An Approximate Probabilistic Model for Structured Gaussian Elimination

Edward A. Bender

Department of Mathematics, University of California, San Diego
November 2, 1998

[summary by Francois Morain]

1. Introduction

Modern algorithms [5, 7] for factoring integers or for solving discrete logarithms problems work in
two phases. In the first one, one collects a huge amount of data that help create a large matrix that
is triangularized in the second phase. For instance, the largest non-trivial number ever factored as
of today is (1021* — 1)/9, which involved finding dependencies in a 4,820,249 x 4,895, 741 boolean
matrix (see [2]). The easiest way to solve the problem is to find a computer with enough memory
so that the matrix fits in core and Gaussian elimination can be used. If such a behemoth is not
available, alternative methods have to be used. A method that is widely used relies on the fact
that the matrix we are interested in is sparse. For instance the matrix referred to above has only
48.1 non-zero coeflicients per row on average. Moreover the structure of the matrix is very peculiar:
the leftmost columns are very dense, while the rightmost ones are very sparse. This has led several
authors to work out what is called the Structured Gaussian Elimination (SGE) method. Apart
from this approach, one can use two probabilistic iterative methods to solve the problem, namely
Wiedemann’s method [9] or Lanczos’s [6]. In practice, these approaches are commonly combined.

We will concentrate here on linear algebra for integer factorization. For the discrete logarithm
problem, the same ideas can be used with some (sometimes not so trivial) modifications. The aim
of the talk is to describe one variant of SGE and try to analyse it.

2. Integer Factorization and Linear Algebra

Suppose we want to factor a large integer N. The basic idea is to look for two integers X and Y
such that X2 =Y?mod N, but X # £Y mod N. If this is the case, then gcd(X — Y, N) is a non-
trivial factor of N. How do we proceed to find X and Y7 This is usually done using a combination
of congruences of the type:

k
(1) a? = Hp?(z’]) mod N
i=1
where the p;’s are prime numbers forming the factor basis B = {p1,p2,...,pr}. Now we look

for a subset I of these such that []. H]- p?(i’j) is the square of an integer, say Y?, leading to

(Hiel xz) > ZY? mod N and we have solved our problem. The method of generation of the auxiliary

congruences (1) vary from an algorithm to the other, see the references given above for more details.
iJ)

Finding a subset I boils down to a linear algebra problem. Indeed, [], H]- p?( is the square of

an integer if and only if [, ij" o(td) is, or equivalently, Y. a(4, ) is an even integer for all j, which
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in turn is equivalent to the fact that we have found a relation between some rows of the matrix
M = (m; ;) where m; ; = a(i,j) mod 2, that is a vector z such that M = 0.

What is the shape of the matrix? It is rather easy to guess that a prime number p; occurs in
a factorization with probability O(1/p;). If we number our primes w.r.t. their magnitude, the left
columns of M are seen to be much more dense than the right ones.

3. Structured Gaussian Elimination

The idea of the method [4, 8] is to try to perform Gaussian elimination on the sparse part of the
matrix, as long as the fill-in is not too important. We will present here the version given in [1]!.

The weight of a row (resp. column) is the number of its non-zero coefficients.

Step 0. [Initial deactivation] deactivate some (small) fraction of the columns and call all

remaining columns light.

Step 1. [Initial clean up] repeat the following steps (a) and (b) until all columns have weight

greater than 1:

(a) Eliminate columns of weight 0 (it is of no use).

(b) If a column has weight 1, eliminate it and the row intersecting it (since it cannot be part
of a dependency).

Step 2. [Deactivation] repeat steps (a) and (b) until all columns have been either deactivated

or eliminated:

(a) If any row has weight 1, eliminate it and the light column intersecting it. Repeat as often
as possible.

(b) Deactivate a column of high weight and repeat (a).

Step 3. [Final step] Find the dependencies of the small matrix and build back the solutions

of the initial system.

This algorithm is an iterative process that decreases the size of the matrix. It can happen that
more and more rows are eliminated in Step 2a, leading to what is called a “catastrophe” in [8].
Among the questions we ask are: what is the size of the smallest reduced matrix that we can obtain
before the catastrophe begins?

4. Branching Processes and the Critical Product

Let us review the basic properties of a Galton-Watson branching process, in the view of applying
it to SGE. Theoretical properties on this topic can be found in [3, pp. 3-7].

