Fraissé-Ehrenfeucht Games and Asymptotics

Alan Woods

University of Western Australia
March 23, 1998

[summary by Julien Clément and Jean-Marie Le Bars]

Abstract

Fraissé-Ehrenfeucht games are played on two structures, where a structure might, for ex-
ample, consist of a unary function mapping a finite set into itself. Via generating series and
a Tauberian theorem, it is possible to investigate the asymptotic probability of having a
winning strategy for such a game, when it is played using a fixed structure, and a random
structure of size n, with n going to infinity. Actually for unary functions this gives a con-
vergence law for all properties of the structure which are definable in monadic second order
logic.

1. Introduction

We consider here structures .A based upon a set A and finitely many relations E; of finite arity
A= (A, Fi(z,y), Fo(z), Es(z,y,2),...).

A classical example is a set of vertices V' and an edge relation E(z,y)so that V = (V, E) describes
a graph. We can also think of simple structures A = (A, f) consisting of a finite set A and a unary
function mapping this set into itself (see fig. 1). This unary function induces a binary relation
Flz,y) < f(z) =y

In order to use generating functions (see the last section) we need to translate a decomposition
property of structures to the generating functions: this will be done through the disjoint union.
Let us consider two structures

A= (AE{,...) and B= (B, EF,...).
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Ficure 1. Graphical representation a structure A4 = [29 ,f (where the unary

function f maps {1,2,...,29} on itself).
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If AN B =0 and each EZA has the same arity as EZ»B, the disjoint union is defined as the structure
whose domain is the union of the domains and whose relations are the unions of the corresponding
relations

AUB=(AUB,E{UEP,...).
A class of structures has components if each structure can be uniquely decomposed into disjoint
unions of structures (called component structures) from some components classes. For structures
A = ([n], f), where [n] denotes {1,...,n} and f is a unary function, one can define component
classes relative to the size of the unique loop present in each connected component of the graph
of f. From this point of view, for the structure A of figure 1, we see three components. The
first component of A consists of two component structures in the first component class (the class
corresponding to loops of size one i.e. fixed elements of f). The two other components consist in
two single component structures and are respectively in the component classes 2 and 7 (relatively
to the size of the loop).
Let us define the rank r(¢) of a formula ¢ in the context of the second order logic (or MSO logic
for short) inductively by:

1. If ¢ has no quantifiers, then r(¢) = 0;

2. If p is =0, then r(p) = r(o);

3. If ¢ is obtained from oy, 0, by the application of a binary propositional connective (e.g., if

@ is 01 A 03, 01 < 03, etc.) then r(¢) = max{r(o1),r(02)};

4. If ¢ is of the form Yvo, Jvo, VV o or 3V o for some variable v, V', then r(¢) = r(o) + 1.
A sentence is a formula that has no free variables and is a property of a structure.
The key observation is that there are only finitely many inequivalent sentences €1, ...,&,, of rank r.
Hence every structure A satisfies exactly one of the sentences (also of rank r)

Pr=6 AN, ba= 28NNy ooy Pom = =60 Ao A

Given a rank r (and implicitly the sentences t,...,1¢m), for each ¢ € {1,...,2™} we define
the class of structures which satisfies ;. These classes can be viewed as equivalence classes of
Fraissé-Ehrenfeucht games.

2. Fraissé-Ehrenfeucht Games

The goal is to see whether or not we can distinguish two structures in a r moves game. The
game is played with two structures A = <A, EIA, .. > and B = <B, EB, .. >
— At move 7, SPOIL chooses A or B (let’s say B) and one of the following is satisfied
1. an element b; € B or
2. a subset B; C B.
— DuPE responds on the other structure (A here) choosing one of the following
1. an element a¢; € A or
2. a subset A; C A.

DuPE wins if after r moves the map {a;,...} — {b;,...} taking a; — b; is an isomorphism of the
induced substructures of (A, 4;,...),(B, B;,...) on these sets. We write

A=, B < DUPE has a winning strategy.

