

a given value γ, skip to a different and smaller interval (by instance [1/2, 3/4]); return
a function of the number of collisions.
∗ parameters: σ = 1.5/

√
S; assumptions on the size of the data; unstable with respect to

the order of arrival of the data;
– adaptive sampling [4]

∗ algorithm: maintain one bucket of size m; when the bucket overflows, throw away all
data beginning by a 1; filter out incoming data beginning by a 1; repeat the process by
filtering with 00 and so on; return a function of the number of iterations;
∗ parameters: σ = 6.7/

√
m (unprecise algorithm);

– probabilistic counting [6]

1The results presented here and recent improvements will be presented at the ESA 2003 Symposium [2].
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∗ algorithm: let ρ(w) be the position of the first 1 in w; (by instance, ρ(00010111) = 4);
set up the bits corresponding to ρ(w) for all w in a bit-map. Let kmax be the first bit
equal to 0 in this bit-map. The estimator is 2ckmax for a given c.
∗ parameters: σ = 0.78/

√
m, S = m× log2N ;

See also [1].

2.2. The new algorithm of Durand and Flajolet. This algorithm uses a technique of maximum-
based probabilistic counting. It has the following features:

– algorithm: send the data to m = 2b different buckets, according to the value of their b first
bits. For each bucket i compute the maximum

M (i) = max({ρ(suf(w));w is hashed in bucket i}),

where suf(w) is the suffixe of w starting at position b+ 1.

(1) Return E = αmm× 2
1
m

P
M(i)

,

(2) where αm =

(
Γ(−1/m)

1− 21/m

log 2

)−m
, Γ(s) =

1
s

∫ ∞
0

e−ttsdt;

– parameters: σ = 1.3/
√
m; memory S = m× log log max({M (i)});

– remarks: the algorithm is independent of the repetitions and need very few computations. It
is only necessary to maintain one value of size O(log logN) for each bucket and not a bitmap
of size O(logN) as in probabilistic counting.

3. Analysis

As frequently observed, the analysis is easier when Poissonization-Depoissonization is used.
The steps of the analysis therefore are.
1. Compute the generating function F (z) =

∑
fnz

n, where fn is the estimator of number of
different items when exactly n are read by the algorithm.

2. “Poissonize” the system by considering that the number of items read by the algorithm is
a random number following a Poisson distribution of parameter λ. Asymptotically, when
λ = n, one expects the Poisson model to reflect corresponding properties of the fixed-n
model (note that for large λ, the Poisson law is concentrated near its mean).
During this step, compute

F̃ (z) =
∑

fn
zn

n!
e−z =

∑
F̃nz

n.

3. Compute the Mellin transform f?(s) of F̃ (z). The expansions of f?(s) in the neighborhood
of its singularities give the asymptotic value of F̃n.

4. Prove by depoissonization that, asymptotically, fn ∼ F̃n.

3.1. Getting the basic generating function. We are interested here to the statistics of the
estimator

Z = E/αm = m× 2
1
m

P
i M

(i)
.

Considering one bucket that receives ν elements, the random variable M is the maximum of ν ran-
dom variables Y that are independent and geometrically distributed according to P(Y ≥ k) = 1/2k.
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Therefore we have

Pν(M ≤ k) =
(

1− 1
2k

)ν
, and Pν(M = k) =

(
1− 1

2k

)ν
−
(

1− 1
2k−1

)ν
.

This sums up to

(3) G(z, u) =
∑
ν,k

P(M = k)uk
zν

ν!
=
∑
k

uk
(
ez(1−1/2k) − ez(1−1/2k−1)

)
.

Considering now the m = 2b buckets induces multinomials when distributing elements amongst
buckets; therefore n![zn]G(z/m, u)m is the probability generating function of

∑
iM

(i).
The expressions for the first and second moment of Z are obtained from there by substituting

respectively u by 21/m and 22/m.
This gives the following lemma.

Lemma 1. When there are n input items, the expected value and variance of the unnormalized
estimator Z are

E(Z) = mn![zn]G
( z
m
, 21/m

)m
, and(4)

Var(Z) = m2n![zn]G
( z
m
, 22/m

)m
−
(
mn![zn]G

( z
m
, 21/m

)m)2
.(5)

3.2. Poissonization. If f(z) =
∑

n fnz
n/n! is the exponential generating function of the expec-

tation of a parameter, the quantity e−λf(λ) =
∑

n fne
−λλn/n! gives the corresponding generating

function under the Poisson model. Therefore the quantities

(6) En = mG
( n
m
, 21/m

)m
(e−n/m)m and Vn = m2G

( n
m
, 22/m

)m
e−n − E2

n

are respectively the mean and the variance of Z when the number of input items follows a Poisson
law of rate λ = n.

We consider in the following the variable En.
Using Equations 3 and 6, we can write

En = mA(n)m, where A(x) =
∑
i

2i

m

(
φ(x/2i)− φ(x/2i−1)

)
, and φ(x) = e−x/m.

The Mellin transform F ?(s) (see [5, 8]) of a harmonic sum F (x) =
∑
λkf(µkx) is

F ?(s) = f?(s)
∑ λk

µsk
;

this implies that

A?(s) = φ?(s)(2s − 1)
21/m

1− 21/m2s
.

The dominant singularity is at s = −1/m and the corresponding residue is

a = m−1/mΓ(−1/m)
1− 21/m

log 2
.

The Mellin transfer theorem gives the corresponding contribution ax1/m in the asymptotic ex-
pansion of A(x) at infinity. The same techniques apply when considering Vn. These results are
summarized in the following lemma.
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Lemma 2. The Poisson mean En and variance Vn satisfy as n→∞:

En ∼

[(
Γ(−1/m)

1− 21/m

log 2

)m
+ ηn

]
× n,(7)

Vn ∼

(Γ(−2/m)
1− 21/m

log 2

)m
−

(
Γ(−1/m)

1− 21/m

log 2

)2m

+ κn

× n2,(8)

where |ηn| and |κn| (bounded by 10−6) correspond to “negligible” singularities.

3.3. Depoissonization. The asymptotic forms of the first two moments of Z in the fixed-n model
can be transferred back from the Poisson model by a method called “analytic depoissonization” by
Jacquet and Szpankowski (See [7, 8]). The values of an exponential generating function at large
arguments are closely related to the asymptotic form of its coefficients provided the generating
function decays fast enough away from the positive real axis in the complex plane.

We have
G(z/m, 21/m) = ez/m

∑
k

2k/me−z2
−k/m

(
1− e−z2−k/m

)
.

Let Sθ be the cone
Sθ = {z : | arg z| ≤ θ}, with |θ| < π/2.

There exists a θ such that
1. inside the cone Sθ there holds e−zG(z/m, 21/m)m = O(|z|), and
2. outside the cone Sθ there exists α such that G(z/m, 21/m)m = O(eα|z|).

This implies the following lemma (proof omitted).

Lemma 3. The first two moments of the estimator Z are asymptotically equivalent under the
Poisson and fixed-n model: E(Z) ∼ En, Var(Z) ∼ Vn.

4. Improved Algorithm

An heuristic improvement consists in truncating the large non-meaningful values of the indica-
torsM . When respectively 0%, 10%, 20% and 30% of the higher values are truncated, computations
(for 32-bits words) give σ×

√
S = 2.8, 2.4, 2.2, and 2.5.
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