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Recurrences and Functional Equations

In this talk, we discuss two types of functional equations arising
in the analysis of GENERALIZED DIGITAL SEARCH TREES and
the ASYMMETRIC LEADER ELECTION algorithm.

Generalized Digital Search Trees
Let b6 > 1. For a given sequence a,, and a constant u

n n .
Lp+b = af’n,“"uz (k)pk(l _p) k(mk_l_ajn—k}) n 2 0
k=0

with some initial condition. The Poisson transform
n

X(z) = 2 n>0 TnEre” " of zy, satisfies the following differential-
functional equation

b i< 5 _ N N
2 (f)ag—;) = A(2) + u(X(pz) + X(g2))

i=0
where ¢ = 1 — p.

(Flajolet&Richmond, RSA'92 for b > 1 and p = 1).
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Recurrences and Functional Equations

Asymmetric Leader Election Algorithm
Give g and x1, let

n n -
k=0

Its Poisson transform satisfies
X(2) = X(pz) + X(gz)e " +1— (14 2)e %,
or in general
f(2) = f(pz) + f(gz)e ™ + a(z)
for some function a(z).

In general, when studying distribution, we must deal with the
following functional equation:

fer1(2) = fr(pz) + e " fi(qz) k>1.

(Fayolle, Flajolet, Hofri, AAP 1984.)
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Motivation: Generalized Lempel-Ziv Parsing
Scheme

The original Lempel-Ziv parsing scheme partitions a sequence of
symbols into variable phrases such that the next phrase is the
shortest phrase not seen in the past.

For example,
ababbababaaaaaaaaac

is parsed into
(a)(b)(ab)(ba)(bab)(aa)(aaa)(aaaa)(c)
and its code becomes:
O0aOblb2ad4blaba7alc

which requires 54 bits.

(The Lempel-Ziv code consists of pairs (pointer, symbol)
each pair being a pointer to the previous occurrence of the prefix
of the phrase and the last symbol of the phrase).
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Generalized Lempel-Ziv Parsing Scheme

Let b € {1, 2,...} be a parameter. A sequence is partitioned in
phrases such that the next phrase is the SHORTEST phrase seen
in the past by at most b — 1 phrases. (b = 1 corresponds to the
original Lempel-Ziv algorithm).

Let b = 2, and consider the string ababbbabbaaaba which is
parsed and coded as follows:

Phrase: 1 2 - - 3 4 - 5

Sequence: (a) (b) (a) (b) (bb) (ab) (bb) (aa)
Code: 0Oa Ob 1 2 2b 1b 3 la
For example, for b = 2 ababbababaaaaaaaaac is parsed into
(2)(b) (a) (b) (ba) (ba) (baa) (aa) (aa) (aaa) (c)

0alObl122a33alab5alc

which requires 47 bits. If we do the same with b = 3 we need
only 46 bits, while for b = 4 we need again 52 bits.
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Generalized Digital Search Tree

(0)

(0)
® BO @
(00)

A b-digital search tree representation with b = 2 of the
generalized Lempel-Ziv parsing

(1)(1)(0)(0)(10)(10)(00)(100)(01)(00)(01)(11)

of the string 1100101000100010011.
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b-Digital Search Tree Model

DIGITAL TREE MODEL.:

A b-digital search tree is built from FIXED number, say m, of
INDEPENDENT strings such that every node can store up to b
strings. Strings are generated according to the Bernoulli model:

symbols are generated in an independent manner with ”0“ and
”1% occurring respectively with probability p and q = 1 — p.
If p = q = 0.5, the the Bernoulli model is called symmetric,
otherwise it is asymmetric.

Parameters:

Sm(b) — size of the tree (i.e., number of nodes),

D,, — typical depth, that is, length of a path from the root to a
randomly selected string,

D! — depth of the ith string (path length from the root to the
node containing the #th string,

L., — (total or internal) path length

Lm:zm:Dfn.

