Algorithms Seminar 1999-2000, Available online at the URL
F. Chyzak (ed.), INRIA, (2000), pp. 121-124. http://algo.inria.fr/seminars/.

Factor Oracle, Suffix Oracle

Matthieu Raffinot
Institut Gaspard-Monge, Université de Marne-la-Vallée

October 4, 1999

Summary by Alain Denise and Matthieu Raffinot

Abstract
The aim of this work is to design efficient algorithms for string matching. For this purpose,
we introduce a new kind of automaton: the factor oracle, associated with the string p to
be recognized in a text. This leads to simple algorithms which are as efficient in time as
already known ones, while using less memory. This is a joint work with Cyril Allauzen and
Maxime Crochemore.

1. Introduction

The efficiency of string matching algorithms depends on the underlying automaton which rep-
resents the string p to be found in the text. Ideally, this automaton A should satisfy the following
properties:

1. A is acyclic;

2. A recognizes at least the factors of p;

3. A has the fewer states as possible;

4. A has a linear number of transitions according to m, the length of p. (Such an automaton
has at least m + 1 states.)

The suffix or factor automaton [3, 5] satisfies 1., 2., and 4. but not 3. whereas the subsequence
automaton [2] satisfies 1., 2., and 3. but not 4. We present in Section 2 an intermediate structure
called factor oracle: an automaton with m + 1 states that satisfies all the above requirements.
Section 3 is devoted to the study of a string matching algorithm based on the factor oracle.

2. Construction of the Factor Oracle

The factor oracle of a word p = p1ps ... pm, denoted Oracle(p), is the automaton built by the
algorithm Build_Oracle (Figure 1). All the states of the automaton are final. Figure 2 gives the
factor oracle of the word p = abbbaab. On this example, the reader will notice that the word aba is
recognized whereas it is not a factor of p.

Here are some notations which are used in the following. The set of all prefixes (resp. suffixes)
of p is denoted by Pref(p) (resp. Suff(p)). The word pref,(i) is the prefix of length i of p for
0 <i < m. For any u € Fact(p), we define

poccur(u,p) = min{ |z ‘ z = wu and p = wuv },
the ending position of the first occurrence of u in p. For any u € Fact(p), we define the set

endpos,(u) = {4 | p = wupi+1...pm }.
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Build _Oracle(p = p1p2 . .. pm)
For 4 from 0 to m
Create a new state 4
For ¢ from 0 tom — 1
Build a new transition from ¢ to ¢ + 1 by p;41
For ¢ from 0 tom — 1
Let u be a minimal length word in state ¢
For all 0 € ¥,0 # piy1
If uo € Fact(p;_|y|+1 - - - Pm)
then build a new transition from i to i + poccur(uo, p;_|y|+1 - - - Pm) by @

FIiGURE 1. High-level construction of the Oracle.

FIGURE 2. Factor oracle of abbbaab.

Given two factors u and v of p, we write u ~, v if endpos,(u) = endpos,,(v).
The authors prove in [1] the following lemmas.

Lemma 1. Given a state i of Oracle(p), let u € ¥* be a minimal length word among the words
recognized in i. Then u € Fact(p) and 1 = poccur(u, p).

Corollary 1. For any state i of Oracle(p), there exists an unique minimal length word among the
words recognized in state ©.

We denote min(i) the minimal length word of state 3.

Corollary 2. Let i and j be two states of Oracle(p) such that j < i. Then min(i) cannot be a
suffiz of min(j).

Lemma 2. Let i be a state of Oracle(p). Then min(i) is a suffix of any word ¢ € X* which is the
label of a path leading from state 0 to state i.

Lemma 3. Any word w € Fact(p) is recognized by Oracle(p) in a state j < poccur(w,p).
Corollary 3. Let w € Fact(p). Every word v € Suff(w) is recognized by Oracle(p) in a state
j < poccur(w).

Lemma 4. Let i be a state of Oracle(p). Any path ending by min(i) leads to a state j > 1.

Lemma 5. Let w € ¥* be a word recognized by Oracle(p) in i. Any suffiz of w is recognized in a
state 7 < 1.

Lemma 6. The number To,(p) of transitions in Oracle(p = pip2...pm) satisfies m < To.(p) <
2m — 1.

The high-level construction of the factor oracle is equivalent to the on-line algorithm given in
Figure 3. An example of this construction is shown in Figure 4.

Ezemple. The on-line construction of Oracle(abbbaabd) is given Figure 4.
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Fonction add_letter(Oracle(p = pips ...pm), 0)

Create a new state m + 1

Create a new transition from m to m + 1 labeled by o

k « Sp(m)

While k& > —1 and there is no transition from k by ¢ Do
Create a new transition from k tom + 1 by o
k <+ Sp(k)

End While

If (k=—1) Then s + 0

Else s «+ where leads the transition from % by o.

Spe(m +1) s

Return Oracle(p = p1p2 - . - pmo)

Oracle-on-line(p = p1p2 . .. pm)
Create Oracle(e) with:
one single state 0
Se(0) « —1
For i+ 1am Do
Oracle(p = p1p2 - .- p;) « add_letter(Oracle(p = pips-..pi_1),pi)
End For

FIGURE 3. On-line construction of Oracle(p = p1ps ... pm).
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FIGURE 4. On-line construction of Oracle(abbaba).



124  Factor Oracle, Suffix Oracle

3. String Matching

The authors replace the suffix automaton with a factor oracle in the BDM (for backward dawg
matching) [4, 6], obtaining the BOM (for backward oracle matching) algorithm.

The BOM algorithm consists in shifting a window of size m on the text. For each new position
of this window, the factor oracle of the mirror image of p is used to search the suffix of the window
from right to left. The basic idea is that if this backward search fails on a letter o after the reading
of a word u then ou is not a factor of p and the beginning of the window can be shifted just after o.
The worst-case complexity of BOM is O(nm).

The average complexity of the original BDM is in O(nlogs(m)/m) under a uniform Bernoulli
model. In view of the experimental results (see [1]), the authors claim that their new BOM algorithm
is also optimal on average:

Conjecture 1. Under a model of independence and equiprobability of letters, the BOM algorithm
has an average complezity of O(n log|2|(m)/m).

The authors show in [1] how to obtain a linear (in n) worst case algorithm from the BOM.
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