Enumeration of Geometric Configurations on a Convex Polygon

Marc Noy
Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya

December 16, 1999

Summary by Michel Nguyên-Thé

Abstract

We survey recent work on the enumeration of non-crossing configurations on the set of vertices of a convex polygon, such as triangulations, trees, and forests. Exact formulae and limit laws are determined for several parameters of interest. In the second part of the talk we present results on the enumeration of chord diagrams (pairings of 2n vertices of a convex polygon by means of n disjoint pairs). We present limit laws for the number of components, the size of the largest component and the number of crossings. The use of generating functions and of a variation of Levy's continuity theorem for characteristic functions enable us to establish that most of the limit laws presented here are Gaussian. (Joint work by Marc Noy with Philippe Flajolet and others.)

1. Analytic Combinatorics of Non-crossing Configurations [3]

1.1. Connected graphs and general graphs. Let \(\Pi_n = \{v_1, \ldots, v_n\} \) be a fixed set of points in the plane, conventionally ordered counter-clockwise, that are vertices of a regular \(n \)-gon \(K \). Define a non-crossing graph as a graph with vertex set \(\Pi_n \) whose edges are straight line segments that do not cross. A graph is connected if any two vertices can be joined by a path. Parameters of interest are the number of edges of connected graphs and general graphs, and the number of components of general graphs.

![Figure 1](image-url)

Figure 1. (a) A connected non-crossing graph; (b) an arbitrary non-crossing graph.
1.2. Trees and forests. A (general) tree is a connected acyclic graph and the number of edges in a tree is one less than the number of vertices. The study of trees becomes easier with the introduction of butterflies [3], defined to be ordered pairs of trees with a common vertex; a tree appears to be a sequence of butterflies attached to a root. A forest is an acyclic graph, in other words a graph whose components are trees.

\[\begin{aligned} &v_i \quad x \quad y \quad v_i \quad x \quad z \quad y \\ &\text{(a)} \quad \text{(b)} \end{aligned} \]

Figure 2. (a) A tree; (b) a forest.

1.3. Triangulations. A triangulation [7] is a set \(\mathcal{T}_n \) of \(n - 3 \) non-crossing diagonals \(v_i v_j \) which partitions \(K \) into \(n - 2 \) triangles. As each triangle corresponds to an internal node of a binary tree (see the generating function of exercise 7.22 of [6]) via a classical bijection due to Euler [11], the number \(\mathcal{N}_n \) of triangulations is given by the \((n-2) \)-th Catalan number \(\mathcal{N}_n = C_{n-2} = \frac{\binom{2n-4}{n-2}}{(n-2)!} \). Let \(d_i \) denote the degree of the vertex \(v_i \) (i.e., the number of diagonals incident with \(v_i \)) and \(\|v_i v_j\| = \min(|i - j|, n - |i - j|) \) the length of a diagonal \(v_i v_j \). Define [2]:

\[
\Delta_n(\tau) = \max \{ d_i \mid i = 0, \ldots, n - 1 \},
\]

the maximal degree of the vertices, and

\[
\lambda_n(\tau) = \max \{ \|v_i v_j\| \mid v_i v_j \in \mathcal{T}_n \},
\]

the length of the longest diagonal in the triangulation.

Those features are of interest for a triangulation \(\tau \) because they convey information about the corresponding tree \(b(\tau) \): \(\Delta_n(\tau) \) measures the external-node separation of \(b(\tau) \), i.e., the maximal distance between successive external nodes; \(\lambda_n(\tau) \) measures its nearly half measure, i.e., the size of the largest subtree with not more than half the external nodes.

Using combinatorial bijections and probability lemmas [2], we find:

\[
E[\Delta_n] \sim \log_2 n, \quad \text{and} \quad E[\lambda_n] \sim \alpha n, \quad \text{where} \quad \alpha = \frac{\sqrt{3}}{\pi} + \frac{1}{3} - \frac{\log(2 + \sqrt{3})}{\pi} \approx 0.4654.
\]