1=1
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Depth in the Digital Tree Model

Recall the definition of the typical depth:

P{D,, =k} = zm:P{Df”: kY

1=1

m

Average Profile: Let B® be the average number of items
(strings) on level k of a randomly built b-digital search tree.
Then:

Bk
Pr{D,, =k} = — .

m
Define the generating function B,,(u) of B* as

Bn(u) =Y _ Bpu"

k>0

for u complex.
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Recurrence Equation

Due to a recursive structure of digital trees, we have:
Buussw) = b+ u > (") 5™ (Bi(w) + Buucs(w)
i=0
with initial conditions
Bi(u) =% for ¢=0,1,...,b
Observe that B(1) = m.

(For b > 1 and p = q = 0.5, Flajolet and Richmond solved the
above using Harmonic Sum Formula.)
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Poissonization

A standard “trick” in the probabilistic (and analytical) toolkit
says:

If you cannot solve the model at hand, poissonize it, that is,
replace the deterministic input by a Poisson input.

In our case, we define a new generating function called the
POISSON GENERATING FUNCTION:

~ o° ZZ _
B(u,z) = Z Bi(u)ﬁe :
=0 '

Then, our basic recurrence becomes:

~

(14 )" Bl =) = b+ u (Blu,p2) + Blu,2))

where

5, o o= /by O F(2)
(1451 (2) =“§(i) =
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Main Results: Digital Tree Model

Theorem 1. Under the asymmetric Bernoulli model:

ED, = —1 +1<h+ 1—H A(b, p)
m hy ogm hi \ 2Ry Y b—1 » D
log m
+ 8llogym) +0 (<)
m
hs — h}
Var D,, = %logm—l—O(l)

1

where h1 = —plog p — qlog q is the entropy, ho = plog? p +
qlog? q, and v = 0.577... is Euler constant, while H, 1 =
Zf;ll %, Hy = 0 is the harmonic sum. The constant A(b, p)
can be computed as follows

00 b )
B (z—l—l)b'
AbP) = 2 P T i S D =i = D)

n=2b+1 7=1
where f,, is given recursively by

e =m+ >0 ("M)p'q ‘4" fi + fm—i), for m >0,
fo=fi=..=fi =0,
fm—l—b fm—l—b_m>07m2b+1°
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Finally, § (log, m) is a fluctuating function with a small amplitude
when log p/ log q is rational, and § (log, m) = 0 otherwise.

(ii) Let G,(u) be the ordinary generating function of D,, (i.e.,

Gn(u) = Equ), um = ED,,, and o,, = +/Var D,,.
Then, for a complex T

o= (140 ()

Thus, the limiting distribution of D”fj% Is normal, and it
converges in moments to the appropriate moments of the standard
normal distribution.

e THm/om y

(iii) There exist positive constants A and o < 1 such that

p { D,, — cilogm
r
Vs logm

uniformly in k for large m.

>k} < Ao
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Numerical Values

Table 1: Numerical values of A(b, p) and ED,,, — hil log m for

p = 0.3
b A(b,p) | ED,, — hil(log m — 6(m, b))
1 1.25 — 2.04
2 0.96 — 3.20
3 0.91 — 3.94
5 0.83 — 4.76
8 0.76 — 5.48
20 0.60 — 6.78
50 0.36 — 7.01
90 0.12 — 8.49
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Main Results— Symmetric Digital Tree Model

Remark: In the symmetric Bernoulli model (p = ¢ = 0.5) the
limiting distribution does not exist! For example, Louchard and
Szpankowski (IT, 1995) proved that for b = 1 we have:

Let Qr = H?Zl(l — 279, and define

(m) = log, m — |logym] -

Then, for the symmetric Bernoulli we obtain for any integer
K

lim |Pr{D <logom+ K} —

m—r0o0
2 i+ 1)/2 _2—<K—w<m>—1—z‘>>‘
e =0.

