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Abstract

The theory of random maps has a relatively short history when compared to the theory of
random graphs. In this talk, we mention some recent results concerning sharp concentration
properties of parameters in random planar triangulations. Examples include the maximum
vertex degree, the largest component, the number of copies of a given submap, and the
number of flippable edges. This is joint work by Jason Zhicheng Gao and Nicholas Wormald
(Melbourne, Australia).

1. Introduction

Draw a graph on a sphere and then mark (or “root”) a face, an edge of this face and a vertex
of this edge. Then project the graph on the plane (e.g., by a stereographic projection): you get a
planar map. Without loss of generality, you can rotate the sphere so that the marked face contains
the north pole; then the projection transforms the marked face into an unbounded face, which is
called the ezternal face.

For background, we refer to the summary of Gao’s other talk (pages 3—6 in these proceedings)
for several definitions and examples on maps and triangulations.

For ten years, Jason Zhicheng Gao (often collaborating with other specialists of maps, namely
Bender, Canfield, Richmond, McKay, Wormald, ...) has studied several parameters of maps
(strong connexity, pattern occurrences, vertex degree, symmetries, cycles, Eulerian properties),
finding new functional equations, solving them, and also obtaining precise asymptotic estimations.
We specialize here the discussion to two parameters that appear to be intimately related: vertex
degree and submap occurrence. Concentration results are obtained by the second moment method.

2. Submap Density Result

Many combinatorial structures satisfy Borges’s Theorem,' meaning that any pattern will appear

with high probability in a large enough structure. Any word of length Inn appears with high
probability in a random word of length n (for more details, see the study by Guibas and Odlyzko [6],
and then by Nicodeme et al. [7, 8]). The occurrence of patterns in random graphs has also been
studied [2]. However for maps, the situation is different as these objects live in quite a different
probability space. Let’s make a bet: choose a map of size 6, while I generate a random map
of size 1000; would you bet that your map is a submap of mine? This talk makes explicit the
conditions under which you can make good (or bad) bets.

1Philippe Flajolet coined this naming in reference to Borges’s novel The Library of Babel.
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Let T be any fixed triangulation and 7,(7) be the random variable counting the number of
copies of T in a random triangulation with n vertices. Richmond and Wormald [9] showed that

P(7,(T) > cn) >1—exp "

for some positive constants ¢ and ¢ depending on 7. Bender, Gao and Richmond [1] showed that
the above result holds for many families of maps, and recently Gao and Wormald [4] proved that
Nn(T) is sharply concentrated around cn for some constant c¢. More precisely:

Theorem 1. Let T be a 3-connected triangulation with j + 3 vertices such that there are r distinct
ways to root T. Let ¢ = 2r(27/256)7. Then, provided that cn — oo, P(|77n(7') - cn‘ =o(cn)) — 1.

A near-triangulation is composed of triangulations except that it can have more than 3 vertices
on its external face. Define
_8(k—2) [ 3\ [-3/2
PE= k2 —1 ( 4) ( k )

Theorem 2. Let M be a 3-connected near-triangulation with external face of degree k and with
j internal vertices such that there are r distinct ways to root the external face. Then, for fized j
and k with k > 4, one has

P (|nn(M) — ruk(27/256)j71n‘ =o(n)) — 1.

Proof. The method used here relies on Chebyshev-like inequalities: P(X > tu) < 1/t and P (|X —
pl > to) < 1/t? for a nonnegative random variable X with average p and variance o2. A conse-
quence is that if o = o(u), then one gets a concentration result.

Let us first study the number (,(k) of vertices of degree k in a random triangulation with
n + 2 vertices. The quantity 7,, denotes the number of rooted triangulation with n + 2 vertices;
T, 1 denotes the number of rooted triangulation with n + 2 vertices and root vertex of degree k;
Tk, denotes the number of rooted triangulation with n + 2 vertices, root vertex of degree k and
another distinguished vertex of degree [. The scheme of the proof is as follows:

Step 1: Use combinatorial arguments to show the relations

Bl(b] = ok and  E[GRG() - D] = k.

Step 2: Obtain functional equations for the generating functions for T, ;. ;, T}, %, and T3, and
perform singularity analysis.

Step 3: Derive a suitable multivariate version of Flajolet and Odlyzko’s transfer theorem (see
Lemmas 2 and 3 below), and obtain the following asymptotics, uniformly for ¥ = O(Inn):

T, = V6/(32y/m)n=5/2(256/27)" (1 + O(1/n)),
kvV6
Tn,k =
192/
V6 5 s
Tk = &
mhE = 1o/l "
Step 4: Derive asymptotics for the first two moments of (,(k);
E[¢u(k)] = nuk(1+O(K*°/n))  and  Var[(u(k)] = nuk + (npk)?O(k* /n),
uniformly for £ = O(Ilnn). It follows from Chebyshev’s inequality that
P(|¢alk) — pan| = o(ugn)) — 1
uniformly for k£ < (Inn — (Inlnn)/2)/1In(4/3) — Q(n). O

wen~2(256/27)" (1 + O (k% /n)),

(256/27)" (1 + O(k* /n)).
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The proof is based on three lemmas.

