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Submap Density Result

Let Ty be any fixed triangulation, and n,(1p) be
the number of copies of Ty in @ random triangula-

tion with n vertices.

Richmond and Wormald (1988) :

P(nn(Tp) >cn) > 1 — e~ om
for some positive constants ¢ and §. (depend-
ing on Tp)

Bender, Gao and Richmond (1992) : The above
result holds for many families of maps.

Gao and Wormald : n,(Tp) is sharply concen-
trated around en for some constant c.



Theorem 1 Let Ty be a 3-connected triangula-

tion with 5 + 3 vertices such that there are r dis-
tinct ways to root Ty. Let
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P (|m(Tp) — en| = o(cn)) — 1,
provided that cn — oo.

Then
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Theorem 2 Let M be a 3-connected near-triangulation
with external face of degree k and with 3 internal
vertices such that there are r distinct ways to root

the external face. Then, for fixed 3, k with k > 4,
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A sketch of the proof.

First study the number (,(k) of vertices of degree
k in a random triangulation with n 4+ 2 vertices.

e T, denotes the number of rooted triangula-
tions with n + 2 vertices.

e T, denotes the number of rooted triangula-
tions with n + 2 vertices and root vertex of
degree k.

e T, 1 denotes the number of rooted triangula-
tions with n+ 2 vertices, root vertex of degree
k and another distinguished vertex of degree [.



Step 1 Use combinatorial argument to show

(k) = Sk,
E(Cn(k)(Cn(k) — 1)) = 6k”TT;;k’k.

Step 2 Obtain functional equations for the gen-
erating functions for T, ;. ;, T, and Tp, and
perform singularity analysis.



Step 3 Derive a multivariate version of Flajolet
and Odlyzko's transfer theorem, and obtain
the following asymptotics :

T, = (V6/(32y/7)n"2/2(256/27)"(1 + O(1/n)),

Tpp = 1’;;(%%7@—5/2(256/27)” (140 (k*°/n))
Tprp = 1’;;(%”%71—3/2(256/27)" (140 (k°/n))

uniformly for k = O(logn).



Step 4 Derive asymptotics for the first two mo-
ments of (,(k).

E(¢n(k)) = npg (140 (K*%/n)),

V(n(k)) = npp 4 (npp)?0 (K*°/n)
uniformly for all k = O(logn).

It follows from Chebyshev’s inequality that

P (|¢n(k) — pgn| = o(ugn)) — 1

uniformly for all

k< (logn—(1/2)loglogn)/log(4/3) — 2(n).



Lemma 1 Let Ty be a 3-connected triangulation
with 7 + 3 vertices such that j = o(n) and there
are r distinct ways to root Ty. Let n,(1p) be the
number of copies of Ty in a random rooted trian-
gulation with n + 2 vertices. Then
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X E((42-2i(3)((n42-2;(3) —1))(1 4+ o(1)).



Maximum Vertex Degree

Let A, be the maximum vertex degree of a ran-
dom map in a family of maps of size n.

Devroye, Flajolet, Hurtado, Noy and Steiger showed
that, for triangulations of an n-gon,

P (A, —logn/log2| < (1+¢€)loglogn/log2) —» 1



Gao and Wormald (to appear in JCT-A) showed

e for triangulations of an n-gon,

P (|An — (logn +loglogn)/log2| < Q(n)) — 1

e for 3-connected triangulations of n vertices,

P (|An — (logn — (1/2)loglogn)/log(4/3)]
<Q(n)) =1

e for all maps of n edges,

P (|An — (logn —(1/2)loglogn)/log(6/5)|
< Q(n)) —1



Parallel Results about Lattice Walks

Neal Madras recently proved a very nice result
about patterns in lattice clusters which is paral-
lel to the submap density results. Let C, be a set
of lattice clusters of size n, and let Py be any fixed
pattern. Then there is a positive constant € such
that the fraction of clusters that contain less than
en copies of Py (translations of Py) is exponentially
small.



Madras believes that the number of copies should
be sharply concentrated around cn for some pos-
itive constant e¢. (which he calls the law of large
numbers)



Other Sharp Concentration Results about
Triangulations

An example of diagonal flips and flippable edges.
Let (,, be the number of flippable edges in a ran-
dom 2-connected triangulation (3-connected tri-
angulation) of n vertices.

Gao and Wang (to appear in JCT-A): ¢, is sharply
concentrated around 5n/2 (9n/4).



e wWill denote a small positive constant, ¢ is a con-

stant satisfying0 < ¢ < #n/2, andy = (y1,y2,---,¥Yq)-
Define

Ag(e,0) = {z: |z|<1+e€ z#1, |[Arg(x —1)| > ¢},
Aile,d) = {yj: |yl <1l4e y;#1, |Arg(y; —1)| > ¢
R(e,0) = {(z,y): |ly;1<1,1<j<d,xz € Dg(e,9)}

Let 3; > 0 for 1 <j <d, and a be any real number.



Definition 1. We write

d
f(z,y) =0 ((1 — e J[a- yj)—ﬂj>

=1
if there are e > 0 and 0 < ¢ < w/2 such that in
R(e, 9)

(i) f(z,y) is analytic, and

d
flz,y) =0 (Il —o T 1] (- ijl)_ﬁj)

=1
as (1 —z)(1 —y;)™® = 0, for 1 <j < d, and
some p > 0.

(ii)
o d
flz,y) =0 (Il —z|7* ] (- ijl)q)

j=1

for some ¢ > 0 and some real number o'.



Definition 2. We write

d
fla,y)me (1 —2) ™ [ (1 —y;)~ P
j=1

if f(z,y) can be expressed as

d
fay) = -7 [[a-y)™
=1

J

d

7=0
such that

(i) Co(z,y) is a polynomial in x, and for 1 < 5 </d,
C;(z,y) is a polynomial in y;.

(i)
~ / d _13/
E(z,y) =0 ((1—@‘“ 1 -y )

=1
for some o/ < o and 5;.20, 1<j<n.



(i) c(y) =c+ O (z;lzl 11— yj|) and is analytic in
{y: yj€ Aj(e,¢)}, and ¢(1) = c# 0.



Lemma 2 Suppose

d
flz,y) =0 ((1 —z)"* ] (1 - yj)_ﬂj) .
j=1
Then

(i) asn—o00and 1 <k; =0(logn) (j =1,...,d),

d
[:Unyk} f(x,y) = O (no‘_l .Hl k?) ,
j=

(it) for any 0 < € <1 and all n,k;,

d
2"y<| f(z,y) =0 (na—l [T~ ar’%) .
=1

J



Lemma 3 Letd>1 and

d
flzy)me (1 —2)™* [[ Q@ -y A,
j=1
where o is neither a negative integer nor 0O, and
c #0. Then asn — oo and k; = O(logn) (5 =
1,...,d),
c d

[xnyk] flx,y) = () jl;[l (kfj_l/r(ﬁj)> no—1

X (1—|—O (ij(l/l@))) :




