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Abstract

The aim of this talk is to provide closed form formule for the coefficients of algebraic series
using a general method involving finite sums of multinomials.

We start by giving an example of an algebraic series encountered in combinatorics.

FErample. General planar trees without unary nodes can be described by
D=o0+0o(DD)+ o(DDD)+ ---.

The generating series enumerating the external nodes is a branch of the algebraic function defined
by the following equation:

d(z) =z +d(2)*/(1 - d(2))
and the coefficients of series d(z) are known to be the Schréder numbers, for which we give a closed
form expression in the third example while treating dissections of non-crossing configurations.

1. Form of Coefficients

The coeflicients of rational generating functions satisfy linear recurrences with constant coeffi-
cients and they can be easily given a closed form expression in terms of exponential polynomials.

In general, algebraic generating functions satisfy linear differential equations with polynomial
coeflicients leading to linear recurrences with polynomial coefficients. One may wonder whether it
is possible to obtain a finite index formula for the coefficients of algebraic generating series.

The answer is yes. The simplest case is when the series y(z) satisfies an equation of the form
y = 2®(y) with ® analytic at 0. Typically, the coefficients of such series can be given an explicit
form using the Lagrange inversion theorem:

7ly(2) = ~[y"1en(y).
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The following theorem provides closed form formule for a larger class of algebraic generating
functions using a similar approach.
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Theorem 1. Let ®(z,y) be a bivariate polynomial such that ®(0,0) = 0, ®,(0,0) = 0 and
Val(®(z,0)) > 0, where Val denotes the valuation in y and z. Consider the algebraic function
implicitly defined by f(z) = ®(z, f(2)). Then the coefficients of f(z) are given by

) = Y e ),
m>1

Note that, as we have seen in the examples, the powers of ® induce multinomial expansions and
the valuation condition on ® gives rise to finite sums of these expansions.

Indeed, ®(z,y) can be expressed as ®(z,y) = 2P(2) + yQ(z,y) where Val,(P) = v > 0 and
Val, (@) = a+ 8 > 1. The expansion of the mth power of ® is
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To avoid the cancellation of the quantity
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we must have
n—m+k>(m-k)y+ka and m-—1-Fk>kpj.

This entails
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whence m < 2n — 1.

Frample. Dissections:
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2-3 trees (edges and leaves):
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2. Proof of Theorem 1

2.1. Formal Proof. Let y(z) = )  a,z" be the generating series implicitly defined by the func-
tional equation y(z) = ®(z,y) = 2Q(z,y). We introduce a parameter u such that y(z,u) =
u@(z,y(z,u)). The expression of y is now y(z,u) = > @y mz""™

m
o u™.
From the Lagrange theorem we derive

1 - m
[ ]y(z,u) = —[y™ ' 1Q™(y, 2).
m
Thus we obtain

=)= 3 R (0 2).
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2.2. Analytic Part of the Proof. The following lemma is a classical formula derived from residue
computation.

Lemma 1. Let ¥(y) be analytic and yo be the unique root of ¥(y) = 0 inside a domain defined by
a closed curve v.Then

yoz_j; y¢%y)
2ir )" Y(y)

Since y(z)is a root of y — ®(z,y) = 0 and (0,0) is an ordinary point of y — ®(z,y) = 0, a formal
application of the lemma gives:
1 1— @ (z,y)
= — —d
y(2) 2T Ly y— P(z,9) v

A formal application (justified later) of the formula (1 — u)_l —14+u+u?+u®+--- entails:

1) W)= Y o [ A= e )

ool
m>0 y

Using the Cauchy coefficient formula, we derive:
y(z)= ) "L = @y (2,9))27 (2, ).
m>1

Still proceeding formally, we finally get the expressions stated in theorem 1:

)= I = I )
=Y Ly e ey)
m>1

Hence

Yn = Z i[znym—l]ém(%y)‘

Let us explicit now the contours v and 4’ used in the computations above. Since the equation
y — ®(y,z) = 0 has a unique solution f(z) tending to 0 with z, there exists p; > 0 and r; > 0 such
that |z| < py implies |f(z)| < 7y and | f;(z)| > 71 for all other solutions. Consequently

vy={y;lyl=r} forany 0<r<r.

The expansion that leads to formula (1) requires the condition |®(z,y)| < |y| around y = 0.
Consequently, the conditions on ®(z,y) around the origin imply that there exist constants K, po
and ry such that ®(z,y) < K(|2] + |zy| + |y?]) for |2| < p2 and |y| < ro. Since

1 -yl
1+ Jy|’

2] + [2y] + 9] < ly] <= |2| < |y]

it follows that:
1 -7

/—
1—|—7")'

v ={(z,9); |yl < r',|z| < p} forany ¢ <min(ry,ry), with p=min(py,p2,7
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3. General Case

Let y be the function implicitly defined by the algebraic equation P(z,y) = 0 where P is supposed
to be square-free, and assume this equation has several analytic solutions at the origin.

We present here an analytic technique designed to isolate the appropriate branch by giving more
information. Actually, it consists in a change of variable that leads to an equation of the form
Y = ®(z,Y) fulfilling the conditions of theorem 1.

Let y1,...,yr be the solutions analytic at the origin of the algebraic equation P(z,y) = 0. To
distinguish all these branches at the origin, we specify a the maximum integer such that

Eli;yy)(O) = yz(j)(O) forall 7=0,...,a—1.
Now, to isolate a specific branch, we perform the change of variables
Yy=7+ a,z%+ agzﬁ_lY,
where 7 is the common part of the expansions. The branch Yy = 24 ., a,2" is the unique
solution analytic at (0,0) of the equation ¥ = @(z,Y).

FExample. Take the generating series of graphs in non-crossing configurations defined by the alge-
braic equation
VA (-2-324+22%)y+14+32=0

The expansions of the branches at the origin are:

y1(2) = 14+ 2+ 227 +82° + 482" 4+ 3522° + 0(2%)

ya(2) = 1+ 22 — 42 — 82° — 4821 — 3522° 4 O(2°)
The change of variable

y=14+2+4+2Y
results in
22(—Y +Y%4+22+ 2zY)=0.

The algebraic function Y implicitly defined by =Y +Y2+4+22422Y = 0 has only one branch tending
to 0 at the origin and the general form of this equation is in the scope of theorem 1.



