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Abstract

We survey recent work on the enumeration of non-crossing configurations on the set of
vertices of a convex polygon, such as triangulations, trees, and forests. Exact formulae and
limit laws are determined for several parameters of interest. In the second part of the talk
we present results on the enumeration of chord diagrams (pairings of 2n vertices of a convex
polygon by means of n disjoint pairs). We present limit laws for the number of components,
the size of the largest component and the number of crossings. The use of generating
functions and of a variation of Levy’s continuity theorem for characteristic functions enable
us to establish that most of the limit laws presented here are Gaussian. (Joint work by Marc
Noy with Philippe Flajolet and others.)

1. Analytic Combinatorics of Non-crossing Configurations [3]

1.1. Connected graphs and general graphs. Let I, = {v1,...,v,} be a fixed set of points in
the plane, conventionally ordered counter-clockwise, that are vertices of a regular n-gon K. Define
a non-crossing graph as a graph with vertex set II,, whose edges are straight line segments that do
not cross. A graph is connected if any two vertices can be joined by a path. Parameters of interest
are the number of edges of connected graphs and general graphs, and the number of components
of general graphs.
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FIGURE 1. (a) A connected non-crossing graph; (b) an arbitrary non-crossing graph.
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1.2. Trees and forests. A (general) tree is a connected acyclic graph and the number of edges in a
tree is one less than the number of vertices. The study of trees becomes easier with the introduction
of butterflies [3], defined to be ordered pairs of trees with a common vertex; a tree appears to be
a sequence of butterflies attached to a root. A forest is an acyclic graph, in other words a graph
whose components are trees.
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FIGURE 2. (a) A tree; (b) a forest.

1.3. Triangulations. A triangulation [7] is a set 7, of n — 3 non-crossing diagonals v;v; which
partitions K into n — 2 triangles. As each triangle corresponds to an internal node of a binary tree
(see the generating function of exercise 7.22 of [6]) via a classical bijection due to Euler [11], the
number 7}, of triangulations is given by the (n —2)-th Catalan number T}, = C,_» = v/ (n—1).
Let d; denote the degree of the vertex v; (i.e., the number of diagonals incident with v;) and
||lvivj|| = min(|i — j|,n — |i — j|) the length of a diagonal v;v;. Define [2]:

Ap(T) :max{di ‘ 1=0,...,n— 1},
the mazimal degree of the vertices, and
An(T) = max{ l|lvivj | ‘ v;0j € Tp },

the length of the longest diagonal in the triangulation.
Those features are of interest for a triangulation 7 because they convey information about the
corresponding tree b(7): A, (7) measures the ezternal-node separation of b(7), i.e., the maximal
distance between successive external nodes; A, (7) measures its nearly half measure, i.e., the size
of the largest subtree with not more than half the external nodes.
Using combinatorial bijections and probability lemmas [2], we find:
V3 1 log (2 +3 )
™

E[A;] ~ logyn, and E[A\,] ~ an, where o= — + 3

Let an ear of a triangulation 7 be a triangle sharing two sides with the polygon, and e, the
number of ears of a triangulation. Let us view triangulations as binary trees and ears as leaves
(internal node whose children are external nodes [11]) or roots with at least one child that is an

=~ 0.4654.
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external node, and let B enumerate binary trees by size and number of leaves and T enumerate
triangulations by size and number of ears.! These generating series satisfy [5]

22T (z,w) = (1+22(w— 1))§(z,w), where B(z,w) = z(w + 2B(z,w) + B\(z,w)Q),
leading to Var[e,] ~ v/n/4 and a Gaussian limit law (see §1.5 below). The expectation
nn—1) n
Ele)] = =) T
len] = 2n =3y ~ 1
was already known from a combinatorial manipulation of Catalan numbers described in [7].

1.4. Generating functions. The combinatorial objects and parameters above, except for ex-
tremal ones, lead to univariate and bivariate generating functions, given in Table 1 below.

