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1. Introduction

The analysis of the classical Euclidean algorithm has been performed by Heilbronn [4] and
Dixon [3], using different approaches. For a random pair of rational numbers, the average number

of divisions is
12log 2
2

D, ~ log n

Here, we will analyse the binary Fuclidean algorithm, which uses only subtractions and right
binary shifts. This “binary GCD algorithm” takes as input a pair of odd integers (u,v) from the
set = {(u,v) 0odd,0 < u < v}. Then the GCD is recursively defined by

ged(u,v) = ged (2\“};—%, v)
ged(u,v) = ged(v, u)

where Valy(n) is the greatest integer b such 2° divides n, i.e., the dyadic valuation of n. The
corresponding binary GCD algorithm is as follows:
while u # v do
while v < v do
b := Valy(v — u);
vi= (v —u)/2%
end;
exchange u and v;
end;
return u.
Ezample. If the input is (u,v) := (7,61) then b := Valy(61 — 7) = 1. Thus v := 54/2! = 27, and
the algorithm continues because u < v. Now b := Valy(27 — 7) = 2. Thus v := 20/2? = 5. Now the
algorithm restarts with (u,v) := (5,7). It leads to v := (7 — 5)/2! = 1 and therefore one restarts
with (u,v) := (1,5) which leads to v = 1 = u so the algorithm stops and returns u, namely 1 (as
expected since 7 and 61 are coprime). One can write:
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In general, for each “inner while loop”, one has
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where z; := u/v (with (u,v) as in the beginning of the loop), ;41 := u/v (with (u,v) as after the
exchange), where a; := 1+ 201 4 obitba 4 oLy obite by gnd K= by b+ bimg + by (the sum of
all the b’s obtained during the ¢-th inner while loop). The algorithm thus produces the following
binary continued fraction expansion
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Three interesting parameters are:

— 7, the depth of the continued fraction or equivalently the number of outer loops performed;

— > ._, v(a;), the number of subtractions (where v(w) is the number of 1’s in the binary expan-
sion of the integer w);

— >°0_, ki, number of rights shifts performed or equivalently inner loop executions.

Their average values on the set ,, = {(u,v) 0dd,0 < u < v < n} are respectively noted £, P,
and 5,. Note that F, is also the average number of exchanges in the algorithm, and that P, is the
average number of operations that are necessary to obtain the expansion.

2. A Ruelle Operator for a Tauberian Theorem

In order to establish that these three parameters have averages that are asymptotic to log n, we
introduce the following Ruelle operator:

Z Z a+2k (a+12kx)'

k>1 a odd
1<a< 2k

The average F, is easily expressed in term of Vs, with the help of the following definitions:
- 1 1
F(s):= (Id =Vy)7'Id](1), G(s):= (Id —V,)~% o V,[Id](1), C(s) := z o (1 - 2—5) ¢(s).
k odd
Proposition 1. E, is a ratio of partial sums of the two Dirichlet series ((s)F(s) and {(s)G(s).
Proof. Let QI be the subset of © for which the algorithm performs exactly I exchanges. Then,

=5 X 5 (5):
(u,w)eqld

Summing over all the possible heights (I > 0) yields:
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Differentiating with respect to w, and then choosing f = 1 and w = 1 yields
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The proof is completed by observing that
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The key is now to prove that the following theorem may be used:
Theorem 1 (Tauberian theorem). If F(s) is a Dirichlet series with non-negative coefficients that
is convergent for R(s) > o > 0 and if

1. F is analytic on the line R(s) = o except at s = 0;

2. F(s) = % + C(s) where A,C are analytic at o (with A(o) #0);

then one has, as n — 00,

—714(0) n’ log" n e(n
= oy o 1+

where e(n) — 0.
Proof. See Delange [2]. O
Lemma 1. The Tauberian theorem applies to F with c = 2 and v = 0.

Proof. Indeed

F(s):= (1d=V,)"'1d)(1) = 1 4 2&5) Y ”;1 _ % (C(g(;)l) N 1) '
v odd

The last member of the equality clearly satisfies the conditions of the Tauberian theorem, and the
same holds for (F with ¢ = 2 and v = 0. O

Lemma 2. The Tauberian theorem applies to G with 0 = 2 and v = 1.

Proof. Here lies the complex part of Brigitte Vallée’s proof. It is impossible to conclude as quickly
as in lemma 1, indeed, this time we need to find an appropriate functional space on which Vj is
a compact operator. A mixture of various functional analysis theorems (Fejer-Riesz’ inequality,
Gabriel’s inequality, Krasnoselsky’s theorem and other works by Shapiro and Grothendieck) show
that it is the case on the Hardy space H?(D), where D is an open disk containing ]0,1]. This
leads to the fact that for s > 3/2, Vs has a unique positive dominant eigenvalue, equal to 1 when
s = 2. In addition V; has a spectral radius < 1 on R(s) > 2,s # 2. Thus (Id —V,)™! is regular
on the domain D and condition 1 of the Tauberian theorem is fulfilled. Condition 2 is proved by
means of perturbation theory applied to Vs = Ps + N (Ps is the projection of V on the dominant
eigensubspace), in a neighbourhood of s = 2. See [7] for a detailed proof. O

This implies the following fundamental result:
Theorem 2. The average number of exchanges of the binary Fuclidean algorithm on Q,, is

FE, ~ log n,

2
2 fo(1)

where fy is the fized point of the operator Vy thal is normalised by fol f2(t)dt = 1.
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3. The Other Two Parameters

In order to study the other two parameters (total number of subtractions, total number of shifts)
one still uses the Tauberian theorem but with a more intricate Ruelle operator, see Vallée [7]. This
leads to the following two results.

Theorem 3. The average number of total iterations is

2 1 1
P, ~ Al ith A= ——— — | -
ogn W w2 f(1) ;o;d 2ka ()

where fy is defined as above, Fy(x) := [ fo(t)dt, F5(1) = 1 (where ko is the integer part of log, a).

Theorem 4. The average number of the sum of exponents of 2 used in the numerators of the
binary continued fraction expansions, i.e., average total number of right shifts is

2 1 1
Sy~ m (2 Z QTGFQ (g)> log n.

a odd
4. All Roads Lead to Rome
In Brent’s paper [1], one can find a different approach which suggests that

1 1!
P, ~ —logn where M =log2 — —/ log(1 — z)ga(z)dz
M 2 /s

and where g, is the fixed point (and normalised as f;) of

A Y Y S

b>1

Unfortunately, this approach is based on a heuristic hypothesis (exercise 36, section 4.5.2, rated
HM49 by Knuth in [5]). Brigitte Vallée explored this approach with a Brent operator B, without
heuristic arguments but providing a spectral conjecture holds, this leads to the following result:

4
P, ~ Blogn where B := ———.
mT2g2(1)
The miracle holds and, after numerical experiments, A = ﬁ = B = 1.0185.... But nobody

has proved these equalities. We can also note that a similar method was used by Brigitte Vallée
and one of her students to analyse the Jacobi symbol algorithm [6]. Finally, the binary Euclidian
algorithm is only a slight variation on one of the oldest known algorithms but there is still some
unknown territories in its “complete” analysis!
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