In [2], the number of permutations of n objects with largest cycle length equal to k is studied in detail. The purpose of [3] which is summarized here is to show that these results generalize in a straightforward manner to all labelled sets, unlabelled sets and unlabelled powersets.
C(z)= |
|
cnzn or | C(z)= |
|
cn |
|
, |
L(z) |
|
||||||||||||||
P(z) |
|
||||||||||||||
S(z) |
|
L |
|
(z)=exp |
æ ç ç è |
|
|
ö ÷ ÷ ø |
(e |
|
-1)=(e |
|
-1)L(z)exp |
æ ç ç è |
- |
|
|
ö ÷ ÷ ø |
. (1) |
|
|
n/2<k£ n | ||||||||||||||||||||||||||||||||||||||||||
|
n/3<k£ n/2, |
Lks(z)=exp |
æ ç ç è |
|
|
ö ÷ ÷ ø |
(e |
|
-1). |
[zn]Lks(z) |
|
k=n, | |||||||||||||
=0, | n/2<k<n, | ||||||||||||||
|
k=n/2, | ||||||||||||||
|
n/3<k<n/2,... |
This document was translated from LATEX by HEVEA.