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Abstract

A new formulation of Lagrange inversion for several variables will be described which does
not involve a determinant. This formulation is convenient for the asymptotic investigation
of numbers defined by Lagrange inversion. Examples of tree problems where the number of
vertices of degree k are counted and where vertices are 2-colored will be given. Non-crossing
partitions give another example and the Meir-Moon formula for powers of an inversion is a
special case.

1. Running Example
Consider a rooted plane tree where internal vertices can have two or three sons and are green or
red, according to the following rules: (an example of such a tree is given below.)

— a green vertex has three children; one is red and the other two are green;
— a red vertex has two children, one of each color, and the left one is red.

Enumeration of such trees is best done by taking into account the colors of the vertices: let z1 and x4
mark the green and red vertices, and define wy (21, z2) and wy(21, z3) as the functions enumerating
the trees whose root is green (resp. red). These functions satisfy the system of equations

wy(z1,22) = 1(1 + 3wfw2); wy(z1,22) = z2(1 + wyrwy).

Introducing the vectors z = (z1,29) and w = (wy, wy) and the functions fj(w) = 1 + 3wiw, and
f2(w) = 1+ wywsq, one obtains the system wq(z) = 21 fi(w); wa(z) = z2f2(w). Such equations are
very similar to those that can be solved in one dimension by Lagrange inversion, and it is natural
to try and solve them with a suitable extension.

2. Multivariate Lagrange Inversion

In one dimension, Lagrange inversion is used for implicit equations of the type w(z) = z f(w(z)),
with f(0) # 0: It relates the coefficients of a solution w(z), or of a function of w(z), as formal
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power series, to the coefficients of the simpler function f:

1, 1.,
e Jue) = L0 e lgte(e) = g0 (0)
Extensions to the multivariate case have been considered for some time; surveys can be found in
the paper written some twelve years back by Gessel [6], or in the recent book by Bergeron, Labelle
and Leroux [4]. The version presented below is due to Good [7]:

Theorem 1. Let z be a d-dimensional vector, g(z) and fi(z) (1 < i < d) be formal power series
inz, s.t. fi(0) # 0. Then the equations w; = x; f;(w) uniquely determine the w; as formal power
bij = 77—

series in x, and
elatu0) = (27 (s ||o, - F2 ).

with 6; ; the Kronecker symbol, ||A|| the determinant of the matriz A, f = (f1,..., fa), and f* =
LT
The determinant in this formula leads to trouble when one tries to get asymptotic information
from it. Let us consider the univariate case to see what the problem is.
For d = 1, Good’s formula applied to the equation w(z) = z f(w(z)) gives an identity equivalent

to the one presented above:

o) — 11 (o (12 L0
(1) [a"w(z) = [t ](f (1) (1 ' f(t)))-

When one wishes to obtain asymptotics, a natural tool is the saddle-point method, well suited
to approximating coefficients of (variations on) large powers of functions; see for example [5] for a
summary of results in this area. The idea is to use Cauchy’s formula [2"]F(z) = § F(z)z"""dz, for
F(z) = f(2)"(1 - 2f'(2)/ f(2)), with an integration path that is a circle going through the saddle-
point pg; po is itself is a perturbation of the saddle-point p; that appears in the evaluation of the
simpler coefficient [z7]f"(z). Now p; is defined as the solution of the equation 1 —z f'(z)/f(z) = 0,
i.e. the integrand of the right part of (1) becomes zero close to pg!

With care, it should be possible to work this out for one variable, but the outlook for a multi-
dimensional extension is not favorable, as we can expect cancellation of the determinant close to
the integration paths. Instead, Bender and Richmond have proposed a new multivariate version,
better suited to asymptotics; this formula will use the derivatives of a vector wrt a directed graph.

z:0f;(z)

3. Differentiating a Vector wrt a Directed Graph

To define the partial of a vector relative to a directed graph, consider all trees with vertices
0,1,...,d and edges directed to 0. There are (d + 1)d_1 such trees; for example for d = 2 there are
three trees:

1
\O/ 12 -0 2——~1—0

T P! T3

Now the derivative of a (d + 1)-dimensional function f according to such a tree is a product on
(d 4 1) terms, where f; is differentiated according to the incoming edges into the vertex labelled
by #; this is best explained on the above example, with f = ( fo, f1, f2):!