Configuration Generating function equation

Connected graphs C® + C? —32C + 222 =0

——, edges wC? + wC? — (14 2w)zC + (1 +w)z? =0

Graphs G?+ (222 -32-2)G+32+1=0

—, edges wG? + (14 w)2? — (1 +2w)z — 2w)G +w + (1 + 2w)z = 0
——, components  G® + (2w32? — 3w?z +w —3)G? + Bw?z —2w+3)G+w—-1=0
Trees T3 — 2T + 2? —0

——, leaves T3 + (22w — T +22=0

Forests F3 + (22 —z—3)F2 +(z+3)F-1=0

——, components  F? + (w32%2 —w?2 —3)F? + (w32 +3)F—1=0
Triangulations AT+ (22— 2)T+1=0

—, ears AT? + (1+2z(w—1))(22% - 2T + w(l+ 2z(w — 1))2 =0

TABLE 1. Generating function equations (z and w mark vertices and the secondary parameter).

A few tricks enable one to make Lagrange inversion applicable and to derive exact formulee—
sometimes involving summations—for all coefficients. For example, the change of variable T' = z+zy
followed by Lagrange’s formula yields:

k—1
1 3n—3 1 n—1 n—1\/n—-k-1 .
T, = d Thp=—- on—2k+],
" 2n—1<n—1) e Tk n—l( k )Z( j )(kz—l—j)

Jj=0

Finding Cn k goes through a parameterlzatlon of the functional equatlon of C. To get the coef-
ficients T we use the equality Tn = Bn+2 k—1 + 2Bn+1 E— 2Bn+1 r deduced from zzT(z w) =
(1+ 2z(w — 1))B(z,w).

1.5. Asymptotics. All of the univariate generating functions above, and a few others (dissections

and partitions of convex polygons) not presented in the talk but available in [3], have a unique
dominant singularity p in (0,1), and can be written

F(z) =co+a (1 - %)1/2 +0 (1 - %) , entailing [¢"]f(z) = r(—ciim) (1 +0 (%)) .

For example the numbers 7T}, and F;, of respectively general trees and forests satisfy
T, < (27/4)" =6.75" and F, < 8.2246", whence T, = o(Fy).

IThe expression of T , entailing the Gaussian limit of the distribution of ears of triangulations, was established by
the author of this summary.
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The numbers C),, and G, of respectively connected and general graphs satisfy

V6 V2 1 2"(3 +2+/2)"
C, ~ (T - | <10.39" and Gy~ Z\/99\/5 — 140 x N = 11.65",

entailing C, /Gy, — 0 when n — oc.
The bivariate generating function seen before admits the form

s =t + e (1= 525) 0 (1- 125);

this leads to

o= () (0(3))- w2 () 1405

From the Quasi-Powers theorem [5, 8], which is a consequence of Levy’s continuity theorem for char-
acteristic functions, one deduces that f, is asymptotically normal. The mean u, and variance oy,
satisfy pn, ~ kn and 02 ~ An for algebraic numbers s and .

For instance, for the distribution of the number of edges in the space of connected graphs of
given size, we have k = (1 + v/3)/2 ~ 1.366.

2. Analytics Combinatorics of Chord Diagrams [4]

2.1. Definitions. Take 2n points on a circle, labelled 1, 2, ..., 2n, and join them in disjoint pairs
by n chords. The resulting configuration is called a chord diagram. A diagram is connected if no
set of chords can be separated from the remaining chords by a line. A component is a maximal
connected subdiagram.

2.2. Components.

2.2.1. Number of components. Let C(z) = ano Crz" be the generating function of connected
diagrams of size n. The bivariate generating function I(z,w) = 37, 1~ I, ywkz" of diagrams of
size n and k components satisfies I(z,w) = 1 + wC (2I(z, w)?).

We have the following result:
Theorem 1. Let X,, be the number of components in a random diagram of size n.

