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Abstract
Starting from combinatorial structures, one can study some of their characteristics by means

of attribute grammars [1, 2]. This leads to multivariate generating functions that permit us
to study the distribution of these characteristics, part of it automatically.

1. Attribute Grammars

The grammars considered here are built from atoms, Z, Zi,...of weight 1 and from an € of
weight 0. The production rules are described in terms of a few constructors: union, cartesian prod-
uct, set, sequence and cycle. These constructors can take place in a labelled world (permutations)
or unlabelled (trees) and they are already present in the COMBSTRUCT package. A grammar is
composed of production rules of the type T' = ®(T1,...,T,); T is said to be an ancestor of each
T; and each T; is a descendant of T'. The attributes on these grammars are values on the objects
produced by the grammar, here on combinatorial structures, like for example the size or the in-
ternal path length on a binary search tree. An attribute is synthesized if it is a function of his
descendants (size of a tree) and inherited if it is a function of his ancestors. An example of an
inherited attribute is the depth of a tree. The depth is defined by : the depth of the root is zero
and the depth of a subtree is the depth of its father plus one. An attribute is well-defined if there
are no circular dependencies amongst the attributes, which can be checked algorithmically [5]. The
attribute is linear if it is a linear function of the attributes of the descendants. The size of a tree
is a linear attribute, but the height of a tree defined by the maximum of the height of the subtrees
plus one is not.

We now consider linear synthesized and well-defined attributes. The general specification of a
structure is:

(1) B=®&(By,...,By,) | ...| ®4(B},...,B}).

where ®; is a standard constructor, like cartesian product, set, sequence, or cycle, or a terminal.
The general form of the definition of an attribute F; then is

e = | oo+ Xanr 6p) +o
1<m<n i,k

where lower case indexed greek letters indicate integer constants, and F}; corresponds to other at-

tributes. The letter ¢ stands for a general iterative operator coding the fact that all the subelements

of the structure are considered. For example if ® is the sequence constructor, each element of the

sequence is considered recursively. The non-planar trees are defined by 7' = N - Set(T) and there
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the internal path length is specified by ipl(T") = ¢(size(T") + ipl(T')). Other examples are the area
below Dyck paths, the number of cycles in a permutation or the number of parts in a partition.

All these attributes can be encoded in multivariate generating functions as follows. If the at-
tributes are named F; and the structure is defined as in equation (1), the generating function in an
unlabelled world is

(2) B(z0y.--,2k) = Zz(‘)b‘zfl(b) ...zg’“(b).

beB
Let z be the vector (z1,...,2r), o™ be the matrix [az’-’fj , Y™ and 6™ be vectors, where m is an
index indicating the related constructor ®,,. We use the following notations: z% = (zfl, ey zg’“) and
2% = (27" oz 20 L 2 PF). This allows us to state the Attribute Grammars Generating
Function theorem.
Theorem 1. [6] Given the grammar specification B = ®1(By,...,By,) | ... | ®4(B},...,B})

where each ®; is a grammar constructor or a terminal and given the set of attribute productions
Fi(B) = Ujcmen @ ((5:” + 22,k sy (B,T)) +7; the multivariate generating function B(z) satisfies

B(z) = > 2" Ga,, (2" Bi'(z""))

where Gg,, s the classical generating function transformation on structures.

Proof. The proof requires a study of each constructor. We give here a simplified proof where
B = ®(C). As in equation (2) the generating function is defined by

B(z) = Z zfl(b) . z,fk(b).
beB
By replacing with the definition of Fj, i.e., F;(B) = qﬁ(éi + Zj,k ai,ij(Bk)) ~+ ;, we obtain

®) B(z) = Z H 2. H H zfi+2?=1 aiz‘Fj(b)’

beB 1 ach 1

B(z) = 2 ZZJ HH (H zlgij)Fj(b)'

beEB  aEb j (

which simplifies into

In view of C(z) = 3 .cc [, zfj(c) and B(z) = Y pep [Lues 2°! = G(B(z)), we now have the final
result

B(z) =2"Gs (ZJC(ZQ)) .
We obtain a simple formula to express the generating function of a structure given the type of its

attributes.
O

2. Automatic Complexity Analysis

The idea of working on combinatorial properties is not new, it has already been exploited in
M2 [3, 7], part of which is implemented in the COMBSTRUCT package. Given a combinatorial
structure and a class of algorithms based on programming primitives like sequence of programs,
test on unions, partial program descent and full component iteration, Ay€2 returns the asymptotic
value of the cost of the program on all structures of size n. It is then possible to get the average value
of the cost of the considered program. The programs analysed by Ay{? can be viewed as attributes
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F1GURE 1. The binary search tree and increasing tree associated with [521634].

