Asymptotic Bounds for the Fluid Queue Fed by Subexponential on/off Sources

Vincent Dumas
INRIA-Rocquencourt

February 4, 1999

[summary by Jean-Marc Lasgouttes]

This talk presents results from Dumas and Simonian [3] on the tail behaviour of the buffer content of a fluid queue processing the input of several exponential and subexponential sources. While the results in [3] are rather general, the presentation given here uses a simplified setting, for the sake of understandability.

1. Framework

Consider a fluid queue with infinite buffering capacity and outflow rate c. This queue is fed by N > 1 independent stationary on/off sources, where source $i, 1 \le i \le N$ is characterized by:

- silence periods, where it generates no traffic, of length S_{in} , $n \geq 1$, i.i.d. and exponentially distributed:
- activity periods, where it generates traffic at peak rate h_i , of length A_{in} , $n \geq 1$; these variables are i.i.d., but no assumption is made on their distribution for now.

The following notation will be useful later:

$$p_i := \frac{\mathbb{E}[A_{in}]}{\mathbb{E}[A_{in} + S_{in}]}, \quad \rho_i := h_i p_i.$$

To characterize the stationary regime of source i, it is convenient to introduce the time elapsed in the current activity period A_i^* , whose distribution is given by

$$\Pr[A_i^* = 0] = 1 - p_i,$$

$$\Pr[A_i^* > x | A_i^* > 0] = \int_x^{\infty} \frac{\Pr[A_{in} > y]}{\mathbb{E}[A_{in}]} dy.$$

In what follows, we restrict ourselves to the case where $h_i \equiv h$, $p_i \equiv p$ and $\rho_i \equiv \rho$, for all $1 \leq i \leq N$. If V_t is the volume of fluid in the buffer at time t (with $V_0 = 0$), then the following result is well known:

Theorem 1. Let $\Omega_i[t]$ be the flow emitted by source i in stationary regime in the interval]-t,0] and define $\Omega[t] := \sum_{i=1}^{N} \Omega_i[t]$. Then, assuming $N \rho < C$,

$$\lim_{t\to\infty} V_t \stackrel{\mathcal{L}}{=} V := \sup_{t>0} (\Omega[t] - ct).$$

It is important to have good estimates for $\Pr[V > x]$, since this can be used to determine loss rate in a finite buffer queue. A typical result in this respect is due to Anick, Mitra and Sondhi [1]: if there exist constants α_i such that $\Pr[A_{in} > x] = O(e^{-\alpha_i x})$, $1 \le i \le N$, then there exists α such that $\Pr[V > x] = O(e^{-\alpha x})$.

However, recent studies have shown that some sources may have subexponential activity patterns, such as $\Pr[A_{in} > x] = O(x^{-s_i})$, $s_i > 1$. The purpose of this work is therefore to find good estimates for the tail distribution of V when the sources are a mix of exponential and subexponential sources, extending the results of [2, 4, 5].

2. Lower and Upper Bounds

Let I be a subset of $\{1, \ldots, N\}$, with cardinal |I|, and define

$$A_I^* := \min_{i \in I} A_i^*, \qquad \Omega_{\bar{I}}[t] := \sum_{i \notin I} \Omega_i[t],$$

$$n_0 := \inf\{n \ge 0 | nh + (N-n)\rho > c\}.$$

Then the following bound holds as $x \to \infty$:

$$\begin{split} \Pr[V > x] & \geq \max_{I} \Pr\left[(|I|h + (N - |I|)\rho - c)A_{I}^{*} > x \right] \\ & \geq \max_{|I| = n_{0}} \prod_{i \in I} \Pr\left[(n_{0}h + (N - n_{0})\rho - c)A_{i}^{*} > x \right]. \end{split}$$

Similarly, defining V_i as

$$V_i := \sup_{t \ge 0} \left(\Omega_i[t] - \rho(1 + \epsilon)t \right),\,$$

where $\epsilon > 0$ is such that $(n_0 - 1)h + (N - n_0 + 1)\rho(1 + \epsilon) = c$, one has

$$\Pr[V > x] \le \sum_{|I|=n_0} \prod_{i \in I} \Pr\left[V_i > \frac{x}{N - n_0 + 1}\right].$$

3. Application to a Mix of Exponential and Subexponential Sources

Assume that the queues can be partitioned in two classes for some $N_0 < N$:

$$\Pr[A_{in} > x] = O(x^{-s}), \qquad 1 \le i \le N_0,$$

 $\Pr[A_{in} > x] = O(e^{-\alpha_i x}), \qquad N_0 < i \le N.$

Then the main result of this study is as follows.

Theorem 2. The following approximations hold:

- if $N_0 < n_0$, then $\Pr[V > x] = O(e^{-\alpha x})$; - if $N_0 \ge n_0$, then $\Pr[V > x] = O(x^{-n_0(s-1)})$.

Bibliography

- [1] Anick (D.), Mitra (D.), and Sondhi (M. M.). Stochastic theory of a data-handling system with multiple sources. The Bell System Technical Journal, vol. 61, n° 8, 1982, pp. 1871–1894.
- [2] Boxma (O. J.). Regular variation in multi-source fluid queue. In Ramaswami (V.) and Wirth (P. E.) (editors), Teletraffic Contributions for the Information Age. pp. 391–402. North-Holland, Washington DC, 1997. Proceedings ITC-15.
- [3] Dumas (V.) and Simonian (A.). Asymptotic bounds for the fluid queue fed by sub-exponential On/Off sources. Technical Report n° 98028, MAB, Université de Bordeaux 1, 1998.
- [4] Jelenovicz (P. R.) and Lazar (A. A.). Asymptotic results for multiplexing on/off sources subexponential on periods. Advances in Applied Probability, vol. 31, n° 2, 1999.
- [5] Rolski (Tomasz), Schlegel (Sabine), and Schmidt (Volker). Asymptotics of Palm-stationary buffer content distributions in fluid flow queues. Adv. in Appl. Probab., vol. 31, n° 1, 1999, pp. 235-253.