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Abstract

The enumeration of rooted maps has been first studied by W. T. Tutte in the early 1960’s,
with planar maps. New results have been obtained since for rooted maps on more general
surfaces (torus with 1, 2, 3 holes, projective plane, ... ). T present the enumeration of
rooted maps on the Klein bottle as a first step to the general case. Then I give an other
approach of the enumeration of rooted maps, the rooted maps regardless to the genus of
their associated surface. This leads to Riccati equations whose solutions are expressed as
continued fractions. I obtain also a new equation generalizing the Dyck equation for rooted
planar maps.

Details may be found in the recent works of D. Arqués and J. F. Béraud [2, 3]. Good introductions
to maps and hypermaps can be found in [4, 1, 6, 5].

1. Definitions

There are two kinds of closed surfaces, orientable and nonorientable. The sphere, the torus, the
double torus, the triple torus, and so on, are orientable. They are commonly denoted Sg, 51, 53,
S3,... It is proved that every closed connected orientable surface is homeomorphic to one of them.

The Mébius band is a surface that is neither closed nor orientable. What makes it nonorientable
is that if a 2 X 2 coordinate system specifying a forward direction and a right direction is translated
in the forward direction once around the center of the band, then the orientation of the right
direction is reversed. The Mobius band has a boundary which is homeomorphic to the circle. For
k = 0,1,..., the surface obtained by cutting k£ holes in a sphere and closing them off with k
Mobius bands is denoted Ng. It is proved that every closed, connected nonorientable surface can
be obtained in such a way. The surface Ng (resp. Ny, N3) is called the sphere (resp. the projective
plane, the Klein bottle). The projective plane, or its unclosed version the M&bius band [5], is also
called a crosscap.

We define an embedding ¢+ : G — 5 of a graph G into a closed surface S to be a continuous
one-to-one function from a topological representation of the graph into the surface (i.e. the edges
do not intersect and the cells (vertices, edges and faces) are preserved). The Fuler characteristic of
a cellular embedding G — S of a connected graph G into a closed surface 5 is the value of the Euler
formula #V — #E + #F (where V, E and F' are the sets of vertices, edges and faces of ), and is
denoted x(G — 5). The invariance of Euler characteristic claims that for any cellular embedding
G — S, (resp. G — Nyi), then x(G — 5;) = 2 — 2g (resp. x(G — Ni) = 2 — k). The genus of
a compact surface is given by the relation g = %(2 — x) (resp. g = 2 — x) in the orientable (resp.
nonorientable) case.



The genus range (resp. crosscap range) of a graph G is defined to be the set of number g such
that the graph G can be cellularly embedded in the surface S, (resp. Ny). Of course, the minimum
genus range (resp. crosscap range) is the genus (resp. crosscap number) v(G) (resp. 7(G)) of the
graph.

A topological map C on an orientable surface ¥ of R3is a partition of ¥ in three finite set of
cells:

1. the set of the vertices of C', that is a finite set of points;

2. the set of the edges of C', that is a finite set of simple open Jordan arcs, disjoint in pairs,
whose extremities are vertices;

3. the set of the faces of C'. Fach face is homomorphic to an open disc, and its border is an
union of vertices and edges.

The genus of the map is the genus of the surface 3. A cell is called incident to another cell if
one of them is in the border of the other. An isthmus is an edge incident on both sides to the same
face. We call half-edge an oriented edge of the map. A map is called a rooted map if a half-edge
h is chosen. The half-edge & is called the root half-edge of the map, and its initial vertex the root
vertex of the map. We call external face (or root face), the face generated by the root half-edge h.

Two rooted maps with the same genus are isomorphic if there exists an homeomorphism of the
associated surface, preserving its orientation, mapping the vertices, edges, faces and the root half-
edge on the first map respectively on those of the second one. An isomorphic class of oriented (resp.
nonoriented) rooted maps of genus g will simply be called an orientable (resp. non orientable) rooted
map.

2. Series of Rooted Maps on the Klein Bottle

We denote by Pi(u,z) = Y ajpnmu"2™, ¢ = 1,2,3, the generating series where a;,, ,, is the
number of nonorientable rooted maps of genus ¢ having its rooted face of degree n and having m
edges. The generating series Py(uy,uz,2) is the generating series of 2-rooted planar maps (two
half-edges are chosen).