2K—1p(m) 1 1+1

The function (m) is dense in [0, 1] but not uniformly dense,
thus the limiting distribution of D,, does not exist.
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Asymmetric Leader Election Algorithm

A set of distributed objects (people, computers, etc.) try to
identify one object as their leader. The election process is
randomized, that is, at every stage of the algorithm those objects
that survived so far flip a biased coin, and those who received,
say a tail, survive for the next round. The process continues until
only one objects remains. Let p be the probability of survival.

abcdefg

acf

The loser ->
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Recurrences and Functional Equations

Let H, be the number of rounds needed to identify the
leader or equivalently the height in the incomplete trie. Let
Gn(u) = Eu'™ = >, P(H, = k)z" be the probability
generating function of H,, Then, G1(u) = 1 and for n > 2

- n n— n

Gn(u) =u Z (k)pkq "Gr(u) + uq"Gn(u) .
k=0

Let now z, = EH,, and w,, = EH,(H, — 1). Observing that

z, = G| (1) and w, = G/ (1), we derive

n & n n—
x, = 1l+4gq xn""Z(k)pkq kwka n > 2,
k=0
n n B
w, = 2(mn—1)+qnwn+2(k)pkqn “wy n>2,
k=0

with xg = 1 = wg = w1 = 0.

Prodinger, Disc. Math, 1993 (only mean value),
Fil,, Mahmoud, Szpankowski, Appl. Ann. Probab, 1997
(symmetric case).
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Main Results

Theorem 2. Let P := 1/p and x := 2mwik/1n P. Then:

(i) The mean EH,, of the height admits the following asymptotic

formula

1 —~—T7(0)
In P

1
EHn:loan—I—E— +381(logpn)+0O(1/n)

where v = 0.577 . .. is the Euler constant, and
* — Tnq"
Tl (0) — Z n ’

n=2

where x,, must be computed from the original recurrence. The
function §1(x) is periodic function of small magnitude (e.g., for
p = 0.5 one proves |§;(x)| < 2 x 107°) given by §;(x) =
— D k40 are 2" where

(T 4+ xe)T(xk) — T7 (Xk)
- In P ’

g

I'(s) is the Euler gamma function and T} (s) is discussed later.
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(ii) The variance satisfies

m/6 — 1+ 2(1 — )77 (0) — 277(0) — (77(0))’

VarH, = 5
In“ P
27T7(0) + T5(0 1
4+ 1(1)nP 2( )_I_E_[(S%]O_'_(Sz(logpn)
Inn
L0 <—>
n
where
T'(0) = >  ——-T'(n) = ——¥(n),
n=2 n: n=2 n

where W (z) is the psi-function. The constant T, (0) can be
computed as

T;(0) = S =4

n

n=2
where w, is given by the above recurrence. Finally, d2(x) is a
periodic continuous function of zero mean and small amplitude.
The constant [63]y = 2 k0 |ag|? is the zeroth term of §3(x)
and its value is extremely small (e.g., for p = 0.5 one proves
that [62]o < sup |61(z)]* < 4 x 1071°).
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Numerical Evaluation

Table 2: Numerical evaluation of the constants T} (0), T;"(0),

T5(0), and the variance VarH,, for various p € [0.2..0.8]

INRIA'98

p || 7y (0) | T7(0) | T5(0) | VarH,
0.2 2.36 2.38 9.32 5.83
0.3 1.22 1.09 3.41 3.58
0.4 0.70 0.56 1.64 2.97
0.5 0.42 0.30 0.95 3.12
0.6 0.25 0.17 0.62 4.07
0.7 0.15 0.09 0.45 6.68
0.8 0.08 0.04 0.35 14.84

19



Limiting Distribution

Theorem 3. The following holds, uniformly for all integers k,
P(H, < k) = F(p"n) + O(n?), (1)

where

F(z) = o / e "t du(t) = / etdus(t),  (2)
0 0
where the measure p is defined on the positive real axis as follows:

Partition the positive real axis into an infinite sequence
of consecutive intervals Iy, Iy,... such that I has length
(q/p)*®), where s(k) is the number of 1's in the binary expansion
of k. Thus, Iy = [0,1],I; = [1,1 4+ q/p], etc. Note that
the total length of the first 2™ intervals Iy, ..., Iom_1 is p~ ™",
and that these 2™ intervals are obtained by repeated subdivisions
of [0,p~™], each time dividing each interval in the proportions
p : q. Given these intervals, define u by putting a point mass
|I1.| at the right endpoint of Iy, for each k = 0,1, ... with p,
denoting the dilated measure defined as above for the intervals
33_[(), LEIl, e
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In particular, when k = |logpn| + k where k is an integer,
then for large n the following asymptotic formula is true uniformly
over K

w—{loc b o k—{logpn}
P(H, < |logpn| +£K) = p " U%P }/ e )
0

1
+ O <_> ’
n
where {logpn} = logpn — |logpn|.