Lemma 1. Let T be a 3-connected near-triangulation with j + 3 vertices such that j is o(n) and
that there are v distinct ways to root T. Let n,(T) be the number of copies of T in a random rooted
triangulation with n + 2 vertices. Then

i—1
Bn(T)] =+ () Blowsi—s(3] (1 +0l0),

27

BT ()~ 1] = () Blowsa-2i)Gusa-s(3) - D)1+ o(D)

In order to state precise results, one needs the following notation: let ¢ be a small positive

constant, ¢ be a constant satisfying 0 < ¢ < 7/2, and 7 be (y1,¥2,---,¥yq)- Define:
A(e, ) = {z such that |z| <1+e€, z#1, |Arg(z —1)| > ¢ },
R(e, @) = {(x,gj) such that |y;| <1, 1 <j <d, z € A(e, ¢) }

Let 8; > 0for 1 < j <d, and a be any real number. The following two notations are also useful.
Definition 1 (O notation). We write f(z,7) = 5((1—w)_a H?Zl(l—yj)_ﬂi) if there exist € > 0 and
0 < ¢ < m/2 such that, in R(e,$), f(z,7) is analytic and f(z,7) = O(|1 —z|@ H;'i:1(1 — ly;|)~P9)
as (1 —z)(1— yj)_p — 0, for 1 < 5 < d, and some p > 0; for some ¢ > 0 and some real number o/,
one has f(z,4) = O(|1 — == [[{_;(1 - [y;))79).

Definition 2 (= notation). We write f(z,y) =~ c¢(1 — z)™® H?—:l(l —y;)™P if f(z,9) can be
expressed as f(z,7) = c(m)(1 — 2) " [[j1(1 — y;) ™% + 39, Cj(=,7) + E(z,y) where Co(z,7)
is a polynomial in z, and for 1 < j < d, Cj(z,y) is a polynomial in y; and where E(z,y) =
6(|1 — x| H?Zl(l - yj)_ﬂz‘) for some o/ < @ and f; > 0, 1 < j < n and finally where
c(y)=c+ O(E?Zl |1 — y,|) and is analytic when § € A(e, )¢, with ¢(1) = ¢ # 0.

Lemma 2. Suppose that

d
fan) =0((-a *J[a-w)»)
7j=1
then as n — oo and 1 > k; = O(Inn),
d
3110 = 0(n* T 17 );
7j=1

and for any 0 < € <1 and for all n and kj,

31/ @.p) =0 ﬂl—e)

Lemma 3. Let d > 1 and f(z,9) = ¢(1 — z)~ H (1 —y;)7P%i, where a is neither a negative
integer nor 0, and ¢ # 0. Then as n — oc and k; —Ol n),

d
915 2. 5) = g L1 (K7 /T(8)) (1+0 1/@-))-

Jj=1




10 Some Sharp Concentration Results about Random Planar Triangulations

3. Maximum Vertex Degree

Let d,, be the maximum vertex degree of a random map in a family of maps of size n. Devroye,
Flajolet, Hurtado, Noy, and Steiger [3] showed that, for triangulations of an n-gon,

(‘d (n)/In2| < 1+6)lnlnn/ln2) — 1.

Gao and Wormald [5] improved this last result and extended it to general families of maps. They
showed that, for any function {2 going to infinity arbitrarily slowly, one has

— for triangulations of an n-gon: P (|dn — M| < Q(n ) -1,

In2
— for 3-connected triangulations of n vertices: P ( dp W‘ < Qn ) — 1,
— for all maps of n edges: P(dn W‘ < Qn ) — 1.

4. A Few Open Problems

At the end of the talk, a few questions were raised, and the following conjectures appear plausible
but might involve hard work.

Conjecture 1. The generating function of maps without a given submap is algebraic.

There is no doubt that a functional equation could be obtained for each pattern (however, as
the overlaps can be very intricate, the functional equation would be horrendous, and it is not clear
that a generalization of the quadratic method would allow us to solve it, and prove algebraicity).

Conjecture 2. A Gaussian limit law should hold.

Once more, we expect the behavior to be qualitatively the same for words, trees and maps.
Another interesting study (which is as of now out of reach) is the occurrence of a given pattern,
not in a local sense but in a global one (such patterns are called “minors”).

Other concentration results about random planar triangulations such as the largest component
and the number of flippable edges were finally not presented in the talk but can be found in Gao’s
articles at his homepage http://mathstat.math.carleton.ca/"zgao/.
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