Theorem 1. The generating series P;(u,z), 1 = 1,2, 3, of nonorientable rooted maps with respect
to the degree of the rooted face and the number of edges verify the following equations:

uPo(u,z) — Po(1, 2)

(1) Po(u,2) = 1+ w2 Po(u, 2)? 4 uz ,

2) Pulu, 2) = u2z (2P1(u,z)Po(u,z) 4 a% [uPo(u,z)]> + uzupl(“’z)__lpl(l’z),

(3) Py(u,2) = uz (QPQ(U, 2)Po(u, 2) + Pi(u, 2)? + Po(u, u,2) + (,% [uPy(u, z)])
4wl z)__lp2(1, 5

The proof is based on the topological operation of deleting the root half-edge % as introduced
by W. Tutte [7]. If we introduce the formal power series V(2) = 1/(1 — 2V (2)FPo(V(2),2)), in [1]
we find a very simple proof that A(V(z),z) = 0 and that z = (V(z) — 1)(3 — 2V(z))/V(z)? where
Au,z) =1 —u+u?z — 2(1 — w)u?2Py(u, z). Now, we remark that:

Py(u, 2)Au, 2) = uzPy(1, 2) + (1 — u)u?z (% [wPy(u,2)] + Pi(u, 2)* + Po(u,u, z)) .



Then the generating series Py(uq, ug, z) verifies the functional equation:

uy Po(uq, ug, 2) — Po(1, ug, 2)

Po(uy,uz,z) = QU%ZPO(ul, ug, 2)Po(uy, z) + uy 2 " N
|-

ulPo(ul, Z) — UQP()(UQ, Z)

0
+urugz5—
0“2 Uy — U

If we define the series p by the relation z = p(1 — 3p), we obtain:

Theorem 2. The generating series Py(1, z) counting rooted maps on the Klein bottle with respect
to the number of edges is the solution of the following parameterized system of equations:

z :p(l_Bp)v

(4) (1-3p) (1—4p+s/(1—6p)(1—2p))
Py(l,2) = (—n*(1-27) :

3. Series of Orientable Rooted Maps

We present here the first topological equation for the generating series of orientable rooted maps
regardless to genus, with respect to vertices and edges. We denote by M(y,2) = Y ay ny"2" the
generating series where a,, ,,, is the number of orientable rooted maps of any genus having n vertices
and m edges.

Theorem 3. The generating series M(y, z) of orientable rooted maps is the solution of the Riccati
equation:

(5) M(y,2))=y+ 2M(y, 2)2 + zM(y,z) + 222%11/[(?;, z).

The proof is based on the topological operation of deleting the root half-edge h as introduced by
W. Tutte [7]

4. Orientable Rooted Maps and Trees

Equation (5) is a Riccati differential equation. We present in Theorem 4 an iterative solution
of (5), which leads to a very nice continued fraction form of the generating series of orientable
rooted maps.

Theorem 4. The generating series M(y, z) of orientable rooted maps with respect to the number
of vertices and edges is:
Y
(y+1)2
(y +2)2
(y +3)2

1 _
1—-...

M(y,z) =

1—

In Theorem 4 a new relation on maps appears:

Corollary 1. The generating series M(y,z) of orientable rooted maps with respect to the number
of vertices and edges is the solution of the following generalized Dyck equation:

M(y,z)=y+2M(y,z)M(y+1,z).
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A tree (of any genus) is a map with only one face. We denote by 7T'(z) the generating series of
orientable rooted trees with respect to the number of edges. By duality there exists a one-to-one
correspondence between rooted trees and rooted maps with only one vertex. Thus the series of
trees is the coefficient of y in the series of maps and:

Af(y72)

) = [F0)] o

Then we obtain the following results:

Corollary 2. The generating series T(z) of orientable rooted trees is the solution of the following
differential equation:

T(z))=142T(2) + QZQ%T(Z).

The generating series 1T(z) of orientable rooted trees is:

4z
1—...

Both generating series of orientable rooted trees and orientable rooted maps are linked by the rela-
tion:

1

1
(=) = 1—2M(1,2)

From the previous expressions, we deduce an explicit formula enumerating orientable rooted
trees with a given number of edges:

Corollary 3. The number of orientable rooted trees with n edges is equal to the number of fixed-
poinl-free involulions on [2n], namely the odd factorial: (2n — 1)(2n —3)---1 = (2n)!27"/n!.
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