Let an ear of a triangulation \(\tau \) be a triangle sharing two sides with the polygon, and \(e_n \) the number of ears of a triangulation. Let us view triangulations as binary trees and ears as leaves (internal node whose children are external nodes [11]) or roots with at least one child that is an
external node, and let \overline{B} enumerate binary trees by size and number of leaves and \overline{T} enumerate triangulations by size and number of ears.\footnote{The expression of \overline{T}, entailing the Gaussian limit of the distribution of ears of triangulations, was established by the author of this summary.} These generating series satisfy\cite{5}

$$z^2\overline{T}(z, w) = (1 + 2z(w - 1))\overline{B}(z, w),$$

where $\overline{B}(z, w) = z\left(w + 2\overline{B}(z, w) + \overline{B}(z, w)^2\right)$, leading to $\text{Var}[e_n] \sim \sqrt{n}/4$ and a Gaussian limit law (see §1.5 below). The expectation

$$\mathbb{E}[e_n] = \frac{n(n - 1)}{2(2n - 5)} \sim \frac{n}{4}$$

was already known from a combinatorial manipulation of Catalan numbers described in \cite{7}.

1.4. Generating functions. The combinatorial objects and parameters above, except for extremal ones, lead to univariate and bivariate generating functions, given in Table 1 below.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Generating function equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected graphs</td>
<td>$C^3 + C^2 - 3zC + 2z^2 = 0$</td>
</tr>
<tr>
<td>---, w-edges</td>
<td>$wC^3 + wC^2 - (1 + 2w)zC + (1 + w)z^2 = 0$</td>
</tr>
<tr>
<td>Graphs</td>
<td>$C^2 + (2z^2 - 3z - 2)G + 3z + 1 = 0$</td>
</tr>
<tr>
<td>---, w-edges</td>
<td>$wG^2 + ((1 + w)z^2 - (1 + 2w)z - 2w)G + w + (1 + 2w)z = 0$</td>
</tr>
<tr>
<td>---, components</td>
<td>$C^3 + (2w^2z^2 - 3w^2z + w - 3)G^2 + (3w^2z - 2w - 3)G + w - 1 = 0$</td>
</tr>
<tr>
<td>Trees</td>
<td>$T^3 - zT + z^2 = 0$</td>
</tr>
<tr>
<td>---, w-edges</td>
<td>$T^3 + (z^2w - z^2 - z)T + z^2 = 0$</td>
</tr>
<tr>
<td>Forests</td>
<td>$F^3 + (z^2 - z - 3)F^2 + (z + 3)F - 1 = 0$</td>
</tr>
<tr>
<td>---, components</td>
<td>$F^3 + (w^3z^2 - w^2z - 3)F^2 + (w^3z + 3)F - 1 = 0$</td>
</tr>
<tr>
<td>Triangulations</td>
<td>$z^2T^2 + (2z^2 - z)T + 1 = 0$</td>
</tr>
<tr>
<td>---, ears</td>
<td>$z^4T^2 + (1 + 2z(w - 1))(2z^2 - z)T + w(1 + 2z(w - 1))^2 = 0$</td>
</tr>
</tbody>
</table>

Table 1. Generating function equations (z and w mark vertices and the secondary parameter).

A few tricks enable one to make Lagrange inversion applicable and to derive exact formulae—sometimes involving summations—for all coefficients. For example, the change of variable $T = z + y$ followed by Lagrange’s formula yields:

$$T_n = \frac{1}{2n-1} \binom{3n-3}{n-1} \quad \text{and} \quad T_{n,k} = \frac{1}{n-1} \binom{n-1}{k} \sum_{j=0}^{k-1} \binom{n-1}{j} \binom{n-k-1}{k-1-j} 2^{n-2k+j}.$$

Finding $C_{n,k}$ goes through a parameterization of the functional equation of C. To get the coefficients \overline{T}, we use the equality $\overline{T}_{n,k} = \overline{B}_{n+2,k-1} + 2\overline{B}_{n+1,k} - 2\overline{B}_{n+1,k} - \overline{B}(z, w)$ deduced from $z^2\overline{T}(z, w) = (1 + 2z(w - 1))\overline{B}(z, w)$.