In a Galton-Watson branching process, time is divided into generations. We start with one
object alive in the Oth generation and at generation 2, the number of objects depends on the
number of objects in generation ¢ — 1. Let f(z) denote the probability generating function of this
number. The probability generating function for the number of objects in the nth generation is
Jwy(@) = f(f(---f(f(x))--+)). Therefore, the expected number of objects in the nth generation is

(fa(@)) | ,oy = ()" ="
This quantity ¢ acts as a threshold. If ¢ < 1, the process terminates with probability 1, whereas
if ¢ > 1, the process has a nonzero probability of surviving forever.
How do we apply this theory to our problem? In Step 2a of the algorithm, an object is a row
of weight 1 that disappears and may create new objects of weight 1 for the next generation. The
associated value ¢ (called the critical product) of this branching process is given by:

!There is no canonical algorithm for SGE: from the same idea, details can differ in the implementation and the
choice of some parameters.
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Theorem 1. Assuming that the rows and columns are independent, we have

- () (2).

where ¢i (resp. ) is the probability that a randomly chosen column (resp. row) contains exactly
k nonzero entries and the approzimation is due to the fact that the matriz is finite.

For our purpose, we see that if ¢ > 1, then our algorithm loops forever and the catastrophe
occurs.

5. Critical Parameters and their Analysis

5.1. Probability Model. Let M = (m; ;) denote our m X n matrix. We make the assumption
that Prob(m;; # 0) = D/j for some fixed parameter D. This sounds realistic since the column j
of M is related to the prime p; ~ jlogj dividing some number, thus with probability 1/p; ~ D/j
since log is a slowly increasing function. On the other hand, a reasonable model for the weight of
rows is that of a Poisson model. We will let C' = Dm/n.

5.2. Effect of the Initial Clean Up. This step causes nay columns (and corresponding rows)
of weight 1 and nag columns (and no rows) of weight 0 to be eliminated. At the end of this step,
one gets a new matrix with m — na; rows and n(1 — g — a;1) columns.

Theorem 2. One has:

o CEA(C) ~ _
o] R o = 1—D(EO(C)—E1(C))7 Q0~CE2(C)—|-DE1(C)X041,

where E,(C) = [ e "7 dt is the exponential integral.

Numerically, for m/n = 1.0 and D = 3.0, this yields ag = 0.012 and ay = 0.044. More generally,
the values of ag and aq are rather small. Moreover, the new matrix will have the same shape as
the original one, meaning that the Poisson model will still apply.

5.3. Matrix After Reduction. What happens in our case is that the value of ¢ increases from
one iteration of the algorithm to the other, reaching a value > 1 and thus causing a catastrophe.
We are interested in the parameters associated with the matrix when this occurs. We suppose we
enter Step 2 of the algorithm with an m x n matrix M = (m; ;). At Step 2b, we suppose that some
fraction 7 of the columns have been deactivated and eliminated. For simplicity, assume these are
the leftmost 7n columns of M. We want to relate 7 and .

We suppose that our model is still valid for M, and in particular the model used for the row
weight is again a (truncated, since there are no rows of weight 0 or 1) Poisson model of parameter

A. We first have:

Theorem 3. With the notations above:

ed —1

From this, one gets:

Theorem 4. Letting C = Dm/n, one has
C(l—-7) A
—rlogT e} = 1°

~




60

This formula enables one to compute the value 79 corresponding to ¢ = 1, i.e., when a catastrophe
occurs. For instance, when m/n = 1.0 and D = 3.0, 7o = 0.318. In any case, 7¢ is always far from
0, which indicates that the SGE algorithm ends up with a matrix of size proportional to that of
the original matrix.

5.4. Final Matrix. By final, we understand the matrix which is rebuilt after SGE and to which
we need apply another linear algebra algorithm. Among the 7n columns discarded in Step2 of
the algorithm, a fraction § of them were deactivated (a remaining 7 — § having been eliminated),
therefore being eligible to the final matrix.

Theorem 5. With the notations above:

For the same numerical values, m/n = 1.0 and D = 3.0, one finds 8o = 0.186. This again shows
that the final matrix is of size proportional to that of the original matrix.

6. Conclusions

The authors have attempted an analysis of the structured Gaussian elimination. With rather
crude assumptions, they were able to derive an approximate model that is close, at least qualita-
tively, to that observed by their own simulations as well as by people who really factor numbers.
Going further, that is have a model close to reality in quantity would require more work.
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