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The C-algebra C{z}[o,] of (linear analytic) g-difference operators is the algebra of polynomials
in o, where 0,2 = gzo, and where the coefficients are taken in the algebra C{z} of convergent
power series at = 0 in C. The elementary operator o, acts on = by multiplication by the number
¢ and we make it act on functions of z by o,f(z) = f(qz). The theory is very different depending
on whether |g| is smaller, equal or greater than 1. We deal here with the case when |¢| > 1 and,
for simplicity, we assume that ¢ is a real number.

Like differential equations, g-difference equations may have divergent power series solutions and
the aim is to develop a theory of summability for such series like it has been done by Martinet-
Ramis and Ecalle for solutions of differential equations. A theory of summability means having a
rule to change in a unique well-defined way a series solution into an actual solution.

The similarity with differential equations is very strong. However new concepts had to be devel-
oped and new phenomena occur.

1. Jacobi equation

The simplest non trivial example is given by the Theta series
@(.’E) — Eqn(n—l)/QJjn’
n>0

solution of the Jacobi ¢-difference equation

(/) ry(qr) — y(z) = —1.
The O series can be viewed as an analog of the Euler series

Z(—l)”n!x”"’l

n>0
solution of the Euler equation

x2y’ +y==.
The function
y(z) = q—;—(long—mogqx’

solution of the homogeneous ¢-difference equation zy(gz)—y(z) = 0, is the analog of the exponential
function exp(1/x), solution of the homogeneous differential equation 2%y’ +y = 0 and it plays with
respect to (J) a like role. Notice however that the series © is more divergent than the series

solutions of linear differential equations which are known to be of Gevrey type.
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Letting
y = Zq—;—(long—mogqx
changes (J) into the equation
2(qz) — 2(z) = _q;—(long—mong
and, letting then z = ¢* and u(t) = 2(z), into the equation
(A) u(t+1) = u(t) = —gz,

This latter equation is a linear difference equation the second member of which has an essential
singularity at infinity. However the Fourier method can be used to solve it as follows.
Denote by
+oo+1b

a+ico
Flat)(r) = — / we™tdt and  FNp(r))(1) = / o(r)ertdr

o % 00 —oo+1b
the Fourier and the inverse Fourier transform. Assume that a solution u(t) of (A) is left invariant
by successive application of F and F~1. Using the identity F(u(t+ 1))(7) = e"F(u(t))(r) we get
1,1 T_\2
1 q_5(§+log q)

V2rlogg 1 —e€7

Flu(®)(1) =

and then solutions of (A) in the form
t 1 +oo+ifly q—%(i-l-@)z
uelt) = v2rlog g /—oo+i9q I—e

There correspond the following solutions of (J) defined on all of the Riemann surface of log:

etdr.

—-1/8
q / —%(logq%—l)logq% 1 C

W)= artogq i, ! a0

the integral being taken on the half line dy starting from 0 to infinity with angular direction
§ = 0,log q provided that § # 0 mod 2r. When 6 varies between two successive forbidden values
2km and 2(k + 1)7 the corresponding ys(x) are equal. When 6 is taken in different such intervals
they are equal up to a multiplicative g-constant (a g-constant is a constant in the algebra C{z}[o,],
i.e., a function C(z) satisfying C(gz) = C(z)). Thus we can concentrate on one of them. We
choose @ €]0,27[ and denote by fy the corresponding ys solution. Such a solution can be taken as
a model for ¢g-sums of ¢-Borel-Laplace summable series.

We emphasize its main property. Writing, for all £ # 1, the identity 1/(1— &) = Efn;lo £&m +
£"/(1 = ¢) yields the equality

n—1
— ;—(logq%—l)logq% 5

n-1 —-1/8
= m(m_l)/2 m qi 7(1
fo() n;q ¢ +¢72wlogq/deq RIEG

and then the inequality

n—1

o) = 3 g

m=0

n{n—1 —3
SCW] (2 )+%arg(21(ze 9)|x|n

where Cj is the constant Cy = max(1,1/|sinf|) and arg, = @ arg. Note that the constant Cy is
locally uniform in €. Such a condition can be taken as a model for fy to be the g-sum of level 1 of
its Taylor series >~ <, gmm=1/2m
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We will see that, in all generality, ¢-Borel-Laplace summable series and ¢-summable series of
level 1 are the same series.