We observe that for the symmetric case p = ¢ = 0.5 we obtain

00 ' -
F pr— _Jw pr— )
(x) = ; e 1
and our results coincide with those of
Fill&Mahmoud&Szpankowski (1997):
a(n)—k 1
Pr{H, < |1 kl = O —
r{ < lgn] +k} exp(2a(n)—k) — 1 + <\/ﬁ>

where a(n) :=lgn — [lgn]|.
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Distribution for Symmetric Leader Election

| | | | | | | | | T
-4 -3 -2-1 0 1 2 3 4 5

The distribution function of Hsg — |lg20| and the two
continuous extremes.
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Sketch of Proof for DST

We only show how to estimate the Poisson mean X (z) =
B'(1, z). Differentiating the basic functional equation one finds

0 ~ ~ ~
(145X (2) = 2+ X(p2) + X (a2)
This equation is amiable to the attack by Mellin transform.

To recall, for a function f(x) or real valued z, we define its
Mellin transform F'*(s) as

F*(s) = M[f] = / T pye e

One can find more on Mellin transform in an excellent survey by
Flajolet, Gourdon and Dumas, Theoretical Computer Science,
144, 1995.
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Useful Lemmas

Let X (s) be the Mellin transform of X (z), and let
X(s) = M[X(8)] = I'(s)7(s)
for some function v (s).

Lemma 1. . The following is true: X (s) exists for
R(s) € (—b—1,—1) is defined for R(s) € (—2b — 1, —1).
Furthermore, y(—1 — i) =0 fori=1,....,b— 1, v(—1 —
b) = (=1t | and ~(s) has simple poles at s =
~1,0,1,... .

Lemma 2. Let {f,}.—, be a sequence of real numbers,

and suppose that its Poisson generating function F(z) =
> fn‘jl—:be_z is an entire function.  Furthermore, let its
Mellin transform F'(s) have the following factorization: F(s) =
M|[F(2); s8] = I'(s)y(s), and assume F(s) exists for R(s) €
(—2,—1) while v(s) is analytical for R(s) € (—oo, —1).
Then

n

v(—n) = Z (Z) (—1)kfk, for n > 2.
k=0
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Proof of Lemma 2

o’ n .

Let a sequence {g,}°°, be such that F(z) = D o 9ny, ik,

Gn = En: ()=, n>0.

k=0 k

n

If ﬁN(z) = Zg:_ol gnZy, then for R(s) € (—N,—N +1) we
have N N

F(s) = M[F(z) — Fn(2); s].
As s — —N, due to the assumed factorization F'(s) =
I'(s)v(s), we have

F(s) = — 1= N) +0(1)
and
F(z)—Fn(z) = (_;') (=N +0(NT as z— 0.

Thus, v(—N) = (=1)Vgn = 300, () (=1)F fifor N > 2.
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Proof

Then finding taking the Mellin transform of the basic functional
equation on X (z), and using the above factorization, we obtain

zbj() V(s —i) = +a )(s)

2=0
Define now

b

3(5) =2 () (=0 (s — 1)

=1

provided v(s — 1), ..., v(s — b) exist (at singularity points of

v(s).)
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Sketch of Proof for DST

Finally:
1) = g > ()0 e = )
e
= T, C q_sv(S)

Let now si, kK = 0, &1, £2, ... be roots of

1—p °—qg °=0.

Observe that sp = —1. Using
1 11 ha(sk)
— _ 2%k 4 O(s —
1—psS—qs h(sk) s — sk t 2h2(sg) +O(s — sx)

we finally prove

X(s) = T(s)(s) = ——— (hz ﬁ(—l)—wl) .

hi(s+1)2 \2r2 hi s+ 1

where 7'(—1) is a constant.
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Sketch of Proof for DST

Using standard arguments of the inverse Mellin transform we
finally arrive at

X = —=zl — —1
(2) p 7 logz + (2h§ hlv( ) + ) ?
F AN
4+ 2 : (Sk)’Y(Sk)Z—sk 4+ O(l) .
k£0 h(sk)

