Factor Oracle, Suffix Oracle

Matthieu Raffinot
Institut Gaspard-Monge, Université de Marne-la-Vallée

October 4, 1999

Summary by Alain Denise and Matthieu Raffinot

Abstract

The aim of this work is to design efficient algorithms for string matching. For this purpose, we introduce a new kind of automaton: the factor oracle, associated with the string p to be recognized in a text. This leads to simple algorithms which are as efficient in time as already known ones, while using less memory. This is a joint work with Cyril Allauzen and Maxime Crochemore.

1. Introduction

The efficiency of string matching algorithms depends on the underlying automaton which represents the string p to be found in the text. Ideally, this automaton A should satisfy the following properties:

1. A is acyclic;
2. A recognizes at least the factors of p;
3. A has the fewer states as possible;
4. A has a linear number of transitions according to m, the length of p. (Such an automaton has at least $m + 1$ states.)

The suffix or factor automaton [3, 5] satisfies 1., 2., and 4. but not 3. whereas the subsequence automaton [2] satisfies 1., 2., and 3. but not 4. We present in Section 2 an intermediate structure called factor oracle: an automaton with $m + 1$ states that satisfies all the above requirements. Section 3 is devoted to the study of a string matching algorithm based on the factor oracle.

2. Construction of the Factor Oracle

The factor oracle of a word $p = p_1p_2 \ldots p_m$, denoted Oracle(p), is the automaton built by the algorithm Build Oracle (Figure 1). All the states of the automaton are final. Figure 2 gives the factor oracle of the word $p = abbaab$. On this example, the reader will notice that the word aba is recognized whereas it is not a factor of p.

Here are some notations which are used in the following. The set of all prefixes (resp. suffixes) of p is denoted by Pref(p) (resp. Suff(p)). The word pref$_p(i)$ is the prefix of length i of p for $0 \leq i \leq m$. For any $u \in \text{Fact}(p)$, we define

$$\text{pocc}(u,p) = \min \{ |z| \mid z = wu \text{ and } p = wuv \},$$

the ending position of the first occurrence of u in p. For any $u \in \text{Fact}(p)$, we define the set

$$\text{endpos}_p(u) = \{ i \mid p = wup_{i+1} \ldots p_m \}.$$
Build_Oracle\(p = p_1 p_2 \ldots p_m\)
 For \(i\) from 0 to \(m\)
 Create a new state \(i\)
 For \(i\) from 0 to \(m - 1\)
 Build a new transition from \(i\) to \(i + 1\) by \(p_{i+1}\)
 For \(i\) from 0 to \(m - 1\)
 Let \(u\) be a minimal length word in state \(i\)
 For all \(\sigma \in \Sigma, \sigma \neq p_{i+1}\)
 If \(u \sigma \in \text{Fact}(p_{i-|u|+1} \ldots p_m)\)
 then build a new transition from \(i\) to \(i + \text{poccurrence}(u \sigma, p_{i-|u|+1} \ldots p_m)\) by \(\sigma\)

Figure 1. High-level construction of the Oracle.

Figure 2. Factor oracle of \(abbaab\).

Given two factors \(u\) and \(v\) of \(p\), we write \(u \sim_p v\) if \(\text{endpos}_p(u) = \text{endpos}_p(v)\).

The authors prove in [1] the following lemmas.

Lemma 1. Given a state \(i\) of Oracle\(p\), let \(u \in \Sigma^*\) be a minimal length word among the words recognized in \(i\). Then \(u \in \text{Fact}(p)\) and \(i = \text{poccurrence}(u, p)\).

Corollary 1. For any state \(i\) of Oracle\(p\), there exists an unique minimal length word among the words recognized in state \(i\).

We denote \(\min(i)\) the minimal length word of state \(i\).

Corollary 2. Let \(i\) and \(j\) be two states of Oracle\(p\) such that \(j < i\). Then \(\min(i)\) cannot be a suffix of \(\min(j)\).

