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Abstract

Local limit theorems and saddlepoint approximations are given for random walks on a free
group whose step distributions have finite support. These are derived by exploiting a set
of algebraic relations among certain generating functions that arise naturally in connection
with the transition probabilities of the random walks. Basic tools involved in the analysis
are the elementary theory of algebraic functions, the Perron-Frobenius theory of nonnegative
matrices, and standard techniques of singularity analysis.

1. Walks on Groups

FIGURE 1. A representation (Cayley graph) of the infinite free group Z xZ

Let G be a the free group with generators aq,...,ar. For example, the free group Z xZ has two
generators a and b. The word abaabaabaa corresponds to the point B, the associated reduced word
is abaa.

A finite-range random walk {Z,,},>0 is a Markov chain on G with Zy := e (the identity of the
group, the “origin”, the starting point_) and transition probabilities

Pr{Zn+1 = yale’rL = y} = Pz V‘T7y € G7 n > 07
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where p, for z € G is a probability distribution with finite support (in other words, p, is the
probability of the “jump” z).

Note p*™(z) the probability of being in z after n steps. It is assumed that the random walk is
irreducible and aperiodic, that is, that

VeeG zp*”(as) >0 (irreducibility);
n>1
GCD{n;p™(e) >0} =1 (aperiodicity).

Another important condition is the following:
Positivity: pe > 0 and p, > 0 for all generators g of G (and their inverses).

Similarly to the random walk in the Euclidian case Z¢, a local limit theorem is given by the
asymptotics
p(a) ~ DR
V21 Rn3/?
Similar results were already known when all the steps are of size one (nearest neighbour random
walk [3]) or when all the words at a same distance from the origin are equiprobable (the so-called
isotropic random walk [2, 8, 9]).

2. Singularity Analysis

This section is devoted to the analysis of some probability generating functions (PGF') related
to the walk. For € G and z € C (]z] < 1), define

— the random variable coding where one is after n steps: Z,,

— the PGF to reach z in n steps: Gy(z) := Y., p™"(z)2",

— the PGF of the excursions (Green’s function): G(z) := G.(2),

— the first time z is reached: T, :=inf{n > 0: 7, = z},

— the PGF to reach = for the first time in n steps: Fy(z) := >, Pr{l, = n}z".

Note that aperiodicity and irreducibility imply that for all sufficiently large n > 1, p**(e) > 0
and p*"(y) > 0, for any (inverse of a) generator y.

The following (combinatorially trivial) relations

Go(2) = Fa(2)G(2),
-1
Gz)=1+z|pe+ szFx—l (2) | G(z) = | 1 — zpe — ZZPIFQ:—I(Z)
T#e r#e
allow to prove that all of the functions F, and GG have the same radius of convergence R, 1 < R < o0
(the less obvious is that R is strictly greater than 1).

Let B be the set of points at distance < K, where K is such that there is no smaller ball in which
the support of the step distribution {p.} is contained. Define now

— the first time that z is exceeded: 7,
— the PGF to go from a to b while 2 as never been exceeded before:

H® = ZPI’{Zn =ab|Zy = a and Z;.,, & zB}2"

— the PGF to go from z to the origin: F,-1(2)
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The formula
Vete Fuz)= Y HI(2)F(2)
beB—{e}
leads to an expression of F, = uH,(z)v = uH,, (z)---Hy,,(2)v where u is the projection on e and v
a vector whose entries are the Fj—1(z) for b € B and where the product of matrices is over zy - - - 2,
the reduced word associated to z.

It is then proven by the Markov property that all the non-constant ngb satisfy polynomial
relations (Hy, = Qi(Hyz,, Hy,y, .. .), see [6] for exact relations) and that they have the same radius
of convergence.

By elimination (Grobner basis or resultants), the functions F, and G, are algebraic. Their
Puiseux expansion leads to an algebraic singularity with exponent 1/2.

Here is a sketch of the proof that the exponent is indeed @ = 1/2. Define J, the Jacobian matrix
(GQZ-/GH%), the polynomials (); have nonnegative coefficients, thus there exists n such that J7
is an aperiodic and irreducible matrix with strictly positive coefficients. By the Perron-Frobenius
theorem, J, has a positive eigenvalue A, of multiplicity 1. The function A, is increasing and real-
analytic and Agp = 1/R. Considering a left eigenvector of Jr and using the shape of the @; yields
to the relations (R — 2)(C'+ ) = C'(R — 2)** 4 - - -, thus 2a = 1.

As z = R is the dominant singularity of F,, and G, one has the two following theorems:

Theorem 1 (Local limit theorem, access). Assuming irreducibility and aperiodicity, one has, for
a positive constant B,:

B,
~ rRRm

Theorem 2 (Local limit theorem, first access). Assuming positivity, one has, for a positive con-
stant Ay:

p"(z)

A
V2T RR 32

Pr{x is reached for the first time after n steps} ~

3. Saddlepoint Approximations

The probability to reach a point & at a distance m of the origin in n steps is
(e o, ERBn)
b(m/n)

for appropriate functions 3, C and (see the correct definitions / notations in [6]).

This uniform asymptotics in # and n corresponds to the classical saddlepoint approximation
(sharp large deviations theorems) for sums of iid random vectors in R<

The saddlepoint approximations are of interest for another reason. For large n, nearly all the
mass in the probability distribution p**(z) is concentrated in the region |z| > en, where the local
limit approximations are not accurate. This contrasts with the situation for finite range random
walk in Euclidean space. In fact, Guivarch [4] has shown that for random walks in G, the distance
from the origin grows linearly in n. Sawyer and Steger [10] have further shown that (|Z,| —n3)/v/n
converges in law to a normal distribution.

Finally, S. Lalley, using a special matrix product and results on Ruelle’s Perron-Frobenius oper-
ators, derives a saddlepoint approximation, uniformly for m/n in a given compact

C(m/n)

Pr{|Z,| = m} ~ engrfé’g;é 771))0(m/n).
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