1.5. Asymptotics. All of the univariate generating functions above, and a few others (dissections and partitions of convex polygons) not presented in the talk but available in \cite{3}, have a unique dominant singularity ρ in $(0, 1)$, and can be written

$$f(z) = c_0 + c_1 \left(1 - \frac{z}{\rho}\right)^{1/2} + O \left(1 - \frac{z}{\rho}\right), \quad \text{entailing} \quad [z^n] f(z) = \frac{c_1}{\Gamma(-1/2)} \left(1 + O \left(\frac{1}{n}\right)\right).$$

For example the numbers T_n and F_n of respectively general trees and forests satisfy

$$T_n \asymp (27/4)^n = 6.75^n \quad \text{and} \quad F_n \asymp 8.2246^n, \quad \text{whence} \quad T_n = o(F_n).$$
The numbers C_n and G_n of respectively connected and general graphs satisfy

$$C_n \sim \left(\frac{\sqrt{6}}{9} - \frac{\sqrt{2}}{6} \right)^n 10.39^n \quad \text{and} \quad G_n \sim \frac{1}{4} \sqrt{\frac{99\sqrt{2} - 140}{\pi n^{3/2}}} 2^n \left(3 + 2 + \sqrt{2} \right)^n \approx 11.65^n,$$

entailing $C_n / G_n \to 0$ when $n \to \infty$.

The bivariate generating function seen before admits the form

$$f(z, w) = c_0(w) + c_1(w) \left(1 - \frac{z}{\rho(w)} \right)^{1/2} + O \left(1 - \frac{z}{\rho(w)} \right);$$

this leads to

$$f_n(w) = \gamma(w) \left(\frac{1}{\rho(w)} \right)^n \left(1 + O \left(\frac{1}{\sqrt{n}} \right) \right), \quad \text{or} \quad \frac{f_n(w)}{f_n(1)} = \frac{\gamma(w)}{\gamma(1)} \left(\frac{\rho(1)}{\rho(w)} \right)^n \left(1 + O \left(\frac{1}{\sqrt{n}} \right) \right).$$

From the Quasi-Powers theorem [5, 8], which is a consequence of Levy’s continuity theorem for characteristic functions, one deduces that f_n is asymptotically normal. The mean μ_n and variance σ_n^2 satisfy $\mu_n \sim \kappa n$ and $\sigma_n^2 \sim \lambda n$ for algebraic numbers κ and λ.

For instance, for the distribution of the number of edges in the space of connected graphs of given size, we have $\kappa = (1 + \sqrt{3})/2 \approx 1.366$.

2.1. Definitions. Take $2n$ points on a circle, labelled 1, 2, \ldots, $2n$, and join them in disjoint pairs by n chords. The resulting configuration is called a chord diagram. A diagram is connected if no set of chords can be separated from the remaining chords by a line. A component is a maximal connected subdiagram.

2.2. Components.

2.2.1. Number of components. Let $C(z) = \sum_{n \geq 0} C_n z^n$ be the generating function of connected diagrams of size n. The bivariate generating function $I(z, w) = \sum_{n, k \geq 0} I_{n,k} w^k z^n$ of diagrams of size n and k components satisfies $I(z, w) = 1 + wC \left(z I(z, w)^2 \right)$.

We have the following result:

Theorem 1. Let X_n be the number of components in a random diagram of size n.

1. For $k \geq 1$, one has

$$P[X_n = k] \xrightarrow{n \to \infty} \frac{e^{-1}}{(k-1)!} \left(1 + o(1) \right).$$

2. The mean μ_n and the variance σ_n^2 of the distribution satisfy $\mu_n \sim 2$ and $\sigma_n^2 \sim 1$.

Sketch of proof. The proof of the first point makes use of “monoliths,” or “monolithic diagrams,” where a diagram is said to be monolithic if: (i) it consists solely of the connected component that contains 1 (called the root component) and of isolated edges; (ii) for any two such isolated edges (a, b) and (c, d), one never has $a < c < d < b$ or $c < a < b < d$ (in other words, two isolated chords are never in a dominance relation).

The ordinary generating function of monoliths reads $M(z) = C(z/(1-z)^2)$, and according to Stein and Everett [12] $C_n / I_n = e^{-1} + o(1)$, so one can deduce the relation $M_n \sim I_n$, i.e., that almost every diagram is a monolith. The number $M_{n,k}$ of monoliths of size n with k components is given by

$$M_{n,k} = \binom{2n-k}{k-1} C_{n-k+1} \sim \frac{e^{-1}}{(k-1)!} I_n.$$

As to the second point, using \(2zC(z)C'(z) = C(z)^2 + C(z) - z\), which is deduced from

\[
C_n = (n - 1) \sum_{j=1}^{n-1} C_j C_{n-j}
\]

and \(C_1 = 1\) [9, 13], one finds

\[
\mu_n = \left. \frac{\partial I(z, w)}{\partial w} \right|_{w=1} = \frac{1}{z} (I(z) + h(z) - 2), \quad \text{where} \quad h(z) = I(z)^{-1}.
\]

