On Random Graph Homomorphisms into \mathbb{Z}

Elchanan Mossel
Institute of Mathematics, Hebrew University of Jerusalem

November 15, 1999

Abstract

The study of Lipschitz functions on graphs and metric spaces is rather advanced. Uniform measure on graph homomorphisms into $\mathbb Z$ provides a model for looking at typical Lipschitz functions. Given a bipartite connected finite graph G=(V,E) and a vertex $v_0\in V$, we consider a uniform probability measure on the set of graph homomorphisms $f:V\to\mathbb Z$ satisfying $f(v_0)=0$. This measure can be viewed as a G-indexed random walk on $\mathbb Z$, generalizing both the usual time-indexed random walk and tree-indexed random walk. We will present several general inequalities for G-indexed random walks, including an upper bound on fluctuations implying that the distance d(f(u),f(v)) between f(u) and f(v), is stochastically dominated by the distance to 0 of a simple random walk on $\mathbb Z$ having run for d(u,v) steps. We will also discuss various special cases, some conjectures and algorithmic aspects of these models.