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Abstract

The loop-erased random walk is the simple curve obtained by removing in the chronological
order the loops of the original random walk. A basic aspect of these walks in Z? is studied: its
average length (thus solving a conjecture of Guttmann). The techniques are combinatorial
and use a bijection due to Temperley between maximal trees and perfect coupling.
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FIGURE 1. A random walk and its associated LERW

1. LERW=ST=DT

This is not a new equality between new complexity classes but it simply emphasizes the fact that
loop-erased random walk (LERW), spanning tree (ST) and domino tiling (DT) are essentially the
same object.

Indeed, in [12] shows that, for a uniformly chosen spanning tree on a region of Z?, the unique
arc (branch) between two points has the same distribution as the LERW between these two points.
Moreover, Temperley [13] gives a constructive one-to-one correspondence between spanning trees
and domino tilings.

From the other talk of Richard Kenyon, we know that domino tiling (the so-called two dimen-
sional lattice dimer model, a model which has some ties with Ising model) is the only nontypical
ad hoc statistical physical model where conformal invariance is proved, so representations of the
Virasoro algebra [15] could help finding critical exponents.

In order to solve this “self-avoiding walk model” (i.e., to set the critical exponent), R. Kenyon
does not use representation theory, but a “discrete Laplacian”, from which he gets the full asymp-
totics. Whereas a lot is known about properties of the continuous Laplacian [5], works on the
discrete Laplacian are more recent [10].

As conjectured by Bursill and Guttmann [4], the exponent for LERW is 5/4. Richard Kenyon
proves this by applying the “equality” LEWR=ST on the following theorem
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Theorem 1. On the uniform spanning tree process on N X Z, the expected number of vertices on
the arc from (0,0) to oo which lie within distance N of the origin is N3/4to(1),

The next theorem is sometimes attributed to Kirschoff [11] and proven in [1].

Theorem 2 (Matrix-tree Theorem). For a graph G with set of vertices {v;}, let

deg(v1) O 0
A= 0 0 _AdJ(G)v
0 0 deg(v,)

then the number of spanning trees of G is the product of the nonzero eigenvalues of A divided by
the size of G. For an m X n recltangle, the number of spanning lrees is thus

I1 (4 - QCOS(%) - QCOS(%)) .

(4,k)#0
7=0,....,m—1
k=0,...,n—1

It is possible to extend this kind of result to a class of polygons which are decomposable in
rectangles, the so-called Temperleyan polyominoes. (Triangulations are also a way, as there is a
determinant-like expression for triangles.)
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Ficure 2. A graph and its associated Temperleyan polyomino

The number of spanning trees of the graph is the number of domino tilings of its Temperleyan
polyomino. Taking the log in the previous formula gives a special case of the following theorem:

Theorem 3. Lel U C R? be a reclilinear polygon with V vertices. For each ¢ > 0, let P. be
a Temperleyan polyomino in €Z* approzimating U in the nalural sense (the corners of p. are
converging to the corners of U). Let A, be the area and Perim, be the perimeter of P.. Then the
log of the number of domino tilings of P. is

A, Perim,
Co + c1 Perim + O(log(€))

€2

where ¢y = % G=1- 31—2 + 5% — -+ 15 Catalan’s constant, ¢; = % +

log(v/2—-1)

TR
According to the author, “Part of the motivation for the above theorem is to validate a certain
heuristic, which attempts to explain how the presence of the boundary affects the long-range struc-
ture of a random tiling. In particular it attempts to explain how the boundary affects the densities
of local configurations far from the boundary [3]. This heuristic is called the ‘phason strain’ prin-
ciple. The heuristic is as follows: The boundary causes the average height functlion of a tiling to
deviate slightly from its entropy-maximizing value of 0. At a point in the region where the average
height function has nonzero slope, the “local” entropy there is smaller than the maximal possible
entropy, by an amount proportional to the square of the gradient of the average height function.
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The system behaves in such a way as to maximise the total entropy subject to the given bound-
ary values of the height function, and the resulting average height function is the function which
minimises the (integral of ) the square gradient. That is, the average height function is harmonic.”

Anyway an exact application of the phason strain principle gives in fact slightly different asymp-
totics (from the one given in the theorem 3), so this principle is not totally valid here, but however
it gives a good approximation.

2. Height Function

For a given tiling, the height function h is easily defined [14] by bicolouring the Temperleyan
polyomino (there are no adjacent vertices of the same colour):

SeSRIe
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then, for each oriented edge AB on the border of a domino,

ololae

+1 if the square on the left of AB is black,

—1 otherwise.

h(A) — h(B) = {

Note that, up to an arbitrary additive constant, the height of the boundary is independent of
the tiling.

For a smaller and smaller lattice (e.g., €Z?), one can approximate any domain U of C. For a very
fine lattice (in fact, taking the limit when ¢ — 0), one can study the probability of appearance in
the tiling of some patterns, their repartition in the tiling and also how the shape of the boundary
influences the tiling. It appears that there are links with conformal theory, as explained below.

Let P. be a Temperleyan polyomino associated to a rectilinear polygon U of C. Now, let k. be
the average height function of P, that is the average height over all domino tilings of P. and then

define
h(z):= lin% he(z.).

For z € U, h(z) is defined by continuity from values of i in the interior.
The remarkable fact is that this limiting average height function h can be expressed as

2

Sz —w)

2
) du = —=Slog ¢'(2),
T

where g is the Weiertrass elliptic function and where F (u,z)du is a meromorphic 1-form, thus
allowing some links with conformal mapping theory. We refer to “Conformal invariance of domino
tiling” (1997) and to “The asymptotic determinant of the discrete Laplacian” (1999) for further

informations®.

!Like other recent preprints of the author, they are available at his home page
http://topo.math.u-psud.fr/~kenyon/
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