on a grammar corresponding to the structure. In fact the expressivity of A2 is encompassed by
the attribute grammar system. The attribute grammars are well implemented and will be in the
COMBSTRUCT package soon. For example it is possible to compute the cost of differentiating a
regular expression based on plus, times and exp and to get the average and the variance of this
cost, which is not possible in Ayf2.

These techniques can also be applied to other constructors, if their translation into generating
function is known. For instance the Quicksort algorithm can be studied using attribute grammars.
The Quicksort algorithm takes as input a random permutation, chooses a pivot, sorts the elements
according to their position with respect to the pivot and then sorts recursively the two subarrays.
The run of the algorithm can be visualised by a binary search tree, the root being the pivot, and
the two sons being the two subarrays. The complexity is the number of comparisons done, which
corresponds to the internal path length of the binary search tree. This correspondance between
executions of the algorithm and binary search trees is not a bijection, because the inputs 231 and 213
yield the same tree. The solution to this problem is to keep the shape of the tree and to label it with
the order in which the nodes are filled, as shown on Figure 1. This gives a bijection between runs
of Quicksort and increasing trees. To describe increasing trees with attribute grammars, we need
to introduce the Greene operator also called boz operator [4]. In a labelled structure, the Greene
operator specifies where the minimum label is to be. For example the increasing trees are defined
by T = e | T - Min(N) - T» which specifies that the minimum is in the root N. The generating
function has been determined by Greene:

¢ 2 ON(z)
T(z) = /0 T(z) P dzx.

It is now possible to define the internal path length as an attribute on the increasing tree structure
by the relation

ipl(T') = 0 | ip(Th) + size(T1) + ipl(T3) + size(T>),
assuming that the internal path length of a node is 0, which is coherent with the complexity model
of the number of comparisons. The multivariate generating function is

(0
T(z,u) =1 —I—/O (%m> T (zu,u)? d.
The average is therefore

[2"Tu(z, u) lu=1
[2"|T(z,1)
where H,, is the nth harmonic number.

1
1—2z

H
=2H, -3+ 7" with T(z,1) =
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All this work has been implemented in Maple in such a way that the syntax of attributes gram-
mars use the same basic functions as COMBSTRUCT. For example if a grammar ruleis A = B | C
then an attribute for A follows the equation, in COMBSTRUCT syntax,

F(A)=Union(b_1*F_1(B)+...+b_k*F_k(B) ,c_1*F_1(C)+...+c_k*xF_k(C))
+ a_1*%F_1(A)+...+a_k*F_k(A)+a_0.

Similar rules apply for product and set. Since COMBSTRUCT can verify if a grammar is well defined,
the same algorithm can tell if an attribute grammar is linear and synthetic. For example if one
looks again at the internal path length but this time of a binary Catalan tree, using two lines to
define the grammar (B = € + zB?) and the attribute coding internal path length (ipl = size(B) +
ipl(By) + ipl(B2)) and five to compute the generating functions and the first moments, one gets
automatically that the average equals v/7n3/24+0(n) and the variance equals (10/3—7)n34+0(n%?).
This computation can also be done on examples like the grammar defining the expressions based
on zero, one, z, sum, product and exponentiation. It is possible to define the attribute coding
the size of an expression after differentiation. This leads to an automatic proof that on average
differentiating an expression of size n yields an expression of size 0.8 n3/2.

Attribute grammars provide a good way of describing recursive properties of decomposable struc-
tures; a structure is decomposable if it can be expressed with basic atoms (¢, Z) and basic con-
structors (union, product, set, sequence, ...). The work that has been done on this subject can
be used to obtain algorithms for random generation of structures with given attribute value, and
also to obtain the distribution of the attribute. It can be continued on other attribute types for
example heads or tails of sequences. From the aspect of attribute grammar research, some theory
has been developed on the idea of coupling grammars. This simulates repeated application of a
function. This, for example, would allow a simple analysis of repeated differentiation, and other
composed functions. This requires a system where the attributes may be more than constants, but
rather further structures.
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