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Abstract

The average behavior of nine algorithms derived from the Euclidean Algorithm is analysed.
Some of them are useful in computing the Jacobi symbol. It is shown that these algorithms
form two classes: the fast and the slow algorithms (©(In N)) versus ©(In® N)). The author
suggests a general method, in which the algorithm and the set of its data are viewed as a
dynamical system. The Ruelle operator and functional analysis are key tools. This unified
approach gives not only the previously known results for classical Euclidean algorithms
but also new results about the binary GCD and Jacobi symbol algorithms. In particular,
conjectures due to Brent, Bach and Shallit are solved. The average behavior is linked to the
entropy of the dynamical system, thus new universal constants (explicit for classical cases,
computed numerically in the other cases) are exhibited.

1. Euclidean Algorithms

A previous talk of Brigitte Vallée (see the summary in the proceedings of year 97/98) was devoted
to the complete analysis of the binary GCD algorithm. The summary ended by mentioning the
application of Vallée’s method to the Jacobi Symbol. The last year has seen a unification of the
approaches and the reader will find here the analysis of nine algorithms. These are “flip and reduce”
algorithms and are more or less variations of the “classical Euclid algorithm”, an algorithm which
dates from 300BC and which can also be found in a first-century AD Chinese text (Chiu Chang
Suan Shu).

Before the “functional analytic number theoretical dynamical systematic” approach of Vallée,
the state of the art was due to Brent [1], Knuth [5], Heilbron [4], Dixon [3], Vardi [10], Bach,
Shallit [7].

Vallée and her student, C. Lemée, gave some new results for the analysis of the average complexity
of the computation of a fundamental function in number theory: the Jacobi symbol, which allows
to determine whether a number is a square in a given modular arithmetic or not.

The Legendre symbol is defined for an odd prime number v as

0, if v = 0 mod v;
u
(;) =<1, if v is a square modulo v;
-1, if v is not a square modw.

The Jacobi symbol extends the Legendre symbol and is defined as
J(u,v):= H(l)ei for v = H vi* with odd primes v;.
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Of course one does not need to know the factorisation of v in order to compute J(u,v). Instead,
one uses the following formulae:
Quadratic reciprocity law:  J(u,v) = (—1)(“_1)(”_1)/4J(v,u) for u, v odd positive integers,
Modulo law:  J(v,u) = J(v — bu,u),
Multiplicativity law: J(vw,u) = J(v,u)J(w,u),
Special values:  J(2,v) = (—1)(”2_1)/8, J(e,u) = D2 for e = 1.

Then one has several Euclidean-like possible algorithms. We distinguish the nine following cases
(name, constraints of the algorithm and an example are given):

Classical with positive remainders 13 _ 1
v=cu+r,0<r<u (E 1
5+
14 !
3+ !
3+0
Subtractive classical 13 _ 1
v=u+ (v—u) (CI 1
1414141414 1
14 1
1+1+1
Tt 1+1+1
Classical with negative remainders 1
v=cu—r % = N
0<r<u 6 —
1
5 —
9 1
. . . 240
Classical with centred remainders
v =cu+er Q—il
e>2,e==x1,(c,e) #(2,-1) [E 1
0<r<u/2 6— B
44 =
+ 3
Even CF
13 1
v = cu + €8, 2= :
ceven,e==xl sodd, 0 <s < u 6 —
1
44
+ 4-1
0Odd CF
v =cu+ e2Fs, 13 _ 1
codd, e = £1, (N 2
sodd, k> 1,0< 2%s < u St ———
3_
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Ordinary CF

v=cu+2%s, s =0 or s odd, 13 _ 1

k>0, [ 2

0<2ks < u St

2+ 5

1+m

Centred CF

v =cu+ e2ks, 13 _ 1

s=0or s odd, k>0, [E 1

0<2ks < u/2 6_71

| 350

Binary GCD

v =au+ 2%r, 13 1

a odd, 7 = 92

a<2% r<u L+2+ 92
1Jr1+23

2. Functional Analytic Number theory

Performing [ steps of one of the above algorithms gives a continued fraction of height [ and the
expression of the rational u/v as

(1) L e hiohyo--roh(a)
v

where a'is 1 or 0 and where the h;’s are “linear fractional transformations” or LF'T (“homographie”
in French). Of course the values of a,b,¢,din h; = gj_‘ll_'s depend on the algorithms. What is more,
the shape of the first and last LFT can be different from the other “intermediate” generic LFT,
depending on the initial and stopping conditions of the algorithm.

Introduce the double Dirichlet generating function

[1
S(s,w) := Z Z %wl

I>1 n>1

(1

where v;," is the number of rationals of Q (set of valid inputs in [0,1] or [0,1/2], depending on the
algorithm) of the form u/n which give a continued fraction of height . Defining a,, and b, by

br

o and iS(s,w)|w:1 =: —
n

ns ow

n>1 n>1

S(s,1)=:

allows to express Sy, the average number of steps of the algorithm on the rationals u/v of Q for
u < N, as

!

EnSN br _ EngN Ezzo l’/v[z]
= .

Y on<n On EngN Elzo oy

Thus the average behavior of the algorithm is dictated by the asymptotics of partial sums of
coeflicients of the function 5.

For any Dirichlet series F(s) with nonnegative coefficients a, converging in (s) > ¢ > 0, a
theorem of Delange gives

Sn =

N°In"N(1+ o(N)).

an =
n<N

oT(y+ 1)



56

As for any Tauberian theorem, F(s) has to fulfill some hypotheses (analyticity on R(s) = o for
s # o and there exist A, B analytic at o such that F(s) = A(s)(s— o)™~ + B(s)). A major part
of the the work consists in proving that these properties hold.

Recall that for each algorithm, there are 4 sets of LFT: the single LFT’s K, the initial LFT’s Z,
the final LFT’s F and the intermediate LF'T’s H. Now define the “Ruelle operator” A relative to
a set A of LFT’s by

The decomposition of an algorithm as a single LFT or as final+sequence(intermediate)+initial
LFT’s (for short K + FH*T) leads to S(s,w) = wKy(1)(a) +w?Fso (I —wH,) Lo Js(1)(a) (where
a is defined as in equation 1 and where o is the composition over the space of operators). Variations
for Markovian cases are possible and lead to the same treatment.

Finally, spectral properties of I — H; allow to determine ¢ = 2 and v = 1 or 2 (in some cases,
one needs to choose an adequate functional space in order to establish this).

Here is a summary of the average number of steps performed by the nine algorithms:

positive remainders 127:—512 InN .842In N  Heilbron & Dixon 70

subtractive L(nN)* 607(InN)*  Knuth & Yao 75

negative remainders % (In N)? .303(In NV)? Vardi 92
centred remainders 12;—1;(3’ InN .585In N Rieger 80

even Z(InN)* 202(InN)*  Vallée & Lemée 98

odd Apoln N A435In N Vallée & Lemée 98

ordinary Apln N b35In N Vallée & Lemée 98

centred AcIn N A430In NV Vallée & Lemée 98
binary GCD Agln N 555 In N Vallée 98

The author also makes the link between the constants given here and the entropy of the dynamical
system related to the algorithm.

The results presented here are mainly in [9] and in a preprint of Brigitte and her student [6].
Like other preprints of the author, it is available at her home page
http://www.info.unicaen.fr/~brigitte/Publications/
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