Hence, letting \(g_n = h_n / I_n\), one obtains

\[
g_n = 1 - \sum_{k=1}^{n-1} g_k \binom{n}{k} \left(\frac{2n}{2k} \right)^{-1} = 1 - \frac{1}{n} + \frac{3}{4n^2} + O(n^{-3}),
\]

and

\[
\mu_n = \frac{I_n + h_{n+1}}{I_n} = \frac{2n + 1}{n + 1} + O(n^{-1}) \sim 2. \text{ Similar computations yield the variance.} \quad \square
\]

2.2.2. Largest connected component.

Theorem 2. Let \(L_n\) be the size of the largest connected component in a random diagram of size \(n\). Then, as \(n \to \infty\), the mean \(\mu_n\) and the variance \(\sigma_n\) of the distribution of \(L_n\) are

\[
\mathbb{E}[L_n] = n - 1 + o(1), \quad \text{Var}[L_n] = 1 + o(1),
\]

and for any fixed \(k \geq 1\), one has \(\mathbb{P}[n - L_n = k] = e^{-1} \binom{k-1}{1} + o(1)\). In other words, the random variable \(n - L_n\) follows a Poisson law of parameter 1.

The proof relies on the analysis of the largest component in a monolith, namely, the root component with probability \(1 - o(1)\), the other components being only edges. The number \(M_{n,k}\) of monoliths of size \(n\) with root component of size \(n - k\) is given by:

\[
M_{n,k} = \binom{2n - k - 1}{k} C_{n-k} \sim \frac{e^{-1}}{(k - 1)!} I_n.
\]

2.3. Crossings. Let \(\kappa\) denote the number of chord crossings in a chord diagram, and let \(I_n\) be the set of all diagrams of size \(n\). Flajolet and Noy proved the following result:

Theorem 3. Let \(X_n\) be the random variable equal to the value of \(\kappa\) taken over the set of chord diagrams \(I_n\) of size \(n\) endowed with the uniform probability distribution.

1. The mean \(\mu_n\) and the variance \(\sigma_n\) of the distribution of \(X_n\) are given by

\[
\mu_n = \mathbb{E}[X_n] = \frac{n(n - 1)}{6} \quad \text{and} \quad \sigma_n^2 = \text{Var}[X_n] = \frac{n(n - 1)(n + 3)}{45}, \quad \text{respectively.}
\]

2. The distribution of \(X_n\) is Gaussian in the asymptotic limit: for all real \(x\), one has

\[
\lim_{n \to \infty} \mathbb{P}\left[\frac{X_n - \mu_n}{\sigma_n} \leq x \right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} dy.
\]

Sketch of proof. Flajolet and Noy prove a stronger result by computing the moments of any order. They use the exact formula discovered by Touchard [14] and Riordan [10], namely that the series

\[
\phi_n(q) = \sum_{w \in \mathcal{I}_n} q^{\kappa(w)} \quad \text{equals} \quad \frac{1}{(1-q)^n} \sum_{k=-n}^{n} (-1)^k q^{k(k-1)/2} \binom{2n}{n+k}.
\]
Using the equality $e^{a^2/2} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-x^2/2} e^{ax} \, dx$ for $a = k\sqrt{t}$, one obtains:

$$
\phi_n(e^t) = \frac{1}{(1 - e^t)^n} \sum_{k=-n}^{n} (-1)^k e^{-kt/2} \left(\frac{2n}{n+k} \right) e^{k^2t/2} = \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-x^2/2} x^{2n} H(x,t)^n \, dx,
$$

where $H(x,t) = \frac{2\sinh^2(x\sqrt{t}/2 - t/4)}{x^2 \exp(t/2) \sinh(t/2)}$.

Taking derivatives with respect to t and taking the limit when $t \to 0$ yields the moments of any order; this proves the first point of the claim.

The Laplace method delivers the asymptotic relation

$$
e^{-u\mu_n / \sigma_n} \frac{\phi_n(u/\sigma_n)}{\phi_n(1)} = e^{u^2/2} (1 + O(n^{-1/5})).$$

From Levy’s continuity theorem for Laplace transforms [1], one concludes that $(X_n - \mu_n) / \sigma_n$ converges in distribution towards $\mathcal{N}(0,1)$.

\[
\square
\]

Bibliography