Note that there is no ez @quo (either SPoIL or DUPE has a winning strategy). These games are
the main tools for proving the following theorems:

Theorem 1. Let us consider some structures Ay, Az, B1, By, one has

A=, 81,./42 =, By = A U Ay =, By UBs.
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FIGURE 2. The components classes Cy,...,C4 relative to =5 (left), the structure A
and its four components (right).

Theorem 2. For every structures A and B, one has

A =, B iff there exists i such that A= ; and B |= ¢,
where the sentences ¥;’s are defined in the first section.
Corollary 1. There are only finitely many =, classes.

Another problem consists in determining the =, class of a given structure A. It is solved if we
know the number of component structures lying in each =, component class (or color if we think of
=, as a colouring). On figure 2, we have 5 component classes Cy,...,Cs relative to the =3 relation
(namely triangles, squares, cycles of odd length strictly greater than 3, cycles of even length strictly
greater than 4). The numbers of component structures in each component of the structure A are
respectively my = 5, mg = 1, m3z = 0, my4 = 4.

3. Counting Structures with Components

We count either

1. the number a, of labelled structures with n elements, or
2. the number b,, of unlabelled structures with n elements (which is, also, the number of noniso-
morphic structures with n elements).

Here we focus on counting labelled structures. So the exponential generating series

o0

a(z) = Z %$”

n=0
will prove highly useful. Indeed, for a structure A = G U H, letting a(z), h(z) and g(z) be the
corresponding exponential generating series, we write
g(x)?

a(z) = g(z)h(z) or a(z)= 5

whether G and H are in different classes or not. By induction the exponential generating series
associated to A = ¢ 1.1 G™ the disjoint union of m structures g<1), .. .,g(m), is

m g(x)"
ox) = gV(&) (@) or ()= L7,
respectively if G, ..., G(™) are all from different classes or all in the same class. Hence the
generating series a(z) for structures with components in the component class C is
2 m
a(x): 1—|—C($)+ C(ﬂf) _|_..._|_&_|_...:ec($)’

2! m!
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where c¢(z) = > 2™ (cy is the number of labelled structures in the component class C with n
elements).

There is a connection with monadic second order logic due to Compton [2]. Let us consider the
component classes (relatively to =,) Cy,...,Ci (so that the generating series for whole component
class is e¢(z) = 5, ¢i(z)). There is a unique k-tuple (my,..., mg) associated to each structure
A, where m; is the number of component structures of A lying in the i-th component class C;.
Moreover for two structures A and B (with k-tuples (mq,...,my) and (nq,...,nx)), there is an
integer R = R(r) such that if Vi € {1,...,k} either m; = n; or m;,n; > R, then A=, B (plainly
speaking, too many component structures of the same component class prevent to distinguish
structures). Hence for a sentence ¢ of rank r, the number of labelled structures A such that A |= ¢
depends only on my,...,m; where m; € {0,1,..., R — 1,00} is the number of components in C;
(oo means anything equal to at least R = R(r)). Considering the exponential generating series
ay(z) = af /n! where a;; the number of labelled structures with n elements satisfying ¢, we can
write

_ af@)™ - er(z)™
(@)= Y ST
(ml,...,mk)ES
where § is finite and ¢;(2)°°/oc! denotes S2°°_ 5 ¢s(2)™ /m! = €@ — S ETLci(2)™ /m!. The series
a,(z) is a finite sum of very similar terms. It is enough just to consider a series of the form

m m
ao(z) = L @™ @) ento),
mq! my!
This formula means that a structure A satisfying ¢ has exactly m; components in the class i
for i € {1,...,¢} and any number of components in the other classes. We want to know a;, or

equivalently p,(¢) = ay /a,, the fraction of structures of size n satisfying ¢. We are also interested
in the asymptotic probability p, = lim, .. pn(®), when this limit exists.

It is Compton’s idea to use partial converses Tauberian lemmas to get limit laws for u,,. Here is a
sample theorem whose proof is based on such lemmas.

Theorem 3. For any class with components, if a,/n! ~ Ct"/n% and c,/n! = O("/n) (with
a > —1) then p(p) = lim, oo pn () exists for all MSO sentences ¢ and is equal to a,(p)/a(p).

Due to known results about a, and ¢, for structures with one unary function, we have also

Corollary 2. The asymptotic probability u, always exists with one unary function.
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