Lemma 2. Let \(i\) be a state of Oracle\(p\). Then \(\min(i)\) is a suffix of any word \(c \in \Sigma^*\) which is the label of a path leading from state 0 to state \(i\).

Lemma 3. Any word \(w \in \text{Fact}(p)\) is recognized by Oracle\(p\) in a state \(j \leq \text{poccurrence}(w, p)\).

Corollary 3. Let \(w \in \text{Fact}(p)\). Every word \(v \in \text{Suff}(w)\) is recognized by Oracle\(p\) in a state \(j \leq \text{poccurrence}(w)\).

Lemma 4. Let \(i\) be a state of Oracle\(p\). Any path ending by \(\min(i)\) leads to a state \(j \geq i\).

Lemma 5. Let \(w \in \Sigma^*\) be a word recognized by Oracle\(p\) in \(i\). Any suffix of \(w\) is recognized in a state \(j \leq i\).

Lemma 6. The number \(T_{\text{Or}}(p)\) of transitions in Oracle\(p = p_1 p_2 \ldots p_m\) satisfies \(m \leq T_{\text{Or}}(p) \leq 2m - 1\).

The high-level construction of the factor oracle is equivalent to the on-line algorithm given in Figure 3. An example of this construction is shown in Figure 4.

Exemple. The on-line construction of Oracle\((abbaab)\) is given Figure 4.
Function add_letter (Oracle($p = p_1 p_2 \ldots p_m$), σ)

Create a new state $m + 1$
Create a new transition from m to $m + 1$ labeled by σ

$k \leftarrow S_p(m)$

While $k > -1$ and there is no transition from k by σ **Do**

Create a new transition from k to $m + 1$ by σ

$k \leftarrow S_p(k)$

End While

If ($k = -1$) **Then** $s \leftarrow 0$
Else $s \leftarrow$ where leads the transition from k by σ.

$S_{p\sigma}(m + 1) \leftarrow s$

Return Oracle($p = p_1 p_2 \ldots p_m \sigma$)

Oracle-on-line ($p = p_1 p_2 \ldots p_m$)

Create Oracle(ε) with:
- one single state 0
- $S_0(0) \leftarrow -1$

For $i \leftarrow 1$ à m **Do**

Oracle($p = p_1 p_2 \ldots p_i$) \leftarrow add_letter(Oracle($p = p_1 p_2 \ldots p_{i-1}$), p_i)

End For

Figure 3. On-line construction of Oracle($p = p_1 p_2 \ldots p_m$).

(a) \hspace{1cm} (b) Add a. \hspace{1cm} (c) Add b. \hspace{1cm} (d) Add b.

(e) Add a \hspace{1cm} (f) Add a.

(g) Add a. \hspace{1cm} (h) Add b.

Figure 4. On-line construction of Oracle($ababa$).
3. String Matching

The authors replace the suffix automaton with a factor oracle in the BDM (for *backward daug matching*) [4, 6], obtaining the BOM (for *backward oracle matching*) algorithm.

The BOM algorithm consists in shifting a window of size m on the text. For each new position of this window, the factor oracle of the mirror image of p is used to search the suffix of the window from right to left. The basic idea is that if this backward search fails on a letter σ after the reading of a word w then σw is not a factor of p and the beginning of the window can be shifted just after σ. The worst-case complexity of BOM is $O(nm)$.

The average complexity of the original BDM is in $O(n \log_{|\Sigma|}(m)/m)$ under a uniform Bernoulli model. In view of the experimental results (see [1]), the authors claim that their new BOM algorithm is also optimal on average:

Conjecture 1. Under a model of independence and equiprobability of letters, the BOM algorithm has an average complexity of $O(n \log_{|\Sigma|}(m)/m)$.

The authors show in [1] how to obtain a linear (in n) worst case algorithm from the BOM.

Bibliography