! Although the definition is more general, trees are the only graphs considered here.
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4. The New Inversion Formula
Theorem 2. Under the assumptions of the former theorem,

d -1 ) - s
la(u(n) = (_H n) oot 3 A0S JiT)

T
where the sum is on the set of trees with d + 1 vertices.

Proof. This result is proven in [3]; it relies on the simple formula n[z"~!]f = [2"]0f/dz and on
the expansion of a determinant. The terms are all positive as soon as the functions f; and ¢ have
positive coefficients; hence the coefficient [t2]g(w(t)), as a sum of (d 4+ 1)~ such terms, is itself
positive and there are no more cancellations. O

What do we obtain for the first values of d? For d = 1, the only tree is 1 — 0 and one gets back
the classical formula. For d = 2, ¢(¢1,12) is a function of two variables and
ni,.n 1 n1—1,n3—1 8(g7fn17 n2)
(27" 2y |g(wi (21, 22), wa(@1,22)) = m[tf t* 7] Z %
Te{To, 1,12}
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with (f; and f; are strictly positive at the saddle-points)
0? dg dfy 1 dg 0f1 1
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For general d, there is no determinant here, but a finite (although large!) sum of terms, each
of which can be evaluated individually. The asymptotic value of [t%]g(w(z)) is obtained by adding
the individual asymptotic values of the (d + 1)4~! terms.
It is possible to obtain a univariate local limit theorem for the number of red vertices in trees
having a fixed number of vertices, or a bivariate local limit theorem for the joint distribution of the
numbers of red and green vertices.

5. Local Limit Theorem

The usual approach towards a limiting theorem is through the covariance matrix (see for exam-
ple a former paper by the same authors [1]); checking the non-degeneracy of this matrix leads to
intricate conditions, which the authors try to bypass, by requiring instead the existence of a multi-
variate saddle-point. A local limit theorem holds whenever the functions g(z) and f;(z) (1 <7 < d)
are analytic; there is also an existence condition on the exponents of the variables in the functions
whose coefficients we are studying. Formally, this involves the lattice generated by the exponents
k for which the coefficient of t£ in f; is not zero; see [2] for a precise formulation.

For example, for the colored trees presented in Section 1, the only non-zero coefficients are
obtained, besides k£ = (0,0), for £ = (2,1) in f1, and for £ = (1,1) in f;. The lattice generated by
{(1,1),(2,1)} is N%; hence all the terms tzf téz will appear in the function flk1 2]“2.
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The saddle-point condition is that we should be able to solve the system of d equations {k; =
E1§1§d kidlog fi/0logv;} (with v; = €%).

We give the equations below for two variables, the better to understand what is going on, but it
should be understood that it is more general and applies to d dimensions.

At some point, we have to compute a coefficient [¢7*¢52](hfi" f3?), where the functions A, f; and
fo are on the variables t; and t5. The Way to do this is through a saddle-point approximation; more
specifically we shall look at [¢ kltkz’](hf 52) for ki and kg of the same order as ny and ng, but not
necessarily equal. This coefficient can be Wntten, by Cauchy’s formula, as W ¢ f ehltit2) gy, di,y,
with h = nqlog fi + nolog fo — k1logty — kologis. Now the saddle-points are defined by the two
equations dh/0t; = 0 and 0h/0t; = 0, which give the two-dimensional system

/11 2f 1 /11 2f2 1
k1 = nqt ko = nqt lo———.
1= N1l 1f+210t1f 2 = nila 2f+220t2f2
Applied to our running example, this gives the system in ¢; and ¢,
6t 2 {1t 3t 2 i1t
by = 2y, b by = 2 12

s, T T ity VTN

Define p := ky/ky; p € ]1,2[. Solving, we get

(p—1)? 3(2-p)?
= =713 ly = 3
3(2-p) (p—1)
This gives (k1,k2) = n(p/(1 4 p),1/(1+ p)). The covariance matrix is obtained by differentiation
of log f, where f:= f{" f*, with f; and f; defined in Section 1. For example B; ; is the value of
t10(log f)/ 0ty + 130*(log f)/ 13, taken at the point (r1,72), which gives By = n(p — 1)(4 + 2p —
p?)/p(1+ p). Similar computations give the other components of the covariance matrix:

p—1 [442p—p* 242p—p?
p(1+p)12+20-p" 14+2p—p

=:T2.
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