2. ¢-Borel-Laplace summability or ¢g-summability of level 1

Translating the Fourier and inverse Fourier transforms in terms of the variables * = ¢! and £ = ¢”
yields the g-Borel and ¢-Laplace transforms
dx

Bq(f)(&) = Ll/g q%(logq%—l)logq%f(x)_
V2rlogq Jizj=p xz’

-1/8
L4’ -4 LS

where p > 0 is chosen small enough for f(z) to exist. The formal analog of Bq is given by

) n n‘En
Bq(z ap,z") = Z qn?nfl)/Q'

n>0 n>0

- ;—(logq%—l)logq%@(f) df

Definition 1. A series > . a,z" is a ¢-Borel-Laplace summable series for the direction 6 if it
can be applied a ¢-Borel and ¢-Laplace transform relative to the direction # and close directions.

The Theta series is the typical example of a ¢g-Borel-Laplace summable series.

Definition 2. — A series EnZO apz™ is of g-Gevrey type (of level 1) if it satisfies a growth
condition |a,| < K¢™»~1/2A" for all n and suitable constants K and A.

— A function f is g-asymptotic of level 1 to a series ]?(x) = >, 50 @na” for the direction @ if, for
suitable constants Ky > 0 and Ag > 0, the inequality
n—1
1) - 3 anem

m=0

< Kggh ) g

(o)

holds for all n and small enough 2 on the Riemann surface of Log.

The Jacobi function fy is g-asymptotic to the Theta series for all directions but the directions
f = 0 mod 27.

A g-asymptotic expansion is also an asymptotic expansion in the usual Poincaré sense. Hence, if
it exists, it is unique and can be called the Taylor series of the function. There exist g-flat functions.
However one has the following result.

Proposition 1. The unique function to be g-flat in two different directions is the null function.

-~

Definition 3. A series f(z) = > . ga@n2" is said ¢g-summable of level 1 with g-sum f for the

direction @ if the condition (*g) holds locally uniformly with respect to 8, i.e., if there exist a
neighbourhood (6 — ¢,60 + ¢) of # and constants K and A such that

n—1

flz) - E amz™

=0

< I(q%(nQ—}—argq(z’e_ié))An |$ |n

(skkg)

for all n, all § € (§ — ¢,0 + ) and all small enough z.

It results from Proposition 1 that the g-sum of level 1 of fif it exists for the direction € is unique.

Theorem 1. A series is g-summable of level 1 for the direction 8 if and only if it is q-Borel-Laplace
summable in the direction 8 and the sums are equal.
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Definition 4. A series f(x) = Y a,z" is said g-summable of level 1 (or ¢-Borel-Laplace summable)
if it is g-summable of level 1 for all directions but locally finitely many which are called singular
directions.

The series Theta is g-summable of level 1 with singular directions # = 0 mod 2.
One can extend the previous notions to any level k by substituting z* to z or so.

3. Summability of series solutions of ¢-difference equations

Using the elementary operator o, instead of the derivation dd—z one can define the Newton polygon

of a linear ¢-difference operator like it can be done for a linear differential operator. A fundamental
set of formal solutions was given by Adams in [1]. It is made of finite linear combinations of terms
of the form R

f(z)z“log™x e2108° % where ac CmeNue@

and where f(z) is a power series (possibly in a fractional power of z). The numbers u are the
different slopes of the Newton polygon N(A). It was proved by Carmichael [2] that when N(A)
has the unique slope 0 then there are no exponential terms and all the power series are convergent.
The origin 0 is then either an ordinary or a regular singular point.

When there is the slope 0 and a non zero slope then the origin 0 is an irregular singular point; the
number of solutions without an exponential factor is equal to the length of the zero slope. Those
solutions we will call the formal series solutions even though they can contain a factor 2™ log™ z.

Theorem 2. Suppose that the Newton polygon N(A) of a linear q-difference operator A admits a
unique non zero slope equal to k. Then, the formal series solutions of A are q-summable of level k.

Following the same kind of idea one can also define g-accelerators like it was done by J. Ecalle for
differential and difference equations and introduce a notion of g-accelero-summability, also called
g-multisummability for finitely many levels pq,..., .

Theorem 3. Suppose that the Newton polygon N(A) of a linear g-difference operator A admits
the non zero slopes py, ..., j,. Then, the formal series solutions of A are g-multisummable of levels

(:ulv' . '7“]9)'

Proposition 2. g-summable series of level k are naturally given a structure of C{x}-module, not
a structure of algebra.

For example, if fis a non convergent g-summable series of level 1 then ]/‘\2 is not g-summable of
any level k; however it is g-multisummable of levels (1,2).

Bibliography

[1] Adams (C. R.). — Linear g¢-difference equations. Bulletin of the American Mathematical Society, 1931, pp. 361-382.

[2] Carmichael (R. D.). — The general theory of g-difference equations. American Journal of Mathematics, vol. 34,
1912, pp. 146-168.

[3] Zhang (Changgui). — Les développements asymptotiques g-gevrey, les séries Gg-sommables et leurs applications.
Annales de UInstitut Fourier, 1998. — To appear.



