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Abstract

We consider a system with N servers and messages arriving according to a Poisson process.
The service time of a message is exponentially distributed. Two strategies to process the
messages are compared. In the first strategy, an arriving message is sent randomly to one of
the servers. In the second strategy, for each message two servers are selected randomly, and
the message is directed to the least busy one. The queue length distribution is investigated
as N tends to infinity.

1. Introduction

We assume that we have a set of N servers with NV queues, these servers process a stream of jobs
arriving to that system. Once an arriving job has been allocated to the queue of one of the servers,
it cannot switch to another queue. We assume that the arrivals are Poisson with rate AN and the
processing times are exponentially distributed with rate 1. Inside the queues, the service discipline
is First In First Out. We shall assume that A < 1, with this condition the system will not explode
with the service disciplines which we consider.

The simplest strategy, S;.q4 say, to allocate the jobs is to distribute them at random to the
servers. In this case the system is equivalent to a set of N independent queues with arrival rate
A and service rate 1. It is well known that, at equilibrium, in each queue the number of jobs has
geometric distribution with parameter A, in particular the probability that there is at least & jobs
in a queue is A*,

A more efficient strategy S, consists in choosing the shortest queue at the arrival of the job.
Unfortunately, this kind of discipline is very difficult to analyze, in particular it would be desirable
to compare it quantitatively with our first discipline. The exact analysis has been carried out by
Flatto and Mac Kean [2] in the case N = 2, using uniformisation techniques. This approach does
not seem to extend to a higher dimension.

The object of this talk is to analyze an intermediate discipline, S;,¢, for which it is possible to
derive some quantitative results. An arriving job takes two servers at random and chooses the one
with the shortest queue. Notice that for S, there is a tight correlation between the queues, all of
them are considered to allocate an arriving job. Here, only two of them determine the destination
of the job. For a fixed N, a quantitative analysis remains difficult; however, as N goes to infinity, a
given queue depends weakly of any other queue. As we shall see, asymptotically the queues behave
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independently. This phenomenon allows to write down one-dimensional equations. This approach
is called the mean field method in statistical physics.

2. The Differential Equations

For this model, it is convenient to describe the queues in the following way: uj n(t) will denote
the fraction of the N queues which have at least k jobs at time {. Clearly

1 =wuon(t) > ur n(t) > - rupn(t) > upprn(L) > ...,

and 0 < ug n(t) < 1, the vector Un(t) = (ugn()) belongs to the state space S = [0, 1]™ which is
compact for the point-wise convergence. It is easily seen that (Un(?)) is a Markov process since the
vector of the number of jobs in each queue is a Markov process and the order of the queues does
not matter. If ' is a measurable functional on &, then F(Un(?)) satisfies the stochastic differential
equation,

+ oo

(1) dFUN)(1) = Y N(urn(t) = wesa (D) (FIUN() = 55) = F(UN (1)) di
k=1

+ oo
£ AN (ubo () = ukx () (FUN) + S5) = F(UN(1)) di + dMx (D),

k=1
where ey, is the vector (14—} ). The first term in the right hand side is the contribution of departures,
N(ug(t) —ug41(t)) is the number of queues with & jobs hence the rate at which Un(t) — Un(t)— 3.
The second term concerns the arrivals, (uf_,(t) — uz(¢)) is the probability that two queues chosen
at random have a size > k. The last term My (¢) is a martingale (which depends on F), i.e. roughly
speaking, a stochastic perturbation; in particular E(Mp(¢)) = E(Mpy(0)) for all ¢ > 0. It is easily
seen using standard results concerning Poisson processes that
Kt
iﬂ77
this simply means that the stochastic perturbation is vanishing as N — +oo. Taking F(U) = uy,
this suggests that the equation (1) becomes a deterministic differential equation,

2) du;f(t) = —(ug(t) — ups1 (1)) + Mui_i (1) — ui (1)), k> 1.

E(MA(1)) <

If (ux(0)) € Ly, that is 3729 ug(0) < +00, using a truncation procedure, it can be proved that
(2) has a unique solution. So, as N — +oo, the (ug n(¢)) should converge to a solution of this
equation.

Rigorously, Doob’s inequality [1] tells us that

Kt
P sup |Mpy(s >a)§—,
(OSSSJ (s) L
hence

(3) P ( sup

0<s<t

ug, N(s) — up,n(0)+

/OS (kN (@) = w1, N (2)) = Mui_y n(2) = uf y(2))dz| > a) . %
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It is easy to check that if (ug,n(0)) converges to (ux(0)) as N — 400, then the sequence of processes

(ur,n(5))ogs<t, N €N
is relatively compact. The identity (3) gives that any limit (ug(s))o<s<; (in distribution) satisfies
the differential equation (2) with probability one. We deduce that if (uz(0)) € Ly then (uxn(s))
converges in distribution to the unique solution of (2).

3. The Convergence of the Invariant Measures

Up to now, we have only looked at the transient behavior of the queues. That is, for a fixed ¢,
we proved that the state at time ¢ converges in distribution. For N € N, the model of size N has
an equilibrium distribution 7n; the (delicate) question is: as N — 400 does the sequence (7y)
converge to a stable point of (2) ?

If U(0) € Lq, then it is easily seen that (/\Qk) is the unique stable point of (2). Notice that
the 7 are probability measures on a compact space, thus the sequence is relatively compact. If
one can show that every limit point is a stable point of (2) which belongs to L, then necessarily
the sequence converges to (/\Qk). This is done using the following estimation: for any continuous
function f: L, — R,

yim_ sup 1E.(f(Un (1)) = fu(D)]] = 0,

where F, denotes the expectation with the initial condition Un(0) = v and u, is the solution of
(2) with »(0) = v. This gives a kind of uniform convergence of the processes Up.

4. Conclusion

For the strategy S;.:, the queue length has a super exponential tail. We have seen that for 55,4,
the tail was only exponential. It is remarkable that with a little improvement of 5,4, the tail
distribution drops significantly. For the optimal discipline S, asymptotically, it is easy to see that
there will be an unbounded number of empty queues.
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