Some Sharp Concentration Results about Random Planar Triangulations

Zhicheng Gao
Department of Mathematics and Statistics
Carleton University
Ottawa CANADA K1S 5B6
zgao@math.carleton.ca
Nicholas C. Wormald

Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3052, AUSTRALIA
nick@ms.unimelb.edu.au

Submap Density Result

Let T_0 be any fixed triangulation, and $\eta_n(T_0)$ be the number of copies of T_0 in a random triangulation with n vertices.

Richmond and Wormald (1988):

$$P(\eta_n(T_0) > cn) > 1 - e^{-\delta n}$$

for some positive constants c and δ . (depending on T_0)

Bender, Gao and Richmond (1992): The above result holds for many families of maps.

Gao and Wormald: $\eta_n(T_0)$ is sharply concentrated around cn for some constant c.

Theorem 1 Let T_0 be a 3-connected triangulation with j + 3 vertices such that there are r distinct ways to root T_0 . Let

$$c = 2r \left(\frac{27}{256}\right)^j.$$

Then

$$\mathbf{P}(|\eta_n(T_0)-cn|=o(cn))\to 1,$$

provided that $cn \to \infty$.

Define

$$\mu_k = \frac{8(k-2)}{4k^2 - 1} \left(-\frac{3}{4}\right)^k {\binom{-3/2}{k}}.$$

Theorem 2 Let M be a 3-connected near-triangulation with external face of degree k and with j internal vertices such that there are r distinct ways to root the external face. Then, for fixed j, k with $k \geq 4$,

$$\mathbf{P}\left(\left|\eta_n(M) - r\mu_k\left(\frac{27}{256}\right)^{j-1}n\right| = o(n)\right) \to 1.$$

A sketch of the proof.

First study the number $\zeta_n(k)$ of vertices of degree k in a random triangulation with n+2 vertices.

- T_n denotes the number of rooted triangulations with n+2 vertices.
- $T_{n,k}$ denotes the number of rooted triangulations with n+2 vertices and root vertex of degree k.
- $T_{n,k,l}$ denotes the number of rooted triangulations with n+2 vertices, root vertex of degree k and another distinguished vertex of degree l.

Step 1 Use combinatorial argument to show

$$E(\zeta_n(k)) = \frac{6n}{k} \frac{T_{n,k}}{T_n},$$

$$E(\zeta_n(k)(\zeta_n(k)-1)) = \frac{6n}{k} \frac{T_{n,k,k}}{T_n}.$$

Step 2 Obtain functional equations for the generating functions for $T_{n,k,l}$, $T_{n,k}$ and T_n , and perform singularity analysis.

Step 3 Derive a multivariate version of Flajolet and Odlyzko's transfer theorem, and obtain the following asymptotics:

$$T_n = (\sqrt{6}/(32\sqrt{\pi})n^{-5/2}(256/27)^n(1 + O(1/n)),$$

$$T_{n,k} = \frac{k\sqrt{6}}{192\sqrt{\pi}}\mu_k n^{-5/2}(256/27)^n \left(1 + O\left(k^{20}/n\right)\right),$$

$$T_{n,k,k} = \frac{k\sqrt{6}}{192\sqrt{\pi}}\mu_k^2 n^{-3/2}(256/27)^n \left(1 + O\left(k^{20}/n\right)\right),$$
uniformly for $k = O(\log n)$.

Step 4 Derive asymptotics for the first two moments of $\zeta_n(k)$.

$$\mathbf{E}(\zeta_n(k)) = n\mu_k \left(1 + O\left(k^{20}/n\right) \right),$$

$$\mathbf{V}(\zeta_n(k)) = n\mu_k + (n\mu_k)^2 O\left(k^{20}/n\right),$$

uniformly for all $k = O(\log n)$.

It follows from Chebyshev's inequality that

$$P(|\zeta_n(k) - \mu_k n| = o(\mu_k n)) \rightarrow 1$$

uniformly for all

$$k < (\log n - (1/2) \log \log n) / \log(4/3) - \Omega(n).$$

Lemma 1 Let T_0 be a 3-connected triangulation with j+3 vertices such that j=o(n) and there are r distinct ways to root T_0 . Let $\eta_n(T_0)$ be the number of copies of T_0 in a random rooted triangulation with n+2 vertices. Then

$$\mathbf{E}(\eta_n(T_0)) = r \left(\frac{27}{256}\right)^{j-1} \mathbf{E}(\zeta_{n+1-j}(3))(1+o(1)),$$

$$\mathbf{E}(\eta_n(T_0)(\eta_n(T_0) - 1)) = r^2 \left(\frac{27}{256}\right)^{2j-2} \times \mathbf{E}(\zeta_{n+2-2j}(3)(\zeta_{n+2-2j}(3) - 1))(1 + o(1)).$$

Maximum Vertex Degree

Let Δ_n be the maximum vertex degree of a random map in a family of maps of size n.

Devroye, Flajolet, Hurtado, Noy and Steiger showed that, for triangulations of an n-gon,

 $P(|\Delta_n - \log n/\log 2| \le (1+\epsilon)\log\log n/\log 2) \to 1$

Gao and Wormald (to appear in JCT-A) showed

ullet for triangulations of an n-gon,

$$P(|\Delta_n - (\log n + \log \log n)/\log 2| \le \Omega(n)) \to 1$$

for 3-connected triangulations of n vertices,

$$egin{aligned} &\mathbf{P}\left(\left|\Delta_n-(\log n-(1/2)\log\log n)/\log(4/3)
ight|\ &\leq \Omega(n))
ightarrow 1 \end{aligned}$$

 \bullet for all maps of n edges,

$$\mathbf{P}\left(\left|\Delta_n - (\log n - (1/2)\log\log n)/\log(6/5)
ight| < \Omega(n)
ight)
ightarrow 1$$

Parallel Results about Lattice Walks

Neal Madras recently proved a very nice result about patterns in lattice clusters which is parallel to the submap density results. Let \mathcal{C}_n be a set of lattice clusters of size n, and let P_0 be any fixed pattern. Then there is a positive constant ϵ such that the fraction of clusters that contain less than ϵn copies of P_0 (translations of P_0) is exponentially small.

