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The polylogarithm is defined by the series
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The convergence of this series at 1 is granted when s; > 1, and the limit is denoted ((s1,...,s;) and

is called a multiple zeta value since it extends the classical Riemann zeta function. The number ) s;
is called the weight of the polylogarithm or multiple zeta.

Many polynomial identities relating multiple zeta values at integers are known. For instance,
reorganizing double sums yields the following identity between multiple zetas of weight 4:

(1) (2,2)= Y ﬁ = % (Z %) - %Z% - %(C@)2 —¢(4)).
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This could be simplified further using the well-known values of ( at even integers.

This is a very active and diverse area. The reader is encouraged to consult [1, 2] for surveys of
many beautiful results, generalizations and conjectures. One of the most famous conjectures is the
following.

Conjecture 1 (Zagier). The set of multiple zeta values ((s1, ..., Sg) with s; positive integers, s; >
2 and s1 + - - -+ s < n generates a vector space over Q) whose dimension d,, obeys

dn—|—3 = dn—}—l + dn7 dy = 0, dy =ds3 = 1.

Note that since even the irrationality of ((5) is still unproven, this conjecture is completely out
of reach. Even a proof that this sequence gives an upper bound is still to be found.

1. Shuffle and Stufifle

The manipulation leading to identity (1) is a special case of a more general mechanism involving
products of multiple sums. By considering how indices in multiple sums can be reorganized, it is
natural to define the stuffle product of two words over N. (Stuffle is a contraction of “shuffle” and
“stuff”.) Using lowercase symbols to denote letters and capital symbols to denote words, this is
the formal sum defined recursively by

exW=Wxe=W, aS*bT = a(S*xbT)+b(aS*xT)+ (a+b)(S*T).
This definition is motivated by the following important stuffle relation:

CAB) = Y ((5).
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A simple example is ((2)((3) = ((2,3) + ((3,2) + ((5). Another one is the identity (1) which is
obtained from (2) % (2) = 2(2,2) + 2(4).

In the same way as the stuffle product arises in the reorganization of multiple sums, multiple
integrals lead to considering the shuffle product of words over the alphabet X = {z¢,z1}. This is
defined by the same formula as the stuffle product except that the last term in the sum is omitted.
A bijection between words over N* and words of X*z; is provided by the encoding

(S15..0,8K) = ag'™ Lo - -xgk_lxl.
This makes it possible to extend the shuffle product to these words. For instance,
(2)m(2) — zor1 mazor1 = 220T1T0%1 + 4xozor121 — 2(2,2) + 4(3,1),
(2)m(3) — zox1 maoroT1 = 625zt + 3zl 2021 + ToT 1AL — 6(4,1)4 3(3,2)+ (2, 3).

The following integral representation is then proved by induction

1 7 odt ZdtL’ if w=zqw',
(2) Lz, (2) = log 5 :/0 —  Luw(2)= {f : ’

1—2 1—1¢ Iy 5 dtL’ if w=zw'.
The recursive definition of the shuffle now reads UV = [ U’V + [ UV’, whence the shuffle relation:

La(2)Lp(z)= Y Ls(2).
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Setting z = 1 in these identities yields new identities concerning multiple ¢ values. Our examples

above thus lead to ((2)? = 20(2,2) +4¢(3, 1), ((2)((3) = 6((4, 1)+ 3¢(3,2) + ((2.3).

Conjecture 2. All known relations concerning multiple zeta values follow from the stuffle product
of multiple zetas and the shuffle product of polylogarithms specialized at 1.

This has been checked up to weight 12 [3], and the set of identities thus obtained coincides with
the bound provided by Zagier’s conjecture.

2. Monodromy and Consequences
A first step towards proving the conjecture above is provided by the following theorem.

Theorem 1 ([4]). The ideal of algebraic relations between polylogarithms at z is generated by the
shuffle relations.

A Lyndon word is a non-empty word which precedes its strict right factors in the lexicographic
order. A classical theorem due to Radford states that the Lyndon words form a basis of the shuffle
algebra. This leads to the following result.

Corollary 1. The polylogarithms indexed by Lyndon words form a transcendence basis of the poly-
logarithms. In particular, the classical polylogarithms Lip = ngm are algebraically independent.

This theorem is proved for relations involving polylogarithms of weight bounded by a fixed
number. Using the shuffle relations, any polynomial in polylogarithms can be reduced to a linear
combination of polylogarithms. Since the shuffle relations form a Grébner basis for the total
degree order (degrevlex), any polynomial which is not in the ideal is thus reduced to a nonzero
linear combination. The theorem is thus reduced to proving that the polylogarithms are linearly
independent. This is done by computing the monodromy of polylogarithms as we now describe.
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It turns out to be convenient to prove a more general theorem where polylogarithms with indices
ending in xg are allowed. Consistency with the shuffle relations is achieved with

Zdt Zdt | R,
Ly (z):= T = log z, Lon(2) = /1 TLzsn—l(t) = Elog z.