The above asymptotic formula concerns the behavior of the
Poisson mean as z — oo. Our original goal was to derive
asymptotics of the mean E D, in the Bernoulli model. To infer
Bernoulli model behavior from it Poisson model asymptotics, we
must apply the so called depoissonization lemma. Applying it
we prove

- 1 he 1, N —1
ED, = X —1 — —1
(m)/mh1 ogm + 2h? hlv( ) + e
r 5 1
+ Z (2k)7(3k)m—1—sk + 0 < 0g m)
k40 (sk) m

which proves Theorem 1.
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Evaluation of the Constant

We must evaluate

=3 )0y =1 -4,

1=1

where v(s)I'(s) = M[X (¢); s] and
X(z)=Y fn%e_z.

We recall that

i =m+ > (T)p'q ‘G + fmei) M >0
fO fl --:fb:07

.fm—I—b fm—l—b_m mZ]-

INRIA'98
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Evaluation of the Constant

Observe that for b > 1

B 1 = 2" L~ [aT(s+mn)
’Y(S) - F(S)M[nzb;l fnme ’ S] - nzb—':_l n! F(S)
= > %s(s—l—l)...(s—i—n—l).
n=b+1

Thus for R(s) € (=b— 1, —1):

/ B 00 fn n—1 1
v (s) = Z ms(s—i—l)'-'(s—i—n—l)zs_'_i
n=>b+1 1=0
fors ¢ {—2,—-3,...,—b}.
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Constant Evaluation

After some algebra:

V' (—k) = —% — % + A+ A(b, p)
where
I (i + 1)b!
A(b,p) = n:Zb;szn?Z:;(b_z)ln(n_l) (n—i—1)"
0o b )
S, (i + 1)
4s nzzb—:l-Q( b);(b—z)'n(n—l) (n—i—1)

The above series converge since the summands are O (log n/n?)
for b > 1.

After tedious algebra, we can prove that
A=H,+b(1+b)""

hence
7'(=1) = Hy_1 + A(b, p)
as desired.
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Sketch of Proof for LEA

The Poisson transform of x,, satisfies:
X(2) = X(pz) + X(gz)e ” +1— (14 2)e "

Define

Ti(z) = X(gz)e ™
which is an entire function. Its Mellin T} (s) is defined in
R(s) € (—2, 00), hence the Mellin X*(s) of X (z) satisfy

X*(s) = pX"(s) + T; (s) — T(s) — T(s + 1)
which has the following solution (P = 1/p)

_T(s) + (s + 1) = T{(s)

Py —1 , —1 < Rs < 0.

X7 (s)

Hence, the inverse Mellin gives us X (z) for large z, and
depoissonization leads to x,,.

But the solution depends on T7°(0), T5(0), and T}(0).
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Evaluation of the Constants

. iy no _ .
Since X (z2) = >, ~oTpZre”” since zg = 1 = 0. and

M(z"e *,8) = T'(s + n) for R(s) > —n, we obtain

* = Ln n_—=z — Ln
X7 (s) = E m./\/l(z e °,8) = E mf‘(s + n)
“—~ n! !

n=2
provided R(s) € (—2,0).

Moreover,

v —pz Zn—z xnnn—z
Tl(z):X(qz)ep:Za:n(Q)e :Z L

|
n>2 n: n>2

and thus, similarly,

o0 n

T (s) = Z x:ﬁ ['(s+n)

n=2

provided —2 < R(s) < oo. In particular,

T (0) = Y —5-T(n) = > ——.

n
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Proof for Distribution

Let Gi(z) = 300, P(H, < k)2re™*. Then

n=1 —

Go(z) = ze *
Gr+1(2) = Gi(pz) +e 7Gr(gz), k2>0.

We claim that the above functional equation for G (2) is solved

by
—k

~ k P —pkzt
Gr(z) =p z/ e du(t).
0

Indeed, for K > 1, we use the fact that the measure p on

(p~", p~*"1 is obtained from p on (0, p %] by a translation
and dilation, so that for every function f,
—k—1 —k
i q [ —k , 94
f(@)dp(t) = — fp 7+ =t)du(t)
pFk+ pJo p

and thus

P P pF
[ twanm = 7 swaeo+d [T 1o o)
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