Other Sharp Concentration Results about Triangulations

An example of diagonal flips and flippable edges. Let ζ_n be the number of flippable edges in a random 2-connected triangulation (3-connected triangulation) of n vertices.

Gao and Wang (to appear in JCT-A): ζ_n is sharply concentrated around 5n/2 (9n/4).

 ϵ will denote a small positive constant, ϕ is a constant satisfying $0<\phi<\pi/2$, and $\mathbf{y}=(y_1,y_2,\ldots,y_d)$. Define

$$\Delta_{x}(\epsilon, \phi) = \{x : |x| \le 1 + \epsilon, x \ne 1, |Arg(x - 1)| \ge \phi\},\$$
 $\Delta_{j}(\epsilon, \phi) = \{y_{j} : |y_{j}| \le 1 + \epsilon, y_{j} \ne 1, |Arg(y_{j} - 1)| \ge \phi$
 $\mathcal{R}(\epsilon, \phi) = \{(x, \mathbf{y}) : |y_{j}| < 1, 1 \le j \le d, x \in \Delta_{x}(\epsilon, \phi)\}.$

Let $\beta_j > 0$ for $1 \le j \le d$, and α be any real number.

Definition 1. We write

$$f(x, \mathbf{y}) = \tilde{O}\left((1 - x)^{-\alpha} \prod_{j=1}^{d} (1 - y_j)^{-\beta_j}\right)$$

if there are $\epsilon>0$ and $0<\phi<\pi/2$ such that in $\mathcal{R}(\epsilon,\phi)$

(i) f(x, y) is analytic, and

$$f(x, \mathbf{y}) = O\left(|1 - x|^{-\alpha} \prod_{j=1}^{d} (1 - |y_j|)^{-\beta_j}\right)$$

as $(1-x)(1-y_j)^{-p} \rightarrow 0$, for $1 \leq j \leq d$, and some p > 0.

(ii)

$$f(x, \mathbf{y}) = O\left(|1 - x|^{-\alpha'} \prod_{j=1}^{d} (1 - |y_j|)^{-q}\right)$$

for some $q \ge 0$ and some real number α' .

Definition 2. We write

$$f(x, \mathbf{y}) \approx c (1 - x)^{-\alpha} \prod_{j=1}^{d} (1 - y_j)^{-\beta_j}$$

if f(x, y) can be expressed as

$$f(x, \mathbf{y}) = c(\mathbf{y})(1-x)^{-\alpha} \prod_{j=1}^{d} (1-y_j)^{-\beta_j}$$
$$+ \sum_{j=0}^{d} C_j(x, \mathbf{y}) + E(x, \mathbf{y})$$

such that

(i) $C_0(x, \mathbf{y})$ is a polynomial in x, and for $1 \le j \le d$, $C_j(x, \mathbf{y})$ is a polynomial in y_j .

(ii)

$$E(x, \mathbf{y}) = \tilde{O}\left((1 - x)^{-\alpha'} \prod_{j=1}^{d} (1 - y_j)^{-\beta'_j}\right),$$

for some $\alpha' < \alpha$ and $\beta'_j \ge 0$, $1 \le j \le n$.

(iii) $c(\mathbf{y}) = c + O\left(\sum_{j=1}^{d} |1 - y_j|\right)$ and is analytic in $\{\mathbf{y}: y_j \in \Delta_j(\epsilon, \phi)\}$, and $c(\mathbf{1}) = c \neq 0$.

Lemma 2 Suppose

$$f(x,\mathbf{y}) = \tilde{O}\left((1-x)^{-\alpha} \prod_{j=1}^{d} (1-y_j)^{-\beta_j}\right).$$

Then

(i) as $n \to \infty$ and $1 \le k_j = O(\log n)$ $(j = 1, \ldots, d)$,

$$\left[x^{n}\mathbf{y}^{\mathbf{k}}\right]f(x,\mathbf{y}) = O\left(n^{\alpha-1}\prod_{j=1}^{d}k_{j}^{\beta_{j}}\right);$$

(ii) for any $0<\epsilon'<1$ and all n,k_j ,

$$[x^n \mathbf{y^k}] f(x, \mathbf{y}) = O\left(n^{\alpha - 1} \prod_{j=1}^d (1 - \epsilon')^{-k_j}\right).$$

Lemma 3 Let $d \ge 1$ and

$$f(x, \mathbf{y}) \approx c (1 - x)^{-\alpha} \prod_{j=1}^{d} (1 - y_j)^{-\beta_j},$$

where α is neither a negative integer nor 0, and $c \neq 0$. Then as $n \to \infty$ and $k_j = O(\log n)$ $(j = 1, \ldots, d)$,

$$\left[x^{n} \mathbf{y}^{\mathbf{k}} \right] f(x, \mathbf{y}) = \frac{c}{\Gamma(\alpha)} \prod_{j=1}^{d} \left(k_{j}^{\beta_{j}-1} / \Gamma(\beta_{j}) \right) n^{\alpha-1}$$

$$\times \left(1 + O\left(\sum_{j=1}^{d} (1/k_{j}) \right) \right).$$