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[summary by Bruno Salvy]

A graph is a set of connected components. Graphs of various kinds are obtained by imposing
constraints on these components. If ¢, is the number of different components of size n and a,
the number of graphs of size n, then ¢, /a, is the probability that a graph selected uniformly at
random among all graphs of size n is connected. The aim of this work is to study to what extent
structural properties of the sequence {¢, } make it possible to determine the asymptotic probability
of connectedness (as the size n tends to infinity).

The asymptotic properties of ¢, /a, are closely related to properties of the generating functions
of these sequences. Two cases are to be considered. In the labelled case, the generating functions
under study are

and they are connected by
(1) A(z) = exp(C(z)).
In the unlabelled case, the generating functions are
A(z) = Z ax”, C(z)= Z cpa”
n>0 n>0

and they are connected by
2) A(z) = exp (Clz) + C(a2)/2+ C(a*) /34 ) .

(See for instance [3] for a proof.) From the asymptotic point of view, these two identities are
suffliciently close to make most of the proofs go through from one case to the other, with technical
complications in the unlabelled case.

Erample. General labelled rooted trees with n vertices are counted by n"~!.

generating function is the tree function 7'(z) defined by

The exponential

T(z) = zexp(T(z)).

The corresponding forests have generating function exp(7'(2)) = 7(z)/z. The dominant singularity
of T(z) is exp(—1) where the singularity is of square root type. Singularity analysis then shows
that the asymptotic probability of connectedness is exp(—1).
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possible values for (pg, py)

R=0 [0,1] x {1}

C divergent at R {0} x [0,1]
C convergent at R [0,1) x (0,1] with ps < p,
TaBLE 1. Conjectured possibilities for (ps, pu)

Let R be the radius of convergence of the series C'(z). In the unlabelled case, since the ¢, are
integers, R < Rmax = 1, while Ry, = oo in the labelled case. It is useful to distinguish three
situations: R = 0, C' converges at R, or C' diverges at R (which can be infinite). Defining

pe = liminf ¢, /a,, pu = limsup ¢, /@y,
n—00 n—oo

the aim of this work is to study when p; = p, and to show as much as possible of Table 1.
A first result in this area is the following.

Theorem 1 ([5]). A necessary and sufficient condition for asymptotic connectedness (py = p, = 1)
s that R = 0 and

(3) Z_:hihn_i = o(hy,)

where h, is any of a, or c,.
Note that (3) is satisfied with h,, = a,, if and only if it is satisfied with h, = ¢,,.

FExample. General undirected graphs with n vertices are enumerated by a, = 27(n=1)/2 which
accounts for all choices of edges. The theorem shows that ¢, ~ a,.

The remainder of this summary is devoted to proving parts of Table 1.

1. It is Always Possible that p, =0 and p, =1

This is shown by constructing an ad hoc sequence ¢, which is 1 for most n and very large at rare
points. Then a, tends to infinity so that p, = 0 and p, = 1 because for those large ¢,, a, ~ ¢,.

This idea might extend to obtain 0 = p, < p, < 1 by taking more frequent large ¢, in order to
break the last equivalence.

2. Divergent Case: p, =0

This is a result of [4], which is proved as follows. If there exists § > 0 such that ¢, > éa,, for all
n sufficiently large, then we get for 0 < z < R

C(z) > 6eCGH) 4 p(2),

where P is a polynomial and the dots indicate more positive terms that are present in the unlabelled
case. In both cases, this inequality implies that C' is convergent at R.
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3. Convergent Case: p, >0 and p, < 1

The second inequality is a consequence of Wright’s theorem.
The first one can be proved as follows in the labelled case. Differentiating (1) and extracting
coefficients yields

n
ay, 1 Cr Op_k
Sn _ 2N pE_Gnok
nl  n Z E!'(n —k)!
k=0
If ¢, = o(ay,), then cutting the sum at nl/2? and using ¢ < ay in the first part shows that

[2"]A(z) = o([2"]A(2)*),
which implies divergence of A at R.

4. When p, = p,

The result is that every time (p,p) is present in Table 1, then there are sequences a,, and ¢,
of nonnegative integers making this happen. The first two lines of the table are dealt with by
exhibiting appropriate examples: general labelled graphs for the first one; partitions of sets for the
other one in view of the asymptotics of Bell numbers.

In the convergent case, an important tool is the following theorem.

Theorem 2. In the convergent case, if im ¢,_1 /¢, exists (then it is R) and Y, _" cpcn_p = 0(cy)
for any w(n) — oo, then py = p, = 1/A(R).

We first show how this theorem is used to prove that every p € (0,1) is reached in the labelled
case. The principle is to construct a sequence of generating functions C'[i](.r) such that the coeffi-
cients j![z/]Cl](z) are nonnegative integers for 0 < j < i and the value of lim a%]/cg] is p. Start
with

z/R)"
cllz) = a Z %
Then by the theorem, p = exp(—anr?/6), which fixes a. To construct C¥+1 from C¥, the coefficient
of k'z* is replaced by its integer part, and the coefficient of z**1 is increased to keep p unchanged.
The increase is at most R~ /k! which is sufficiently small compared to its original value so that the
conditions of the theorem still hold. Therefore the limit C1° also satisfies the theorem. A similar
argument gives the unlabelled case.

Proof of the theorem. In the labelled case, the hypothesis is used in an induction on d to obtain

(d) _

the following asymptotic estimates and bounds on ¢’ = [2"]C(z)%:

(d)

— ¢y < K% ¢, for some K and sufficiently large n;
— @~ dC(R)* ¢, uniformly for d < D(n), where D(n) — .

The conclusion follows from there by extracting the coefficient of " in A(z) = 3. C(x)?/d..
A proof in the unlabelled case is given in [2]. O

5. Conclusion

Many properties related to connectedness can be deduced from very little information on the
counting sequence of the connected components. Much more than indicated here is known if
extra smoothness conditions on the sequence are satisfied. Also, results regarding the limiting
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distribution are known. We refer to [2] for details. Still, a large part of Table 1 remains unproved,
mostly regarding the existence of structures with the announced (p¢, py).
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