-1

1. For k > 1, one has P[X,, = k| = ﬁ(l +o(1)).

2. The mean pi,, and the variance oy, of the distribution satisfy pi, ~ 2 and o2 ~ 1.
n—oo n—oo

Sketch of proof. The proof of the first point makes use of “monoliths,” or “monolithic diagrams,”
where a diagram is said to be monolithic if: (7) it consists solely of the connected component that
contains 1 (called the root component) and of isolated edges; (ii) for any two such isolated edges
(a,b) and (c,d), one never has a < ¢ <d < bor ¢ < a < b < d (in other words, two isolated chords
are never in a dominance relation).

The ordinary generating function of monoliths reads M(z) = C(z/(1 — z)?), and according to
Stein and Everett [12] Cn/I, = e~! + o(1), so one can deduce the relation M, ~ I, i.., that
almost every diagram is a monolith. The number M, ; of monoliths of size n with k& components

is given by
2n — k e~ !
Mn,k = E—1 Cn—k—H ~ mfn-
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As to the second point, using 22C(z)C’(z) = C(z)? + C(z) — z, which is deduced from

n—1

Cn=(n-1) Z CiCnj

j=1
and C; =1 [9, 13], one finds

P, = g—i(z,w) = 1(I(z) +h(z) —2), where h(z) =1(2)"".

z

w=1

Hence, letting g, = hy,/I,, one obtains

"Z‘l n\ [2n) " 1 3
—= ]_ — — 1 . -3
o k:19k (k> (2k> n " 4n? O,

Inii+hpyr  2n+1

= + O(n™') ~ 2. Similar computations yield the variance. O
I, n+1

and pn, =

2.2.2. Largest connected component.

Theorem 2. Let L, be the size of the largest connected component in a random diagram of size
n. Then, as n — oo, the mean un, and the variance o, of the distribution of Ly are

E[L,) =n—1+0(1), Var[L,] =1+ o(1),

and for any fized k > 1, one has P[n — L, = k] x

variable n — L, follows a Poisson law of parameter 1.

(1+ o(1)). In other words, thre random

The proof relies on the analysis of the largest component in a monolith, namely, the root com-
ponent with probability 1 — o(1), the other components being only edges. The number M, ; of
monoliths of size n with root component of size n — k is given by:

-1

2n —k —1 e
Mn,k = ( k )Cn—k n:oo mfn-

2.3. Crossings. Let k denote the number of chord crossings in a chord diagram, and let Z,, be the

set of all diagrams of size n. Flajolet and Noy proved the following result:

Theorem 3. Let X,, be the random wvariable equal to the value of k taken over the set of chord
diagrams I, of size n endowed with the uniform probability distribution.

1. The mean pn and the variance o, of the distribution of X, are given by

n(n —1) n(n —1)(n + 3)

un = E[X,] = and ol = Var[X,] = 25 ,  respectively.
2. The distribution of X, is Gaussian in the asymptotic limit: for all real x, one has
X, — 1 z
lim P [”7“” < :c] - —/ eV 12 gy,
n—00 Op, ’\/2_7'(' —00

Sketch of proof. Flajolet and Noy prove a stronger result by computing the moments of any order.
They use the ezact formula discovered by Touchard [14] and Riordan [10], namely that the series

1 - 2n
_ K(w) k k(k—1)/2
on(q) = E q equals A= E (—1)%q (n k) .

wELy k=—n
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1 +o0
Using the equality /2 = / e %/2e9% dy for q = k+/t, one obtains:

V21 J o
1 n - 2n 2 1 +oo 2
1y — _ 1\k_—kt/2 k*t/2 _ z%/2,.2n n
Pn(e’) A—eyn k_g_n( 1)%e (n—l—k) e —2\/7_1_/_ e z“"H(z,t)" dx,

2sinh?(z+/1/2 — t/4)
z2 exp(t/2) sinh(t/2) "

Taking derivatives with respect to ¢ and taking the limit when ¢ — 0 yields the moments of any
order; this proves the first point of the claim.

The Laplace method delivers the asymptotic relation

where H(z,t) =

e—uun/an ¢n(u/0n) _ eu2/2(1+0(n—1/5))'

$n(1)
From Levy’s continuity theorem for Laplace transforms [1], one concludes that (X, — un)/on
converges in distribution towards N (0, 1). O
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