At z = 0, the situation is simple: a word ending with z; corresponds to an analytic polylogarithm,
whence a trivial monodromy. An easy induction on the weight shows that all words ending in zq can
be rewritten as a sum of shuffles of powers of zg and words ending in z,. Here are the corresponding
relations up to weight 3:

Lmlajo = Lz‘le‘o - Lz0z17 L, = Lm%LIO - Ll‘11‘0271 - L 2

T1To Ty ?
Leozyzo = Loy Lag — 2L 2 L 12 = Le, ng = Logzy Ly + ngzl'

TEx1? T

Let Mof(z) be f(ze*™); applying Mg — Id on the right-hand sides of these identities only affects
the L. Their monodromy follows from (Mg — Id) Ly, = 2i7. Another shuffle thus shows that

(Mo =1d)Lyz, = 2inLy + Y pvLy, (Mo —Td)Lys, =0,
‘7
where the words V' in the sum all have weight smaller than the weight of U. '
We now proceed to prove the analogous property at 1 with My f(1 — 2) := f((1 — z)e*™):

(3) (My =1d)Lyz, = =2icLy + Y _pvly, (Mg —1d)Lyg, = 0.
‘f

At z = 1, words ending with zg correspond to polylogarithms that are analytic there, hence, have
a trivial monodromy. This is the second identity. The situation is slightly more complicated than
at the origin because of divergence. As above, an induction on the weight shows that all words
beginning with z; can be rewritten as a sum of shuffles of powers of z; and words beginning
with zg. The monodromy of sz follows from that of the logarithm. The remaining words are
those beginning with zg and ending with z;. Consider the path consisting of a straight line from z
to a circle of radius € around 1, turning around 1 in the anti-clockwise direction and coming back
to z. Then Cauchy’s theorem implies that

. 2 odt . dt
(Mq —1d)Lyyuz, (2) = lim —(My = 1d) Ly () + lim — Ly, (1).

e—=0 J1_¢ ¢ e—0 [1—t|=¢ l
Another induction shows that the rightmost integral tends to 0, while convergence of Ly, at 1
reduces the first limit to

Zdt
/1 7(./\/11 —Id) Ly, (1).

This makes it possible to compute all the monodromies of words ending in z; and proves (3). Here
are the corresponding relations up to weight 3, using p to denote 2¢7:

S (=
(My — 1)L = ELIT_] T (My = 1d) Loy = =pLay, (M1 —1d)L,2, = —pl,2,
j=1 '

2
P
(Ml - Id)onzf = _p(L%m - Cl?om) + EL%? (Ml - Id)LI1$0$J = 2Lz0z§ = PLlayz, — 2pC$0I1'

The proof of Theorem 1 is concluded by considering the maximal weight involved in a minimal
non-trivial linear combination: applying both operators (Mg — Id) and (M — Id) leads to linear
relations of smaller weight, that have to be trivial.
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3. Changes of Variables

The group of six rational functions z, 1 — z, 1/2, 1/(1 — z), 1 — 1/z, /(1 — z) permutes the
singularities 0, 1, co. If & is an element of this group, then

z

h(z)
Lov(h(2)) = /0 Lo (Owa(t) dt = / Lo (h(s))wa(h(s))H(s) ds.

h=1(0)
It turns out that for all ~ in the group and all € {zg, 21}, wz(h(s))h/(s) can be rewritten as a
linear combination of ds/s and ds/(1 — s). Thus by induction, all polylogarithms at h(z) can be
rewritten in terms of polylogarithms at z. For the classical dilogarithm Liy = L, ., we get
Lig(1 — 2) + Lig(2) = Lyy(2) Ly, (2) + €(2), Lia(2) — Lig(1 = 27Y) = Ly (2)Le, (2) 4+ €(2) + LIg(z).

Setting z to 1/2,+¢,+1/¢,14+ ¢,1 — 1/¢, where ¢ is the golden ratio, yields the only known values
of Liy in closed form.

4. Noncommutative Generating Function

All the inductions mentioned here are conveniently handled by introducing the noncommutative
generating function L(z) = > Lw(z)W where the sum is over all words of X = {zg,z1}*. The
integral representation of polylogarithms is equivalent to a linear differential equation:

diiL(z) - (@ + 1°T_lz> L(2).

z

A consequence of the rewriting of words ending by zg is that all polylogarithms except L’;O tend to 0

at the origin. This leads to the initial condition L(€) = e + O(€!=%), for € — 0, where § is an

arbitrarily small real number. The shuffle relation then implies that this generating function is a Lie

exponential. A noteworthy consequence is that it can be factored as a product of Lie exponentials

indexed by Lyndon words, which turns out to yield an efficient algorithm for computing identities [3].
The inductions used in the monodromy computations translate very explicitly into

MOL(Z') = L(Z)€2m$0, MlL(Z) = L(z)Z_le_Qimﬁ Z7

where Z is very close to being the generating function of the multiple zeta values: it is the unique
Lie exponential such that

(Z|$0) = (Z|$1) = 0, (Z|$0VV$1) = Cmowlfl, w € X.
Similarly, the changes of variables can be interpreted at the level of L(z) [5].
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